
Subverting Operating System Properties
through Evolutionary DKOM Attacks

Mariano Graziano1,3, Lorenzo Flore2, Andrea Lanzi2, and Davide Balzarotti1

1 Eurecom
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Abstract

Modern rootkits have moved their focus on the exploitation of dynamic memory struc-
tures, which allows them to tamper with the behavior of the system without modifying
or injecting any additional code.

In this paper we discuss a new class of Direct Kernel Object Manipulation (DKOM)
attacks that we call Evolutionary DKOM (E-DKOM). The goal of this attack is to alter
the way some data structures “evolve” over time. As case study, we designed and im-
plemented an instance of Evolutionary DKOM attack that targets the OS scheduler for
both userspace programs and kernel threads. Moreover, we discuss the implementation
of a hypervisor-based data protection system that mimics the behavior of an OS com-
ponent (in our case the scheduling system) and detect any unauthorized modification.
We finally discuss the challenges related to the design of a general detection system for
this class of attacks.

1 Introduction

Rootkits are a particular type of malicious software designed to maintain a hidden
access to a compromised machine by targeting the running kernel. To mitigate this
severe threat, several defense techniques for code protection and attestation have been
proposed in the literature [27, 37, 39, 46]. These mechanisms try to protect the appli-
cations and the kernel code against any illicit modification of its instructions. This
also prevents hooking techniques that attempt to divert the control flow to a routine
controlled by the attacker.

However, while the code of the kernel is easy to protect, its dynamic data struc-
tures often remain outside the boundaries of traditional defenses. Left unprotected,
they quickly became one of the main targets of modern rootkits, that manipulates their
values to tamper with the behavior of the system without the need to modify the ex-
isting code. Even though these attacks are simple to understand and relatively easy to
perform, protecting the dynamic memory structures of an operating system is a very
difficult task. For instance, the classic example of Direct Kernel Object Manipulation
(or DKOM) attack consists of hiding a running process by simply removing its cor-
responding element from the processes list (e.g., the EPROCESS structure in Microsoft
Windows). Detecting DKOM attacks often rely on the assumption that even though
some information can be modified, the original value can still be present in other OS



context. For example, even if an element is deleted from the EPROCESS linked-list, in
order to be executed the process still needs to be present in the scheduling queue.
Consequently, a common technique to detect DKOM attacks consists in cross-checking
different sources of information to verify if their values are consistent. For instance,
this is the approach adopted by the psxview Volatility plugin [45] to detect hidden
processes. Researchers also proposed more sophisticated monitoring techniques that
maintain a reference model of the running system to compare with the actual data
structures. For example, Rhee et al. [36] proposed to use an allocation driven mapping
to identify dynamic kernel objects by intercepting their allocations/deallocation op-
erations, and use this information to maintain a precise model of the running kernel.
This approach also included a hidden kernel object detector that uses this un-tampered
view of kernel memory to detect DKOM data hiding attacks.

Despite the recent efforts in detecting DKOM attacks, all the proposed techniques
are based on the assumption that during an attack there is always something anomalous
in the state of the kernel dynamic data structures, typically in the form of a missing or
modified element. However, a closer look at DKOM techniques reveals that there are
two different ways to manipulate data to influence the behavior of the system. More
precisely, from an attacker point of view, we can identify a discrete attack that only
tampers with a dynamic structure at an isolated point in time, and an evolutionary
attack that works by continuously tampering with the internal state of the system.
In the first case, the objective of the attack is reached by changing some information
stored in a data structure, by adding or removing elements, or by changing the pointer
relationship between data structures. As we described above, this may leave the system
in an inconsistent state, which can often be detected. In the second case, presented in
this paper, the goal of the attack is instead obtained by influencing the behavior of the
system by continuously modifying its memory and thus by affecting the evolution of
its dynamic data structures.

Due to the nature of this attack, it is possible that every single snapshot of the
system is indistinguishable from a clean state. Therefore, the attack only manifests
itself in an anomalous evolution in time of a given property of the operating system.
While this may seem just a minor variation of the original DKOM technique, in this
paper we show that it has very severe consequences from a detection point of view. In
fact, the only way to detect an evolutionary attack is to implement a detector that can
verify if a certain behavioral property of the kernel is satisfied over time. This requires
a very complex tool that continuously monitor the system, and replicates (or emulates)
part of its behavior inside the detector.

The goal of this paper is twofold. First, we present the design and implementation
of an Evolutionary DKOM (E-DKOM) attack, and show that it cannot be detected by
any of the existing techniques. As a case study, we describe a novel attack against the
OS scheduling algorithm. This attack can be used to silently block the execution of any
critical security application, both in user- and kernel-space. The second contribution
of the paper is to discuss the possible countermeasures. It is important to note that
our goal is to detect the tampering of the operating system, and not the code of the
rootkit itself.

At the moment, the only generic defense solution would be to use a reference monitor
to trace all memory operations and enforce that only the authorized code can modify



a given critical structure. Unfortunately, this technique has two big limitations. First,
it is likely to introduce a large computational overhead. Second, any memory access
needs to be properly identified and attributed to the piece of code responsible for that
operation. Unfortunately, a precise attribution in a compromised system is still an open
problem – known as “confused deputy attack” [16].

