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ABSTRACT
Code reuse attacks based on return oriented programming
(ROP) are becoming more and more prevalent every year.
They started as a way to circumvent operating systems
protections against injected code, but they are now also
used as a technique to keep the malicious code hidden from
detection and analysis systems. This means that while in
the past ROP chains were short and simple (and therefore
did not require any dedicated tool for their analysis), we
recently started to observe very complex algorithms – such
as a complete rootkit – implemented entirely as a sequence
of ROP gadgets.

In this paper, we present a set of techniques to analyze
complex code reuse attacks. First, we identify and dis-
cuss the main challenges that complicate the reverse engi-
neer of code implemented using ROP. Second, we propose
an emulation-based framework to dissect, reconstruct, and
simplify ROP chains. Finally, we test our tool on the most
complex example available to date: a ROP rootkit contain-
ing four separate chains, two of them dynamically gener-
ated at runtime.

1. INTRODUCTION
Memory analysis and memory forensics are active re-

search fields that have rapidly evolved over the past decade
and they are now a popular, complementary approach to
support modern malware analysis and inspect potentially
compromised machines. The main focus on memory foren-
sics (from a malicious code perspective) is to find intrusion
evidences in the physical memory. Commonly, these evi-
dences involve artifacts that has been created or injected in
memory by malicious components. Volatility plugins like
psxview and malfind are good example of tools that per-
form this task. Unfortunately, the current focus on “code
injection” is unable to cope with the emerging trend of ad-
vanced threats that adopt“code reuse” techniques (such as
return oriented programming) as a mean of obfuscation, to
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perform malicious computation without injected code.
Return oriented programming (ROP) is a technique to

execute code by reusing instructions already present in a
program. Each sequence of instructions (called gadget)
is responsible to fetch the address of the next one (typi-
cally from the stack using the ret instruction), thus gluing
together many small gadgets to perform a predefined com-
putation.

The ROP paradigm is in constant evolution due to the
frequent release of new countermeasures against code reuse.
In particular, tools like EMET [37] and kBouncer [45] con-
siderably raised the bar and made simple techniques in-
effective, forcing offensive researchers to devise more ad-
vanced forms of ROP. At the same time, software and
hardware vendors introduced sandboxing mechanisms and
light forms of control flow integrity in userspace, as well
as several security enhancements in kernel-space. For ex-
ample, UDEREF [54], SMAP [29], SMEP [17], NX re-
gions, driver signing and KASLR [31] significantly hinder
the kernel exploitation phase, and even when the attacker
is able to control the instruction pointer, a considerable
effort is still required to create a functional exploit. To
cope with all these security improvements, attackers also
adopted ROP chains as part of kernel exploits. The same
trend can also be observed in other architectures. Jail-
break communities for Android and iOS are also responsi-
ble for some of the most complex public ROP chains, for
instance as part of the Comex’s iOS jailbreaks [26, 59]. As
a last step of this constant evolution, in 2014 researchers
were able to implement the first prototype of a complete
and functional persistent rootkit in ROP [58].

Meanwhile, over the last decade, hundreds of academic
papers and underground presentations focused on ROP.
On the one hand, researchers proposed a wide range of
defense mechanisms. On the other hand, they introduced
improved ROP variations as well as tools to automate the
chain creation phase. This constant arms race is still in
progress today and resulted in a considerable increase in
the complexity of ROP chains. While both the attack and
the defense sides have been widely covered, the analysis of
ROP chains has been completely overlooked and, in 2016,
there is still not a single available framework to support
their analysis.

In comparison, reverse engineering relies on a broad
range of tools that have been perfected over the years,
such as debuggers, disassemblers, and decompilers. Unfor-
tunately, all these products were designed for “EIP-based”
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programming and are of very little use to analyze stack-
based return oriented programming payloads.

This is the problem we address in this paper. Specifi-
cally, two main observations motivate our work: the lack
of public tools to analyze ROP payloads and the observa-
tion that ROP chains are rapidly growing both in size and
in complexity.

To tackle these problems, we propose ROPMEMU –
a framework for the automated analysis of ROP chains.
We assume that, using existing techniques [55, 47, 33], a
forensic investigator discovers a chain in system memory
and needs to investigate its behavior. At first glance, the
problem may seem trivial: it would be enough to dump the
memory region containing the chain, reconstruct the en-
tire code by appending the instructions contained in each
gadget, and then analyze it like any other sequence of as-
sembly instructions. However, in this paper we show that
this procedure is in fact very complex and requires a num-
ber of dedicated tools and techniques.

ROPMEMU leverages techniques from the fields of mem-
ory forensics, emulation, multi-path execution, and com-
piler transformations to analyze complex ROP chains and
recover their precise control flow graphs. Moreover, by
using a novel multi-path emulation approach, our system
is also able to reconstruct chains which are dynamically-
generated at runtime, allowing an analyst to capture the
behavior of the most complex attacks that can be encoun-
tered in the wild.

To summarize, this paper makes the following contribu-
tions:

• We propose the first memory analysis framework to
analyze, dissect, reconstruct and simplify malicious
code based on code reuse techniques.

• We discuss a number of practical challenges that
need to be addressed to reverse engineer code im-
plemented using return oriented programming. This
goes far beyond what was observed in the past in
simple exploits and what was discussed in previous
papers.

• We tested our tool with the most complex example
of this kind: a ROP rootkit containing chains with a
total of 215,913 gadgets.

2. BACKGROUND
In this section, we provide the technical background re-

quired to understand the remaining part of the paper. We
first introduce the return oriented programming paradigm
and we summarize the available analysis techniques. We
then provide an overview of the current trends and evolu-
tion of rootkit technologies as well as the recently-proposed
concept of an ROP rootkit. Finally, we introduce in more
detail the ROP rootkit proposed by Vogl et al. [58], that we
will use as a case study throughout the rest of the paper.

