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ABSTRACT

A novel algorithm for estimating the Angles of Arrival (AoA) of
multiple sources in the presence of mutual coupling is derived. We
first formulate an ”Equality Constrained Quadratic Optimisation”
problem, then derive a suitable MUSIC-like algorithm to solve the
aforementioned problem, and thus obtain good estimates of the AoA
parameters. Identifiability conditions of the proposed algorithm are
also derived. Finally, simulation results demonstrate the Root-Mean-
Square Error (RMSE) performance of the algorithm as a function of
Signal-to-Noise Ratio (SNR) and number of snapshots, with com-
parison to an existing method.

1. INTRODUCTION

The estimation of the angles of arrival, or AoAs, of multiple sources
is a well known problem in the context of array signal processing.
In fact, this problem emanates in many engineering applications
such as navigation, tracking of objects, radar, sonar, and wireless
communications [1]. Furthermore, numerous high-resolution algo-
rithms were implemented to solve this issue, such as: MUSIC [2],
ESPRIT [3], and so forth.

Mutual coupling between antennas is a popular problem in array
signal processing. This phenomenon arises when antenna arrays are
close to each other [4], and thus the current developed in an antenna
element depends on its own excitation and on the contributions from
adjacent antennas. As a consequence, an ideal model is no longer
valid, and therefore the performance of the above algorithms deteri-
orate significantly.

Methods that aim on solving the mutual coupling problem are
called calibration methods. In fact, there are two types of calibration
methods: Offline and Online. In an offline calibration approach,
one estimates the mutual coupling parameters in an offline stage
independently from the (or knowing at least some) AoAs, such
as the technique in [5]. In contrast, online calibration consists of
jointly estimating the coupling and AoA parameters. In this paper,
we focus on the latter. As a matter of fact, we aim at estimating
the AoAs of multiple sources in the presence of mutual coupling.
As will be clearer throughout the paper, the optimisation problem
maximises the MUSIC cost function with respect to the coupling pa-
rameters, then the solution obtained is plugged back in the MUSIC
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cost function. In other words, the coupling parameters are treated as
nuissance parameters.

In the literature, several techniques deal with the online calibra-
tion problem, such as those found in [6–8,10] and references within.
In [6], the algorithm is iterative and the sources are assumed to be
totally uncorrelated. In [7, 8], the array elements are assumed to be
partly calibrated. In other words, one has access to a few coupling
parameters. The algorithm in [9] is based on fourth-order cumulants
(FOC) to estimate the AoAs in the presence of mutual coupling. We
find that the algorithm in [10] is of close nature to the one derived
in this paper as it requires a 1D search to estimate the AoAs in the
presence of mutual coupling. The difference, however, lies in the
algorithm itself. In specific, we propose to the solve the problem
in hand using equality constrained quadratic optimisation. We ob-
serve that we could resolve more sources than the method proposed
in [10]. Furthermore, simulations show that our algorithm exhibits a
lower Root-Mean-Square Error (RMSE) than that in [10].

Notations: Upper-case and lower-case boldface letters denote
matrices and vectors, respectively. (.)T and (.)H represent the trans-
pose and the transpose-conjugate operators. The matrix IN is the
identity matrix of dimensions N × N . The operator E{X} returns
the expectation of a random matrix X. For any matrix B, the kth

column of B is expressed as follows B(:, k). The symbol � indi-
cates the end of a proof.

2. SYSTEM MODEL

Assume a planar arbitrary array of N antennas. Furthermore, con-
sider q < N narrowband sources attacking the array from different
angles, i.e. Θ = [θ1 . . . θq]. Collecting L time snapshots and fol-
lowing [11], we can write

X = ÃS + N (1)

where X ∈ CN×L is the data matrix with lth time snapshot, x(tl),
stacked in the lth column of X. The matrix S ∈ Cq×L is the source
matrix. The steering matrix, or signal manifold, Ã ∈ CN×q is com-
posed of q steering vectors, i.e. Ã = [ã(θ1) . . . ã(θq)]. Each vector
ã(θi) is the response of the array to a source impinging the array
from direction θi. The matrix N ∈ CN×L is background noise.