As an alternative, we discuss a custom defense technique based on a monitor (im-
plemented as a thin hypervisor) that can duplicate part of the behavior of the OS
that needs to be protected (the scheduler’s properties in our case), and guarantee that
this behavior is respected by the running system. Unfortunately, this is not a general
solution, as it would require a different monitor for every property that needs to be
enforced.

The rest of the paper is organized as follows. In Section 2 and Section 3 we describe
our attack and its own threat model, discuss its properties, and emphasize the differ-
ences with respect to traditional DKOM attacks. We then focus on a practical example
in Section 4, in which we present the details of an attack against the Linux operating
system scheduler. Section 5 shows the results of our attack tests, and Section 6 intro-
duces our prototype hypervisor-based defense mechanism. Finally, Section 7 discusses
the generality of the attack, its limitations and future work, Section 8 describes related
work and Section 9 concludes the paper.

2 Evolutionary DKOM Attacks

There is a subtle difference between a traditional DKOM attack and its evolutionary
counterpart that we present in this paper: in the evolutionary attack, the goal of the
attacker is to affect the evolution of a data structure in memory, and not just its values.
For instance, the two classic DKOM examples of privilege escalation and process hiding
require the attacker to directly modify a number of kernel data structures to achieve
the desired state (respectively remove an element from a linked list, or modify the
UID of a process). In the more sophisticated version of DKOM attack we present in
this paper, the “desired state” is replaced by a “desired property”. More in detail, the
attack we present in the next sections affects the normal evolution of the red-black
tree containing vital information for the scheduling algorithm. On the other hand, the
traditional DKOM attacks change individual fields in data structures of interest, like
the task struct to unlink a task. The latter operation is discrete and does not affect
the evolution of the task struct list in any way.

This difference has a number of important consequences. First of all, while a tra-
ditional DKOM can be performed in one single shot, an evolutionary attack needs to
continuously modify the kernel memory to maintain the target condition. Moreover,
when the attacker stops his manipulation, the system naturally resumes its original
operation. This fundamental difference seems to be in favor of traditional DKOMs,
since a single memory change should be harder to detect that a continuous polling
process. However, in this paper we show that in practice the result is the opposite of
what suggested by common sense. In fact, from a defense point of view, it is easier
to detect an altered state than to detect an altered property. To detect the latter, a
monitor needs to record the evolution of the affected data structures over time, and
also needs to replicate the logic of the kernel property that it wants to enforce.



While it is possible to implement such a detector (as we discuss in Section 6 for
our attack), this needs to be necessarily customized for each property. As a result, it
is difficult to propose a general solution for evolutionary attacks.

3 Threat Model

In this paper we assume a powerful attacker who is able to execute malicious code both
at the kernel and at the user level, and who can modify any critical kernel data struc-
tures. Kernel-level access can be achieved via kernel-level exploits or social engineering
the user to install a malicious kernel module. The attacker can also use sophisticated
ROP rootkit techniques [20, 44] or other stealthy techniques [41, 42] in order to over-
come existing code protection mechanisms. The attacker has the ability to make its
malicious code undetected to any current state of the art anti-malware software.

However, since our defense solution is based on a custom hypervisor, we include both
the hypervisor and the security VM as part of the trusted computing base (TCB). To
focus only on the detection of E-DKOM attacks without replicating previous works,
we also assume that the core kernel code of the user VM is protected and cannot be
subverted by any malicious code. This can be achieved by making the kernel’s code
pages read-only [18, 38] or by using others code protection systems proposed in the
past [10, 27, 39]. Existing protection techniques also ensure that the attacker cannot
tamper or hook code of the OS, and cannot shutdown processes or kernel threads
without the system notice [23,27].

To summarize, our threat model covers an attacker that can run arbitrary code in
the OS kernel and tamper with dynamic data structures, but that cannot modify the
existing code or attack the hypervisor.

4 Subverting the Scheduler

In this section we first introduce the Completely Fair Scheduler (CFS) algorithm
adopted by Linux-based OS. We then describe the principles of our attack to sub-
vert the scheduling algorithm and present two different scenarios where our attack can
be applied.

4.1 Goal

The goal of the attacker is to silently and temporarily stop the execution of a process
without leaving direct evidences. This means the target process is no more able to run
on the CPU but it is still visible and listed as a normal running application.

In a post-exploitation phase, this feature is a really valuable asset. Miscreants may
disable security monitors and detectors so that system administrators or final victims do
not notice any suspicious activity. A perfect target in this scenario is either an antivirus
software or a network/host intrusion detection system. The desired result is to reach
this goal without raising any warning or visible alarms. This can be achieved in several



ways in a modern operating system like Linux or Windows. The first idea that comes to
mind is to kill the target application. However, this technique is easily detectable by the
victim because the process (or processes) is no more listed in the list of the running
applications. Several security applications have a watchdog specifically designed to
detect these circumstances to restart the application. Another simple approach would
be to suspend the process or turn it into a zombie. Unfortunately also this technique
is not stealthy, and in a post-exploitation phase this cannot be tolerated. For example,
it would be fairly easy to spot the anomaly by inspecting the output of a program
like ps. Finally, another possible option could be to directly modify the code of the
target application, for instance to inject an infinite loop or an attempt to acquire a lock
on some unavailable resource. While this would be definitely more difficult to detect,
security-critical applications often have kernel components to protect the integrity of
their code.