2.1 Return Oriented Programming
Security countermeasures introduced in the last decade

in modern operating systems forced attackers to adapt and
find new ways to exploit programs. To overcome hard-
ware defenses – such as the no-execute bit (NX) in PAE

and IA-32e modes on Intel processors, software protec-
tions trying to emulate the NX bit behavior [53, 56, 57],
and code signing [2, 3, 1] techniques – offensive researchers
proposed several forms of code reuse attacks [39, 51, 50].
Over the years, code reuse attacks have been ported to
different architectures [34, 12] and have evolved in a mul-
titude of different techniques, such as return oriented pro-
gramming without returns [13], jump return oriented pro-
gramming [10], blind ROP [9], and sigreturn oriented pro-
gramming [11].

ROP is now one of the most prevalent and widespread
techniques adopted in the majority of the exploits observed
in the wild. It is a particular instance of code reuse attack
in which the attacker uses instructions already present in
memory and chains them together to perform arbitrary
computation. A single block of assembly instructions ter-
minated by a ret (in its most traditional form) is called a
gadget. A sequence of gadgets is then connected to form
a ROP chain by putting their addresses on the stack and
leveraging the ret instruction to return from one gadget
to the next one. Please refer to the original formulation
from Shacham [51] for a more detailed presentation of the
internal details of return oriented programming.

ROP Analysis – In the past, ROP payloads were mainly
used by exploits to disable the protection enforced by the
NX bit and then execute a normal shellcode. In these
cases, the ROP chain is generally very short, as its only
goal is to invoke functions (e.g., VirtualProtect or mprotect)
to change the page permissions of the memory containing
the shellcode. As a consequence, the vast majority of ROP
chains were in fact composed of a straight sequence of in-
structions without any branch or complex control flow.

There exists a countless number of offensive tools to sim-
plify the creation of ROP chains – ranging from simple
techniques [16, 30, 49, 7] to disassemble binaries, find gad-
gets and group them together – to more advanced tools [44,
40, 6] that use constraint solvers, intermediate languages
and even emulators [42] to automate the chain creation
as much as possible. Unfortunately, because of the simple
form of the existing chains, to date no existing tool has
been proposed to analyze ROP payloads.

More recently, researchers and malware writers discov-
ered that return oriented programming is not only a useful
technique to run exploits, but it also provides a very effec-
tive way to hide the malicious code. In fact, since ROP al-
lows the implementation of a new functionality by reusing
existing sequences of instructions, it makes the malicious
code much more complex to identify, isolate, and analyze.
As part of this emerging phenomenon, chains have started
to contain complex application logic, therefore becoming
much longer and much more complex. As a first exam-
ple, malware samples have adopted ROP payloads to im-
plement a dropper/downloader that fetches and runs the
second stage [24]. Even more worrying, in 2014 Vogl et
al. [58] presented the first complete example of a rootkit
implemented in ROP.

In this paper we show that the complexity of these chain
is well beyond what can be manually investigated by a
human analyst. Therefore, we believe that this opens a
new era for malicious code execution, and calls for a new
set of tools and techniques to perform its analysis.



2.2 Rootkits
Rootkits are malicious software designed to gain per-

sistent, stealth access to a compromised machine. In the
last few years, rootkit technology has been rapidly evolv-
ing and increasing in sophistication. In order to conceal
their presence and information, modern rootkits typically
run at ring 0. This places the attacker at the same level
as the OS kernel, so that the rootkit can undermine the
security of the operating system and, potentially, remain
undetectable for a long time. Several defensive mecha-
nisms have been proposed to address this issue, but, un-
fortunately, ring 0 rootkits are still a severe threat. Of-
fensive researchers have also investigated further possible
ways to subvert the operating system security model mov-
ing deeper in the execution stack: prototypes exist for
virtualization rootkits (ring -1) [32, 27, 19], SMM rootkits
(ring -2) [20] and Intel ME rootkits (ring -3) [46]. The idea
is to place the rootkit always a level lower than the defen-
sive monitor in order to stay hidden on the compromised
system.

Fortunately, all rootkits share a common weakness: they
need to load their code into the running system. Modern
countermeasures, such as secure boot and code signing,
significantly hinder this process and make traditional at-
tacking techniques no more effective against recent sys-
tems. To bypass these protection mechanisms, malware
authors can use the same code reuse techniques adopted
by exploit writers. A completely ROP rootkit was first
theorized by Hund et al [23] in 2009. The authors pro-
posed a proof of concept with several limitations. First
of all, the malware had to repeatedly exploit a kernel vul-
nerability to execute arbitrary ROP payloads (e.g., to hide
system processes). Second, this initial rootkit was not per-
sistent – making it of little use in practice. In 2014, Vogl
et al. [58] succeeded in making a ROP rootkit persistent
and presented an open-source POC of their creation. In
particular, the authors have shown how it is possible to
perform hooking without injecting a single line of code in
the kernel. In this case, the malware has to exploit the
vulnerability only once to escalate privileges and trigger
the persistent ROP payload.

Chuck – Chuck is the name of the persistent ROP rootkit
proposed by Vogl et al [58], the only public example of this
kind to date.

It includes four separate ROP chains: one persistent in
memory and the other three dynamically generated at run-
time. The first chain is the initialization chain and it is
executed only once, the first time the kernel vulnerability
is exploited (in this particular case CVE-2013-2094 [28]).
This chain sets the hooks in the system, sets up the switch-
ing mechanism based on the sysenter instruction using
the MSR registers 0x175 (IA32_SYSENTER_ESP) and 0x176
(IA32_SYSENTER_EIP), initializes the global state of the
rootkit, prepares a memory region to deal with multiple
invocations, and finally generates the second chain – the
so-called copy chain. The copy chain is the only persis-
tent ROP chain, and it is invoked every time a hook is
triggered. It is also important to note that rootkit itself
guarantees that the first chain is always and entirely stored
in memory, even if its size is large [58]. First, it saves all
the general purpose registers in the global state. Second,

it creates and copies in memory a dynamic chain for each
invocation of the hook. This third chain is called the dis-
patcher chain. The dispatcher chain is necessary to deal
with hook invocations by multiple threads. The goal of
this chain is to create a final, ad-hoc payload chain, which
contains the core functionality of the rootkit and, at the
end of its execution, it restores the original registers to
resume the normal kernel execution.

