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Abstract
Efforts to develop new countermeasures in order to protect au-
tomatic speaker verification from spoofing have intensified over
recent years. The ASVspoof 2015 initiative showed that there
is great potential to detect spoofing attacks, but also that the de-
tection of previously unforeseen spoofing attacks remains chal-
lenging. This paper argues that there is more to be gained from
the study of features rather than classifiers and introduces a new
feature for spoofing detection based on the constant Q trans-
form, a perceptually-inspired time-frequency analysis tool pop-
ular in the study of music. Experimental results obtained using
the standard ASVspoof 2015 database show that, when cou-
pled with a standard Gaussian mixture model-based classifier,
the proposed constant Q cepstral coefficients (CQCCs) outper-
form all previously reported results by a significant margin. In
particular, those for a subset of unknown spoofing attacks (for
which no matched training data was used) is 0.46%, a relative
improvement of 72% over the best, previously reported results.

1. Introduction
Automatic speaker verification (ASV) technology has matured
over recent years to become a low-cost and reliable approach to
person recognition. Unfortunately, however, and as is true for
all biometric modalities, concerns regarding security vulnera-
bilities can still form a barrier to exploitation. Vulnerabilities
to spoofing, also known as presentation attacks, are one exam-
ple which refers to the manipulation of a biometric system by
a fraudster impersonating another enrolled person. For medium
to high security applications, such vulnerabilities are clearly un-
acceptable.

A growing body of work has illustrated the vulnerability
of ASV systems to a diverse range of spoofing attacks [1, 2].
The major forms of attack known today include those of re-
play [3, 4], voice conversion [5, 6], speech synthesis [7, 8] and
impersonation [9, 10] all of which have been shown to degrade
verification performance. The community has responded by
designing countermeasure technologies to effectively mitigate
vulnerabilities to spoofing.

The general countermeasure approach is essentially one of
artefact detection encompassing relatively standard feature ex-
traction and statistical pattern recognition techniques. These
aim to distinguish between natural and spoofed speech by cap-
turing the tell-tale signs of synthesis or manipulation. This
might suggest that the design of spoofing countermeasures
should better focus on feature engineering, rather than on the
investigation of more advanced or complex classifiers.

This view is supported by the results of the recent
ASVspoof 2015 challenge [11] of which the winning sys-
tem [12] utilised non-conventional features in conjunction with

a classical Gaussian mixture model (GMM) classifier. The work
in [13] and [14] produced by the same team, in addition to that
in [15] might also suggest that the performance of spoofing
countermeasures is more dependent on the particular features
used rather than on the particular classifier.

As is argued in the following, this is perhaps not surpris-
ing. A spoofing attack must first of all manipulate successfully
an ASV system into accepting a fraudulent identity claim. It
is a reasonable assumption that this will be achieved most effi-
ciently by presenting to the system a speech signal whose cor-
responding features mimic as closely as possible those used for
enrolment, i.e. to train the target speaker model. In most cases
these are short-term, possibly Mel-scaled spectral estimates. A
spoofing algorithm such as speech synthesis or voice conversion
might then best be implemented using a similar feature repre-
sentation at its heart.

In this case, a spoofing countermeasure which uses the
same or similar feature representation may not offer the best
opportunities for detection. Herein lies the impetus behind the
work presented in this paper. It is supposed that the design of
a spoofing countermeasure system which exploits a feature rep-
resentation different to that of a typical ASV system may offer
greater robustness to spoofing, in addition to greater generalisa-
tion to unforeseen spoofing attack.

The most significant contribution of this paper is thus the in-
vestigation of an entirely new approach to feature extraction for
ASV spoofing countermeasures. The traditional approach used
widely for the analysis of speech signals, namely the Fourier
transform, is not necessarily ideal. Whereas it is an extremely
powerful, versatile and efficient tool for time-frequency anal-
ysis, it imposes regular spaced frequency bins. As a conse-
quence, the Fourier transform may lack frequency resolution
at lower frequencies and lack temporal resolution at higher fre-
quencies.

