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Abstract—Maximum-likelihood (ML) receivers are optimum
receivers for MIMO systems, but their complexity grows ex-
ponentially with the modulation order of the codeword and
the number of spatial layers. The Reduced Complexity ML
(R-ML) receivers based on low complexity adaptation of the
max-log MAP detector and reduction of searching space are a
good compromise to satisfy complexity-performance trade-off.
In this paper we investigate physical layer abstraction for single-
user MIMO system with a R-ML receiver performing Parallel
Interference Aware (PIA) detection. We develop a light-weight
extended Mutual Information Effective SINR Mapping (MIESM)
methodology based on look-up tables (LUT), which take the
special non-linear nature of the PIA receiver into account. The
results show that the proposed LUT-based MIESM abstraction
method is as accurate as the direct MIESM abstraction, but at
the same time has significantly less computational complexity. It
can thus be easily used in performance prediction devices as well
as system level simulators.

I. INTRODUCTION

Deploying multiple antennas at the transmitter and receiver
side, widely known as multiple-input multiple-output (MIMO),
is a key technique to increase throughput in wireless commu-
nication systems. Based on the serving target, MIMO systems
fall into Single-User MIMO (SU-MIMO) and Multi-User
MIMO (MU-MIMO). Focused on serving one user, SU-MIMO
aims to maximize system throughput by sending independent
information streams on parallel spatial layers or increase
reliability by transmitting the same data stream over multiple
antennas, while MU-MIMO targets simultaneous scheduling
of several users on the same time-frequency resource.
Maximum-likelihood (ML) receivers are optimum receivers
for MIMO systems thanks to outstanding performance, but
their complexity grows exponentially with the modulation
order of the codeword (CW) and the number of spatial layers.
On the other hand, linear receivers such as Zero-Forcing and
Minimum Mean Square Error (MMSE) are easier to imple-
ment, but do not provide adequate levels of performance. This
motivates the research community to look for a complexity-
performance trade-off; one of the promising solutions is Re-
duced Complexity ML (R-ML) receiver which is based on
low complexity adaptation of the max-log MAP detector and
reduction of searching space. If the interfering CW is of a
known QAM constellation, R-ML receiver can also benefit
from interference awareness (IA).
PHY abstraction is a powerful tool for system performance

evaluation which can be used in link level simulations as
well as in real time measurements and forms a part of
the User Equipment (UE) and eNodeB emulators in radio
network performance prediction devices. With the traditional
LTE simulators, the full set of the PHY procedures such as
coding, modulation, convolution, demodulation and decoding
consumes more than 80% of simulation time [1], and is not af-
fordable in terms of time and CPU; the use of PHY abstraction
reduces computational time by a factor of 100 [2]. The second
PHY abstraction application is Link Adaptation: depending
on the ill- or well-conditioned channel, the UE decides on
the Channel Quality Indicator (CQI) to satisfy target Block
Error Rate (BLER) under current channel conditions. The
two most studied PHY abstraction approaches are Exponential
Effective SINR Mapping (EESM) [3], which is widely used
for linear receivers, and Mutual Information Effective SINR
Mapping (MIESM) [4], [5], [6], which reflects the nature
of the ML-family of receivers. Both methods estimate post-
processed Link Quality Metric (LQM) such as Signal-to-
Interference-plus-Noise Ratio (SINR) or Mutual Information
(MI) per subcarrier and then compress the obtained array of
elements into a single effective value per channel realization.
MIESM approach is proven to outperform EESM [7], but has
a drawback in terms of computation complexity. Moreover,
the EESM approach is a weak choice in the presence of non-
Gaussian interference [8] [9], since interference is, in this case,
absorbed into Gaussian noise. While post-processed SINR
computation is straightforward for linear receivers, it remains a
challenging point for non-linear ones, where joint detection is
performed over all spatial layers. In [10], the authors proposed
to estimate post-processed SINR of a ML receiver by upper-
and lower-bounding it with Signal-to-Noise-Ratio (SNR) of
respectively Interference-free (IF) and MMSE receivers and
applying calibration coefficients. This approach was then ex-
tended to R-ML IA case in [11], where adjusting coefficient
also depends on the interference strength. Another approach
to estimate post-processed SINR for ML receiver through
polynomial approximation was presented in [5], but not well
adapted to MIMO and does not consider the interference-aware
case. PHY abstraction for MIMO ML-receivers was developed
in [12] based on QR and QL factorization of the channel
matrix. The authors upper and lower bound the performance
of each of the streams and then use the average value in order



