

## **Low Penetration Rate Cooperative V2X Traffic Surveillance System** Jérôme Härri



Ministry of Transport

Main local partners:

Organised by:





B HEUREKA

vira STO INNISH METEOROLOGICAL INSTITUTE

ITS in your pocket

## Outline

ITS in your pocket

## COLOMBO

- COLOMBO proposes to develop advanced traffic light control based on local and distributed floating car data (D-FCD)
  - obtained directly from vehicles
- D-FCD is provided by COLOMBO's traffic surveillance systems
  - Assumes low penetration of cooperative V2X systems
  - Fully distributed approaches

- Classify vehicles in three classes as function of traffic sensing capabilities:
  - Class A vehicles not participating to traffic surveillance
  - Class B vehicles equipped with sensors but not C2X
  - Class C vehicles equipped with C2X technologies
- Develop Traffic monitoring system from data gathering, fusion and dissemination of traffic data obtained from class B and C vehicles, assisted by infrastructure nodes





source: Car 2 Car Communication Consortium web site



#### Low Penetration Traffic Surveillance

# COLOMBO

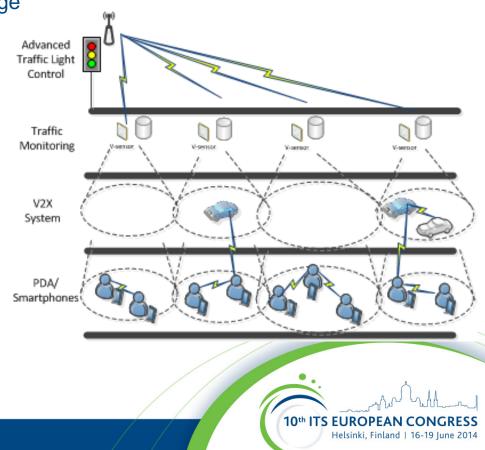
- Low Penetration Rate Cooperative V2X Traffic Surveillance
  - Low C2X Penetration < 3% C2X technology</li>
  - Multiple types of GPS devices
    - C2X, smartphones
  - Rely on WiFi-Direct on smartphones
    - Drivers or pedestrian on sidewalk
  - Rely on Bluetooth devices on vehicular sensors
- Objective:
  - Traffic Volumes / Traffic Dynamics (speed) in given zones
- Approaches followed in COLOMBO WP1
  - Clustering
    - Vehicles cluster and let a cluster-head estimate the cluster dynamics
  - Data Fusion from heterogeneous traffic data
    - C2X data is fused with Smartphones and sensor data
  - C2X Message Propagation
    - Vehicles send messages and estimate the density & speed from its propagation rate



source: Volvo for C2CCC



source: Car 2 Car Communication Consortium




#### ITS in your pocket Proven solutions driving user services

#### Virtual Sensor Approach for Cooperative Traffic Surveillance

## COLOMBO

- Virtual Sensors represent a zone where the traffic light needs traffic volumes
  - Virtual Sensors only have a 'virtual' existence from an artificial zone defining their coverage
- V2X vehicles (class C) in each zone will exchange traffic data to consolidate traffic volumes
- Consolidated volumes are transmitted to the RSU (direct, multi-hop)
  - Dissemination is transparent to RSU
- Low V2X penetration is compensated by Smartphones held by drivers and pedestrians in same zones



Proven solutions driving user services

ITS in your pocket

#### Traffic Surveillance for Traffic Light Control

# COLOMBO

 The COLOMBO Traffic Light Control (TLC) requires dynamic and fresh traffic states

 $p_1$ 

d<sub>1</sub>

Z₁

 $Z_2$ 

 $d_2$ 

 $Z_3$ 

- Arriving flows
- Leaving flows

**p**<sub>2</sub>



- $Z_x$  measured zones  $[p_x-1-p_x]$ ,  $[d_x-1; d_x]$
- d<sub>x</sub> measuring distances before TLC
- p<sub>x</sub> measuring distances after TLC

 $p_3$ .

• Traffic Dynamics –

ITS in your pocket

- Average speed in Z<sub>x</sub>
- Average Density of cars in Z<sub>x</sub>

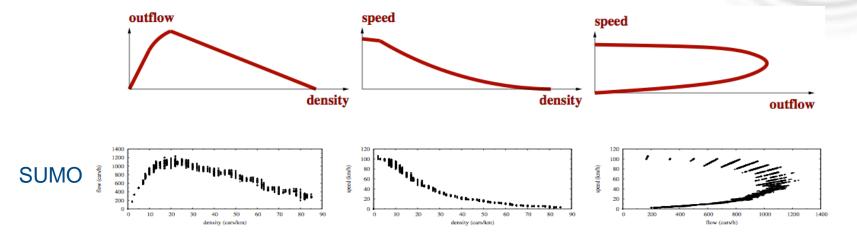
Data Quality –

da

<u>Precision</u>: how close is data from reality?

