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Abstract—In order to increase the capacity of mobile networks,
operators are investigating the use of unlicensed spectrum in
addition to their licensed spectrum. Already today it is possible
to integrate WiFi networks into the core networks and perform
offloading of traffic to a WiFi network. In future releases of
3GPP a tighter interaction of WiFi and LTE is foreseen that will
even enable the aggregation of these two technologies. The design
and performance analysis of different offloading and aggregation
strategies is a difficult task, because of the different radio access
technologies (RAT) involved. One widely used tool for the analysis
of such systems is stochastic geometry, but most existing works
do not take the heterogeneity of the different RATs into account.
This work models the LTE and WiFi networks as well as the users
using a probabilistic approach based on stochastic geometry and
takes the particular physical layer properties of the two RATs into
account. The proposed model allows for the performance analysis
of those different networks using closed form expressions. Using
these newly developed tools, we show that the max-throughput
criterion, which takes the different characteristics of the two
RATs into account, performs better than simple offloading and
max-SINR association criteria.

Index Terms—Stochastic Geometry; Heterogeneous Networks;
LTE; WiFi; Aggregation; Offloading;

I. INTRODUCTION

Due to the overload of the macro-cell network, heteroge-
neous networks (HetNet) are one of the key aspects of next
generation telecommunication systems. To offload the primary
(macro-cell) network through a secondary (small-cell) one is
a HetNet functionality that is expected to alleviate, at least
temporarily, the problem of congestion in macro-cells.

One of the most promising HetNet scenarios, is the one
of orthogonal tiers using LTE macro-cell in a licensed band
and WiFi small-cell in unlicensed band [1]–[3]. To achieve
optimal gain from aggregating two different networks a proper
analysis of those is obligatory. In [4] the authors provide an
approach to analyze the interference of a cellular network, not
with the traditionally and computationally intensive grid-based
simulations, but by modeling BSs positions as Poisson Point
Process (PPP) and using tools from stochastic geometry.

The same framework was followed in many other studies
in order to model heterogeneous networks. [5] provides an
analysis for k-tier HetNets, [6] analyze heterogeneous cellular
networks with carrier aggregation capabilities, [7] tackles the
problem of offloading in heterogeneous networks, [8] presents
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load-aware modeling of heterogeneous cellular networks, [9]
models downlink coverage probability in MIMO HetNets, [10]
studies the problem of fractional frequency reuse for hetero-
geneous cellular networks, and [11] analyzes the backhaul at
the heterogenous networks.

In this work we are using the same framework in order
to do a large scale statistical analysis of different offloading
and aggregation methodologies in two-tier HetNets using LTE
and WiFi. We focus on downlink and assume that users are
saturated, i.e., they will use all the resources they can get. Our
contributions are: a) An analytical formula that captures the
distribution of users’ cardinality in an arbitrary cell, that gives
insight about the probabilistic performance of the network;
b) We propose an analytical model for LTE/WiFi HetNets
that captures physical layer performance, providing statistics
for coverage maps and MCS distributions and c) We use
our analytical framework to study the impact of popular user
association policies like offload (all users within range of a
WiFi AP are associated to the WiFi network), max SINR
(a user is associated with the BS offering the best SINR,
among any tier), and max RATE (taking into consideration that
different RAT achieving different rates for common SINR).
Our preliminary results provide some interesting qualitative
and quantitative insights.

Our model is described in section II. In section III we
present the basic results of stochastic geometry, in order to cal-
culate the probability of each modulation and coding scheme
(MCS). In section IV, we provide a closed form solution for
the distribution of the number of users (cardinality) at an
arbitrary cell. In section V we model the PHY layer of our
networks in order to compute the average bit rate for LTE and
for WiFi users. Section VI provides the results of our analysis
about the rate and the blocking probability for macro-cells and
small-cells separately, as well as, the performance of aggregate
those networks with different user’s association criteria. We
give conclusions in section VII.