The complexity of these four chains is considerably high.
First of all, the size of a single chain is huge compared to
the chains used by ordinary exploits. For instance the copy
chain contains over 180k gadgets. Second, these chains
have a non-linear control flow logic – making their anal-
ysis very complex. Third, the presence of dynamically
generated chains make the analysis of this rootkit similar
to a multi-stage packed malware, limiting the applicability
of static analysis. Finally, the four chains compose a real
kernel rootkit and thus the analyst has to deal with kernel
issues such as privileged instructions and interrupts.

3. ROP ANALYSIS
To date, the complexity of analyzing ROP code has been

completely underestimated. Few studies have focused on
this problem, mainly taking simplistic approaches applied
only to small examples. The first issue that an analyst may
encounter when dealing with code reuse attacks is the fact
that they are hard to locate in the first place. Since no
code is injected in a ROP-based attack, finding the entry
point of the chain can be difficult – especially when the
input is the entire system memory. Three previous studies
have proposed solutions for this problem [55, 47, 33] and
therefore we will build on top of them for the rest of our
paper.

However, locating the entry point is only the tip of the
iceberg. The real analysis (i.e., what needs to be done
after a chain has been located) is much more complex,
and present a number of novel challenges:

[C1] Verbosity – the majority of ROP gadgets contain
spurious instructions. For example, a gadget intended to
increment eax may also pop a value from the stack before
hitting the ret instruction that triggers the next gadget
in the chain. Moreover, the code of a ROP chain con-
tains a large percentage of return or other indirect control
flow instructions, whose only goal is to connect the gad-
gets together. These are only few examples of why ROP
code is very verbose and contains a large fraction of dead
code that makes it harder for analysts to understand it.
However, this is probably the simplest problem to solve as
many transformations proposed in the compiler literature
already exist to simplify assembly code.

[C2] Stack-Based Instruction Chaining – the most
obvious difference between a ROP chain and a normal pro-
gram is that in a chain the instructions are not consecutive
in memory, but they are instead grouped in small gadgets
connected together by indirect control flow instructions.
So, what in a normal program could be a single block of
50 instructions, in a ROP chain can be split into more than
40 blocks chained by ret instructions.

At a first glance, this problem may seem trivial to solve.
Since the addresses of each gadget in the chain are saved in



memory, one may erroneously think that it would be easy
to automatically retrieve them, collect the corresponding
pieces of code, and replace the entire chain with a sin-
gle sequence of instructions. However, the stack-based in-
struction chaining can introduce subtle side effects that
are hard to identify with a simple static analysis approach.
For instance, since the sequence of gadgets is saved on the
stack, but the code of each gadget also interacts with the
stack (to retrieve parameters or just because of spurious
instructions), in order to correctly identify the address of
each gadget it is necessary to emulate every single instruc-
tion in the code.

[C3] Lack of Immediate Values – another difference
between normal code and ROP chains is the fact that
chains are typically constructed with“generic”gadgets (such
as “store an arbitrary value in the rax register”) that oper-
ate on parameters which are also stored on the stack. As
a result, the vast majority of immediate values that are
assigned to registers are interleaved on the stack with the
gadget addresses. Again, code emulation is required to lo-
cate them and restore them back to their original position
in the code.

[C4] Conditional Branches – in a ROP chain, a branch
condition implies a change in the stack pointer instead
of a more traditional change in the instruction pointer.
This means that a simple conditional jump may be en-
coded with dozens of different instructions spanning mul-
tiple gadgets (e.g., to set the flag register according to the
required condition, test its value, and conditionally incre-
ment the esp register). To translate the chain into more
readable code, it is therefore necessary to identify these
patterns based on their semantics and replace them with
single branch instructions.

[C5] Return to Functions – function calls are typically
implemented in ROP as simple return to the functions
entry point. However, since normal gadgets are also often
extracted from code located inside libraries, it is hard to
distinguish a function call from another gadget. As it is the
case for statically linked binaries, the lack of information
on external library calls can make the reverse engineering
process much more tedious and complicated.

[C6] Dynamically Generated Chains – the instruc-
tions of normal programs are typically located in a read-
only section of the executable. Dynamically modified code
is common in malware (e.g., as a result of packing) and, in
fact, this severely limits the ability to perform static anal-
ysis on malicious code and considerably slows down the
reverse engineering process. On the contrary, ROP chains
are located on the stack, and it is therefore simple to use
gadgets to prepare the execution of other gadgets in the
future. This dynamicity means that it is not necessary for
the entire chain to reside in memory at the same time –
but it is instead common to build chains (or part thereof)
on the fly.

[C7] Stop Condition – in this paper we assume that the
analyst is able to locate the beginning of a ROP chain in
memory. However, since an emulator is needed to analyze
its content, it is important to also have a termination con-
dition to decide when all the gadgets have been extracted

and the emulation process can stop. The fact that com-
plex ROP chains can invoke functions (which in turn may
invoke other functions) interleaved with normal gadgets,
and the fact that a chain can dynamically generate an-
other chain in a different part of the memory, make this
problem very hard to solve in the general case. For ex-
ample, when does a ROP rootkit (that reuses instructions
from the existing code in the kernel) terminate and the
normal kernel tasks resume?

3.1 Implications
The previous seven challenges have several important

implications for the analysis of ROP chains and previous
works only proposed partial solutions. For instance, Lu
et al. [36] and Yadegari et al. [60] identified a number of
code transformations to handle [C1]. Moreover, Stancill et
al. [55] and Lu et al. [36] used simple heuristics to follow the
value of the stack pointer, thus partially addressing [C2]
and [C3]. However, previous heuristics only applied to
ret-based ROP chains, and were unable to follow indirect
calls and jump instructions. Sadly, [C4-7] have never been
mentioned before, probably because only in the past two
years ROP chains have become complex enough to raise
these points.

