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Under-provisioned Backhaul: How Capacity and Topology
Impacts User and Network-wide Performance

Nikolaos Sapountzis, Thrasyvoulos Spyropoulos, Navid Nikaein and Umer Salim.

Abstract

Operators, struggling to continuously add capacity and upgrade their ar-
chitecture to keep up with data traffic increase, are turningtheir attention to
denser deployments that improve spectral efficiency. Denser deployments
make the problem of user association challenging, and much work has been
devoted to finding algorithms that strike a tradeoff betweenuser quality of
service (QoS), and network-wide performance (load-balancing). Neverthe-
less, the majority of these algorithms typically consider only the radio ac-
cess part, and ignore the backhaul topology and potential capacity limita-
tions. Backhaul constraints are emerging as a key performance bottleneck
in future heterogeneous networks, partly due to the continuous improvement
of the radio interface, and partly due to the need for inexpensive backhaul
links to reduce CAPEX/OPEX. To this end, we propose an analytical frame-
work for user association that jointly considers radio access and backhaul
performance. We derive an algorithm that takes into accountspectral effi-
ciency, base station load, backhaul link capacities and topology, and uplink
and downlink traffic demand, and prove it converges to an optimal solution.
We then use extensive simulations to study the impact of (i) backhaul capac-
ity limitations and (ii) backhaul topology on key performance metrics.

Index Terms
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1 Introduction

Driven by the exponential growth in wireless data traffic, operators areincreas-
ingly considering denser, heterogeneous network (HetNet) deployments. In a Het-
Net, a large number of small cells (SC) are deployed along with macrocells to im-
prove spatial reuse [1–3]. The higher the deployment density, the betterthe chance
that a user equipment (UE) can be associated with a nearby base station (BS) with
high signal strength, and the more the options to balance the load. At the same
time, denser deployments experience high spatio-temporal load variations, and re-
quire sophisticated user association algorithms. There are two key, often conflict-
ing concerns when assigning UEs to a BS: (i) maximizing the spectral efficiency,
and (ii) ensuring that the load across BSs is balanced to improve the utilization
efficiency, and preempt congestion events. The former is usually achieved by asso-
ciating the UE to the BS with maximum SINR: this association rule was the base
up to LTE-release 8. While this rule also maximizes theinstantaneousrate of a
user (i.e., the best modulation and coding scheme - MCS - supported), it reflects
user QoS only when the BS is lightly loaded. However, user performance,in terms
of per flow delay, may be severely affected if the BS offering the best SINR is
congested [4,5].

As a result, a number of research works have studied the problem of user as-
sociation in heterogeneous networks, optimizing user rates [6, 7], balancing BS
loads [8], or pursuing a weighted tradeoff of them [9]. For instance, adistributed
user-association algorithm is proposed in [10], where the global outageprobability
and the long term rate maximization are well studied, in the context of load bal-
ancing. The authors in [11] propose a framework that studies the interplay of user
association and resource allocation in future HetNets, by formulating a non-convex
optimization problem and deriving performance upper bounds. Range-expansion
techniques, where the SINR of lightly loaded BSs is biased to make them more
attractive to the users are also popular [2, 3]. Finally, a framework that has re-
ceived much attention is [9]. This framework jointly considers a family of objec-
tive functions, each of which directs the optimal solution towards differentgoals
(e.g. throughput optimal, delay-optimal, load balancing, etc.), using an iterative
algorithm. [12–14] extend this framework to further include energy management,
e.g., by switching off under-loaded BSs.

Nevertheless, the majority of these works only consider the radio access net-
work, namely the user rate on the radio interface and the load of BSs, ignoring
the backhaul (BH) network. While this might be reasonable for legacy cellu-
lar networks, given that the macrocell backhaul is often over-provisioned (e.g.,
fiber), this might be quite suboptimal for future cellular networks. The consid-
erably higher number of small cells, and related Capital Expenditure (CAPEX)

This work was supported by the project ”Network-level Optimizations forSmall Cell Networks”,
funded by Intel Mobile Communications (IMC).
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and Operational Expenditure (OPEX)1, suggest that backhaul links will mostly be
inexpensive wired or wireless (in licensed or unlicensed bands), and underprovi-
sioned [16]. Multiple BS might have to share the capacity of a single backhaul
link due to, e.g, point-to-multipoint (PMP) or multi-hop mesh topologies to the
aggregation node(s) [17]. Furthermore, the increased backhaul signaling traffic re-
quired for Coordinated Multi-Point (CoMP) [18], as well as upcoming cloud-RAN
(C-RAN) [19] technologies, are expected to further stress the backhaul network.
Hence, as the radio access technologies are constantly improving, it is argued that
the backhaul network will emerge as a major performance bottleneck, and user as-
sociation algorithms that ignore the backhaul load and topology can lead to poor
performance [20].

As a result of this increasing focus on the backhaul, some recent workshave ap-
peared that attempt to jointly consider radio access and backhaul. These are mostly
concerned with joint scheduling issues (for in-band or PMP backhaul links) [20,
21], signaling overhead and performance tradeoffs for cooperative multi-point com-
munication [22], Software-Defined-Networking (SDN)-based implementation flex-
ibility [19], or propose some simple heuristics to include the impact on the back-
haul of different association schemes [23]. Nevertheless, to our best knowledge,
none of these works formally addresses the problem of optimal user association in
future, backaul-limited HetNets.