Therefore, in order to reach our objective in a completely transparent way, a good
target for the attacker would be to tamper with the scheduler implementation in the
OS. This is a complex task and the implementation details may vary between different
systems. For instance, a desktop machine has to be more reactive than a server. Indeed,
it is clear the scheduling load may differ in a server spawning several tasks for all the
incoming connections compared to a desktop machine used by an average secretary.
All these differences affect the scheduler implementation. To perform the attack on
the scheduler implementation the rootkit’s author has to study in detail the inner
mechanisms of the targeted component. We implemented this idea in a proof of concept
attack against the current implementation of the Linux scheduler on a Debian “jessie”
GNU/Linux distribution for both x86-32 and x86-64 systems. It is worth noting that
our scheduler attack is able to stop the defensive mechanisms for an arbitrary amount
of time. For example during an attack the intrusion detection system can be disabled,
and then enabled again when the attack is terminated. We call such attack evolutionary
transient attacks.

4.2 An Overview of the CFS Algorithm

As the name says, the main goal of the CFS algorithm used by the Linux kernel is
to maintain a fair execution by balancing the processor time assigned to the different
tasks of the system. The objective is to prevent one or more tasks from not receiving
enough CPU time compared with the others. For this purpose, the CFS algorithm
maintains the total amount of time assigned so far to a given task in a field called the
virtual runtime. The smaller a task virtual runtime is in terms of execution, the higher
the probability is to be the next being scheduled on the system. The CFS also includes
the concept of sleeper fairness. This concept is used for the tasks that are not at the
moment ready to run (e.g., those waiting for I/O) and it ensures that such tasks will
eventually receive a comparable share of the processor when they are ready to execute.
The CFS algorithm is implemented using a time-ordered red-black tree. A red-black
tree is a tree with some interesting properties. First of all, it is self-balancing, which
means that no path in the tree will ever be more than twice as long as the others.
Second, any operation on the tree occurs in O(logn) time – where n is the number of
nodes in the tree.



4.3 CFS Internals

All tasks in Linux are represented by a memory structure called task struct that
contains all the task information. In particular, it includes information about the task’s
current state, the task stack, the process flags, the priority (both static and dynamic),
and other additional fields defined by the Linux OS kernel in the sched.h file. It is
important to note that since not all the tasks are runnable, the CFS scheduling fields
are not included in the task struct. Instead, the Linux OS defined a new memory
structures called sched entity to track all the scheduling information.

struct task_struct {
volatile long state;
void *stack;
unsigned int flags;
int prio , static_prio , normal_prio;
const struct sched_class *sched_class;
struct sched_entity se;
...

}

struct sched_entity {
struct load_weight load;
struct rb_node run_node;
struct list_head group_node;
...

}

struct rb_node{
unsigned long rb_parent_color;
struct rb_node *rb_right;
struct rb_node *rb_left;

};

struct cfs_rq {
...
struct rb_root tasks_timeline;
...

};

Fig. 1. CFS Black Tree Structures

The relationships between the various memory structures and the scheduling algo-
rithm are summarized in Figure 1. At the root of the tree we have the rb root element
from the cfs rq structure. Leaves in a red-black tree do not have any useful infor-
mation; instead the internal nodes represent one or more tasks that can be executed.
Each node in the red-black tree is represented by a rb node. Such a node only contains
the reference to the child and the color of the parent. The rb node is defined into
the sched entity structure, which includes the rb node reference, the load weight,
and some data statistics. The most important field inside the sched entity memory
structures is the vruntime, which represents the amount of time the task has been
running on the system. Such field is also used as the index for the red-black tree. The
task struct is at the top, and is responsible for describing the task and including the
sched entity structure.

The scheduling algorithm is quite simple and it is implemented inside the function
schedule(). The first action of the function is to preempt the currently running task.
Since for each task the CFS only knows the virtual running time, the algorithm does



not have a real notion of time slices for preemption, and therefore the preemption time
is variable. After the scheduler interrupts the current running task, the task is put back
into the red-black tree by calling the put prev task function. After that the scheduling
function invokes the pick next task function that is in charge of selecting the next
task to execute. This function simply takes the left-most task from the red-black tree
and returns the associated sched entity. By using the sched entity and invoking
the task of() function the system returns the reference to the relative task struct.
At the end of this procedure the scheduler passes the task to the processor to execute
it.

4.4 Scheduler E-DKOM Attack

In this Section we describe how an attacker can target the OS scheduler to suspend the
execution of one or more of the processes running in a Linux system. Such an attack
can be used in order to stop security applications such as antivirus software or Network
Intrusion Detection System. Consequently, by using this technique the attacker is able
to elude the system protection mechanisms without tampering with any OS code or
modifying the control-flow of the running system.

Attack Principles From an architectural point of view, the attack requires a kernel
module that executes code at regular time intervals (e.g., by registering a timer). The
module walks the process list and identifies the process it wants to stop. It then collects
the process descriptor and uses it to locate the corresponding node in the CFS red-
black tree. Afterward, the attack alters the scheduling list by changing the virtual
runtime’s value of the target process. In this way the attacker forces the scheduling
algorithm to push the process at the end of the list and postpone its execution. By
using this technique the attacker can stop any processes, thread, and kernel thread
that are running on the system.

