
Static and Dynamic Autopsy of Deep Networks
Titouan Lorieul, Antoine Ghorra, Bernard Merialdo

Data science department
Eurecom

Biot, France
Firstname.Lastname@eurecom.fr

Abstract—Although deep learning has been a major break-
through in the recent years, Deep Neural Networks (DNNs) are
still the subject of intense research, and many issues remain
on how to use them efficiently. In particular, training a Deep
Network remains a difficult process, which requires extensive
computation, and for which very precise care has to be taken
to avoid overfitting, a high risk because of the extremely large
number of parameters. The purpose of our work is to perform
an autopsy of pre-trained Deep Networks, with the objective of
collecting information about the values of the various parameters,
and their possible relations and correlations. The motivation is
that some of these observations could be later used as a priori
knowledge to facilitate the training of new networks, by guiding
the exploration of the parameter space into more probable areas.
In this paper, we first present a static analysis of the AlexNet
Deep Network by computing various statistics on the existing
parameter values. Then, we perform a dynamic analysis by
measuring the effect of certain modifications of those values on
the performance of the network. For example, we show that
quantizing the values of the parameters to a small adequate set
of values leads to similar performance as the original network.
These results suggest that pursuing such studies could lead to
the design of improved training procedures for Deep Networks.

I. INTRODUCTION

Deep learning is a branch of machine learning based on
models that use multiple layers of processing to represent
complex phenomena. They have recently achieved impressive
performance, in particular in pattern recognition tasks like
image and speech recognition [1], [2]. These models involve
a large quantity of parameters, and one key factor of their
success is the ability of training these models from large
quantities of data. Still, the training phase remains a challenge,
as the risk of overfitting the values of the parameters is very
high. DCNN (Deep Convolutional Neural Nets) are specially
well suited for image recognition tasks [3], as they efficiently
use the spatial correlation of pixels, and progressively build
more abstract representations of the visual content. It has
also been shown that these networks are able to extract
feature vectors that are more efficient than regular hand-crafted
features [4].

A lot of research works have tried to understand what
kind of calculation is performed by the Deep Networks and
makes them so efficient. For image analysis networks, this
has often been done through the visualization of the weights,
or the feature maps at different layers [5]. Such analysis
can sometimes provide hints on useful modifications of the

network [6]. It can also help to understand what part of the
images provoke a specific interpretation, and how the network
can be fooled by ad-hoc examples [7].

In our work, we want to investigate the properties of the
weights in trained networks, with the intention to derive
information that can be useful for training new networks, or to
optimize their storage. We focus on analyzing an existing Deep
Network in both a static and a dynamic approach. In the static
approach, we compute several statistics on the actual values
of parameters, possibly separated by layer. In the dynamic
approach, we are interested in the behaviour of the network
while analyzing images. We study the values of the output
of neurons per layer, and evaluate what is the sensitivity of
the performance of the network when the values of some
parameters are modified.

For our experiments, we chose to use AlexNet [1]. There
are several reasons for that. First, it has now become one of the
classical DNN. Second, an already trained, ready-to-use model
of this network is provided with the Caffe [9] framework,
which makes experimentations easy to conduct.

II. STATIC ANALYSIS

In the first part of our work, we aim at getting some
insights about the final values of the parameters in the trained
network. Such statistics can be evaluated at the global scale,
over the entire network, but also be focused on each layer,
in particular taking into account the difference of structure
between convolutional and fully-connected layers.

A. Global statistics

AlexNet consists of 5 convolutional layers followed by 3
fully connected layers. Table 1 shows the distribution of the
number of parameters on the different layers. We can see that
distribution of the number of parameters is greatly unbalanced
between layers. The convolutional layers only account for a
negligible amount in the total number of parameters of the
network. Indeed, less than 4% of the parameters are contained
in the convolutional layers and, thus, more than 96% of them
are used for the fully connected layers. However those first
layers are considered very important as they extract local
discriminative visual features from the images while the last
layers serve as a classifier.

Fig.1 shows the distributions of the parameters values for
the convolutional layers and for the fully connected layers. As

978-1-4673-8695-1/16/$31.00 c©2016 IEEE

TABLE I
ALEXNET’S PARAMETER DISTRIBUTION THROUGH THE DIFFERENT

LAYERS

Layer Number of parameters Ratio of parameters
conv1
conv2
conv3
conv4
conv5

34,944
307,456
885,120
663,936
442,624

0.06 %
0.50 %
1.45 %
1.09 %
0.73 %

fc6
fc7
fc8

37,752,832
16,777,216
4,097,000

61.93 %
27.52 %
6.72 %

Total 60,965,224 100%

TABLE II
SUMMARY OF THE CHARACTERISTICS OF THE FILTERS IN THE

CONVOLUTIONAL LAYERS.
Layer Number of filters Spatial extent Depth
conv1
conv2
conv3
conv4
conv5

96
256
384
384
256

11×11
5×5
3×3
3×3
3×3

3
96
256
192
192

the figures illustrate, most of the values of the parameters are
very small, these distributions both resemble to a Gaussian
distribution centered in zero, with a smaller deviation for
the fully connected layers. The standard deviation of the
parameters of the convolutional layers equals to 1.69 10−2

while for the parameters of the fully-connected layers it equals
to 5.68 10−3.