In this paper, we restrict ourselves with Uniform Linear Arrays
(ULAs). Furthermore, it is well known that the response of a ULA
in the absence of mutual coupling is given as

a(θ) = [1, zθ, . . . z
N−1
θ ]T (2)



where zθ = e−j2π
d
λ

sin(θ), d is the inter-element spacing and λ is
the signal’s wavelength. Following [10], the response ã(θ) could be
modelled as

ã(θ) = Tpa(θ) (3)

where Tp ∈ CN×N is a banded symmetric Toeplitz matrix defined as
follows

Tp =


1 t1 t2 · · · tp−1 0 · · · 0
t1 1 t1 · · · tp−2 tp−1 · · · 0
...

. . .
. . .

...
0 · · · tp−1 tp−2 · · · t1 1 t1
0 · · · 0 tp−1 · · · t2 t1 1

 (4)

Note that the matrix Tp is independent from the AoAs. The model
in equations (3) and (4) suggest that antennas that are placed at least
p inter-element spacings apart do not interfere, i.e. ti = 0 for all
i ≥ p. This is due to the fact that the mutual coupling is inversely
proportional to the distance between antennas.

Before we move on, we shall assume the following:

• A1: Ã is full column rank.

• A2: The noise n(tl) is modelled as a white circular complex
Gaussian process of zero mean and covariance σ2IN and in-
dependent from the source signals.

• A3: The number of source signals q is known.

• A4: The source signals are allowed to be partially correlated,
but not coherent.

Assumptions A1 and A2 are usually satisfied in practice. As for
assumption A3, we admit that the number of sources q is known a
priori. The problem of estimating the number of sources is, in fact,
a detection problem in signal processing. Techniques for estimating
q are found in [12, 13].
Finally, the source covariance matrix is given as follows:

Rss = E{s(t)sH(t)} (5)

It was assumed in [6] that Rss is diagonal, i.e. all sources are un-
correlated. However, we allow Rss to be non-diagonal, but full rank
(sources are not fully correlated).

We are now ready to address our online calibration problem:
”Given X, q, and p, estimate the angles of arrival Θ of the incoming
signals in the presence of mutual coupling Tp.”

3. AN ONLINE CALIBRATION ALGORITHM

This section makes use of the MUSIC algorithm in order to estimate
the angles of arrivals Θ in the presence of mutual coupling. We start
by exploiting the structure of the received signal covariance matrix.
Under assumption A2, we have

Rxx = E{x(t)xH(t)} = ÃRssÃ
H + σ2IN (6)

Let λ1 > λ2 > . . . > λN denote the eigenvalues of Rxx. Further-
more, let u1,u2 . . .uN be their corresponding eigenvectors.

It is well known that under assumptions A1 and A4, the follow-
ing holds:

ãH(θi)UnUH
nã(θi) = 0, for all i = 1 . . . q. (7)

where Un = [uq+1 . . .uN] is referred to as the noise subspace.
However, in practice, one has access to the sample covariance

matrix, i.e.

R̂xx =
1

L
XXH (8)

Consequently, let λ̂1 > λ̂2 > . . . > λ̂N and û1, û2 . . . ûN denote
the sample eigenvalues and eigenvectors of R̂xx. Finally, the MU-
SIC algorithm estimates Θ as follows

{θ̂i}qi=1 = argmax
θ

1

ãH(θ)ÛnÛH
nã(θ)

(9)

However, applying MUSIC (equation (9)) directly to the problem in
hand is not possible because the functional form of ã(θ) is unknown.

Now, in order to proceed, we find the following theorem useful:

Theorem 1: Let Tp ∈ CN×N be a symmetric banded Toeplitz
matrix defined as in (4), and let b ∈ CN×1. Therefore, for any 1 ≤ p
≤ N, we can say:

Tpb = Bt (10)

where
t = [1, t1 . . . tp−1]

T ∈ Cp×1 (11)

and B ∈ CN×p is defined as

B(:, k) =

{
b if k = 1(
Pk−1 + PT

k−1

)
b if k > 1

(12)

with Pk ∈ CN×N being a shift matrix with all ones on its kth sub-
diagonal.