II. OUR MODEL

The proposed model consists of three types of objects
(eNodeBs, WiFi APs and Users), which are all modeled
as homogeneous PPP (ΦLTE, ΦWiFi and Φu) with different
densities (λLTE, λWiFi and λu). So, assuming a density λ for a
given point set at a certain area S, the number points N is a
random variable following a Poisson distribution
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Fig. 1. Voronoi Tessellation example, with λLTE = 6
100m2 (red 4) and

λWiFi =
12

100m2 (blue ×)

P (N = k | S) =
(λS)ke−λS

k!
, k = 0, 1, . . . . (1)

Homogeneous means that after selecting the cardinality of
points, their positions follows a uniform distribution at 2D
space. To assume that users or WiFis are randomly placed at
a certain area is a reasonable assumption, in contrast to the ran-
dom placement of the eNodeB, which should be commented.
The hexagonal or grid eNodeB topology is ideal but not
representative of real networks topologies. On the other hand,
fully random placement also has an unrealistic consequence
that eNodeBs have a probability to end up asymptotically
close. We can consider the aforementioned two topologies
as ideal and worst case scenarios respectively in terms to
interference. As shown in [4], the coverage probability in terms
of the SINR threshold, in real BS deployments, lies in most
cases roughly midway between the coverage probability in the
two extreme cases above.

LTE and WiFi operate at different frequencies, thus they
form two orthogonal networks. In other words, interference
at each BS originates only from BSs of the same network.
We assume different transmit powers for each network but
the same for all BSs in the network. Moreover, the users
association criterion is maximum SINR. Under the assumption
that, on average, the received power is monotonic with respect
to distance, our criterion is simplified to the closest distance
criterion, so the BSs’s coverage areas can be represented by
Voronoi Regions (Tessellations) as shown in Fig. 1, where
solid lines correspond to tessellations with respect to 4
network and dash lines to × network.

We assume that users are saturated, meaning that they
always have load that has to be served and want the highest
possible rate. The PPP captures this real life phenomenon,
where the number of active users is not constant but a random
variable. Regarding scheduling, we assume that BSs always
give the total bandwidth to users and on average all associated
users at specific BS will allocate the same amount of time-
frequency resources.

Using this model we can derive two main performance
indicators of our heterogeneous network:

1) Average User Rate: The average rate of an arbitrary user
can be expressed as

Rate =

M∑
mcs=0

N∑
n=1

P (mcs)P (n)Rate(n,mcs,RAT ) , (2)

where
• P (mcs) is the probability an arbitrary user at a random

call to operates with each MCS; this pmf will be calcu-
lated at section III,

• P (n) is the pmf of the users’ cardinality n at an arbitrary
cell; this probability will be derived in section IV,

• Rate(n,mcs,RAT ) is the rate for each RAT for a given
mcs and n; this entity will be modeled in section V,

• N is the maximum number of associated users at the
same cell and M is the highest mcs order.

2) Congestion Probability: In order to define our second
metric, we need to set a minimum threshold at user rate
TPmin, below which users will not be associated with the
BS. We can assume that the minimum throughput demand
is the same for all users or a random variable with average
equal to TPmin. The congestion probability can be expressed
in two ways: a) User perspective, as the probability that the
achievable user rate TPu is less than the minimum threshold

Pucong = P (TPu < TPmin) . (3)

b) operator perspective, as the percentage of the network
that is congested. The maximum affordable number of associ-
ated users at a BS is nmax = RateBS/TPmin, where RateBS
is total rate of the BS, RateBS =

∑
Rate · n · P (n). Finally,

using the pmf of users’ cardinality, congestion probability is

PBScong = P (n > nmax) . (4)

It can further be shown that PBScong = Pucong .

III. DISTRIBUTION OF MCS
This section defines the way to calculate the probability

distribution of mcs. The steps to achieve that, are (1) to
define the propagation model and the SINR, (2) to compute
the coverage probability w.r.t. a power threshold and, (3) to
obtain the mcs distribution.