Fig. 1. Respective distribution of all the parameters of the convolutional
layers and of the fully-connected layers.

B. Convolutional layer analysis

Convolutional layers are used to extract local discriminative
visual features while keeping a certain amount of spatial
information. Each of the convolutional layer is characterized
by the number of filters it contains and by the size of the input
patch of those filters. All these characteristics are summarized
in Table 2. Except for the last layer, the number of filters is
increasing with the depth of the layer in the network while
the spatial extent decreases. As for the depth of the filters, it
is equal to the number of filters of the preceding layer, except
for the last two layers which are operating only on half of the
filters of the preceding layers due to memory constraints.

In order to study the variability of these filters, we per-
formed the following experiment on each convolutional layer.
We consider each filter as a vector, and we perform a PCA
analysis on the set of vectors for each layer. Then we look at

the cumulated variance represented by the first k components
of this PCA analysis as shown in equation 1, where the λi are
the eigenvalues of the covariance matrix.

αk =

∑
i<k λi∑
i λi

(1)

Fig.2 shows the evolution of this ratio for the different
layers. It can be noted that for the first layer, about half of the
components are enough to represent most of the total variance.
As the layers go deeper, the curves increase more slowly
indicating a smaller correlation and a wider variety between
the filters. This conforts the idea that, as we get deeper in the
network, it detects higher-lever and more complex features. It
also suggests that smaller number of filters is needed for the
first layers and that this number should be increasing while
we get deeper and deeper in the network.

Fig. 2. Cumulative ratio of the variance ratio of the PCAs dimension kept

C. Fully-connected layers analysis

In AlexNet, the last three layers are fully connected layers,
and are used to perform the final classification from the
extracted features. The first two use the Rectified LinearUnit
(ReLU) activation function, while the last one uses a softmax
function. The ReLU, i.e. f (x) = max(0; x), is shown to
allow a quicker learning of the network while enforcing
sparsity. However, since the output of the network should
be a probability distribution over the possible outcomes, the
softmax is used for the last layer. As highlighted by Fig.3,
the parameters of the fully-connected layers follow a kind of
skew normal distribution, with a skewness increasing from the
lowest fc6 layer to the last fc8 layer.

Fig. 3. Distribution of the parameters of the fully-connected layers

This raises the question of whether the difference between
fc8 and the previous levels is due to a closer proximity to the
output, or to the use of a different activation function. Further
investigations will be needed to solve this issue.

III. DYNAMIC ANALYSIS

In a second step, we perform a dynamic analysis of the
network. By dynamic, we mean observations that are per-
formed while the network is processing actual data. This of
course involves mostly the feature maps, that is the output
values of neurons in intermediate layers. Another objective
is to evaluate the importance of specific parameter values
for the global performance of the network. Intuitively, a
minimal modification of a few parameters should not have
a great impact on the global performance. Our goal in the
dynamic analysis is to have some quantitative evaluation of
this relationship.

A. DataSet

In the following experiments, we use a subset of the
ILSVRC 2012 (ImageNet Large Scale Visual Recognition
Competition) dataset. ILSVRC 2012 [8] is a reference dataset
that contains 1.2 million images labeled with 1,000 classes
and it is the dataset on which Caffe’s AlexNet model has been
trained. The subset we use consists of 20,580 images and 120
classes, and was chosen arbitrarily.

B. Output Sparsity

The main feature of the output values is that they are
positive valued vectors due to the activation functions which
are either ReLU or softmax. The next important aspect is that
they are sparse (cf. Fig.4). Sparsity is defined as the ratio of
zero values over the total number of values. All the layers
which use ReLU as activation function are sparse as they
should be. fc8 is the only layer that has a sparsity of zero
which is normal as it uses softmax instead of ReLU to output
probabilities and, thus, it cannot return a zero value. The fully-
connected layers before fc8 achieve more than 80% sparsity
which is interesting as these layers are sometimes used as
feature vectors for the description of the visual content of an
image.