to characterize the achievable performance. In [9], to avoid
time consuming on-line mapping between channel gains and
MI, the authors store channel statistics and corresponding MI
values in a LUT for a MU-MIMO system with R-ML IA
receiver.
In this paper, we present and validate a light-weight PHY
abstraction methodology for Physical Downlink Shared Chan-
nel (PDSCH) of the SU-MIMO system employing a R-ML IA
receiver with Parallel IA (PIA) detection. Our methodology
is based on precomputed 3D LUTs with MI for different
constellation alphabets (QPSK, 16QAM and 64QAM) and
is symmetrical if the modulations orders of the CWs are
exchanged: instead of 9 LUT for all the possible combinations
of MCS, it is sufficient to use only 6. The LUT quantization
analysis is performed, and abstraction results with LUT are
compared with the ones obtained from direct precise compu-
tations of MI.
The reminder is organized as follows: in Section II we describe
the signal model and sub-optimal precoder selection strategy
for Spatial Multiplexing in the 2 × 2 SU-MIMO system.
Section III gives an overview and a comparative informa-
tion theoretic analysis of non-linear receivers and detection
mechanisms for Spatial Multiplexing. In Section IV we present
the abstraction methodology for R-ML PIA receiver, while
Section V validates the proposed methodology. Finally, we
complete the paper with the conclusion in Section VI.

II. SYSTEM MODEL

A. Signal model

SU-MIMO closed loop spatial multiplexing also known as
downlink transmission mode 4 (TM4) was introduced in LTE
Release 8 and is designed to increase the system throughput
by sending two CWs, dedicated to the same UE, over two
or four spatial layers. An essential part of TM4 is channel
state information (CSI) feedback: the UE estimates the channel
matrix based on Reference Symbols (RS), computes the CQI,
Precoder Matrix Indicator (PMI) and Rank Indicator (RI) to
ensure a BLER not higher than 10% and feeds back the
selected parameters to the eNodeB. We consider a scenario
where an eNodeB equipped with ntx = 2 transmit antennas
sends two spatially multiplexed CWs (CW0 and CW1), with
MCS0 and MCS1 respectively, to a UE with nrx = 2 receive
antennas. The received signal vector yk ∈ C2×1 for the k-th
subcarrier seen by the UE is given by

yk = HkPkxk + nk, k = 1, 2...,K, (1)

where xk ∈ QM0,M1 is the vector of two complex symbols x0

and x1 with variance of σ2
0 and σ2

1 , QM0,M1 := QM0 ×QM1

is a cartesian product of two modulation alphabets QM0 and
QM1 , M0,M1 ∈ {2, 4, 6} are the modulation orders of the
constellations, and nk is a vector of Zero Mean Circularly
Symmetric Complex Gaussian (ZMCSCG) white noise of
double-sided power spectral density N0/2 at the 2 receive
antennas of UE. Hk = [h0,k h1,k] is 2× 2 MIMO flat fading
Rayleigh channel constructed from i.i.d. ZMCSCG random
variables with a variance of 0.5 per dimension, while P is a

2 × 2 precoding matrix employed by the eNodeB at the k-th
RE. For the sake of simplicity, we drop the subcarrier index
for a moment and replace multiplication of the H and P with
the effective channel Heff:

y = Heffx + n, (2)

where Heff = [heff0 heff1].

B. Suboptimal Precoder Selection Strategy

The precoder codebook P for TM4 is standardized by 3GPP
and follows the equal gain transmission (EGT) principle with
the possibility of swapping columns over the entire band:

P ∈

{
1√
4

[
1 1
1 −1

]
,

1√
4

[
1 1
j −j

]}
. (3)

The criteria, based on which the UE makes a decision on
a particular PMI to report, is a subject for a discussion.
There are a few metric-based criteria to select a precoder
matrix: maximum system throughput or maximum SINR at
the receiver. For the first case, an exhaustive search over
all possible received signal vector needs to be performed
for both precoder matrices on a per-subband basis, which,
being optimal, involves huge computational complexity of
constrained MI, especially for high modulation orders. As
a result, we propose in this work a precoder selection that
maximizes MI for the first CW only. The UE selects the
precoder matrix P which ensures that the effective channel of
the first stream is stronger than the one of the second stream:(

‖h0 + h1‖2

‖h0 − h1‖2
,
‖h0 + jh1‖2

‖h0 − jh1‖2

)
. (4)

The choice between these two ratios can be performed by
evaluating the correlation coefficient ρ10:

ρ10 = hHeff1 heff0. (5)

Comparing real and imaginary parts of ρ10 on a per-subband
basis, the UE picks up one P from the two options:

P =



1√
4

[
1 1

1 −1

]
,

for <(ρ10) ≥ =(ρ10) and <(ρ10) ≥ −=(ρ10)
or <(ρ10) ≥ =(ρ10) and <(ρ10) ≤ −=(ρ10)

1√
4

[
1 1

j −j

]
,

for <(ρ10) ≤ =(ρ10) and <(ρ10) ≥ −=(ρ10)
or <(ρ10) ≤ =(ρ10) and <(ρ10) ≤ −=(ρ10)

(6)

III. RECEIVER ARCHITECTURE AND DETECTION
MECHANISMS

A. Reduced Complexity Maximum Likelihood Interference
Aware Receiver for 2× 2 MIMO

Over the last few years, enhancing system performance
through advanced receiver architectures has been attracting
more and more attention [13]. Trying to overcome the tradi-
tional drawback of the ML receiver – extremely high computa-
tional complexity, that exponentially grows with the number of
spatial layers and modulation order, – the research community
has mainly focused on the sub-optimal R-ML receiver design.



I (X0, X1;Y|H,P,M0,M1) = log(M0M1)−
1

M0M1Nn

( ∑
x∈QM0,M1

Nn∑
z

log
∑

x′∈QM0,M1

exp

[
−‖y−HPx′‖2 + ‖n‖2

N0

])
(11)

I (X0;YMF|α,γ,M0,M1) = logM0 −
1

M0M1Nn

( ∑
x0∈QM0

∑
x1∈QM1

Nn∑
z

log

∑
x′0∈Q

M0

∑
x′1∈Q

M1

exp[− 1
N0
‖yMF − αx′0 − γx′1‖2]∑

x′′1 ∈Q
M1

exp[− 1
N0
‖yMF − αx0 − γx′′1‖2]

)
(12)

IIF > I (X0, X1;Y|H,P,M0,M1)︸ ︷︷ ︸
IML

= I (X0;Y|H,P,M0,M1) + I (X1;Y|X0,H,P,M0,M1)︸ ︷︷ ︸
ISIC-IA

> I (X0;YMF|α,β,M0,M1) + I (X1;YMF|α,γ,M0,M1)︸ ︷︷ ︸
IPIA

> IMMSE
(13)

In [14], the authors show that the soft decision bit metrics for
the ML decoder can be simplified to the minimum distance
between the received symbol and

√
M/2 constellation points

on the real line. Matched filter (MF)- based R-ML detector,
proposed in [15], reduces one complex dimension of the
system without introducing a loss in performance thanks to
the decoupling of the real and imaginary parts of the metric.
SU-MIMO design can be seen as a system with two CWs
that interfere with each other, which raises the question how
the receiver should treat this interference. In classical non-
IA receivers interference brings down the performance due to
decreasing SINR. If interference is treated properly, the system
is sensitive not to SINR, but to SNR [16]. Thus, if the ML
receiver makes use of the discrete nature of interference, the
system becomes noise-limited instead of being interference-
limited. Closed-loop spatial multiplexing utilizes Downlink
Control Information (DCI) format 2 that carries information
about MCSs associated with the two transmitted Transport
Blocks (TBs), thus, the SU-MIMO receiver can benefit from
IA detection as well.
SU-MIMO multi-stream interference aware detection falls into
three groups: ML, R-ML PIA and R-ML SIC-IA. Using the
ML approach, the receiver performs decoding of the full
transmitted vector simultaneously, while, in the R-ML PIA
case, the decoder relies on soft-bit metrics obtained after
performing maximum ratio combining (MRC) of the two
compensated spatial layers. MFs hH

0eff
‖h0eff‖ and hH

1eff
‖h1eff‖ transform

the cross-coupled MIMO channel in (2) into two compensated
MISO channels with interference:

yMF =

[
y0MF
y1MF

]
=

 hH0effh0eff
‖h0eff‖

x0 +
hH0effh1eff
‖h0eff‖

x1 +
hH0eff
‖h0eff‖

n
hH1effh0eff
‖h1eff‖

x0 +
hH1effh1eff
‖h1eff‖

x1 +
hH1eff
‖h1eff‖

n

 . (7)

Note that MF, being a linear operation, does not change the
noise variance. From the compensated received signal yMF
the receiver detects symbol x0 belonging to the first CW
treating x1 as interference, while the x1 is obtained from the
detection of yMF , where x0 is considered as interference.
For future reference we define the effective compensated
channels and the received vector after MF:

α =
[
α0 α1

]T
=
[

hH0effh0eff
‖h0eff‖

hH1effh0eff
‖h1eff‖

]T
, (8)

γ =
[
γ0 γ1

]T
=
[

hH
0effh1eff

‖h0eff‖
hH

1effh1eff

‖h1eff‖

]T
, (9)

yMF = αx0 + γx1 +
[

hH
0eff

‖h0eff‖
hH

1eff
‖h1eff‖

]T
n. (10)

B. An Information Theoretic Analysis of ML and R-ML PIA
Detection

The maximum achievable rate for a Bit-Interleaved Coded
Modulation (BICM) equals the MI between transmitted and
received signal vector, which in turn is a function of noise
power and channel gains. There is no closed-form expression
to compute MI for discrete alphabets; instead it can be
approximated with Monte-Carlo simulations over a large num-
ber of channel NH and noise Nn realizations. Instantaneous
constrained BICM MI for optimum ML detection is defined
by (11). For PIA detection, the instantaneous sum MI equals
to

IPIA = I (X0;YMF|α, γ,M0,M1)︸ ︷︷ ︸
MI for the first CW

+ I (X1;YMF|α, γ,M0,M1)︸ ︷︷ ︸
MI for the second CW

, (14)

where I (X0;YMF|α,γ,M0,M1) can be computed as (12) and
I (X1;YMF|α,γ,M0,M1) can be straightforwardly deduced
from (12). PIA detection is a suboptimal solution for TM4; as
it is shown in (13) applying MI chain rule, sum MI for two
streams using SIC-IA detection equals to the MI of ML joint
detection, and thus, to achieve optimum performance and com-
plexity reduction, it is essential to set up the receiver into SIC
detection mode. IF and MMSE receivers with corresponding
per-stream SNR SNRIF

m and SINR SINRMMSE
m

SNRIF
m =

1

N0ntx
‖hm‖2, (15)

SINRMMSE
m =

1

[(Intx + 1
N0ntx

HHH)−1]mm
− 1, (16)

where m = 1, 2 is an index of the stream, are proven to upper
and lower bound the performance of the ML-receiver [10],
what is reflected in (13). Fig.1 supports the theoretical expec-
tations: R-ML PIA receiver shows near-optimum performance
in comparison with ML and is bounded by the performance
of IF and MMSE WMMSE = (HHH + ( 1

N0ntx
)−1Intx

)−1HH

receivers.



I (X;Y |SNR,M) = logM − 1

MNhNn

( ∑
x∈QM

Nh∑
c

Nn∑
z

log

∑
x∈QM exp(−SNR |y − hx′|2)

exp(−|n|2)

)
(20)
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Fig. 1. Average Normalized Sum MI for two CWs belonging to QPSK for
8-tap Rayleigh channel for IF, ML, R-ML PIA and MMSE receivers

IV. PHY ABSTRACTION METHODOLOGY

Since we investigate R-ML PIA receiver, where detection
is done on per-stream basis, the abstraction methodology can
be considered symmetric per CW. PHY abstraction ultimately
aims to predict BLER based on current channel state and noise
power, thus, the input parameters of the abstraction model
would be effective compensated channel gains α and γ and
noise power N0. The MIESM methodology for each spatial
stream m consists of the following steps:

1) Compute LQM per subcarrier k MImk .
2) Obtain the single effective LQM MImeff for each channel

use.
3) Reversely map MImeff to the SINRm

eff.
4) Find the estimated BLER BLERm

eff corresponding to
SINRm

eff.
5) Calibrate results using the adjustment coefficients βm

0

and βm
1 .

Recall that the CW0 with MCS0 is decoded in presence of
interfering CW1 with MCS1 and vice versa.

A. Obtaining LQM

Mapping process is the heart and the most challenging
point of the abstraction methodology. Mapping can be done
via direct computation of MImk for each particular channel
realization using (12), which would be very precise, but is
time and CPU consuming. Instead of this, we propose to
utilize from the precomputed LUT: channel statistics ||αk||,
||γk||, N0 and corresponding MIk, obtained using (12) by
running Monte-Carlo simulations for a large number of chan-
nel realizations and noise variances, and then stored in LUT
(17). The choice of building the LUT based on ||αk||, ||γk||
is motivated by the implementation complexity: after MIk

estimates are obtained for each of the channel realization, it is
necessary to build a gridded surface MILUTk

= F(αk,γk, N0),
from the scattered data set with the help of data griding,
interpolation and surface fitting tools, which is not trivial when
αk and γk are two-dimensional complex vectors. It could
be possible to separate phase and amplitude for each of the
channel coefficients, but this would lead to an unfeasibly high
dimensionality of the LUT. However, the drawback of the
choice of ||αk||, ||γk|| consists the loss of the channel phase
information, and the accuracy in terms of the Minimum Square
Error (MSE) is compared with the direct computation method
(11) for a few MCS values.