To this end, in this paper we revisit the problem of optimal user association,
jointly considering the radio access and backhaul networks. Specifically, our main
contributions can be summarized as follows:
(1) We use the popular framework ofα-optimal user association [9] as our starting
point, and extend it to include backhaul constraints and topology.
(2) We analytically prove an optimal association rule for simple (e.g. star) and
generic (tree) backhaul topologies, and propose an iterative algorithmbased on
penalty functions to converge to the optimal solution.
(3) We consider both uplink (UL) and downlink (DL) traffic characteristics, and
show that our work fits well with future 5G network features like UL/DL split [24],
and SDN-based implementations [19].
(4) Based on our framework, we investigate the impact of backhaul under-provisioning,
in different topologies and system performance metrics. Our results also highlight
some shortcomings of backhaul Layer 2 routing and suggest the need for Layer 3,
joint radio access and backhaul routing.

The remainder of the paper is organized as follows: Section 2 describes the
proposed analytical framework along with our system model assumptions, and de-
rive the optimal user-association rules. We then sketch a practical implementation
architecture, based on SDN, in Section 3. In Section 4 we simulate the optimal
association policies and attempt to shed some light on the impact of backhaul con-

1The dense deployments of SCs with low number of users suggest that thecostof their backhaul-
ing becomes a significant part of the total CAPEX/OPEX, and in some cases could exceed the cost
of their equipment [15].
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Table 1: Notation
Downlink Uplink

Flow type sub/superscript D U
Traffic arrival rate (flows/sec) at locationx λD(x) λU (x)

Mean flow size 1/µD(x) 1/µU

Maximum rate of thei-th BS at locationx cDi (x) cUi (x)

Load density of thei-th BS at locationx ρDi (x) ρUi (x)

BS i max rate requirement for backhaul c̃Di c̃Ui
Utilization/Load of thei-th BS 0 ≤ ρDi ≤ 1 0 ≤ ρUi ≤ 1

Congestion indicator at BH linkj ID(j) IU (j)

Capacity of backhaul linkj CD
h (j) CU

h (j)

Association probability of locationx to BSi pDi (x) pUi (x)

straints and topology. Section 5 discusses potential extensions of our framework,
and Section 6 concludes the paper.

2 User Association Problem

2.1 Model and Assumptions

In the following, we first describe our problem setup and assumptions. Wewill
use a similar problem setup as the one used in a number of related works [9, 12,
13, 25], and extend it accordingly. To keep the presentation simplified, wepresent
most notation and assumptions in terms of downlink (DL) traffic, denoted with a
”D” sub/superscript. The assumptions for uplink (UL) traffic are in most cases
symmetric, so one can simply replace ”D” with ”U” in the respective notation.
Specific differences in the uplink traffic model will be elaborated, where necessary.
In Table 1, we summarize some useful notation we use throughout the paper.

(A.1 - BS coverage)We assume an areaL ⊂ R
2 served by a set of base stations

B, that are either macro BSs (eNBs) or small cells.
(A.2 - Traffic Model) Traffic at locationx ∈ L consists of file, or more gen-

erallyflow requests arriving according to an inhomogeneous Poisson point process
with arrival rate per unit areaλ(x). A new flow can be either DL with probability
zD, or UL with zU = 1 − zD. Using a Poisson splitting argument [26], it follows
that there are twoindependentPoisson arrival processes for DL and UL traffic,
with respective ratesλD(x) = zDλ(x) andλU (x) = zUλ(x). Flow sizes are in-
dependently and generically distributed with mean1/µD(x) (and1/µU (x) in the
uplink.)

(A.3 - Physical Data Rate)Each BSi ∈ B is associated with a transmit
power Pi and a total downlink bandwidthWD

i . Based on this, BSi can de-
liver a maximumphysical data transmission rate ofcDi (x) to a user at location
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x (in absense of any other users served), which is given by the Shannon capacity2

cDi (x) = WD
i log2(1 + SINRi(x)), where

SINRi(x) =
Gi(x)Pi

∑

j 6=iGj(x)Pj +N0
. (1)

N0 is the noise power, andGi(x) represents the path loss and shadowing effects
between thei-th BS and the UE located atx (as well as antenna and coding gains,
etc.)3. We assume that effects of fast fading are filtered out. Our model assumes
that the total intercell interference at locationx is static, and considered as another
noise source, as is previously considered in most aforementioned works[9,12].

(A.4 - System load density)A system load densityρDi (x) at locationx can be
defined as

ρDi (x) =
λD(x)

µD(x)cDi (x)
. (2)

(A.5 - BS load) Each locationx is associated with association probabilities
pDi (x) ∈ [0, 1], which are the probabilities that a DL flow at locationx gets asso-
ciated with BSi. We can thus define thetotal loadρDi of BS i as

ρDi =

∫

L
pDi (x)ρ

D
i (x)dx. (3)

Similarly to [4,9], we are interested in theflow-level dynamicsof this system, and
model the service of downlink flows at each BS as a queueing system with load
ρDi .