Fig. 4. Sparsity of weights per layer

C. Effect of parameter noise

To understand how sensitive to noise the parameters are,
we artificially inject an additive normal noise to the values of
the parameters. The standard deviation of that noise depends
on the layer, as we feel that if a layer has a large standard
deviation, a larger noise should be added than to a layer with
small standard deviation. The value of the standard deviation
of the noise is taken as a percentage of the standard deviation
of the parameters of that layer. Fig.5 shows the effect of that
noise on the accuracy of the network depending on the strength
of that noise. Up to a 10% strength, the noise does not affect
much the performance of the network but from 20% to 60%
this error rate rapidly increases in a nearly linear relation and
a high-valued slope.

Fig. 5. Adding Gaussian noise to the parameters

In future experiments, we plan to refine these studies, for
example to evaluate the effect of adding noise to a single layer,
in order to see if some layers are more important than others.

D. Quantization

Quantization is another mechanism to modify the values
of the parameters, while keeping the relation with the initial
configuration. It may allow to compress the network by
reducing its memory footprint and also to limit the parameters
search space during training, thus resulting in a more efficient
training. We studied two types of quantization: rounding
quantization and K-means quantization.

Rounding quantization is simply done by reducing the
number of digits used for the parameters by rounding their
values up to a certain precision. As shown in Table 3, using
only 4 to 5 decimals is sufficient to preserve the initial
performance of the network. This suggests that it should be
easy to reduce the storage used by the model by one half,
depending on the encoding of real values. Note that this is
true for testing purposes not training purposes [10].

With K-means scalar quantization, we learn a codebook
that minimizes the L2 distances between the real values and
the codewords. In our experiments, we learn one specific
codebook for each layer. So, for each layer, we accumulate all
the parameters values which appear in this layer, we perform
a K-means clustering over this set, and we replace each
parameter value by the value of the closest centroid in the final
clustering. This amounts to using only K different values for
the parameters, while these values are chosen adequately by

TABLE III
EFFECT OF ROUNDING ON THE ACCURACY OF THE NETWORK. (THE
NUMBER OF DECIMALS KEPT IS THE NUMBER OF DIGITS AFTER THE
DECIMAL POINT, NOT THE NUMBER OF SIGNIFICANT OR NON-ZERO

DIGITS)

Number of decimals kept Top 1-error
all
5
4
3
2
1

22.06 %
22.06 %
22.07 %
22.25 %
27.45%
100%

the clustering algorithm. Fig.6 shows the evolution of the error
rate for various sizes of the K-means. It is noticeable that for
K=32, the error rate is as low as the non-quantized network.
This suggests that a precise value of the parameters is not so
important, but probably that what is more important is their
relationship. This information could also be used to reduce the
size of the model drastically, as floating point values would
be replaced by small range integer values.

Fig. 6. Effects of 1D K-Means quantization on the accuracy of the network.

We also studied the impact of vector quantization of the
filters, by performing a clustering of the filters for each layer,
and replacing each filter by the centroid of the cluster it
belongs to. Here we focus on the convolutional layers. Fig.7
shows the evolution of the error when the number of clusters
increase.

Fig. 7. Effects of 2D K-Means quantization on the accuracy of the network.

Not surprisingly, the 2-D K-means clustering method as

shown in the Figure above requires a very large number of
clusters to get an error rate comparable to the full network.

IV. CONCLUSION

In this paper, we presented a first attempt at the autopsy
of Deep Networks by analyzing AlexNet. We performed a
static analysis showing the parameter values distributions and
a dynamic analysis evaluating the sensitivity of the final
performance to these values. For example, we found that a
quantization of the parameter values into a small adequate
set does not degrade the performance of the network. We
believe that extending this type of studies to other networks,
and having a deeper analysis of the distributions, can lead to
useful indications on how to improve the training phase of new
networks, by taking these indications are heuristics to guide
the training. This would allow to speed-up the training phase
while reducing the risks of overfitting.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[2] Karen Simonyan and Andrew Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[3] Yann LeCun, Koray Kavukcuoglu, Clément Farabet, et al., “Convolu-
tional networks and applications in vision.,” in ISCAS, 2010, pp. 253–
256.

[4] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan
Carlsson, “Cnn features off-the-shelf: An astounding baseline for
recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2014.

[5] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How
transferable are features in deep neural networks?,” in Advances in
Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds., pp. 3320–3328.
Curran Associates, Inc., 2014.

[6] Matthew D. Zeiler and Rob Fergus, “Visualizing and understanding
convolutional networks.,” Computer visionECCV 2014, 2014.

[7] Anh Nguyen, Jason Yosinski, and Jeff Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
2015.

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al., “Imagenet large scale visual recognition
challenge,” International Journal of Computer Vision, vol. 115, no.
3, pp. 211–252, 2015.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” in Proceedings
of the ACM International Conference on Multimedia. ACM, 2014, pp.
675–678.

[10] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao, “Improving
the speed of neural networks on cpus,” in Proc. Deep Learning and
Unsupervised Feature Learning NIPS Workshop, 2011, vol. 1.