In contrast, the constant Q transform (CQT), initially pro-
posed in the field of music processing, employs geometrically
spaced frequency bins. This ensures a constant Q factor across
the entire spectrum. This results in a higher frequency reso-
lution at lower frequencies while providing a higher temporal
resolution at higher frequencies. This reflects more closely the
human perception system. This paper investigates the coupling
of the CQT with traditional cepstral analysis. The latter facil-
itates the use of a conventional GMM for spoofing detection.
The new features are referred to as constant Q cepstral coeffi-
cients (CQCCs).

The second significant contribution of this paper relates
to the development of a generalised spoofing countermeasure.
While not a necessity, since the nature of a spoofing attack can
never be known a priori, generalisation is always beneficial. The
paper thus investigates the performance of the new feature rep-
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resentation in the face of both known and unknown spoofing at-
tacks.

The remainder of the paper is as follows. Section 2 sets the
new contribution against related prior work. Section 3 presents
the constant Q transform whereas the new CQCC features are
described in Section 4. Section 5 describes the experimental
setup whereas Section 6 presents experimental results. Conclu-
sions are presented in Section 7.

2. Prior work
This section reviews briefly the current state of the art in spoof-
ing countermeasures for automatic speaker verification. As the
first database to support such research, and being that used for
the first competitive evaluation, focus is placed upon results de-
rived from the standard ASVspoof 2015 database. Presented
first is a brief description of the ASVspoof database followed
by a treatment of leading results produced by other authors.

2.1. ASVspoof 2015 database

The ASVspoof challenge [16] was created in order to address
a number of shortcomings in previous work. These revolve
around the use of non-standard datasets and metrics (prior to
2015 there were none) which forced researchers to create their
own databases to support their research.

A consequence of this meant that the past work is charac-
terised by spoofing attacks implemented with full knowledge of
speaker verification systems and countermeasures implemented
with full knowledge of spoofing attacks. The use of a standard
database avoided this problem (at least for the first evaluation)
and also allowed results produced by different researchers to be
compared meaningfully.

ASVspoof 2015 focused on the assessment of stand-alone
spoofing detectors in independence from ASV. Through the pro-
vision of disjoint training, development and evaluation sets,
the evaluation also encouraged the development of generalised
countermeasures. Generalisation is important since the nature
of a spoofing attack will never be known in advance; ideally,
countermeasures should be robust to unforeseen attacks.

Each of the three ASVspoof 2015 subsets contains a mix of
genuine and spoofed speech, the latter of which is comprised of
diverse spoofing attacks generated through either speech syn-
thesis or voice conversion. A total of 10 different speech syn-
thesis and voice conversion algorithms were used to generate
spoofed data. In order to promote generalised countermeasures,
only 5 of these were used to generate the training and develop-
ment subsets whereas the evaluation subset was generated with
the full 10. The first 5 are collectively referred to as known
attacks, whereas the second 5, being present only in the evalu-
ation set, are referred to as unknown attacks. Prior to the eval-
uation, only the key for the training and development subsets
were available to participants; that for the evaluation subset was
withheld meaning no information concerning unknown attacks
was distributed to evaluation participants.

2.2. ASVspoof 2015 results

For the ASVspoof 2015 evaluation, spoofing detection algo-
rithms were optimised using the training and development data
and associated protocols. The evaluation subset was processed
blindly. Score files were submitted by the participants and
scored post evaluation by the ASVspoof 2015 organisers. High
scores indicate genuine speech whereas low scores indicate
spoofed speech. The offical metric was the equal error rate

Table 1: Equal error rate (%) results for the top 3 perform-
ing systems for the ASVspoof 2015 evaluation. The 3 first rows
correspond to official evaluation results, while the last row is a
post-evaluation result. Results are illustrated independently for
known and unknown attacks and the average.