Proof: The matrix Tp could be re-written as

Tp = IN +

p−1∑
i=1

ti
(
Pi + PT

i

)
(13)

Plugging the expression of Tp in (10), we have

Tpb =
(
IN +

p−1∑
i=1

ti
(
Pi + PT

i

))
b

=
[
b
(
P1 + PT

1

)
b . . .

(
Pp−1 + PT

p−1

)
b
]
t

= Bt �
(14)

Note that Theorem 1 is the same as Lemma 3 in [14] but written
in a more compact way. Now, using Theorem 1, we can say that
ã(θ) = Tpa(θ) = B(θ)t, where B(θ) is defined as in (12). Now,
the MUSIC function in (9) could be re-written as

{θ̂i}qi=1 = argmax
θ,t

1

tHBH(θ)ÛnÛH
nB(θ)t

(15)

where the maximisation problem is also done over the vector t. Now,
let K(θ) , BH(θ)ÛnÛH

nB(θ), we propose to solve the following
equality constrained quadratic problem for a given θ:

min
t

tHK(θ)t

subject to eH
1t = 1

(16)

where e1 is the 1st column of Ip. The Lagrangian function corre-
sponding to the optimisation problem in (16) is the following:

L(t, α) = tHK(θ)t− α
(
eH
1t− 1

)
(17)

Setting the derivative of L(t,α) with respect to t to 0, we get

∂

∂t
L(t, α) = 2K(θ)t− αe1 = 0 (18)



Equation (18) gives the optimal coupling parameters, t∗, for a given
θ, in terms of the optimal Lagrangian multiplier α∗ as

t∗ =
α∗

2
K(θ)−1e1 (19)

Now plugging the expression of t∗ in the constraint of the optimisa-
tion problem in (16) yields the optimal value of α∗

α∗ =
2

eH
1K(θ)−1e1

(20)

Therefore, t∗ is now given as

t∗ =
K(θ)−1e1

eH
1K(θ)−1e1

(21)

Finally, plugging the expression of t∗ in the MUSIC cost function
in (15), we get

{θ̂i}qi=1 = argmax
θ

eH
1K(θ)−1e1 (22)

To prove the existance and uniqueness of t∗, we need the fol-
lowing Lemma:
Lemma [15]: Consider the ”Equality Constrained Quadratic Opti-
misation” problem given in equation (16). Equations (18) and the
constraint in equation (16) together are written in matrix form as:[

2K(θ) −e1

eH
1 0

]
︸ ︷︷ ︸

,M

[
t
α

]
=

[
0
1

]
(23)

The coefficient matrixM is referred to as the KKT matrix [15].
Let [t∗, α∗]T denote a solution of (23).
The following holds:
• The KKT matrixM is nonsingular, and therefore invertible.
• The solution [t∗, α∗]T is the unique global solution of the

equality constrained quadratic problem in equation (16).
if and only if:
• Assumption 1: The matrix eH

1 has linearly independent rows.

• Assumption 2: The matrix K(θ) is positive definite in the null
space of eH

1 , i.e. zHK(θ)z > 0 for all z 6= 0 satisfying
eH
1 z = 0.

Using the above Lemma, we have the following Theorem:
Theorem 2: The solution [t∗, α∗]T is the unique global solution if
and only if q + p < N + 1 and p ≤ N

2
.

Proof: We shall seek the conditions under which assumptions
1 and 2 of the above Lemma hold true. Clearly, Assumption 1 is
satisfied for any p. As for Assumption 2, let z ∈ Cp×1 be a vector
such that eH

1 z = 0, then:

z ∈ span{e2, . . . , ep} = N (E) (24)

In other words, there exists β2 . . . βp ∈ C such that

z = [0, β2 . . . βp]
T (25)

Now, we seek a condition under which a vector z ∈ N (eH
1 ) satisfies

zHK(θ)z = 0. Since B(θ) is full column rank for any p satisfying
p ≤ N

2
, then

rank
(
K(θ)