As it is better explained in Section 4, to fully address
[C2],[C3], and [C6] it is necessary to emulate all the in-
structions in the chains and keep a shadow copy of the
memory content. Moreover, a solution based on multi-path
emulation is required to explore each path in the chain and
retrieve its entire code. In turn, this approach requires the
system to implement heuristics to detect the presence of
branch instructions (C4). Finally, while recognizing func-
tions (C5) can be addressed by using symbols information
extracted from libraries and kernel functions, these func-
tions often invoke system calls and this is a major obstacle
for an emulator because their return values cannot be pre-
dicted with static analysis. Functions are not the only
issue when using an emulator: precise heuristics for the
stopping condition (C7) are also required and (as better
explained in the next section) hard to implement.

This short discussion emphasizes how ROP analysis is
in fact a multi-faced problem whose solution requires a
combination of sophisticated techniques.

3.2 Adversarial Model
In this paper we assume that a motivated and well funded

attacker was able to compromise a machine and success-
fully install malicious code in the form of a ROP chain.
This can effectively bypass all the operating systems pro-
tections. For example, in the particular case of a ROP
kernel rootkit, these protections include the kernel code
integrity (e.g., PatchGuard), the driver signature enforce-
ment, and the NX regions both at user-land and kernel-
land (e.g., NX pools in Windows kernel from Windows 8).

We also assume a fully protected machine equipped with
an Intel Ivy Bridge/Haswell CPU with the Supervisor Mode
Execution Prevention (SMEP) and the Supervisor Mode
Access Prevention (SMAP), and running an operating sys-
tem (either Windows or Linux) that implements address
space layout randomization (ASLR) in userspace, kernel
memory, and for all the modules.

The infected machine can be either a bare-metal com-



puter or a guest virtual machine. In the second case, the
memory forensic analysis may require an introspection sys-
tem as the one provided by [22]. We also assume that the
attacker can try to minimize the footprint of the malicious
code by generating new gadgets at runtime and by over-
writing them when they are not anymore needed.

Finally, we assume that the analyst was able to acquire a
physical memory dump (e.g., by using pmem, lime, fmem,
or by performing a DMA attack) after the malicious code
became resident in memory. The technique proposed in
this paper does not make any assumption on the ROP
payload. The gadget and the chain have no constraint on
the length as well as on the type of instructions. The case
in which the chain is hostile and implement anti-analysis
tricks is discussed in Section 6.

4. SYSTEM DESIGN
The ROPMEMU framework adopts a set of different

techniques to analyze ROP chains and reconstruct their
equivalent code in a form that can be analyzed by tradi-
tional reverse engineering tools. In particular, it is based
on memory forensics (as its input is a physical memory
dump), code emulation (to faithfully rebuild the original
ROP chain), multi-path execution (to extract the ROP
chain payload), CFG recovery (to rebuild the original con-
trol flow), and a number of compiler transformations (to
simplify the final instructions of the ROP chain).

The framework is divided in different components that
interact as shown in Figure 1 in five main analysis phases:

• Multipath Emulation - This step emulates the as-
sembly instructions that compose the ROP chain.
This is the only way to rebuild the exact instance
of the running chain at the time of the dump. All
the possible branches are explored and an indepen-
dent trace (annotated with the values of registers and
memory) is generated for each execution path (C2
and C6). The emulator is also designed to recognize
a number of returns-to-library functions, skip over
their body, and simulate their execution by generat-
ing dummy data and return values (C4).

• Trace Splitting - In this phase the system analyzes
all the traces generated by the emulator, removes the
repetitions, and extracts the unique blocks of code.

• Unchaining - This phase applies a number of as-
sembly transformations to simplify each ROP trace
by removing the connections between gadgets and
merging the content of consecutive gadgets in a single
basic block. This step is also responsible to remove
immediate values from the stack and assign them to
the corresponding registers (C2 and C3).

• CFG recovery - This pass merges all the code blocks
in a single program, recovering the original control
flow graph of the ROP chain. This phase comprises
two steps. In the first one, the traces are merged in a
single graph-based representation. The second step
translates the graph into a real x86 program by iden-
tifying the instructions associated to the branch con-
ditions and by replacing them with more traditional
EIP-based conditional jumps (C4). At the end of

this phase, the program is saved in an ELF file, to
allow traditional reverse engineering tools (e.g., IDA
Pro) to operate on it.

• Binary optimization - In the final step, we apply
known compiler transformations to further simplify
the assembly code in the ELF file. For instance, this
phase removes dead instructions in the gadgets and
generates a clean and optimized version of the pay-
load (C1).

In the rest of the section, we introduce each phase in
detail and we describe how each of them have been imple-
mented in our system.

4.1 Chain Discovery
Finding ROP chains in a physical memory dump is not

a trivial task. However, three solutions have already been
proposed in the literature [55, 47, 33] for this problem.
Therefore, for the sake of simplicity, in this paper we as-
sume that the analyst is provided with an image of the
memory and an entry point of the first ROP chain.

Our case study was complicated by the fact that only
one of the chains is persistent (the Copy Chain), while
the other ones are generated on the fly depending on the
system’s state and therefore their content is only available
in memory for few milliseconds. As a consequence, it is
unrealistic to require an analyst to collect a snapshot of
the memory containing all ROP chains – and therefore
their content needs to be reconstructed by our system.
The starting point of these dynamically generated chains
is automatically derived from the emulation of the previous
chain.

4.2 Emulation
The emulation phase is the core of our analysis frame-

work. Its role is to “follow” the execution of each gadget to
keep an updated position of the stack pointer and of the
content of the memory.

A Turing complete ROP chain can be obtained by re-
using a limited number of gadgets [51]. Therefore, also
very complex ROP programs often include a very small
number of unique assembly instructions. For this reason,
we were able to implement a small custom emulator that
supports the required x86-32 and x86-64 instructions and
updates the state of the CPU (registers and flags) and of
the memory after each instruction. In order to supporting
the entire instruction set, we are now adapting our plat-
form to use the recently released Unicorn [41] emulator.
Unicorn provides the ideal solution for this task, by ex-
posing Qemu’s CPU emulator component and by proving
a set of flexible bindings.

For a still more comprehensive approach, S2E [15] can be
used to provide a full system emulation on top of Qemu [8].
However, this would considerably complicate the setup and
deployment required by the system. Therefore, for our
prototype we opted for a custom solution that gave us
more flexibility and a smaller footprint.