(A.6 - Scheduling) Proportionally fair scheduling is often implemented in
3G/4G networks, due to its good fairness and spectral efficiency properties [27].
This can be modeled as an M/G/1 multi-class processor sharing (PS) system (see,
e.g., [4, 9, 12]). It is multi-class, because each flow might get differentrates for
similarly allocated resources, due to different channel quality and modulation and
coding scheme atx.

(A.7 - Performance impact of BS load)Given the above scheduling, the sta-

tionary number of flows in BSi is known to be equal toE[Ni] =
ρDi

1−ρDi
[26].

Hence, minimizingρDi minimizesE[Ni], and by Little’s law it also minimizes the
per-flow delay for that base station [26]. At the same time, the throughput for a
flow at locationx is equal tocDi (x)(1 − ρDi ). This observation is important to
understand how the user’s physical data ratecDi (x) (related to users at location
x only) and the BS loadρDi (related toall users associated with BSi) affect the
optimal user association decision (e.g. in Eq. (7)).

2We use Shannon capacity for clarity of presentation. However, our approach could be easily
adapted to include modulation and coding schemes (MCS). Furthermore,capacity improving tech-
nologies, e.g., the use of MIMO, and modifications to this capacity formulaare othogonal to our
framework.

3In the case of UL, we assume that the Tx power of each user isPUE , and slightly abuse notation
for SINR, G, etc., as these don’t play a major role in the remaining discussion.
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Figure 1: Future HetNet topology.

(A.8 - Backhaul topology)Each BS is connected to the core network through
the eNB aggregation gateway either directly (“star” topology) or through one or
more SC aggregation gateways (“tree” topology). Fig. 1 shows such a backhaul
routing topology. Without loss of generality, we assume that there is a fiber link
from the eNB to the core network, and focus on the set of capacity-limited backhaul
links (e.g., wireless) connecting SCs to the eNB, denoted asBh. We denote as
routing pathBh(i) the set of all backhaul linksj ∈ Bh along which traffic is routed
from BSi to an eNB aggregation point. For example, in Fig. 1,Bh(1) = {1}, and
Bh(3) = {1, 2, 3}. We further denote asB(j) the set of all BSi ∈ B whose traffic
is routed over backhaul linkj. E.g.,B(1) = {1, 2, 3, 4} andB(2) = {2, 3, 4} in
Fig. 1. In the case of a star topology, there is exactly one (unique) backhaul link
used for each BS (i.e.,‖Bh(i)‖ = ‖B(j)‖ = 1, ∀i, j). Finally, we assume that the
backhaul route for each BS isgiven, e.g., calculated in practice as a Layer 2 (L2)
spanning tree, and is an input to our problem. In Section 4, we highlight some
limitations of L2 backhaul routing.

(A.9 - Backhaul load)Each backhaul linkj ∈ Bh is characterized by a down-
link capacityCD

h (j) bps. Backhaul links usually don’t implement any particular
scheduling algorithm, and can be seen as a data “pipe”. The capacity on theUL
and DL might be the same or different (e.g., Frequency-Division Duplex (FDD),
or fixed/dynamic Time-Division Duplex (TDD) systems [28]). The load on a back-
haul link j ∈ Bh consists of the sum of loads of all BSs using that link:

∑

i∈B(j)

ρDi c̃
D
i , (4)

wherec̃Di is an estimate of the total rate delivered by BSi. A BS is usually charac-
terized by its “peak” rate (often upper bounded by the maximum MCS available),
and a “busy” rate, when a BS serves many users [16]. The latter is usually quite
smaller than the former, since users near the edge of the cell tend to bring theav-
erage rate down. However, the use of channel-based scheduling andrelated multi-
user diversity gains suggest that conservatively settingc̃Di closer to its nominal
peak value is safer. In practice, a BS could measure this load and use it directly.
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Based on the above problem setup, the association policy consists in finding
appropriate values for the routing probabilitiespDi (x) andpUi (x), for DL and UL
traffic, respectively (defined earlier in A.5). That is, for each locationx, we would
like to optimally choose which BSi to route to flows generated from (UL) or
destined to (DL) users inx4. Our goals for this association problem are twofold: (i)
ensure that the capacity of no network element (BS or backhaul link) is exceeded;
(ii) achieve a good tradeoff between user physical data rates and load balancing.
We will consider two main scenarios:

Link split or DL/UL decoupling:This allows each UE to be associated with
different BSs for its DL and UL traffic, and to optimize UL and DL performance
independently [24,29].

Joint DL/UL: In current networks, a UE must be associated to same base station
for both UL and DL traffic.

2.2 Optimal User Association for Split UL/DL

We will first define the user association problem for the split DL/UL case.
The feasible region for the variablespDi (x), p

U
i (x) can first be delimited by the

requirement that the capacity of no BS is exceeded.