)
= rank

(
BH(θ)ÛnÛH

nB(θ)
)
= rank

(
ÛnÛH

n

)
= N − q

(26)

Therefore, K(θ) admitsN−q linearly independent columns. Recall
that the number of possibly non-zero elements of z is p−1. This im-
mediately implies that there exists a vector z such that zHK(θ)z = 0
if and only if

p− 1 ≥ N − q (27)

Finally, for every z ∈ N (E) such that zHK(θ)z 6= 0 is satisfied
if and only if p + q < N + 1 and p ≤ N

2
. And the proof is

done. �
Note that when p = 1 (absence of mutual coupling), we get the

traditional identifiability, i.e. q < N .

4. DISCUSSION

Theorem 2 provides a sufficient and necessary condition for the ex-
istance and uniqueness of the coupling parameters t∗ using the pro-
posed algorithm, i.e. p + q < N + 1 and p ≤ N

2
. However, the

identifiability condition in [10] is the following: 2p + q ≤ N + 1.
One could, thus, easily verify that the proposed algorithm could re-
solve more sources.

We would strongly like to note that we have not addressed the
coupling estimation part as the optimisation was first done over t,
then the solution of t (i.e. t∗) was substituted back in the MUSIC
cost function. In other words, the vector t∗ was treated as a nuis-
sance parameter. The problem of estimating the coupling parameters
t is beyond the scope of this paper. Once again, our aim is estimating
the AoAs of multiple sources in the presence of mutual coupling.

5. SIMULATION RESULTS

In this section, we present our simulation results and compare with
the method presented by Liao et Al. [10]. In the first experiment,
consider a ULA array that is composed of N = 7 antennas spaced
at λ

2
. Furthermore, assume two sources impinging the array at θ1 =

10◦ and θ2 = 30◦. As for the mutual coupling, we fix p = 3, with
t1 = −0.95 − 1.29j and t2 = −0.05 + 0.25j. The SNR is set to
9 dB and the number of snapshots L = 100. Figure 1 depicts the
spectrum of our method versus Liao’s method for this situation. The
vertical dashed lines correspond to the true AoAs. We can clearly
see that our method peaks at the true AoAs, whereas Liao’s method
is biased away from the true values.

In the second experiment (i.e. Figure 2), we fix N = 10 anten-
nas, q = 3 sources arriving at θ1 = 10◦, θ2 = 20◦, and θ3 = 30◦.
The number of coupling parameters is p = 3. The number of snap-
shots L = 100. The number of Monte-Carlo trials is M = 500. In
addition, at each trial, the coupling parameters are chosen randomly
to assess generality of our RMSE curves. We notice that our pro-
posed method exhibits an improvement of around 1.5◦, in average,
in terms of RMSE when 5 dB < SNR < 20 dB. Interestingly, when
SNR > 22 dB, our method coincides with MUSIC (”coupling-free”
MUSIC, that is) and the RMSE is 0, whereas Liao’s method still
shows some error of around 0.75◦ RMSE.

In the third experiment (i.e. Figure 3) ,we plot RMSE vs. num-
ber of snapshots (L) at fixed SNR. The parameters q, Θ, N , M ,
and p are the same as those in the 2nd experiment. The SNR is
set to 30 dB. Again, we observe that our proposed method performs
better than Liao’s. When the number of snapshots exceeds 20, our
method shows zero RMSE and coincides with ”coupling-free” MU-
SIC. However, Liao’s method shows error even when the number of
snapshots reach 100.
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Fig. 1: Comparison of Spectra of different methods (N = 7, p =
3, q = 2, L = 100). Vertical dashed lines correspond to the true
AoAs.
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Fig. 2: RMSE on a linear scale vs. SNR of experiment 2.

6. CONCLUSION

We have presented a novel online mutual coupling algorithm that
could estimate the Angles of Arrival of multiple sources in the pres-
ence of mutual coupling. Simulation results demonstrate the poten-
tial of the proposed algorithm, especially when compared to the one
in [10]. In particular, our algorithm resolves more sources and ex-
hibits a lower RMSE than that of [10].
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