At the beginning of the emulation phase, the initial state
of the virtual CPU is set to zero by resetting the content
of all registers except for the instruction pointer and the
stack pointer (whose initial values need to be provided as
input for our analysis). The emulator is then implemented



Figure 1: ROPMEMU Framework Architecture

as a Volatility [4] plugin to simplify the interaction with
the memory dump by leveraging the Volatility APIs.

Execution Modes – At the end of the emulation a JSON
trace is generated containing the CPU state for each as-
sembly instruction. Depending on the complexity of the
ROP chain, the size and the time required to generated
this trace can be considerable.

For these reasons, we designed our emulator to support
three execution modes: full, incremental and replay. In
full emulation mode, the emulator executes the chain from
scratch, starting from the provided entry point. The re-
play mode is completely based on an existing JSON trace
and therefore it does not require any memory dump. This
makes the rest of the analysis repeatable, and allows re-
searchers to share traces without the need to transfer the
content of the system memory (which may contain sensi-
tive information and may be difficult to share for privacy
reasons). Finally, the incremental mode is a combination
of the previous two: it uses an input JSON trace (pre-
viously generated during a full emulation) and, once the
last gadget in the trace is reached, it switches to full mode.
This mode makes incremental analysis possible – a consid-
erable advantage when dealing with very complex ROP
chains.

Shadow Memory – The emulator initially reads the con-
tent of the memory from the memory dump. However, all
write operations are redirected to a shadow memory area
kept internally by the emulator. Subsequent read opera-
tions fetch data from the shadow memory (if the address
has been previously written) or from the original memory
image otherwise.

Chain Boundary – Although the analyst knows the start-
ing address of the first ROP chain, it is unclear where it
ends. This problem is very important because we do not
want to keep emulating instructions beyond the end of a
chain, thus polluting the analysis with unrelated code.

Our framework solves the problem by using a number
of heuristics. To start with, the emulator detects large
increments or decrements of the stack pointer. Typically,
during the execution of a single ROP chain, these deltas
are small. Based on this locality principle, it is possible to
find the exact moment in which the chain under analysis is

terminated. This simple rule needed to be refined to take
into account long jumps that may occur inside a single,
very long chain (see, for instance, the case described in
Section 5). By including heuristics based on the length of
a gadget, and excluding the detected function invocations,
our prototype was able to correctly stop the emulation
process at the last gadget in all our experiments. In case
our heuristics fail, the analyst only needs to restart the
emulator in incremental mode to continue the analysis of
the chain from the point in which it was suspended.

Once the termination condition is triggered, the emula-
tor stops and both the content of the shadow memory and
the execution trace are saved to disk and are inspected
to detect the presence of new ROP chains. If new stages
are found, the emulator is re-started to analyze the next
chain, and the process is repeated multiple times until all
dynamically generated chains have been discovered and
analyzed.

Syscalls and APIs – Complex ROP chains can invoke
several system calls and library APIs, whose emulation is
very complex (impossible in many cases) and goes beyond
the scope of this paper. Our emulator recognizes when
the execution is transferred to a system or API function,
it saves its name in the trace, and then steps over its body
to resume the emulation from the next gadget in the ROP
chain.

This approach requires two types of information. First,
the emulator needs to know the location and name of each
API functions and system call routines. Luckily, this in-
formation can be easily retrieved by Volatility. Second,
the emulator needs to know a valid output for each func-
tion. For instance, if the ROP chain allocates memory by
calling kmalloc, the emulator needs to assign a valid (and
not used) memory address to the function return value.
Section 5 explains how we handled, on a case-by-case ba-
sis, more complex examples that require complex buffers
or data structures.

Multi-Path Exploration – In the presence of long ROP
chains with a complex control flow, a simple approach
based on emulation is not enough to retrieve the entire
ROP payload. The coverage is limited and takes into ac-
count only the executed branches – which often depend on
the dummy return values generated by the emulator when



the chain invokes system functions. This point is crucial
for the analysis, as researchers need the entire chain to un-
derstand all the features and components of the ROP code.
A simple emulation approach would likely miss important
parts and thus some core functionalities of the malicious
code may remain hidden.

We address this problem by introducing a multi-path
emulation. Although this approach has its roots in the
well-known multi-path execution work proposed by Moser
et al. [38], the original algorithm has been adapted to deal
with ROP gadgets. In particular, our emulator is designed
to recognize when the stack pointer is conditionally mod-
ified based on the content of the flag register. This pat-
tern, however it is implemented, corresponds to a branch
in the ROP chain. At the end of the emulation process,
the JSON trace is analyzed to list all the branch points
together with the value of the flags that was used in each
of them by the emulator. The emulator is then re-started,
this time providing an additional command-line parame-
ter that specifies to complement the flag register at the
required branch point, so that the execution can follow a
different path. The exploration is terminated when all the
branches have been explored. At the end, the analyst ob-
tains several JSON traces containing different parts of the
control flow graph.

However, in presence of loops in the ROP chain, the em-
ulator could get trapped inside an endless execution path.
The solution in this case is to keep track of the number
of occurrences of the stack pointer during the execution
of branch-related instructions. If this number is above a
certain threshold (set to 10 in our experiments) the emu-
lator automatically flips the flag bits to force the loop to
end and explore the rest of the control flow graph. Similar
heuristics are commonly applied to explore the behavior
of malicious binaries.

4.3 Chain Splitting
The multi-path emulator generates a separate JSON

trace file for each path in the ROP chain. The next step
of our approach is in charge of splitting those traces, and
removing duplicates parts that are in common between dif-
ferent traces. This part is divided in two steps. In the first,
every trace is cut at each branch point, and a new block
is generated and saved in a separate JSON trace. During
this operation the framework also records additional in-
formation describing the relationships among the different
blocks.

Since conditional branch instructions are based on the
value of the flag register, our system uses tests on the
flags content or pushf operations as indicators of a branch
point. In particular, Chuck always pushes the flags on
the stack to later retrieve them and isolate the ZF flag,
whose values indicates which side of the branch needs to be
taken. In the second pass, the chain splitter compares the
individual blocks to detect overlapping footer instructions
(i.e., gadgets in common at the end of different blocks) and
isolate them in separate files.