System Known Unknown Average

CFCC-IF [12] 0.408 2.013 1.211
i-vector [17] 0.008 3.922 1.965
M&P feat. [18] 0.058 4.998 2.528

LFCC-DA [13] (post-eval) 0.11 1.67 0.89

(EER) and the average EER across all 10 spoofing attacks in
the evaluation subset was used for system ranking.

A brief description of the top 3 performing systems is pre-
sented below. The performance of the new CQCC features in
detecting spoofing is compared to that of these systems later in
Section 6.

• DA-IICT [12]: This system employed a fusion of two
GMM classifiers. The first used MFCC features. The
second used cochlear filter cepstral coefficients and
change in instantaneous frequency (CFCC-IF) features.

• STC [17]: This system used three different sets of i-
vectors based on MFCCs, Mel-Frequency Principal Co-
efficients and Cosine Phase Principal Coefficients. Clas-
sification was performed on stacked i-vectors and a Sup-
port Vector Machine (SVM) classifier with a linear ker-
nel.

• NTU [18]: This system used multiple, diverse and
fused magnitude and phase (M&P) features including
two types of magnitude-based features (log-magnitude
spectrum and residual log-magnitude spectrum) and five
types of phase-based features (group delay, modified
group delay, instantaneous frequency derivative, base-
band phase difference, and pitch synchronous phase). A
Multi-Layer Perceptron (MLP) with long context (500
ms) was trained for each feature type. The final score is
the average of the 5 MLP scores.

Results obtained by the three systems are illustrated in Ta-
ble 1. All 3 systems achieve excellent results in the detection of
known attacks, with all EERs below 0.5%. However, EERs for
unknown attacks are significantly higher and all above 2%.

The results of a fourth system are presented in the final
row of Table 1. These results, the best reported to date, are
post-evaluation results reported in [13]. This system used the
delta (D) and acceleration (A) coefficients corresponding to 20
Linear Frequency Cepstral Coefficients (LFCC) and a classifier
based on two 512-component GMMs trained with expectation
maximisation (EM). While this system sacrifices performance
in the case of known attacks, that for unknown attacks is well
below 2%, a significant decrease in EER. Even so, the differ-
ence in performance for known and unknown attacks is signif-
icant and highlights the challenge to develop generalised coun-
termeasures.

3. From Fourier to constant Q
This section describes the motivation behind the use of constant
Q transforms for the analysis of speech signals. The starting
point for the discussion is the time-frequency representation.
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This is followed by a treatment of the short-term Fourier trans-
form before a description of the constant Q transform.

3.1. Time-frequency representation

In digital audio signal processing applications, time-frequency
representations are ubiquitous tools. The uncertainly principle
dictates that time and frequency content cannot be measured
precisely at the same time [19], hence the well know relation:

∆f∆t ≥ 1/4π (1)

The parameter for this trade-off between time and fre-
quency resolution is the window length N ; ∆f is proportional
to 1/N whereas ∆t is proportional to N . Equation 1 implies
that, if a signal is dispersed in frequency, then its temporal rep-
resentation is compressed in time, and vice versa. Put differ-
ently, the product ∆f∆t is a constant; time and frequency res-
olutions cannot be reduced simultaneously. This means that the
same time-domain signal can be specified by an infinite number
of different time-frequency representations. Among these, the
short-time Fourier transform (STFT) is the most popular.

3.2. The short-term Fourier transform

The STFT performs a Fourier Transform on a short segment
which is extracted from a longer data record upon its multipli-
cation with a suitable window function. A sliding window is
applied repetitively in order to analyse the local frequency con-
tent of the longer data record as a function of time [20].

The STFT is effectively a filter bank. The Q factor is a
measure of the selectivity of each filter and is defined as the
ratio between the center frequency fk and the bandwidth δf :

Q =
fk
δf

(2)

In the STFT the bandwidth of each filter is constant and
related to the window function. The Q factor thus increases
when moving from low to high frequencies since the absolute
bandwidth f is identical for all filters.