A. Propagation Model
The standard power loss propagation model is used. We

assume a path loss exponent α > 2, only a Rayleigh fading
at the channel with mean 1 and constant transmit power of
Ptx = µ. So, the received power at distance d from a BS
is given by Prx = Ptxhd

−α where h follows an exponential
distribution, h ∼ exp (1). So SINR, for a user that is associated
with the i-th BS is given by

SINRi =
Prxi∑

n6=i
Prxn + σ2

, (5)

where sigma is calculated w.r.t. bandwidth (BW ) from σ2
dBm =

−174 + 10 log10(BW ) [12].



B. Coverage Probability

In [4] authors present an approach for coverage probability
of randomly located users, if the BSs are arranged according
to homogeneous PPP. For completeness, we will rewrite those
results which are applicable to the problem. T is the SINR
threshold for the coverage, λ the density of the BSs and α is
the path loss constant. The coverage probability is given by

pc(T, λ, α) , P[SINR > T ]

pc(T, λ, α) = πλ

∫ ∞
0

e−πλu(1+β(T,α))−
1
µTσ

2uα/2du ,
(6)

where β(T, α) = T 2/α
∫∞
T−2/α

1
1+uα/2

du.
If we assume that additive noise is negligible w.r.t. inter-

ference, the equation (6) can be significantly simplified as
pc(T, λ, α) = 1/(1 + β(T, α)). Furthermore, if we assume
that α = 4, we obtain a closed form solution

pc(T, λ, 4) =
1

1 +
√
T
(
π/2− arctan(1/

√
T )
) . (7)

C. Probability distribution of MCS

For a given RAT, each mcs corresponds to an SNR threshold
(for a minimum error rate), lets denote it as τ . So τi is the
the SNR threshold to operate with mcsi for a target Block
Error Rate or Packet Error Rate (BLER, PER). We model the
interference as Gaussian noise, so SNR and SINR thresholds
are the same. Finally the probability for each mcs is given by

p(mcsi, λ, α) = pc(τi, λ, α)− pc(τ(i+1), λ, α) . (8)

IV. CARDINALITY DISTRIBUTION OF POISSON POINT
PROCESS AT POISSON VORONOI TESSELLATIONS

In this section we study the following problem: Let two
independent sets (one for the BSs, for eNodeB or WiFi, and
one for users), ΦBS and Φu follow an homogeneous PPP
having different densities (λBS, λu) in two dimensional space,
assuming that Voronoi Tessellations (cells) are generated w.r.t.
ΦBS. The probability distribution of Φu, cardinality Nu, lying
at same arbitrary cell is given by

P (Nu = k) =
343

k!15

√
7

2π

ρk

(ρ+ 7
2 )k+

7
2

Γ(k +
7

2
) , (9)

where ρ = λu
λBS

and Γ is the gamma distribution. For paper’s
brevity and clarity, proof is given in our technical report [13].
Figure 2 depict the PDF for different values of ratio ρ.

First and second moments of the distribution are

〈k〉 = ρ and vark = ρ+
2

7
ρ2 . (10)

From equation (10), we observe that the mean of the number
of users within a cell drops linearly but the variance drops
quadratically w.r.t. the density of deployed BSs. The coeffi-
cient variation is greater than 1. So the relative variance of
points in a Voronoi cell is not decreasing by the rising of BS
density.
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V. BIT RATE FOR EACH RAT

This Section models LTE and WiFi RATs and computes the
average data Rate for given mcs and n associated users. This
work suppose 20 MHz eNodeB with a single antenna and a
802.11n single stream with 20 MHz bandwidth WiFi.

A. LTE

From the OpenAirInterface LTE downlink simulator [14],
Block Error Rate (BLER) vs SNR, for LTE Tx mode 1 (down-
link use Single-antenna port, the port 0) [15], is generated for
each mcs and shown in Fig. 3. So, for a given BLER threshold
(commonly at 10−1) the SINR threshold (τ ) for each mcs can
be specified and therefore, from equation (8) the probability of
each mcs can be calculated.

LTE uses OFDM on the DL and divides the total frequency
and time resources into resource blocks (RB). The size of a
RB is 180 kHz in the frequency domain and 0.5 ms in the
time domain.