The output of this phase is again a set of JSON trace
file, this time not anymore associated to each individual
path, but instead associated to each “basic block” in the
chain. The chain splitter is implemented as a standalone
Python script.

4.4 Unchaining Phase
This phase transforms each JSON file into a sequence

of instructions in the target architecture. This is obtained
by applying a number of simple transformations. First,
all the ret, call, and unconditional jmp instructions are
removed from the trace. Then, mov instructions are sim-
plified by computing their operands. In fact, due to the
fact that immediate values are stored on the stack, ROP
chains often contain expressions involving several regis-
ters (e.g., mov rax, [rsp+0x30]) that at this stage are
replaced with their actual value. Similarly, we transform
pop into mov instructions, by fetching the required values
from the corresponding location on the stack.

4.5 Control Flow Recovery
The input of the control flow recovery is the set of x86

binary blobs generated by the unchaining phase, plus some
additional information specifying the way these blocks were
connected in the traces generated by the emulator. The
goal of this phase is to replace all the code that belongs to
the gadgets used to implement ROP branches with more
traditional and more compact conditional jumps.

This step is not trivial because it is necessary to switch
from the stack pointer domain to the instruction pointer
one. At every branch point, we need to recreate from
scratch the instruction pointer logic required to properly
connect the two targets of a branch condition. In our case
study, a simple conditional jump is implemented by 19
gadgets and 41 instructions. Our framework is able to rec-
ognize the condition and generate an equivalent assembly
code in the instruction pointer domain. The 19 gadgets
are translated into two assembly instructions: a condi-
tional jump (in our case represented by either jz or jnz)
and an unconditional jump (jmp).

The second task of the CFG recovery component is to
detect and re-roll loops. ROP chains can contain both
return oriented loops and unrolled loops that are program-
matically generated when the chain is constructed. In the
first case, the ROP instructions are used to conditionally
repeat the same block of stack pointers, the same way a
normal loop repeats the same sequence of EIP values. Un-
rolled loops repeat instead the same hard-coded sequence
of gadgets over and over (typically as a result of a for

loop in the C code that generated the ROP code), for a
pre-determined number of times.

For instance, Chuck uses unrolled loops to copy the dy-
namically generated chains to their final memory location.
In fact, in the original source code of the rootkit (writ-
ten in C), this is implemented as a short FOR loop that
generates the appropriate gadgets. In the rootkit itself, it
becomes a long sequence containing five gadgets repeated
thousands of times. A simplified version of the gadgets is
presented in Figure 2.

The value of the rdx register is taken from the stack, and
then copied to a memory location pointed by the register
rax. Finally rax is incremented by eight (the value of rdi
taken from the stack).

Our tool is able to automatically identify these recurrent
patterns and replace the entire sequence of instructions
with a more compact snippet of assembly code represent-
ing a real loop with the same semantics. The resulting code



pop rdx

mov [rax], rdx

pop rdi

add rdi, rax

mov rax, rdi

pop rdx

mov [rax], rdx

pop rdi

add rdi, rax

mov rax, rdi

...

Figure 2: Unrolled loop in the dispatcher Chain

is then wrapped withing a valid function prologue and epi-
logue and then embedded in a self-contained ELF file. It
is important to note that it is not guaranteed that the file
can actually be executed. If the original chain was part
of a userspace shellcode, the ELF would probably contain
all the instructions required to run the code. However, if
the ROP chain is part of a kernel rootkit (as it is in our
example), its code was initially designed to run in a very
specific context in the kernel memory and therefore cannot
be executed in a user-space program. However, our goal
is just to generate a file that can be opened and analyzed
by traditional reverse engineering tools such as IDA Pro.

4.6 Binary Optimization
The final step of our analysis consists of applying stan-

dard compiler transformations to optimize and simplify
the generated code. For examples, dead code removal,
simplifications of redundant mathematical operations, and
global value numbering can greatly simplify the binary
and makes it easier to understand for an analyst. How-
ever, these transformations have already been discussed in
previous works [36, 60] and they are not the focus of our
paper.

5. EVALUATION
In this section we describe the experiments we conducted

to evaluate ROPMEMU on the most complex ROP-based
payload publicly available. All the experiments have been
performed on an Ubuntu 14.04 x86-64 running Python
2.7 and Volatility 2.4. The virtual machine containing the
rootkit has been provided kindly by the authors of Chuck
and runs Ubuntu Server 13.04 64-bit with UEFI BIOS.

5.1 Chains Extraction
In the first experiment we tested the ability of the mul-

tipath emulator of ropmemu to correctly extract the per-
sistent chain (the copy chain), and the two dynamically
generated chains (the dispatcher chain and the payload
chain). The last two are volatile and they are only created
in memory when the right conditions are triggered. The
results are summarized in Table 1.

ROPMEMU emulator was able to automatically retrieve
the entire code of the three chains. The copy chain is the

longest with 414,275 instructions, but it is composed of
only a single basic block. The lack of a control flow logic
makes this chain similar to a classic ROP shellcode, with
the only difference of being composed of over 180K gad-
gets. This is a consequence of its main task: the creation
and the copy in memory of the first dynamic component
(dispatcher chain).

On the contrary, the dispatcher chain and payload chain
have a lower number of gadgets but they have a more
complex control flow graph. In particular, the dispatcher
chain contains three branches and seven blocks of code. To
recover the entire code, the emulator generated seven dis-
tinct JSON traces. The payload chain comprises instead 34
unique blocks and 26 branch points. This means the con-
trol flow graph has a more complex logic. Moreover, this
chain invokes nine unique kernel functions (find_get_pid,
kstrtou16, kfree, __memcpy, printk, strncmp, strrchr,
sys_getdents, and sys_read – the last two hooked by the
rootkit) for a total of 17 function calls over the different
execution paths.

This experiment proves that ropemu can explore and
dump complex ROP chains, which would be impossible to
analyze manually. We believe these chains show the limits
of the current malware analysis to cope with return ori-
ented programming payloads and the effectiveness of the
proposed framework.