This is in contrast to the human perception system which is
known to approximate a constant Q factor between 500Hz and
20kHz [21]. At least from a perceptual viewpoint, the STFT
may thus not be universally ideal for the time-frequency analy-
sis of speech signals.

3.3. The constant Q transform

A more perceptually motivated time-frequency analysis known
as the constant Q transform (CQT) was developed over the
last few decades. The first was introduced in 1978 by Young-
berg and Boll [22] with an alternative algorithm being proposed
by Kashima and Mont-Reynaud Kashima [23]. In these ap-
proaches, octaves are geometrically distributed while the centre
frequencies of each filter are linearly spaced.

CQT was refined some years later in 1991 by Brown [24].
In contrast to the earlier work, the centre frequencies of each
filter are also geometrically distributed, thereby following the
equal-tempered scale [25] of western music. For this reason,
Brown’s algorithm is widely used in music signal processing.
The approach gives a higher frequency resolution for lower fre-
quencies and a higher temporal resolution for higher frequen-
cies. As illustrated in Figure 1, this is in contrast to the fixed
time-frequency resolution of Fourier methods. From a percep-
tual point of view, geometrically spaced frequencies mean that
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Figure 1: A comparison of the time-frequency resolution of the
STFT (a) and CQT (b). For the STFT, the time and frequency
resolutions, ∆t and ∆f , are constant. Here, H is the duration
of the sliding analysis window (hop size). In contrast, the CQT
employs a variable time resolution ∆tk (which is greater for
higher frequencies) and a variable frequency resolution ∆fk
(which is greater for lower frequencies). Now, the duration of
the sliding analysis window Hk varies for each frequency bin.
fs is the sampling rate and k is the frequency bin index. Red
dots correspond to the filter bank centre frequencies fk (bin fre-
quencies).

the centre frequency of every pair of adjacent filters has an iden-
tical frequency ratio and is perceived as being equally spaced.
Over the last decade the CQT has been applied widely to the
analysis, classification and separation of audio signals with im-
pressive results, e.g. [26, 27, 28].

The CQT is similar to a wavelet transform with relatively
high Q factors (∼100 bins per octave.) Wavelet techniques are,
however, not well suited to this computation [29]. For exam-
ple, methods based on iterative filter banks would require the
filtering of the input signal many hundreds of times [30].

3.4. CQT computation

The CQT XCQ(k, n) of a discrete time domain signal x(n) is
defined by:

XCQ(k, n) =

n+bNk/2c∑

j=n−bNk/2c
x(j)a∗k(j − n+Nk/2) (3)

where k = 1, 2, ...,K is the frequency bin index, a∗k(n) is
the complex conjugate of ak(n) and Nk are variable window
lengths. The notation b·c infers rounding down towards the
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nearest integer. The basis functions ak(n) are complex-valued
time-frequency atoms, defined according to:

ak(n) =
1

C
(
n

Nk
)exp[i(2πn

fk
fs

+ Φk)] (4)

where fk is the center frequency of the bin k, fs is the sampling
rate, and w(t) is a window function (e.g. Hann window). Φk is
a phase offset. The scaling factor C is given by:

C =

bNk/2c∑

l=−bNk/2c
w

(
l +Nk/2

Nk

)
(5)

Since a bin spacing corresponding to the equal-tempered
scale is desired, the center frequencies fk obey:

fk = f12
k−1
B (6)

where f1 is the center frequency of the lowest-frequency bin
and B determines the number of bins per octave. In practice,
B determines the time-frequency resolution trade-off. The Q
factor is then given by:

Q =
fk

fk+1 − fk
= (21/B − 1)−1 (7)

The window lengths Nk ∈ R in Equations 3 and 4 are real-
valued and inversely proportional to fk in order that Q is con-
stant for all frequency bins k, i.e.:

Nk =
fs
fk
Q (8)

The work in [31] introduced an additional parameter γ that
gradually decreases the Q factors for low frequency bins in sym-
pathy with the filters of the human auditory system. In particu-
lar, when γ = Γ = 228.7∗(2(1/B)−2(−1/B)), the bandwidths
equal a constant fraction of the ERB critical bandwidth [32].