Implementation Details Our prototype first initializes a global kernel timer reg-
istering a call-back function to be executed at regular intervals. Then, the malicious
module spawns two CPU-bound kernel threads to populate the scheduling list in case
the queue is empty. This can be useful in cases when most of the processes are waiting
for I/O operations, and the target process is the only one that requires to be executed.
It is important to note that the kernel threads represent a normal task for the schedul-
ing system, consequently the scheduler puts them in the same scheduling queue with
the others user space processes and threads. Two is the minimum number to assure at
least one predecessor and one successor of the target process.

After these two initial operations, the attack algorithm identifies the reference of
the target process into the CFS red-black tree and queue it at the end of the scheduling
list. This can be done by walking the task struct looking for the element representing
the target process. From there, the code can extract the sched entity struct and use
the struct rb node field to identify the corresponding element in the CFS red-black
tree. In Figure 1 we show the link among the memory structures described so far.
At this point the attack algorithm locates the rightmost element in the tree, which



correspond to the last task that will be scheduled for execution. Afterwards the kernel
module changes the virtual runtime of the target process to a value higher than the
value of the rightmost element. After this change, the scheduling algorithm, following
the CFS policies, will move the target process at the end of the scheduling list. This
operation is repeated every time the global kernel timer expires.

5 Attack Evaluation

In order to evaluate the real impact of our attack, we used it to stop two common
security mechanism: a popular IDS, and the Inotify notification mechanisms [28] that
is used by many programs to identify any modification on the files that occurs in
the system. For instance, Inotify is used by several security applications, including
Tripwire [1, 24] and by most of the antivirus systems.

Case Study I: Blocking an IDS In this experiment, a possible attack scenario
is represented by a Linux router machine used to protect an intranet network. The
router machine is equipped with an IDS and a system that verifies the code integrity
of the kernel and user-space applications [27]. By using such defensive mechanisms, the
attacker cannot modify any code running on the router and she cannot shutdown any
user-space applications without the system noticing it. For our test we set up the IDS
with a simple signature to detect a remote buffer overflow attack by looking at the
presence of the shellcode pattern in the network packets.

Our experiment is divided in two parts. We first launched a simple buffer overflow
attack over the network protected by the IDS , and we verified that the alert was
correctly raised.

In the second test, we simulated that an attacker was able to install our rootkit
into the router, using the IDS application as a target. While the IDS application was
stopped by our rootkit, we run the network attack and double-checked that no alerts
were generated. Meanwhile, Linux was reporting the targeted process as a running
process. It is important to note that the kernel uses a circular memory buffer to store
the network packets copied from the network card into the OS system before delivering
them to the right application. Therefore, before resuming the execution of the IDS the
attacker needs to generate benign traffic to force the queue to rotate and overwrite the
network packets related to the attack.

Case Study II: Blocking Inotify Inotify is an inode monitoring system introduced
in Linux 2.6.13. This API provides mechanisms to monitor filesystem events involving
both files or entire directories. Most of the security applications, such as integrity
checker (Tripwire) or antivirus software use such mechanism in order to detect any
modification of the filesystem. For example, antivirus detectors re-scan any modified
file in order to check whether a malicious infection occurred.

Inotify provides its own set of system calls: inotify init() to create a new mon-
itoring instance with its own file descriptor, inotify add watch() to add a file to the
monitored group, and inotify rm watch() to remove the monitor. After the registra-
tion of the files and directories that the application wants to monitor, the code needs to



invoke the poll() API to be notified when the registered events happen. It is impor-
tant to note that the inotify events are reported through a user-space device created as
a communication channel between the user-space application and the kernel. This de-
vice is associated to a kernel buffer used to collect and temporarily store the filesystem
events. By using the read() function, the application can retrieve information about
which event have occurred.

For our evaluation we created a user space application that monitors a chosen group
of files on our system. The goal of the attack is twofold. First, the attacker should be
able to modify a file without the inotify-based application noticing the change. Second,
the attack needs also to guarantee that after the attack phase, the inotify events should
resume and correctly reach the application as if nothing has happened.

To this end our evaluation is composed by three steps. In the first step we run the
inotify-based application and use our rootkit to temporarily stop its execution. In the
second step, the attacker modifies one of the monitored file, and then forces a number
of events (at least 1024*16) on other files with the goal to saturate the kernel buffer
associated to the device. This way the event associated to the target file is overwritten
by the new benign modifications. Finally, the rootkit wakes up the inotify application,
and we verified that it did not receive any event about the attacker modification.

This can be quite severe in a number of scenarios. For instance, the Android system
uses a similar inotify mechanism that is mainly adopted to build security monitors and
detectors [12]. Our attack can temporarily disable them without leaving any trace in
the system.

Attack Discussion: One may argue that a malicious kernel module could be detected
by a simple detector that is able to find out in memory a footprint of the malicious
code or detect any suspicious activities by monitoring the frequency of the interrupt
timer issued at the kernel level (e.g., timing traces). Even if those techniques could be
effective against our attack, the kernel module can hide its own timing activities and
code in several sophisticated ways.