MILUTk
(||αk||, ||γk||, N0,M0,M1)

= I
(
X0;YMF

∣∣αk,γk, N0,M0,M1

)
.

(17)

For BICM, MI is limited by the modulation order M of a 2M

QAM constellation and saturates at different SNR or SINR
values for different M . Thus, a library of LUTs is needed to
take into account different combinations of modulation orders
for both CWs. Per-subcarrier MImLUTk

is then averaged among
the subcarriers and technically becomes an equivalent of MI
in a single-state channel:

MImeff =

K∑
k=1

MImLUTk
(||αk||, ||γk||, N0,M0,M1)

βm0 K
, (18)

where βm
0 is the first adjustment factor to compensate for

modulation and coding rate.

B. Obtaining Effective SNR
We are now looking for a direct relation between MImeff

and SINRm
eff. We assume that there exists an equivalent one-

tap Single-Input-Single-Output (SISO) channel with a signal
model (19) and averaged MI (20):

ỹk = h̃kx̃k + ñk, (19)

where x̃k ∈ QM is a received complex symbol with variance
of σ̃2, QM is a modulation alphabet of order M ∈ {2, 4, 6},
h̃k is flat fading Rayleigh SISO channel with i.i.d. ZMCSCG
random variables with a variance of 0.5 per dimension and
ñk is ZMCSCG noise of double-sided power spectral den-
sity N0/2. Then a one-to-one mapping between MImeff and
SINRm

eff can be obtained by the means of linear interpolation
of (20) for a known value of MImeff . Here M = Mm,
SINRm

eff = βm
1 SINR

m
eff and βm

1 is the second adjustment
factor to compensate for modulation and coding rate.

C. Finding Estimated BLER
Assuming that effective SNR in a fading channel results in

the same BLER as it would result in an AWGN channel,

BLERm(Heff, N0,MCSm) u BLERAWGN(β1SNReff,MCSm).
(21)
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Fig. 2. Performance validation for CW0 and CW1 belonging to QPSK.
Predicted BLER of TM4 for MCS0,MCS1 = 2 and MCS0,MCS1 = 4
in 8-tap Rayleigh channel.

It is important that the AWGN curves are precomputed for
the full range of MCS and correspond to TM4, since various
amount of Resource Elements is used for different transmis-
sion modes, resulting in a rate-dependent shift of the AWGN
curves.

D. PHY Abstraction Training

The calibration of the adjustment factors βm
0 and βm

1 is
an important step of PHY abstraction validation. The detailed
analysis of the calibrating approaches has been done in [17];
the best fitting results are shown using logarithmic scale. Mini-
mum Square Error (MSE) between SINRm

eff and SINRm
AWGN

is an adequate criteria for the training:

βmopt0
, βmopt1

= argmin
βm
0 ,βm

1

1

NHNn

[NH∑
c

Nn∑
z

|SINRmeff(β
m
0 , β

m
1 ,MCSm)

− SINRmAWGN(MCSm)|2
]
.

(22)

V. RESULTS

The simulations were carried out using the downlink simu-
lator of OpenAirInterface (OAI) – an open source LTE plat-
form developed at EURECOM [1] with respect to 3GPP
standards [18], [19], [20] with a high degree of realism and
flexibility. The important part of the simulations was the
careful generation of the input link level data for AWGN
and frequency-selective channels. For the AWGN simula-
tion, the channel was generated with the help of the spatial
correlation matrix, that nullifies cross-layer interference, and
10000 packets were transmitted with the perfect Channel Esti-
mation (CE) at the UE. For the frequency-selective simulation,
8-tap Rayleigh fading channel with i.i.d. entries and the delay
spread of 0.8 microseconds was chosen, and 1000 packets
were transmitted over 100 channel realizations for the wide
range of noise variances targeting BLER of 10−2 applying
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Fig. 3. Performance validation for CW0 and CW1 belonging to 16QAM.
Predicted BLER of TM4 for MCS0,MCS1 = 10 in 8-tap Rayleigh channel.