Example CQT results are illustrated in Figure 2 which
shows STFT and CQT-derived spectrograms for an arbitrarily
selected speech signal from the ASVspoof database. The pitch
F0 of the utterance varies between 80Hz and 90Hz; the dif-
ference is only 10Hz. The frequency resolution of the conven-
tional STFT is not sufficient to detect such small variations; 512
temporal samples at a sampling rate of 16kHz correspond to
a spectral separation of 31.25Hz between two adjacent STFT
bins. This same is observed for the second partial which varies
between 160Hz and 180Hz where the difference is 20Hz. The
spectral resolution of the STFT can of course be improved us-
ing a larger window, but to the detriment of time resolution. The
CQT efficiently resolves these different spectral contents at low
frequency.

4. CQCC extraction
This section describes the extraction of constant Q cepstral co-
efficients. Cepstral analysis on CQT was already proposed by
Brown [33] for the identification of musical instruments with
a discrete success. Differently from Brown’s approach, our al-
gorithm performs a linearisation of the frequency scale of the
CQT, so that the orthogonality of the DCT basis is preserved.
The discussion starts with a treatment of conventional cepstral
analysis before the application to CQT.

Figure 2: Spectrograms of the utterance ‘the woman is a star
who has grown to love the limelight’ for a male speaker in the
ASVspoof database. Spectrograms computed with the short-
time Fourier Transform (top) and with the constant Q transform
(bottom).

4.1. Conventional cepstral analysis

The cepstrum of a time sequence x(n) is obtained from the in-
verse transformation of the logarithm of the spectrum. In the
case of speech signals, the spectrum is usually obtained us-
ing the discrete Fourier transform (DFT) whereas the inverse
transformation is normally implemented with the discrete co-
sine transform (DCT). The cepstrum is an orthogonal decom-
position of the spectrum. It maps N Fourier coefficients onto
q � N independent cepstrum coefficients that capture the most
significant information contained within the spectrum.

The Mel-cepstrum applies prior to cepstral analysis a fre-
quency scale based on auditory critical bands [34]. It is the most
common parametrisation used in speech and speaker recogni-
tion. Such features are referred to widely as Mel-frequency
cepstral coefficients (MFCCs) which are typically extracted ac-
cording to:

MFCC(q) =
M∑

m=1

log [MF (m)] cos

[
q
(
m− 1

2

)
π

M

]
(9)

where the Mel-frequency spectrum is defined as

MF (m) =

K∑

k=1

∣∣∣XDFT (k)
∣∣∣
2

Hm (k) (10)

where k is the DFT index, Hm(k) is the triangular weighting-
shaped function for the m-th Mel-scaled bandpass filter.
MFCC(q) is applied to extract a number of coefficients less
than the number of Mel-filters M . Typically, M = 25 and q
varies between 13 and 20.

4.2. Constant Q cepstral coefficients

Cepstral analysis cannot be applied using (6) directly since the
k bins in XCQ(k) are on a different scale to those of the co-
sine function of the DCT; they are respectively geometrically
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Figure 3: Block diagram of CQCC feature extraction.

and linearly spaced. Inspired by the signal reconstruction works
in [35, 36], this problem is solved here by converting geometric
space to linear space.