First of all it can hide the presence of the code just diverting the control flow
of a benign timer kernel module by using dynamic hooking that targets transient
control data as described in [43] and then perform a ROP attack for changing the
time scheduling activity. By using these attack techniques the detector cannot see any
suspicious kernel modules among the list of the registered kernel modules timer and the
malicious code is reduced to a few ROP gadgets resulting in minimal memory footprint.
A more resilient approach is called Address Translation Redirection Attack (ATRA)
and is presented in [21]. By using such a technique the attacker can relocate important
kernel objects (e.g., malicious kernel module) and makes the entire system refer to the
copy by attacking the page table data structures of the OS kernel. Finally, as shown
in [25], our malicious kernel module could be completely implemented in GPU space.
A GPU-assisted malware binary contains code destined to run on different processors.
When executing it, the malware loads the device-specific code on the GPU, allocates a
memory area accessible by both the CPU and the GPU, initializes it with any shared
data, and schedules the execution of the GPU code. Depending on the design, the flow
of control can either switch back and forth between the CPU and the GPU, or separate
tasks can run in parallel on both processors.



Other defense solutions to this attack could rely on a remote code attestation mech-
anism [7], a method to remotely check whether some security proprieties of the running
application are preserved. In this case it is important to note that the attacker, as we
can show in the previous section, can stop the defensive mechanism to be scheduled
for the duration of the attack, and then restored it. By using code attestation method
or any other watchdog mechanisms that check the status of the process (e.g., stack,
registers, etc.) it is difficult to set up the right time to check since we do not know when
the attack will happen. Remote attestation could be set to run constantly for the entire
life of the process. Deploying this solution on real-time systems could be prohibitive in
terms of performance overhead, and it could be difficult to use to monitor more than
one precess at a time.

6 Mitigation

In this section we describe the design and implementation of a detection system that
can be used to protect against the scheduler attack presented in Section 4. We start
by presenting the idea behind our solution, we then describe our system architecture,
and we finally evaluate our approach against some scheduling attack samples.

6.1 Defense Mechanism Principles

Our approach for the detection of scheduling attacks is to observe and mimic the
behavior of the OS scheduler by intercepting events that occur in the OS context. More
in details, in case of the scheduling subsystem, the idea is to monitor the execution
time of all processes and check if the fairness property is preserved. In order to obtain
the real execution time for each process/task we need to intercept some fundamental
operations about the process activities such as the process creation and termination,
the process execution, and the process I/O waiting. By using those operations our
system can carefully estimate the execution time for each process and, by mimicking
the behavior of a real scheduler, detect whether any anomaly (i.e., a process starvation)
occurs in the system.

6.2 Defense Framework Architecture

Our defense mechanism is implemented as a custom hypervisor. This is required in order
to obtain a resilient and robust reference monitor in presence of kernel-level attacks.
Our anomaly detection mechanism is based on the assumption that the system should
give the same amount of execution time to each process (fairness scheduling property).
Consequently, if one process that is not blocked in I/O operations is not scheduled at
least once for each quantum of time, the system raises an alarm. From an architectural
point of view, our system consists of two main software components: (1) the Task
Tracer and (2) the Periodic Monitor. Both components work together to simulate the
fairness property and to reveal any anomaly on the system.

The main goal of the Task Tracer is to replicate the tasks information at the hy-
pervisor level, storing them in a list of task_struct data structures. To this end, the



Task Tracer needs to intercept a number of process events. In particular it needs to
detect four main events:

– Process Creation: This event happens when the create process system call is
invoked.

– Process Exit: This event occurs when an exit system call or any process error
exception is invoked by the system.

– Process Execution: This event occurs when a process is assigned to a given
processor for its execution.

– Queue Insertion & Removing: These events happen when a task is inserted or
removed from the scheduling queue (CFS red-black tree).

When a new process is created, the Task Tracer component allocates a new task_struct

element to keep track of its information: name, process description etc. Moreover, for
each new process, the system adds a life timestamp field named last_seen. This value
represents the starting time of the process life, that will later be used to check the
time spent by the process waiting on the scheduling queue. The queue insertion and
removing operations are at the core of our detection mechanism. In fact they allow the
system to set the starting and ending time for each process. The starting time begins
when the process is inserted into the scheduling queue. In particular when a process
will be inserted in the scheduling queue (CFS red-black tree), the hypervisor detects it
and it sets the timestamp field for this particular task. In case the process is not sched-
uled for execution after a certain time (defined by a configurable scheduling threshold)
the system reports an anomaly. The effect of the remove operation from the scheduling
queue is to reset the timer associated to a particular process. It is important to note
that intercepting the insert and remove operations is sufficient to monitor the execu-
tion time for all the processes of the system, since one of the main assumption of the
Linux scheduling algorithm is that every process needs to be added to the scheduling
list before it can be executed.

The goal of the other software component, the Periodic Monitor, is to periodically
check the status of the execution time for each process and update their timestamps
(last_seen fields). More in details, every time the timeout occurs, the Periodic Mon-
itor goes through all the elements of the task list created by the Task Tracer software
component and checks among all the monitored processes the timestamp field reported
in the task_struct element. If the difference between this timestamp field and the cur-
rent timestamp is greater than the scheduling threshold the system reports an anomaly,
otherwise it just update its value with the new timestamp.