In the 20 MHz bandwidth configuration there are 100
RB (also plus some white spaces for system’s robustness to
intra-cell interference). Each two RBs are grouped into one
subframe with period one Transmission Time Interval (TTI),
1ms. We assume that all users will be allocated the same
amount of subframes on average, so for a given number of
associated users (n) at an eNodeB, each of them will be
allocated 105

n subframes per second.
For a given mcs, LTE PHY specification 36.213, section

7.1.7.1 maps the index of the MCS to the index of the Transfer
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Fig. 4. MAC performance of 802.11n/ac Frame Aggregation

Block Size (I-TBS) for Downlink, which, together with the
number of RBs, defines the amount of transferred bits per
TTI (section 7.1.7.2.1).

B. WiFi

For WiFi 802.11n and ac, for each mcs we can extract
the SINR threshold (τ ) from [16] and the physical data
rate PhyRate(msc) from [17]. Collisions, unused periods,
overhead, etc are taken into account by using an expansion of
Bianchi’s model [18], which was extended in [19] to include
newer techniques of 802.11n and ac (frame aggregation, block
of ACKs, RTS/CTS, etc) that raise the utility of the MAC layer
for high throughput cases. The percentage of the successful
channel usage / normalized system throughput (% channel
usage) w.r.t. number of users n and different rates shown at
Fig. 4. As we can see, for a reasonable number of connected
users the performance of the MAC layer is roughly the same
for a given MCS.

So the average user throughput is given by

Rate(msc, n) =
Ps(n,Rate)

n
PhyRate(msc) . (11)

Where Ps is percentage of successful transmission, as it
shown at Fig. 4.We can take into account the frequency reuse
of the WiFi network by modeling it as 4 orthogonal WiFi
networks with the same density, and calculate the new MCS
distribution f ′MCS combing the pmf fMCS and the assumption
that each user will be connected at the WiFi network that
provides the higher MCS.

VI. RESULTS

Our results present: (a) rate vs SINR for each RAT as
output PHY modeling procedure, (b) the coverage probability
of each RAT and (c) how the networks are scaling w.r.t.
users density, for two cases. First, each network separately
and second, different aggregation schemes of those networks.
Table I shows the model parameters which where used at this
section.

TABLE I
MODEL PARAMETERS

LTE Ptx 43 dBm
WiFi Ptx 20 dBm

αLTE = αWiFi 4
BWLTE = BWWiFi 20 MHz

σ2 -100 dBm
# of antennas per eNodeB 1

# of spatial streams per WiFi 1
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Fig. 5. Comparison between RATs rates and Shannon’s limit

A. Rate and MCS

Actual RATs do not provide an elegant way to calculate
the user’s rate, so it is common, when analyzing wireless
networks to use the Shannon’s theorem, as it constitutes a
more simplified approach. As we mention at the introduction,
when a single network been analyzed, this assumption does
not affect the validity of the qualitative results. However, in
the case of HetNets, and especially when HetNets operating
with different RAT, this assumption does not hold. The user’s
rate of different RATs does not scale with the same way, with
respect to SINR.

For instance, Fig. 5 presents our first result that is the
output of the PHY layer modeling procedure that presented
at section V, every marker corresponds to an MCS and the
x-coordinates of them are the SINR threshold τi and the y-
coordinates are the corresponding rates ratei.

LTE performs 37%, on average, closer to Shannon than the
WiFi, at their common operating SINR range. Thus, for those
HetNets, if the rates of both networks modeled according to
Shannon’s theorem, WiFi will be overestimated compared to
LTE.

B. Coverage Probability

At this point we should discuss about coverage probability.
Taking into account the SINR thresholds, as we obtained them
at the aforementioned PHY layer modeling procedure, we are
able to specify the percentage of users that are not capable
(SINR < τ0) to associate at each RAT.