Definition 1. (Feasibility): Let y ∈ {U,D}, and let ǫ be an arbitrarily small
positive constant. The setfy of feasible BS loadsρy = (ρy1, ρ

y
2, . . . , ρ

y

‖B‖) is

fy =
{

ρy | ρyi =

∫

L
pyi (x)ρ

y
i (x)dx,

0 ≤ ρyi ≤ 1− ǫ,
∑

i∈B

pyi (x) = 1,

0 ≤ pyi (x) ≤ 1, ∀i ∈ B, ∀x ∈ L
}

.

(5)

Lemma 2.1. The feasible setsfD, fU are convex.

Proof. The proof for the feasible DL setfD is presented in [9]. It can be easily
adapted for the UL case, as well.

When UL and DL traffic can be routed separately, this implies thatpDi (x) and
pUi (x) can take different values. Hence, the problem of optimal DL and UL associ-
ation can be decoupled into two independent problems, one for DL and onefor UL.
In the remainder of this section, we focus on the optimal DL association problem,
andwe omit the superscripts{D,U} to simplify notation. We return to the joint
DL/UL association problem in the next section. To better illustrate our approach,

4The use of a probabilistic association rule simplifies solving the problem. As itwill turn out, the
optimal values will be either0 or 1, i.e. the optimal association rule will be deterministic.
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we first apply this for a simple star BH topology, and then generalize for a tree BH
topology.
Optimal User Association for Star BH Topology)

Let I(j) be an indicator variable, related to backhaul linkj ∈ Bh, such that
I(j) = 0 when ρic̃i

Ch(j)
< 1, andI(j) = 1 when ρic̃i

Ch(j)
≥ 1 (i.e, the offered load

to backhaul linkj exceeds the available capacity). In the following, since for star
topologies there is exactly one backhaul link (j) associated with each BS (i), to
simplify notation we can safely assumei = j.

Theorem 2.2(User-Association in a star BH topology). The optimal user associ-

ation problem with a star backhaul topology is expressed asminρ

{

Φ(ρ)|ρ ∈ f
}

,

where

Φ(ρ) =
∑

i∈B

(1− ρi)
1−α

α− 1
+ γ

∑

i∈Bh

I(i)

(

ρic̃i
Ch(i)

− 1

)2

. (6)

If the feasible domainf of the problem is non-empty, andρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ

∗
||B||)

denotes the optimal load vector, the optimal user-association rule at location x is

argmax
i∈B

ci(x)(1− ρ∗i )
α

1 + 2γ · (1− ρ∗i )
α · c̃i ·

I(i)
Ch(i)

·
(

ρ∗i c̃i
Ch(i)

− 1
) . (7)

Proof. We prove here that the above association rule indeed minimizes the cost
function of Eq. (6). This problem is a convex optimization problem. Its feasible
setf is convex, and the objective functionΦ(ρ) is also convex (the hessian ma-
trix is positive semi-definite). Letρ∗ be the optimal solution of this minimization
problem. Hence, it is adequate to check the following condition for optimality

〈∇Φ(ρ∗),∆ρ∗〉 ≥ 0 (8)

for all ρ ∈ f , where∆ρ∗ = ρ − ρ∗. Let p(x) andp∗(x) be the associated routing
probability vectors forρ andρ∗, respectively. Using the deterministic cell coverage
generated by (7), the optimal association rule is given by:

p
∗
i (x) = 1

{

i = argmax
i∈B

ci(x)(1− ρ∗i )
α

1 + 2γ · (1− ρ∗i )
α · c̃i ·

I(i)
Ch(i)

·
(

ρ∗
i
c̃i

Ch(i)
− 1
)

}

. (9)

Before proceeding to the calculation of the inner product, we analytically calculate
the derivative of the corresponding cost functionΦ(ρ), described in Eq. (6). The
derivative is ani-th dimensional vector; thei-th element of which has value:

∇Φ(ρi) =

{

(1− ρi)
−α, if ρic̃i ≤ Ch(i)

(1− ρi)
−α + γI(i)

2ρic̃
2
i−2c̃iCh(i)

Ch(i)2
, if ρic̃i ≥ Ch(i).

(10)
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To that end, the inner product defined in Eq. (8), becomes:

〈∇Φ (ρ∗) ,∆ρ
∗〉 =

∑

i∈B

{ 1

(1− ρ∗i )
α
+ γI(i)

2ρ∗i c̃
2
i − 2c̃iCh(i)

Ch(i)2

}

(ρi − ρ
∗
i )

=
∑

i∈B

1 + 2γI(i)(1− ρ∗i )
α (ρ∗i c̃

2
i−c̃iCh(i))

Ch(i)2

(1− ρ∗i )
α

∫

L

ρi(x) (pi(x)− p
∗
i (x)) dx

=

∫

L

λ(x)

µ(x)

∑

i∈B





1 + 2γ(1− ρ∗i )
αc̃i

I(i)
Ch(i)

(

ρ∗i c̃i
Ch(i)

− 1
)

ci(x)(1− ρ∗i )
α



 (pi(x)− p
∗
i (x)) dx.