6.3 Implementation Details

Our current prototype is implemented as an extension of HyperDbg, an open-source
hardware-assisted hypervisor framework [11]. Typically, by monitoring low-level inter-
actions between the guest operating system and the memory management structures
on which the OS depends, a hypervisor can infer when a guest operating system creates
processes, destroys them, or triggers a context-switch between them. These techniques
can be performed without any explicit information about the guest operating sys-
tem vendor, version, or implementation details [23]. Unfortunately, our detector needs



some information that cannot be inferred only by observing the interactions between
the guest OS and the memory management structures. For example, insert and remove
operations on the scheduling queue or the creation and destruction of userspace and
kernel threads are fine-grained operations that cannot be identified by observing from
outside the OS. Therefore, our framework needs to rely on a hooking mechanism that
is specific for a particular operating system (Linux in our current prototype). In order
to intercept each task creation event, we inserted a hook on the wake up new task

function. Such function is invoked the first time a new task is inserted into the schedul-
ing queue after the system invokes do fork. This is used to create a process on the
system. We chose this function since the argument of the wake up new task function
is the task struct element that already contains all the process information that will
be stored into the hypervisor memory. The system also needs to intercept a process or
task termination for two reasons: (1) when a process explicitly call the exit function
and (2) when it receives a signal or exception for its own termination. In both cases
the function that is invoked is the do exit. When such a function is called, by using
the kernel macro current the system obtains the pointer to the task_struct related
to the process to terminate. Consequently our hypervisor puts an hook on the do exit

function to intercept this information. Finally the system needs to intercept the queue
operations: insert and remove. In particular when a process is inserted in the scheduler
running queue (CFS black-red tree) a function called enqueque task is invoked. This
function is in charge for inserting the task_struct structures inside the CFS tree, and
any information about the inserted process can be retrieved starting from ecx regis-
ter. For removing elements from the scheduler queue, the operating system provides
a function called dequeue task. This function is called when the scheduler removes a
task from the CFS tree and the reference to the task in this case is stored into edx

register.

To implement the Periodic Monitor component inside the hypervisor we extended
the core of HyperDbg. In particular, we created a time simulator inside the hypervisor
by using the Timestamp Counter TSC register provided by the x86 architecture. This
register counts the clock cycle and it is independent from the processor frequency. In
particular, the hypervisor core reads the value of TSC each time a VMexit occurs in
the system. If the elapsed time reach the timeout set by the Periodic Monitor, the
hypervisor invokes the periodic monitor component. It is important to note that the
VMexit are very frequent in the system, consequently our timer simulator does not
suffer from any considerable delay.

6.4 Evaluation

In this section we describe the experiments that we performed in order to test our
defensive mechanism. The main goal of the experiments is to test the efficacy and the
efficiency of the detection system.

Overhead In the first experiment we measure the overhead produced by our system.
To this end we performed two main tests. In the first test we measured the execution



Fig. 2. Detection System Overhead Dur-
ing Normal Operation

Fig. 3. Detection System Overhead
Under an Artificial Stress

time with our detection framework enabled, while the user performs a number of nor-
mal operations – like browsing the web (e.g., Facebook, Google, etc.), reading PDF
documents, and editing files for a total of 60 minutes. To compute the overhead we use
the TSC timer provided inside the hypervisor. We compute the ratio between the time
spent inside the hypervisor with respect to the time spent for the OS execution. We
report the result in Figure 2. As we can see from the Figure, the gray area represents
the window time where the detector is active. The line in the graph shows instead
the ratio between the execution time spent into the hypervisor and the execution time
spent into the OS. We can observe that overhead never goes above 5%.

Since during the normal operation the system overhead is low, we performed a
second test where we stress the allocation/dis-allocation of the processes in order to
measure the worst case scenario. For this test we used the stress suite to simulate a huge
allocation/deallocation of the processes on a Linux system. The overhead we observed
in this case was at most 9%. The test was run for 80 minutes and the final result is
reported in Figure 3. Again, it is important to note the experiments performed in these
tests produced a very intensive process allocation/deallocation and therefore it is not
representative of the behavior during the normal process activities of the system.

Detection Accuracy In order to measure the detection accuracy of our system we
tested the system while running some scheduler attacks. Since we have never observed
such attacks in the wild, we used our artificial dataset to test the application. More in
details, we again performed the experimental evaluation with a popular IDS and with
Inotify (as explained in Section 4) but this time with our defensive mechanism enabled.
In this test, our system was able to detect both attacks and correctly recognize the
anomalous process that was under attack. We also performed an artificial experiment
on kernel threads. In this case we first created some artificial kernel threads and we



then blocked their execution by using our attack. Also in this experiment, our system
was able to detect all the attacks performed against the OS kernel.

6.5 False Positives & False Negatives

It is important to note that both false positives and false negatives can occur depend-
ing on the value of the detection threshold set by the system. In particular, if such a
threshold is too low, and therefore close to the real waiting time for scheduled tasks,
the system can raise false alarms. On the other hand, if the threshold is too large, the
system can miss short attacks that fits into the time window. Therefore, the threshold
should be tuned on the values of scheduler waiting times observed on the monitored
OS. After a short training period, we set the threshold to 40ms. We then run our de-
fensive system on our work computers for one week without observing any false alarm.

7 Discussion

In this section we discuss the generality of the proposed attack, the limitation of the
defense solutions and possible future work.