Since the k bins are geometrically spaced, the signal recon-
struction can be viewed as a downsampling operation over the
first k bins (low frequency) and as an upsampling operation for
the remaining K − k bins (high frequency). We define the dis-
tance between fk and f1 = fmin as:

∆fk↔1 = fk − f1 = f1
(

2
k−1
B − 1

)
(11)

where k = 1, 2, ...,K is the frequency bin index. The distance
∆fk↔1 increases as a function of k. We now seek a period Tl

for linear resampling1. This is equivalent to determining a value
of kl ∈ 1, 2, ...,K such that:

Tl = ∆fkl↔1 (12)

To solve (12) we only need to focus on the first octave; once
Tl is fixed for this octave, higher octaves will naturally have a
resolution two times greater than that of the lower octave. A
linear resolution is obtained by splitting the first octave into d
equal parts with period Tl and by solving for kl:

f1
d

= f1

(
2

kl−1

B − 1

)
→ kl = Blog2(1 +

1

d
) (13)

The new frequency rate is then given by:

Fl =
1

Tl
=

[
f1

(
2

kl−1

B − 1

)]−1

(14)

There are thus d uniform samples in the first octave, 2d in
the second and 2jd in the (j − 1)th octave. The algorithm for
signal reconstruction uses a polyphase antialiasing filter [37]
and a spline interpolation method to resample the signal at the
uniform sample rate Fl.

Constant Q cepstral coefficients (CQCCs) can then be ex-
tracted in a more-or-less conventional manner according to:

CQCC(p) =
L∑

l=1

log
∣∣∣XCQ(l)

∣∣∣
2

cos

[
p
(
l − 1

2

)
π

L

]
(15)

where p = 0, 1, ..., L − 1 and where l are the newly resam-
pled frequency bins. The extraction of CQCCs is summarised
in Figure 3. Our Matlab implementation of CQCC extraction
can be downloaded from http://audio.eurecom.fr/
content/software

5. Experimental setup
The focus now returns to the assessment of spoofing counter-
measures. Presented in the following is an overview of the ex-
perimental setup which includes the database, feature extraction
and classifier configurations.

1Whereas the period usually relates to the temporal domain, here it
is in the frequency domain.

Table 2: The ASVspoof 2015 database: number of male and
female speakers, number of genuine and spoofed speech utter-
ances and data partitions.

#Speakers #Speakers
Subset Male Female Genuine Spoofed

Training 10 15 3750 12625
Development 15 20 3497 49875
Evaluation 20 26 9404 184000

5.1. ASVspoof 2015 database

Table 2 summarizes the structure and contents of the ASVspoof
2015 database [16]. The database is structured into training,
development and evaluation subsets. The three subsets con-
tain both natural and spoofed speech for a number of differ-
ent speakers. Spoofed material is derived from natural speech
recordings by means of 10 different spoofing attacks (from S1 to
S10). They take the form of popular speech synthesis and voice
conversion algorithms (see [16] for details). In order to allow
assessment of generalized countermeasures only attacks S1 to
S5 are included in the training and development subsets. At-
tacks S6 to S10 are deemed as unknown attacks and contained
only within the evaluation subset. All audio files are in PCM
format with a 16kHz sampling rate and with a resolution of 16
bits per sample.

5.2. Feature Extraction

The CQT is applied with a maximum frequency of Fmax =
FNY Q/2, where FNY Q is the Nyquist frequency of 8kHz. The
minimum frequency is set to Fmin = Fmax/2

9 ' 15Hz (9
being the number of octaves). The number of bins per octave
B is set to 96. These parameters result in a time shift or hop of
8ms. Parameter γ is set to γ = Γ (see Section 4). Re-sampling
is applied with a sampling period of d = 16. These parameters
were all empirically optimised.

Investigations using three different CQCC features dimen-
sions are reported: 12, 19 and 29 all with appended C0. The
first two dimensions are chosen since they are common in
speech and speaker recognition, respectively. The higher num-
ber is included to determine whether higher order coefficients
contain any additional information useful for the detection of
spoofing.

From the static coefficients, dynamic coefficients, namely
delta and delta-delta features are calculated and optionally ap-
pended to static coefficients, or used in isolation. Experiments
were performed with all possible combinations of static and dy-
namic coefficients.
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Table 3: System performance measured in terms of average
EER (%) for the development set and for different feature di-
mensions and combinations of static and dynamic coefficients.
S=static, D=dynamic, A=acceleration.