5.2 Transformations
In this experiment we show the effect of the other phases

of our analysis on the extracted ROP chains. In particular,
since it is impossible to show the entire code, we present
the effect of the transformations on the payload size. The
results are summarized on table 2. As shown in the third
column, the unchain pass reduces considerably the ROP
chain size (on average 39%). The CFG recovery pass filters
out the instructions implementing the conditional state-
ments, translates the chain from the stack pointer domain
to the instruction pointer one, and finally applies the loop
compression step. These transformations reduce the copy
chain to only 75 instructions (starting from over 414K).
The payload chain is less affected by these transformations
because it contained ROP loops instead of unrolled loop.

5.3 CFG Recovery
In the final experiment, we tested the ROPMEMU ca-

pability to retrieve and refine the control flow graph of
a ROP chain as explained in section 4. Figure 3 and 4
illustrate the first phase on the dispatcher chain. In par-
ticular, Figure 3 represents the first version of the CFG,
without any transformation. On Figure 4 we can observe
the effects of the refinement steps. In these two figures ev-
ery node represents a long stream of assembly instructions
while the edges show the branch conditions.

The second step works on the binaries blobs and gener-
ates an ELF file. This ELF file connects all the blocks by
leveraging the metadata information as explained in sec-
tion 4 and the result can be inspected by ordinary reverse
engineering tools. To test this functionality we opened the
resulting file with IDA Pro. In Figure 5 we can observe
the ELF representing the copy chain completely converted
into the classic “EIP-based” programming paradigm. The
graph is simple, there are no branches and the core func-



Chain Instructions Gadgets Blocks Branches Functions Calls

Copy 414,275 184,126 1 - - -
Dispatcher 63,515 28,874 7 3 1 5
Payload 6320 2913 34 26 9 17

Table 1: Statistics on the emulated ROP chains in terms of number of instructions, gadgets, basic blocks,
branches, unique functions, and total number of invoked functions.

Chain Initial State Unchain Phase CFG Recovery Phase

Copy 414,275 276,178 75
Dispatcher 63,515 40,499 16,332
Payload 6320 3331 2677

Table 2: Number of instructions in each chain after each analysis phase

Figure 3: Dispatcher
- Raw CFG Figure 4: Dispatcher

- Final CFG

tionalities are represented by the main loop highlighted
in the picture. Figure 6 illustrates instead the dispatcher
chain view on IDA Pro (for the sake of clarity every node
is collapsed to generate a smaller picture). The graph is
similar to Figure 4, with just few additional nodes due to
how the basic blocks are connected together. As expected,
the shape of the graph is the same.

The control flow graph of the payload chain comprises 34
blocks and is reported in Appendix. Overall, the graph has
two main blocks: the sys_read block and sys_getdents

one. In addition, the graph shows also the exit points (Q
and C) and the loops (easy to identify from the backward
edges). Even if the control flow graph contains few addi-
tional edges (due to the spurious optimizations introduced
by the loop simplification), the information depicted in
Figure ?? provides a quick but detailed overview about
the behavior of the payload.

5.4 Results Assessment
An assessment system is fundamental to verify the re-

sults of the experiments. However, since it is not possible
to run the final ELF to compare its behavior with the orig-
inal rootkit, we decided to develop a number of individual
verification tools.

Figure 5: Copy
- IDA Pro

Figure 6: Dispatcher - IDA Pro

First of all, we attached a debugger to the KVM virtual
machine running the rootkit. For this task, we used GDB,
extended with a set of Python plugins to extract infor-
mation about the running rootkit and compare them with
the results of our framework. The assessment framework
is working on the live virtual machine while ROPMEMU is
working on a memory dump. The GDB plugins collect the
state of the guest VM (memory and CPU) and the trace of
all the executed instructions. These information are then
compared with the JSON traces generated by ROPMEMU
to verify their accuracy.

We relied on this testing setup during development (to
detect and patch bugs in our code) and at the end of the
experiments to verify that both the emulation of individ-
ual instructions and the entire lists of instructions in each
ROP chain was correctly reconstructed by ROPMEMU.
It is important to note that the assessment framework is
used only for debugging and cannot replace ROPMEMU
as an analysis system. In fact, in the general case, the an-
alyst does not have access to a virtual machine to emulate
the compromised system, but only to its physical memory
dump.

Using this setup we verified that all the results presented
in this paper match those found using the live GDB anal-
ysis. Finally, we manually verified the control flow graph
of the extracted chains by inspecting the source code of
the ROP rootkit.

5.5 Performance



The performance of our system largely depends on the
emulation phase. The emulator is built on top of Volatility
and the time required to perform the multipath emulation
is linear in the number of instructions and the number of
paths to emulate. Our framework was able to emulate the
entire copy chain in 52 minutes, while the dispatcher chain
required 32 minutes to generate the three traces containing
all the possible paths.

The performance of the unchain component depends in-
stead on the size of the blocks to analyze. In our experi-
ments, it ranged from the worst case of 61 minutes for copy
chain (where everything is in a single huge basic block),
to 3 minutes per block for the dispatcher chain (that is
instead composed of smaller blocks). The payload chain
traces have been generated on average in eight minutes
while the unchain phase parsed each block in one minute.

Overall, the entire analysis of the rootkit from the em-
ulation to the final ELF binary took four hours. All mea-
surements have been recorded on a 16-Core Intel E5-2630
(2.3GHz) with 24GB RAM.

6. LIMITATIONS
As any other binary analysis tool, ROPMEMU has a

number of intrinsic limitations. In particular, the proposed
solutions combine two techniques: memory forensics and
emulation. The first requires a physical memory dump
acquired after the rootkit has been loaded in memory –
and it is therefore prone to anti-acquisition techniques.