7.1 Generality

In this paper we presented a new class of attacks. For the sake of simplicity we only
described a single instance of E-DKOMs. In particular we chose to investigate the
scheduler attack because it perfectly summarizes all the important key points of the
evolutionary DKOMs attacks and it was relatively easy to implement.

The scheduler subsystem is a good candidate but it is not the only possible target. In
fact, the operating system offers other interesting functional components to investigate
such as the memory management, the network subsystem, and the I/O subsystem.
A requirement for E-DKOM attacks is to tamper with dynamic data structures that
contain fundamental information for controlling the OS behavior. The targeted data
structure needs to contain information that defines an OS property along with an OS
specific behavior. In the scheduler attack example the OS property to subvert was
the execution fairness, every process defined into the run-queue structure need to be
scheduled for running after a certain time window. The goal of the attacker was to
create starvation for a select set of processes (e.g. AVs, IDSs). Another possible target
for E-DKOM attacks can be the virtual memory subsystem. In this case the property is
related to the memory pages replacement algorithm and the way the algorithm chooses
the page to swap to disk (e.g., LRU or FIFO). The attacker can alter this property by
changing the memory structure that contains the numbers of accesses received by the
page. By altering this number an attacker can decide which page should be stored on
disk and also on which disk location (e.g., filesystem inode), creating a potential data
leakage among the applications.

We believe that the OS contains a significant number of sensitive memory structures
that can be tampered by an attacker to consequently tamper a certain OS behavior



without being detected. Automatically discovering such memory structures along with
the analysis of attack impact will be the task of our future research.

7.2 Limitations

The defensive solution described in the previous sections is based on a custom hyper-
visor that plays the role of an external agent able to monitor the execution of the
guest operating system. Unfortunately, collecting information from outside the OS is
not a trivial task, and requires to overcome the well-known problem of the semantic
gap [6, 9, 22]. The Intel hardware support for virtualization simplifies only in part this
issue, allowing the hypervisor to catch only low level events (e.g., writing attempts
to control registers). Unfortunately, all the abstractions introduced by the operating
system are lost and need to be reconstructed by the hypervisor code.

In the literature, several solutions have been proposed to detect hidden processes
from a virtual machine monitor. These techniques typically intercept all the writing
attempts to the CR3 register by leveraging the Intel hardware support. This control
register contains the base address of the page directory, a fundamental data structure
to translate virtual to physical addresses. At every context-switch, the OS loads the
right value of the CR3 register to access the process’s virtual address space. In this way,
systems like Antfarm [23] are able to discover all the running processes by observing
this low level event. Other systems, like Patagonix [27], achieve the same goal by setting
the process’s pages as non-executable (using the NX flag). In this way, every execution
attempt is intercepted, allowing the hypervisor to discover all running processes.

Our scheduler attack introduces a new challenge: the hypervisor needs to identify
the processes that are in the scheduled queue but are not executed in the system. If a
process is not executed, then there is no access to its CR3, nor to its NX pages. In fact,
the attack introduced in this paper may stop the process during its creation, so that
the monitoring system would never observe the CR3 associated to the program.

To make the problem worse, the granularity of this instance of E-DKOM is at the
thread level, but the address space is shared among all threads of the same process
– making an approach based on the monitoring of the CR3 register too imprecise. For
this reason, to implement a successful defense technique, the hypervisor needs to set
breakpoints in the kernel code to extract threads information and to inspect the state
of each tasks, (e.g. if it is in the running or waiting queue).

Moreover, the hypervisor has to mimic the OS scheduler component to guarantee
the scheduling property and detect deviations from the expected behavior. In our
example, this requires to follow over time the evolution of the scheduler data structures,
in particular the evolution of the runqueue to spot any anomaly.

For all these reasons, we believe this instance of E-DKOM attack sheds light on
several limitations of current solutions to address the semantic gap. Moreover, since
each solution would need to be specifically tailored for the property tampered by the
attack, this example also shows the challenge of developing a general solution for the
detection of E-DKOM attacks.



8 Related Work

Over the years, operating systems have introduced several countermeasures to hinder
the exploitation of userland applications. These protections have significantly raised the
bar for the attackers, making it increasingly difficult to gain full control of a remote
machine. As a consequence, it is now fundamental for criminals to gain a persistent
and stealth access on a compromised target immediately after the breach. This is
often achieved by installing a rootkit in the OS kernel. The role of a rootkit is to
hide resources in the compromised machine, and this can be achieved either by using
hooking techniques or by tampering with dynamic kernel data structures.

In the literature, several approaches have been proposed to protect the kernel from
the malicious modifications introduced by rootkits. A first set of countermeasures was
designed to guarantee the integrity of the kernel, in order to prevent attackers from
modifying its code and introducing hooks [46]. There are two ways to achieve this objec-
tive: i) by introducing a self-defense mechanism in the kernel, such as PatchGuard [29]
for Windows x86-64 or ii) by adopting an external monitor, such as a VMM-based
system [14,37,38,46] or a dedicated hardware coprocessor [26,30,32,48]. For instance,
SecVisor [38] and Nickle [37] are two hypervisor solutions that protect the integrity
of the kernel code from unintended modifications. Unfortunately, this class of protec-
tions have been bypassed by DKOM attacks [19,31] which target dynamic kernel data
without the need to modify the kernel code.