Feature 12 + 0th 19 + 0th 29 + 0th

S 0.5233 0.3850 0.3619
D 0.4009 0.0942 0.0412
A 0.2085 0.0518 0.0100
SDA 0.2916 0.0947 0.0735
SD 0.4271 0.2331 0.1622
SA 0.4391 0.1564 0.0948
DA 0.2079 0.0381 0.0154

5.3. Classifier

Given the focus on features, all experiments reported in this
paper use Gaussian mixture models (GMMs) in a standard 2-
class classifier in which the classes correspond to natural and
spoofed speech. The two GMMs are trained on the genuine and
spoofed speech utterances of the ASVspoof training dataset,
respectively. We use 512-component models, trained with an
expectation-maximisation (EM) algorithm with random initial-
isation. EM is performed until likelihoods converge.

The score for a given test utterance is computed as the log-
likelihood ratio Λ(X) = logL(X|θn) − logL(X|θs), where
X is a sequence of test utterance feature vectors, L denotes the
likelihood function, and θn and θs represent the GMMs for nat-
ural and spoofed speech, respectively. The use of GMM-based
classifiers has been shown to yield among the best performance
in the detection of natural and spoofed speech [12, 13].

6. Experimental results

Presented in the following is an assessment of CQCC features
for spoofing detection. This assessment is performed using the
ASVspoof 2015 development subset. The attention then turns
to an assessment of generalisation. Assessment is performed
with the ASVspoof 2015 evaluation subset.

6.1. CQCC features

Reported first is an evaluation of the proposed CQCC features
using the ASVspoof development subset. Table 3 shows perfor-
mance for different feature dimensions and 7 different combi-
nations of static (S), delta (D) and acceleration (A) features.
First, no matter that the combination, better performance is
achieved with higher dimension features, indicating the pres-
ence of useful information in the higher order cepstra. Second,
dynamic and acceleration coefficients give considerably better
results than static coefficients. Acceleration coefficients give
better results that dynamic coefficients, though for lower feature
dimensions, their combination gives better performance than ei-
ther alone.

These observations are otherwise consistent across the dif-
ferent feature dimensions. The fact that dynamic and acceler-
ation coefficients outperform static features seems reasonable
given that spoofing techniques may not model well the more
dynamic information in natural speech.

Table 4: System performance for known and unknown attacks
measured in terms of average EER (%) for the evaluation set
and for the 4 best system configurations found for the develop-
ment set.

#coef. 19 + 0th 29 + 0th

Feat. Known Unknown Known Unknown

A 0.0484 0.4625 0.0185 0.6724
DA 0.0228 0.8263 0.0098 0.8384

6.2. Generalisation

The second goal of this work lies in the assessment of general-
isation. This assessment is performed on the ASVspoof eval-
uation subset using feature dimensions of 19 and 29 with ap-
pended C0 and with A and DA combinations.

Table 4 presents average EERs for known and unknown
spoofing attacks in addition to the average. DA features consis-
tently outperform A features for known spoofing attacks, while
A outperform DA for unknown spoofing attacks for both feature
dimensions.

These results show that performance degrades significantly
in the face of unknown attacks. This interpretation would be
rather negative, however. Presented in the following is a com-
parison of CQCC to other results in the literature. These show
that, even if performance for unknown spoofing attacks is worse
than for known attacks, CQCC features still deliver excellent
performance.

6.3. Comparative performance

Table 5 shows the performance of CQCC independently for
each of the different spoofing attacks grouped into known and
unknown attacks. Results are presented here for only the 19-
th order feature set with A coefficients only. The average EER
of this system is 0.26%. Also illustrated for comparison is the
performance of the four systems described in Section 2.22.

Focusing first on known attacks, all four systems deliver
excellent error rates of below 0.41%. The proposed CQCC fea-
tures are third in the ranking according to the average error rate,
with an EER of 0.05%. Voice conversion attacks S2 and S5
seem to be the most difficult to detect. Speech synthesis attacks
S3 and S4, however, are perfectly detected by all systems.