Note that,

∑

i∈B

pi(x)

{1 + 2γ(1− ρ∗i )
αc̃i

I(i)
Ch(i)

(

ρ∗i c̃i
Ch(i)

− 1
)

ci(x)(1− ρ∗i )
α

}

≥

∑

i∈B

p∗i (x)

{1 + 2γ(1− ρ∗i )
αc̃i

I(i)
Ch(i)

(

ρ∗i c̃i
Ch(i)

− 1
)

ci(x)(1− ρ∗i )
α

}

holds becausep∗i (x) in (9) is an indicator for the maximizer of ci(x)(1−ρ∗i )
α

1+2γ·(1−ρ∗i )
α·c̃i·

I(i)
Ch(i)

·

(

ρ∗
i
c̃i

Ch(i)
−1

) .

Hence (8) holds.

We expressed the objective (Eq. (6)) with respect to the variablesρi, for con-
venience. However, these depend on the association probabilitiespi(x), which are
the underlying decision variables, as shown in Definition 1. The first sum isthe
standardα-cost function for each BSi [9]. Parameterα controls the amount of
load balancing desired. Forα = 0, minimizing this function leads to a maximum
SINR user-association rule, maximizing the physical data rate for each location
ci(x), and thus the spectral efficiency. Asα → ∞, this cost function aims at
equalizing the BS utilizationsρi, i.e. to balance the loads5. The second sum intro-
duces a penalty for each backhaul linki whose capacity is exceeded (I(i) = 1).
This penalty function is quadratic on the amount of excess load (quadratic penalty
functions are often considered in convex optimization literature [30]).γ could be
chosen as a large constant, introducing a “soft” constraint for the backhaul links
(i.e., backhaul capacity could be slightly exceeded, if this really improves access
performance), or be iteratively adapted using increasing values, so asto converge
to a “hard” constraint.

Regarding the optimal association rule of Eq. (7), we note that when the capac-
ity constraint for the backhaul linki is not active (i.e.,I(i) = 0, in provisioned BH
networks), the above theorem states that the optimal association rule is the same
as the one found in [9]. However, when the backhaul link of BSi gets congested,
a second term is added in the denominator that penalizes that BS making it less

5Note that forα = 1 the aboveα-cost function is not defined, andlog(1 − ρi)
−1 is used in-

stead [9].
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preferable to UEs at locationi, even if the offered radio access rateci(x) is high,
or the radio interface ofi is not itself congested.
Optimal User Association for Tree BH Topology)

We now consider a more complex backhaul scenario, where a single backhaul
link might route traffic from multiple BSs, and the traffic of a single BS might be
routed over multiple backhaul links (multi-hop path) towards the eNB. LetI(j) be
again an indicator variable, related to congestion in backhaul linkj ∈ Bh. Now,
I(j) needs to consider the load of all the BSs whose traffic it carries (see A.9):

specifically,I(j) = 0, when
∑

i∈B(j) ρic̃i

Ch(j)
< 1 andI(j) = 1, when

∑

i∈B(j) ρic̃i

Ch(j)
≥ 1.

Theorem 2.3. [User-Association in a tree BH topology] The optimal user associ-

ation problem with a tree backhaul topology can be expressed asminρ

{

Φ(ρ)|ρ ∈

f
}

, where

Φ(ρ) =
∑

i∈B

(1− ρi)
1−α

α− 1
+ γ

∑

j∈Bh

I(j)







∑

i∈B(j)

ρic̃i

Ch(j)
− 1







2

. (11)

If the feasible domainf of the problem is non-empty, the optimal user-association
rule at locationx is now

argmax
i∈B

ci(x)(1− ρ∗i )
α

1 + 2γ · (1− ρ∗i )
α · c̃i

∑

j∈Bh(i)

I(j)
Ch(j)

·

(

·
k∈B(j)

∑

ρ∗
k
c̃k

Ch(j)
− 1

) .
(12)

Proof. The steps of this proof are similar to the star case, so we present here di-
rectly the corresponding inner product.

〈∇Φ (ρ∗) ,∆ρ
∗〉 =

=
∑

i∈B

{ 1

(1− ρ∗i )
α
+ 2γ

∑

j∈Bh(i)

I(j)
[

∑

k∈B(j) ρ
∗
k c̃k

Ch(j)2
c̃i −

c̃i

Ch(j)

]

}

(ρi − ρ
∗
i )

·

∫

L

ρi(x) (pi(x)− p
∗
i (x)) dx =

=

∫

L

λ(x)

µ(x)

∑

i∈B













1 + 2γ(1− ρ∗i )
αc̃i

∑

j∈Bh(i)

I(j)
Ch(j)

·

( ∑

k∈B(j)

ρ∗k c̃k

Ch(j)
− 1

)

ci(x)(1− ρ∗i )
α













·

· (pi(x)− p
∗
i (x)) dx ≥ 0,

(13)

due to the corresponding maximizerp∗i (x) derived from (12).

As one can see, the cost function is similar in nature. The first term correspond-
ing to the radio access part remains unchanged. The second term again introduces
a penalty for each backhaul link that is congested. However, there area number
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of interesting differences between the star and tree cases. First, the penalty term in
the denominator of the optimal association rule (Eq. (12)) now considers thewhole
backhaul pathBh(i) that traffic from BSi traverses, and adds a penalty forevery
link along that path that is congested (outer sum in the denominator). This obser-
vation provides some support for the number of backhaul hops heuristicproposed
in [23,31]. However, our analysis also suggests that it can be suboptimal, as a path
with few hops might still include one or more congested links, and provides the
optimal way to weigh in the amount of congestion on each backhaul link.