A more complex and comprehensive defensive solution is to enforce the control
flow integrity (CFI) of the kernel. CFI was initially proposed by Abadi et al [2] for
userland applications and then extended and ported to the kernel by Petroni et al. [33].
The state-based CFI (SBCFI ) proposed by Petroni is enforced by a hypervisor and
periodically scans the kernel memory to detect deviations from the allowed control
flow. SBCFI can detect persistent control flow changes but fails to prevent DKOM
attacks.

To protect against DKOM, it was necessary to introduce new solutions to enforce
the kernel data integrity. The most interesting approaches in this direction are based
on invariants or on data partitioning. The first class can be split into two subgroups:
external systems [3, 18, 36] and memory analysis [5, 8] techniques. External systems
are implemented as either a virtual machine monitor [18, 36] or by using a separate
machine [3]. The rationale behind these defensive techniques is to take an untampered
view of the objects running in the target kernel and then compare this list with the
invariants derived by walking the kernel data structures. Similarly, memory analysis
solutions [5, 8] leverage memory snapshots to isolate kernel objects and then compare
with a list retrieved directly from the live system. Unfortunately, invariants may not ex-
ist for some kernel data structures, thus a different approach has been proposed around
the concept of object partitioning. For instance, Srivastava et al. [40] proposed Sentry,
a hypervisor solution able to divide kernel objects fields in different memory regions
depending on their security impact. Writes on these sensitive fields are then monitored
and a strict access control policy is enforced to detect if the writer is legitimated. This
approach has two main drawbacks: a large performance overhead and the complexity
of the writer’s identification process.



More formal architectures have been proposed to verify dynamic kernel structures
as proposed by Petroni et al. [34]. These rule-based systems may be effective to detect
advanced threats but they are error prone and depend on the astuteness of the rules
writer. E-DKOM attacks are able to bypass these protections given the huge new attack
surface exposed by this generic technique.

The solution we propose in this paper belongs to the class of mimic defensive
solutions. Researchers have often proposed approaches to isolate a single OS component
and emulate it outside the system to provide a ground truth to the analyst [15, 17].
In our case, a custom hypervisor reproduces the same scheduling algorithm (CFS)
in a faithful step by step emulation. The drawback of these approaches is that they
only solve a particular instance of the problem. In fact, we show how to protect the
scheduler but an attacker can still exploit a different property of the kernel. Moreover,
these defensive solutions are not ideal, as discussed by Garfinkel [13]. Specifically, the
developers have to carefully think and manage all possible corner cases in order to
avoid possible bypasses, making this process highly prone to errors.

To the best of our knowledge, E-DKOM attacks – as formalized in this paper –
have never been discussed in the literature. The most complete overview of the DKOM’s
problem has been provided by Baliga et al. [4] as well as Rhee et al. [35]. They proposed
a DKOM’s taxonomy and investigated a novel data kernel attacks and possible POC
solutions. Although they mention the huge attack surface exposed by modern kernels
and the failing approach adopted by current detectors, they did not address our attack.
In light of the current state of the art, it is clear that all the existing defense mechanisms
are not able to detect this new class of attack and new comprehensive solutions are
required to address this new and complex threat.

In our example of E-DKOM attack, we use soft timer interrupt requests (STIR) in
order to perform polling tasks and modify the targeted dynamic memory structures.
Even if the detection of malicious soft timer interrupt has been addressed in the lit-
erature [47], an attacker can use several stealthy techniques to hide the execution of
malicious kernel code. For example, by using Address Translation Redirection Attacks
(ATRA) [21], an attacker can hide memory pages along with kernel interrupt routines
(e.g. code memory page). This would trick an integrity code checker to analyze the
code of a benign timer routine. Finally, it is worth noting that in our threat model we
consider an attacker equipped with state of the art offensive tools, that are not always
detectable by the current defensive solutions.

9 Conclusion & Future Work

In this paper we discuss a new type of DKOM attack that targets the evolution of a
data structure in memory, with the goal of tampering with a particular property of the
operating system. Since at every single point in time the internal state of the OS is
not anomalous, the detection of this type of attack, which we call evolutionary kernel
object manipulation, requires a completely new approach as well.

We conducted a number of experiments to show the feasibility of an evolutionary
attack against the Linux scheduler. Our attack is able to temporarily block any process
or kernel thread, without leaving any trace that could be identified by existing DKOM
detection and protection systems. Moving to the defense side, we then presented the



design and implementation of a hypervisor-based detector that can verify the fairness
of the OS scheduler. While our prototype is able to detect all the attacks with zero
false positives, the implementation needs to be customized on a case-by-case basis, and
it also requires the hooking of a number of internal functions of the operating systems
(making the technique harder to maintain and port to other systems). This shows that
evolutionary attacks are very hard to deal with, and more research is needed to mitigate
this threat.

As a future work we are now investigating other possible E-DKOM attacks that
can be executed on some specific kernel subsystems. As we already discussed in the
Generality Section, one example could be related to the virtual memory subsystem and
in particular to the selection of the candidate memory page to swap. It would also be
interesting to work on an automated analysis system that can autonomously inspect
the OS kernel and identify possible candidate data structures that have an interesting
time-evolutionary behavior – and that therefore could be targeted by future E-DKOM
attacks.
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