perfect CE at the receiver as well. These traces were then
used to obtain the calibration coefficients that are stored for
each MCS and can be used for any random channel realization
with the accuracy provided in Table I. The abstraction results
for CWs coming from QPSK constellation (Fig. 2), 16QAM
(Fig. 3) and a combination of these two constellations (Fig. 4)
should be read as follows: the closer the Rayleigh curves
(plotted in circles) are to the corresponding AWGN curve
(plotted in diamonds), the more accurate is the abstraction. The
calibration precision of LUT method for QPSK constellation
is verified with the direct MIESM mapping at the stage of
obtaining LQM per subcarrier.

−5 0 5 10 15 20
10

−2

10
−1

10
0

SNReff  [dB]

B
LE

R

 

 

CW
1
 MCS

1
= 4 MCS

2
=12 Rayleigh8

CW
2
 MCS

1
= 4 MCS

2
=12 Rayleigh8

CW
1
 MCS

1
=4 MCS

2
=12 AWGN

CW
2
 MCS

1
=4 MCS

2
=12 AWGN

Fig. 4. Performance validation for CW0 and CW1 belonging to QPSK and
16QAM respectively. Predicted BLER of TM4 for MCS0 = 4 and MCS1 =
12 in 8-tap Rayleigh channel

From a comparative analysis of Table I and Table II, it is
clear that we have a good match between these two methods,
and thus, the LUT based MIESM PHY abstraction can be
considered as introducing sufficient accuracy in terms of MSE,



TABLE I
CALIBRATION RESULTS FOR MIESM LUT ABSTRACTION METHODOLOGY

IN 8-TAP RAYLEIGH CHANNEL

MCS0 MCS1 MSE0
LUT MSE1

LUT β0
LUTopt0

β1
LUTopt0

β0
LUTopt1

β1
LUTopt1

2 2 0.0334 0.0544 15.7701 24.0338 0.2292 0.2107
4 4 0.0253 0.0403 8.1128 19.8789 0.1415 0.1067
4 12 0.0369 0.6021 11.2565 0.7811 0.1177 0.6284
10 10 0.3781 0.5707 0.6762 0.6772 0.4860 0.4315
12 12 0.7480 0.8817 0.7734 0.8343 0.6070 0.6023

TABLE II
CALIBRATION RESULTS FOR DIRECT MIESM MAPPING ABSTRACTION

METHODOLOGY FOR QPSK IN 8-TAP RAYLEIGH CHANNEL

MCS0 MCS1 MSE0
direct MSE1

direct β0
directopt0

β1
directopt0

β0
directopt1

β1
directopt1

2 2 0.0364 0.0409 8.2438 4.9157 0.2300 0.2731
4 4 0.0217 0.0300 2.4298 2.3646 0.1839 0.1870

despite the loss of channel phase information. However, it
could be surprising that the CWs with identical MCS require
different calibration coefficients. In fact, the two streams given
the same MCS show the exact same performance in AWGN
channel due to interference absence provided by the spatial
correlation matrix, while in frequency selective channel, the
CW0 always enjoys higher MI due to precoder selection
strategy, and shows better performance (3dB), which leads to
non-equal adjusting coefficients for both streams.

VI. CONCLUSION

We have developed and validated link abstraction methodo-
logy for the the parallel interference aware MIMO receiver,
where the two codewords are coming from QPSK, 16 QAM
and combination of these two constellations. Our methodology
is based on precomputed LUT library of MI values for R-ML
PIA detection. The LUT is based on the norms of the columns
of the channel matrix Heff and noise variance N0. The results
of LUT-based abstraction are shown to be accurate enough
and this methodology can be easily deployed in performance
prediction devices as well as system level simulators. We also
performed a comparison between the accuracy achieved by
the LUT-based MIESM method with direct MIESM mapping
and found that the loss of channel phase information does
not introduce a significant degradation in the performance. In
future work we are planning to extend the proposed abstraction
methodology to a successive interference cancellation (SIC)
receiver, which is the optimal detection strategy for trans-
mission mode 4 with two codewords. Moreover, the sub-
optimal precoder selection strategy used in this paper for PIA
detection, would also turn into optimum for the SIC case
and thus the abstraction methodology used in this paper will
become more accurate as well. In addition, we plan to extend
the simulations to other frequency-selective channel models
such as the 3GPP Spatial Channel Model (SCM), that may
introduce a significant difference in the calibration coefficients.
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