Second, the actual congestion on each backhaul linkj is now not only depen-
dent on the load of the candidate BSi, but also on other BSs whose load is routed
over j. Hence, a BSi which would otherwise be a good candidate for traffic at
locationx, might still be penalized and not selected, even if it does not impose
itself a large load on a backhaul linkj. This is becauseotherBSs sharing the same
backhaul link might be heavily loaded or congested.

In the case of split UL/DL traffic, the above analysis can be appliedseparately
on UL and DL traffic, and optimize UL and DL associations independently. Fi-
nally, although we have provided separate solutions for star and tree topologies, to
better illustrate our approach, the optimal rule for the tree topology is generic, and
includes star topologies as well.

2.3 Optimal Joint UL and DL Association

Current cellular networks (e.g. 3G/4G) require that a UE should be connected
to a single BS for both UL and DL traffic [32]. This changes the optimal associa-
tion problem, as one now needs tojointly optimize UL and DL traffic performance.
E.g., a user at locationx might end up being associated with a BS offering subop-
timal performance on both the downlink and uplink, because other BS candidates
offer really bad UL (or really bad DL) performance.

We thus need to modify our framework accordingly. First, we construct a new
feasible set that includes both dimensions as it follows. Later, while extracting the
optimal user-association rules we will also require thatpDi (x) = pUi (x) ∀i ∈ B .

Definition 2. (Feasibility): The setF of feasible BS loadsρD = (ρD1 , ρ
D
2 , ...) and

ρU = (ρU1 , ρ
U
2 , ...) is defined as

F =
{

ρ = [ρD; ρU] | ρyi =

∫

L
pyi (x)ρ

y
i (x)dx,

0 ≤ ρyi ≤ 1− ǫ,
∑

i∈B

pyi (x) = 1,

0 ≤ pyi (x) ≤ 1, ∀i ∈ B, ∀x ∈ L, y ∈ {D,U}
}

.

(14)

Lemma 2.4. The feasible setF is convex.
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Proof. Consider two load vectorsρ1, ρ2 ∈ F, ρ1 6= ρ2. Then, there exist as-
sociatedp1(x) = [p1,D(x) ; p1,U (x)] and p2(x) = [p2,D(x) ; p2,U (x)] such
that ρ1i = [ρ1,Di ; ρ1,Ui ] = [

∫

L p1,Di (x)ρDi (x)dx ;
∫

L p1,Ui (x)ρUi (x)dx] and

ρ2i = [ρ2,Di ; ρ2,Ui ] = [
∫

L p2,Di (x)ρyi (x)dx ;
∫

L p2,Ui (x)ρUi (x)dx]. Now, we
makeρ as a convex combination ofρ1 andρ2, i.e. for θ ∈ [0, 1], ρ = θρ1 +
(1 − θ)ρ2. Thus, it isρi = [ρDi ; ρUi ] = [θρ1,Di + (1 − θ)ρ2,Di ; θρ1,Ui +

(1− θ)ρ2,Ui ] = [
∫

L ρDi (x)(θp
1,D
i (x) + (1− θ)p2,Di (x))dx ;

∫

L ρUi (x)(θp
1,U
i (x) +

(1 − θ)p2,Ui (x))dx] for all i ∈ B. Let p(x) = [p(x)D ; p(x)U ] be the routing
probability associated withρ = [ρD ; ρU ]. Thenp(x) = [pD(x) ; pU (x)] =
[θp1,Di (x) + (1 − θ)p2,Di (x) ; θp1,Ui (x) + (1 − θ)p2,Ui (x)] and it satisfies all the
above constraints of (14). Hence,ρ is feasible, and soF is a convex set.

Second, UL and DL performance must now be included in the same cost func-
tion. Specifically, in the part of the cost function corresponding to the radio access,
the operator may weigh the importance of DL and UL traffic performance with a
parameterτ ∈ [0, 1]6:

φ(ρ) =
∑

i∈B

τ
(1− ρDi )1−αD

αD − 1
+ (1− τ)

(1− ρUi )
1−αU

αU − 1
, if αD

, α
U 6= 1. (15)

We also need to extend the penalty function to consider both uplink and down-
link capacity being exceeded on the backhaul link. Due to space limitations, we
present our results directly for the general case of tree backhaul topology (we re-
mind the reader that this is applicable to star backhaul topologies as well).