 Freshness: how often is data provided?

Z₄




d₄

#### Traffic state estimate through traffic fundamental diagrams



• Traffic flows follow three basic fundamental diagrams:



- Traditionally used to validate models and traffic
  - Can be used to extract one component out of 1-2 two others
- Given a known street capacity (# lanes)
  - Speed can be extracted from traffic density
  - Flow (out) can be extracted from traffic density
- One challenge:
  - traffic density...




ITS in your pocket Proven solutions driving user services

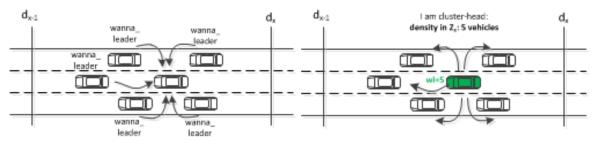
#### Traffic state estimate through data dissemination



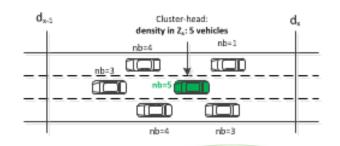
- Related objective:
  - Given vehicular density
  - What is the multi-hop C2X dissemination delay?



- In COLOMBO: reverting the question
  - Given the C2X dissemination delay, what is the average density ?
- Tradeoff:
  - <u>Carry</u>: dissemination = vehicular speed
  - <u>Relay</u>: dissemination immediate = Multi-hop percolation exists
    - Laws of Physics: at least 1 vehicle every transmit range
    - Density of vehicle may be estimated !
  - <u>Hybrid</u>: carry takes lead over relay




#### Traffic state estimate through local neighborhood information


- Reactive Approach **Distributed Auction** 
  - Each node request (broadcast) to be come a cluster leader
  - The node with the maximum request announces it becomes leader
  - Any node receiving this message joint its group



- Proactive Approach: Node Mapping Protocol (NMP)
  - periodically send beacons with information from neighbors (id, position, speed, direction, and number of known nodes)
  - The node with larger neighbor set becomes leader



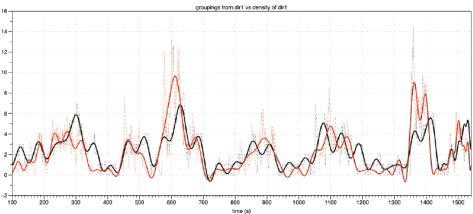
- Cluster Leader:
  - Gathers the number of neighbors contained in the measured area
  - Fuse and consolidate from missed data
  - Transmit it to the traffic light





ITS in your pocket Proven solutions driving user services


# Traffic state estimate - COLOMBO


- 100% Car type C: Two-way linear scenario, 100% penetration
- Traffic Density:
  - Black: Oracle
  - Red: Proactive
- Observation:

ITS in your pocket

 ~98% precision in #detected vehicles in each direction

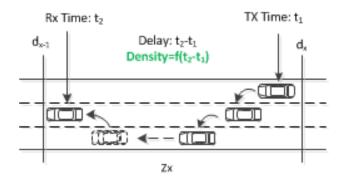
Proven solutions driving user services

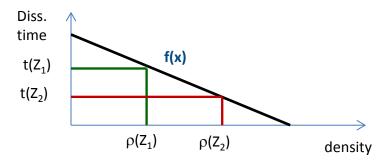




- Packet Losses:
  - Related to channel congestion
  - Hinders quality of fusion protocol
  - Proactive (red) creates less overall (and less critical) collisions than reactive (green)

P. Bellavista, L. Foschini, E. Zamagni, "V2X Protocols for Low-Penetration-Rate and Cooperative Traffic Estimations", to appear in the Proc. of IEEE VTC-Fall 2014, Sept. 2014, Vancouver, Canada.


10th ITS EUROPEAN CONGRESS Helsinki, Finland | 16-19 June 2014


#### Traffic state estimate through local neighborhood information

# COLOMB

#### • Reverse Dissemination:

- Car entering a zone: transmit a packet
- Last car before leaving the zone: receives the packet





- Mapping Function f(x):
  - Given dissemination time
    - Provides a respective density
  - Mapping function is critical to obtain:
    - Linear function in free-flow
    - Exponential in congested mode



#### ITS in your pocket

## Summary



- COLOMBO's cooperative & distributed traffic surveillance system has been presented
  - Tailored to traffic light control required data:
    - traffic density / traffic speed per 'virtual' sensing zone (virtual induction loops)
      - Precise & fresh data (as close as possible to reality)
- Two approaches followed:

ITS in your pocket

- **Topology-based**: cluster-heads extracts neighborhood visibility (density)
- **Dissemination-based**: relationship between dissemination time and density
- Some initial results have been presented

Proven solutions driving user services

• Data quality close to benchmark (simulated mobility with SUMO)

More information is available at http://colombo-fp7.eu/

### Thank you!