It is for unknown attacks where the difference between sys-
tems is greatest. Whereas attacks S6, S7 and S9 are detected
reliably by all systems, there is considerable variation for at-
tacks S8 and S10. In particular, the performance for attack S10,
the only unit-selection-based speech synthesis algorithm, varies
considerably; past results range from 8.2% to 26.1%. Being so
much higher than the error rates for other attacks, the average
performance for unknown attacks is dominated by the perfor-
mance for S10. Average error rates for past work and unknown
attacks range from 1.7% to 5.2%.

CQCC features compare favourably. While the perfor-
mance for S6, S7 and S9 is not as good as that of other systems,
error rates are still low and below 0.1%. While the error rate for
S8 of 1.0% is considerably higher than for other systems, it is
significantly better than all other systems for attack S10. Here
is the error is reduced to 1.1%. This corresponds to a relative

2The authors thanks Md Sahidullah and Tomi Kinnunen from the
University of Eastern Finland for kindly providing results indepen-
dently for each spoofing attack.
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Table 5: Performance in terms of average EER (%) for the best performing system, including individual results for each spoofing attack.
Results for known and unknown attacks and the global average. Results for systems reviewed in Section 2 are included for comparison.

Known Attacks Unknown Attacks All
System S1 S2 S3 S4 S5 Avg. S6 S7 S8 S9 S10 Avg. Avg.

CFCC-IF 0.101 0.863 0.000 0.000 1.075 0.408 0.846 0.242 0.142 0.346 8.490 2.013 1.211
i-vector 0.004 0.022 0.000 0.000 0.013 0.008 0.019 0.000 0.015 0.004 19.57 3.922 1.965
M&P feat. 0.000 0.000 0.000 0.000 0.010 0.002 0.010 0.000 0.000 0.000 26.10 5.222 2.612
LFCC-DA 0.027 0.408 0.000 0.000 0.114 0.110 0.149 0.011 0.074 0.027 8.185 1.670 0.890
CQCC-A 0.005 0.106 0.000 0.000 0.130 0.048 0.098 0.064 1.033 0.053 1.065 0.462 0.255

improvement of 87% with regard to the next best performing
system for S10. The average performance of CQCC features
for unknown attacks is 0.5%. This corresponds to a relative im-
provement of 72% over the next best system.

The average performance across all 10 spoofing attacks is
illustrated in the final column of Table 5. The average error
rate of 0.26% is significantly better than those reported in pre-
vious work. The picture of generalisation is thus not straight-
forward. While performance for unknown attacks is worse than
it is for known attacks, CQCC features nonetheless deliver the
most consistent performance across the 10 different spoofing
attacks in the ASVspoof database. Even if it must be acknowl-
edge that the work reported in this paper was conducted post-
evaluation, to the authors’ best knowledge, CQCC features give
the best spoofing detection performance reported to date.

7. Conclusions
This paper introduces a new feature for the automatic detection
of spoofing attacks which can threaten the reliability of auto-
matic speaker verification. The new feature is based upon the
constant Q transform and is combined with traditional cepstral
analysis. Termed constant Q cepstral coefficients (CQCCs), the
new features provide a variable-resolution, time-frequency rep-
resentation of the spectrum which captures detailed character-
istics which are missed by more classical approaches to feature
extraction.

These characteristics are shown to be informative for spoof-
ing detection. When coupled with a simple Gaussian mix-
ture model-based classifier and assessed on a standard database,
CQCC features outperform all existing approaches to spoofing
detection. In addition, while there is still a marked discrep-
ancy between performance for known and unknown spoofing
attacks, CQCC results correspond to a relative improvement of
72% over the previously best performing system. Future work
should consider the application of CQCCs for more generalised
countermeasures such as a 1-class classifier. The application
of CQCCs in other speaker recognition and related problems is
another obvious direction.
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