Theorem 2.5(Joint UL/DL Association). The optimal association problem with a

generic BH topology can be expressed asminρ

{

Φ(ρ)|ρ = [ρD; ρU] ∈ F
}

, where

Φ(ρ) = φ(ρ) + γ
∑

k∈{D,U}

∑

j∈Bh

Ik(j)







∑

i∈B(j)

ρki c̃
k
i

Ck
h(j)

− 1







2

. (16)

If the feasible domainF of the problem is non-empty, the optimal user-association
rule at locationx is

i(x) = argmax
i∈B

(

1− ρ∗Di
)αD

·
(

1− ρ∗Ui
)αU

eD(x) ·
(

1− ρ∗Ui
)αU

+ eU (x) ·
(

1− ρ∗Di
)αD

, (17)

where ifgD = τ, gU = 1− τ , then forl ∈ {D,U}:

e
l(x) =

zl

(

gl + 2γ
(

1− ρ∗li
)αl

∑

j∈Bh(i)

I
l(j)

Cl
h
(j)

( ∑

k∈B(j)

ρ∗lk c̃lk

Cl
h
(j)

− 1

))

µl(x)cli(x)
.

6If αD or αU is equal to1, the respective fraction must again be replaced withlog(1 − ρi), as
explained earlier.
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Proof. Similarly with the previous cases, we focus on the tree-topology scenario in
the non-split scenario, and the minimization of the corresponding cost-function (16).
Let ρ∗ = [(ρD)∗; (ρU )∗] be the optimal solution of this optimization problem,
that corresponds to the optimal association rule (17), along with the convexset
F = [fD; fU ]. In a similar way, it is adequate to check the following condition
for optimality

〈∇Φ(ρ∗),∆ρ∗〉 ≥ 0 (18)

for all ρ ∈ F , where∆ρ∗ = ρ− ρ∗. Let p(x) andp∗(x) be the associated routing
probability vectors forρ andρ∗, respectively. Using the deterministic cell coverage
generated by (17), the optimal association rule is given by:

p
∗
i (x) = 1

{

argmax
i∈B

(

1− (ρ∗Di
)αD

·
(

1− (ρ∗Ui )
)αU

eD(x) (1− (ρ∗Ui ))
αU

+ eU (x) (1− (ρ∗Di ))
αD

}

. (19)

Similarly to the previous case, we calculate the inner product of Eq. (18). It is

〈∇Φ (ρ∗) ,∆ρ∗〉 =

=
∑

i∈B

{ τ

(1− (ρ∗Di ))αD
+ 2γ

∑

l∈Bh

ID(l)
[

∑

j∈B(l) ρ
∗D
j c̃Dj

Ch(l)2
c̃Di −

c̃Di
Ch(l)

]

}

(ρDi − (ρ∗Di )+

+
∑

i∈B

{ 1− τ

(1− (ρ∗Ui ))αU
+ 2γ

∑

l∈Bh

IU (l)
[

∑

j∈B(l) ρ
∗U
j c̃Uj

Ch(l)2
c̃Ui −

c̃Ui
Ch(l)

]

}

(ρUi − (ρ∗Ui )) =

=
∑

i∈B

{ τ

(1− (ρ∗Di ))αD
+ 2γ

∑

l∈Bh

ID(l)
[
c̃Di (
∑

j∈B(l) ρ
∗D
j c̃Dj − Ch(l))

Ch(l)2
]

}

·

∫

L
ρDi (x) (pi(x)− p∗i (x)) dx+

+
∑

i∈B

{ 1− τ

((1− ρ∗Ui ))αU
+ 2γ

∑

l∈Bh

IU (l)
[
c̃Ui (
∑

j∈B(l) ρ
∗U
j c̃Uj − Ch(l))

Ch(l)2
]

}

·

∫

L
ρUi (x) (pi(x)− p∗i (x)) dx =

=

∫

L

λ(x)
∑

i∈B

{

eU (x)(1− (ρ∗Di ))α
D
+ eD(x)(1− (ρ∗Ui ))α

U

(1− (ρ∗Di ))αD(1− (ρ∗Ui ))αU

}

· (pi(x)− p∗i (x)) dx.

(20)
Note that,

∑

i∈B

pi(x)

{

eU (x)(1− (ρ∗Di ))α
D
+ eD(x)(1− (ρ∗Ui ))α

U

(1− (ρ∗Di ))αD(1− (ρ∗Ui ))αU

}

≥

∑

i∈B

p∗i (x)

{

eU (x)(1− (ρ∗Di ))α
D
+ eD(x)(1− (ρ∗Ui ))α

U

(1− (ρ∗Di ))αD(1− (ρ∗Ui ))αU

}

(21)

holds becausep∗i (x) in (19) is an indicator for the maximizer of (1−(ρ∗Di ))α
D
(1−(ρ∗Ui ))α

U

eU (x)(1−(ρ∗Di ))α
D
+eD(x)(1−(ρ∗Ui ))α

U .

Hence (18) holds.