So, an arbitrary user is able to be connected at LTE and
WiFi network respectively with probability PcovLTE ' 0.67



and PcovWiFi ' 0.47 respectively. The coverage probability for
LTE is unacceptable low, but this originated from our worst
case assumptions which are: a) random topology of BSs, so
there is a probability that a interfering BS to be asymptotically
close to the one that the user is associated; and b) saturated
BSs, which means that all BSs are radiating continuously so
they cause the maximum interference. We should comment
that this unrealistic consequence of the homogeneous PPP
topology was not so clear due to Shannon’s formula; where a
large amount of users are operating with low rate. Finally,
the coverage probability is independent from the network
density when the additive noise is negligible with respect to
the interference [4].

C. Scaling

In the sequel, we investigate network performance for
two different perspectives, the “user” perspective where the
performance metric is the average user rate and how it scales
w.r.t. user density; and the “operator” perspective where the
performance metric is the percentage of network that is
congested w.r.t. user’s average demand. Firstly, we present the
the performance of each network separately. Then, we consider
the case that LTE and WiFi networks can be combined, more
specific, the aggregation scenarios are: (a) offload association
scenario, where if the user is able to establish connection with
the WiFi network, he does it without any further criterion, (b)
users are associated with the tier that provides the best SINR
and (c) users are associated with the tier that provides the
higher throughput.

We made two basic assumptions about resources allocation
for all scenarios, one about the demand of users and one for
the BSs scheduler. First, we assume that each connected user
is saturated, other words, he has infinite demand and allocates
as much resources is possible. Second, we assume that the
schedulers of all RATs on the long run, could represented as
a resource fair scheduler. For the case of WiFi this assumption
is not so accurate taking into account that WiFi currently
operates worst than resource fair, [20]. But there are works
which show that WiFi with simple modifications can upgrade
its performance resource fair scheduler [21], [22].

1) Separate LTE and WiFi Network: Assuming that eN-
odeBs and WiFi networks density is equal to 1/km2, Fig. 6
depicts how the average user rate (Mbit/s) scales w.r.t. users
density for LTE, WiFi and WiFi with frequency reuse. It can
be seen that LTE performs better than WiFi w.r.t. average
user rate. Additionally, WiFi with frequency reuse performed
slightly better than LTE, but this gain is not so much if we take
into account that operates with 4 times more bandwidth. The
same conclusions for congestion probability w.r.t. user demand
can be obtained by Fig. 7, where we suppose constant density
of users λu = 40.

2) Aggregation case: In this subsection we examine the
cooperation of LTE and WiFi network. As previous mentioned,
three basic association criteria will be investigated, offload,
maxSINR and maxThroughput criteria. In Fig. 8 we have set
the densities of both networks equal to λLTE = λWiFi = 1
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and shows the comparison between those different association
criteria w.r.t. users density. The gain of maxSINR association
compared with the offload association is mentionable. Addi-
tionally, there is a slight gain of max Throughput compared
to maxSINR, due to different RATs the providing rate of a
tier could be higher than the other at the same SINR. For
comparison we have also plotted and the performance of single
LTE network in Fig. 8.

In Fig. 9, we set the users density equal to λu = 80,
the one of the LTE BS equal to λBS = 1, and we show
the performance of each association criteria w.r.t. the WiFi
density. The conclusions are the same as the previous figure,
furthermore, the average user rate is scales linearly w.r.t. WiFi
density.

Fig. 10 depicts the congestion probability for the aggregated
network w.r.t. average user demand, for λLTE = λWiFi = 1
and λu = 40. Again, the offload scenario performs worse
compared to the more complex ones.

VII. CONCLUSIONS AND FUTURE WORK

This work models the topology and the RAT for LTE and
WiFi networks for the case of saturated users and presents
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a frame work to analyze network performance w.r.t. users
and BS density. An analysis for widely used cooperative
schemes presented as well. Between the cooperative schemes,
maxSINR association could be more complex compared with
the offload criterion but offers a large gain at average user rate
and even more at congestion probability of the network, this
gain could be extend if we take into account the different
RAT and to associate with max Throughput criterion. In
future work we will model the schedulers of each RAT as a
queuing model, and to investigate the performance of different
association criteria with dynamic flows and not for saturated
users. Additionally, we have to examine the performance gain
if we take into account the carrier aggregation capabilities.
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