The ROP analysis relies instead on the emulator im-
plementation. The main limitation of an emulation-based
solutions is the accuracy of the emulator itself. In particu-
lar, this approach is prone to anti-emulation techniques
specifically targeting instructions side effects. As a re-
sult, the current ROPMEMU prototype can be evaded
by advanced ROP chains which implement ad-hoc anti-
emulation techniques. However, 1) these techniques have
never been observed so far in any ROP chain, and 2) sim-
ilar limitations affect every existing binary analysis tool.
For instance, IDA Pro can be easily evaded by malware im-
plementing anti-disassembly tricks and malware sandboxes
can be evaded by anti-emulation code. A path explosion
problem is also common in approaches based on multi-path
exploration or symbolic execution. However, these limita-
tions do not make these tools useless – they just force the
analyst to be more careful and manually disable evasion
techniques before proceeding with the analysis. The same
considerations apply to ROPMEMU.

Because of the intrinsic limitations of using an emula-
tor on dynamically generated code, a perfect ROP reverse
engineering system cannot exist. However, the solution
presented in this paper is the first solution to allow the
analysis of complex ROP code, and was designed and im-
plemented to cope with the most sophisticated examples
of this kind available today.

Finally, our current implementation is a research proto-
type and therefore lacks the robustness and completeness
required to operate on arbitrary inputs.

7. RELATED WORK
Return Oriented Programming has been extensively stud-

ied in the scientific literature from several perspectives.
However, very few works have presented novel techniques
dedicated to the analysis of ROP chains and, due to space
limitations, in this section we will focus only on this re-
search.

Return oriented programming has been formalized by
Shacham et al. [51], but the core ideas were already known
in the underground community for years [39, 50]. The mas-
sive ROP adoption observed over the years has its roots
in the protections introduced by the operating systems
(namely NX ). These protections significantly hindered the
exploitation process and forced offensive researchers to de-
vise code reuse attacks. ROP is without doubt the most
common instance of these attacks and is widely adopted in
modern exploits and, recently also in malware. The secu-
rity community proposed many techniques to detect, pre-
vent, or stop ROP, each with its own limitations and short-
comings. For example, threshold based defenses [45, 14]
have been bypassed by using unexpected long sequences
of gadgets [21]. Similarly, also control flow integrity (CFI)
approaches have shown their limitations to combat ROP
as described by Davi et al. [18]. Along the same line, ROP
protections proposed by the industry – like the ones in
the Microsoft’s Enhanced Mitigation Experience Toolkit
(EMET) [37] – have been bypassed by motivated researchers [5,
25, 48]. The most robust defense mechanisms are proba-
bly the one that apply at compile-time (e.g., [43]), but
unfortunately it is hard to measure their effectiveness be-
cause the tools proposed so far are not available and, to
the best of our knowledge, there are no public bypass for
these techniques.

Moreover, offensive researchers have also proposed new
code reuse attacks. Specifically, they showed it is possi-
ble to have ROP chains without any return [13]. More-
over, they proved the feasibility of jump oriented pro-
gramming (JOP) [10] and sigreturn oriented programming
(SROP) [11]. Finally, JIT-ROP [52] showed that it is pos-
sible to craft a ROP payload when fine-grained ASLR is in
place. Although there are so many variations of code reuse
attacks, ROP is still the most popular one. For this rea-
son, in this paper, we created a comprehensive framework
to cope with ROP chains.

In this direction, the first study has been conducted
by Lu et al. [36]. The authors proposed DeRop, a tool
to convert ROP payloads into normal shellcodes, so that
their analysis can be performed by common malware anal-
ysis tools. However, the authors tested the effectiveness of
their system only against standard exploits containing re-
ally simple ROP chains. In this paper, we adopt some of
the transformations proposed by DeRop – which we com-
plement by a number of novel techniques required to deal
with the large and complex chains of a ROP rootkits. Our
main goal is also more ambitious, as we want to achieve a
full code coverage of the ROP payload, also in the presence
of dynamically generated chains.

In another paper similar to our work, Yadegari et al. [60]
proposes a generic approach to deobfuscate code, in which
the authors considers ROP as a form of obfuscation. Their
system is based on bit-level taint analysis that is applied to
existing execution traces and can be used to deobfuscate
the CFG. In addition, the paper also adopts transforma-
tions similar to the ones proposed by DeRop to handle



ROP payloads. Even though Chuck had already been re-
leased at the time, the authors claimed that no complex
example of ROP chains was available, and they tested the
system against small examples with a simple control flow
logic. Moreover, the proposed system does not emulate
the ROP chain and does not perform any code coverage.
Instead, it focuses only on the simplification of existing
execution traces.

Another interesting research direction focused on the
problem of locating ROP chains in memory and poten-
tially profile their behavior [55, 47, 33]. The first two
solutions have been designed to analyze exploits target-
ing 32-bit user-land applications. Specifically, they both
scan the program address space to identify the gadget and
payload space and extract the entire chain. Recently, Kit-
tel et al. [33] proposed a code pointer examination tech-
nique to isolate the main chains used by data-only malware
and they tested their technique on a 64-bit system against
Chuck [58].

ROPMEMU can adopt these techniques to identify per-
sistent ROP chains in user- and kernel-space. In addition,
the profiling phase proposed in these papers were quite
simple, and they detect only persistent ROP chains. To
overcome these limitations, we adopted an approach based
on CPU and memory emulation. Finally, previous tech-
niques do not work in presence of packed ROP chains [35]
or chains which are dynamically generated at runtime [58].

8. CONCLUSION
In this paper we presented the first attempt to automate

the analysis of complex code implemented entirely using
ROP. In particular, we discussed the challenges to reverse
engineer programs implemented using return oriented pro-
gramming and we proposed a comprehensive framework to
dissect, recostruct and simplify ROP chains. Finally, we
tested the framework with the most complex case proposed
so far: a persistent ROP rootkit. The proposed framework
is motivated by the lack of methodologies and tools to an-
alyze in depth ROP payloads of increasing complexity.

The solution we described is ROPMEMU, and comprises
a combination of Volatility plugins and additional stan-
dalone scripts. Our framework can extract the entire code
of both persistent and dynamically generated ROP chains
through a novel multipath emulation approach, simplify
the output traces, extract the control flow graph and gen-
erate a final binary representing a cleaner version of the
original ROP chain. The analysts can then operate on
this binary with traditional reversing engineering tools like
IDA Pro. Overall, the results of our experiments confirm
the accuracy and effectiveness of ROPMEMU to analyze
advanced ROP chains.
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