The penalty function for the backhaul network is simply the sum of the respec-
tive penalty functions for UL and DL, described in Theorem 2.3. However, despite
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the similarities of the cost functions, as we can see, the resulting association policy
in the joint UL/DL case is more complex. The main insights are captured in the
following remark.
Remark: The above optimal rule suggests that, when jointly considering the po-
tentially conflicting objectives of optimizing both DL and UL performance, it is
optimal to associate a user with the BS that maximizes theharmonic meanof the
individual association rules, when considering each objective alone. Maximizing
the harmonic mean presents a more “fair” way to weigh in different objectives.
E.g., assume the following BS options for a user: (BS A) offers 50Mbps DLand
only 1Mbps UL; (BS B) 200Mbps DL and 0.5Mbps UL; (BS C) 20Mbps DL and
5Mbps UL. If we care about UL and DL performance equally (i.e.τ = 0.5), one
might assume that the BS with the highest sum (or arithmetic average) of rates
should be chosen (i.e. BS B). However, this would lead to rather poor UL per-
formance. Maximizing the harmonic mean would lead to choosing BS C instead.
While this simple example captures the main principle, the actual rule is more com-
plex, as it weighs each objective also with a complex factorel(x) related to both
radio access performance and backhaul penalties. Finally, we note, for comparison
purposes, that in the case of “split” UL/DL split association, covered in Section 2.2,
DL traffic would be associated with BS B, and UL traffic with BS C. This simple
example demonstrates why split UL/DL may perform considerably better than the
joint association. We will further explore this in the simulations.

3 SDN-based Implementation

The above derived association rules tell a UE at some locationx, where to
associate optimally. However, as the base state loads might not be optimal at the
time (i.e. equal toρ∗i , see proof of Theorem 2.2), this policy represents a gradient
descent algorithm, that needs to be iteratively applied in practice, until it converges
to the optimal loads. Here, we describe an implementation of such an algorithm
facilitated by an SDN framework that offers a centralized programmable control
for the underlying network. It takes as inputs (i) the overall network status, and (ii)
some high level system-parameters (e.g. operator preferences). According to the
SDN architecture, we consider four planes, as illustrated in Fig. 2:

Figure 2: Applicability to the SDN architecture.

Application tier: The operator determines and advertises to the controller some
system-related parameters (e.g.αD, τ etc.).
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Controller tier: At each iteration periodk, the controller receives some network-
related parameters (e.g.zU , traffic profile, etc.) as well as the 2-dimensional load
vectorρD, ρU from the network tier. Then, based on the system-related parameters
directed from the application tier, it determines and advertises to BSs the optimal
associations (Eq. 7,12,17)7.
Network tier: Eachk-th period, BSs either apply or indicate to users the optimal
rules depending on how the association is managed in the network. At the endof
k, they measure and advertise to the controller their average load levels, andthe
network-relater parameters.
User tier: At eachk-th period, a UE at locationx is associated or triggers the
association procedure to the new BSs.

This iteration converges to the globally optimal point, requiring a simple mod-
ification to the proof found [9].

4 Simulations

In this section we present some numerical results and discuss underlying in-
sights. We consider a2 × 2 km2 area. Fig. 3(a) shows a color-coded map of the
heterogeneous traffic demandλ(x) (flows/hour per unit area) (blue implying low
traffic and red high), with 2 hotspots. We assume that this area is covered by two
macro BSs (shown with asterisks and numbered from 1-2) and eight SCs (shown
with triangles and numbered from 3-10) as depicted in Fig. 3(b)-3(f). The ratio of
the DL flows iszD=0.7, and the average length sizes1/µD(x) = 100KBytes,
1/µU (x) = 20KBytes, ∀x ∈ L. We also assume that the maximum transmis-
sion powers of eNB, SC and UE are43, 24 and 18 dBm, whereas the access-
network bandwidthWD

i = WU
i = 10MHz, ∀i ∈ B and the noise power density

N0 = −174dBm/Hz [33]. We finally assumeαD = αU = 1 (throughput-optimal
values). If not explicitly mentioned we consider the split scheme (Section 2.2).

We remind to the reader that our focus is on the backhaul linksbetween the
macro cells and SCs(for simplicity we assume provisioned links between the
macro cells and core network). As already discussed in Assumption (A.8), we
investigate two different backhaul topology families: (i) “star” topologies (single-
hop paths), (ii) “tree” topologies (with multi-hop paths), along with two back-
haul links types:wired and wireless8. Our aim is to evaluate the derived asso-
ciation rules described in Section 2 for differentunder-provisionedscenarios, by
assumingfixed backhaul routing paths, pre-established with traditional Layer 2
routing. We assume that the BH capacities on the DL and UL are the same (i.e.

7The controller also handles the penalty factorγ. For “hard” backhaul constraints, it (i) starts
with a small value, (ii) increases its value at each iteration, according to the magnitude of the main
cost function, to avoid infeasible solutions and steep valleys, as is usually done in penalty function
implementations [30].

8Note that copper and fiber access are the key technologies for wired backhaul links, and mi-
croWave and millimeter-wave P2P or P2MP access are the counterpart for the wireless backhaul
links [34].
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CD
h (i) = CU

h (i) = Ch, ∀i ∈ B), and if not explicitly mentioned we assume them
to be equal to400Mbps. We maintain this assumption to facilitate our discus-
sion, although our framework works for heterogeneous backhaul linksand UL/DL
capacities as well (Assumption A.9).

Before proceeding, we discuss how different backhaul technologiesaffect the
backhaul capacities, and setup a metric to evaluate the utilization efficiency. In case
of wired backhaul links, we assume that the peak backhaul capacityCh is always
guaranteed. Forwirelessbackhaul links we adopt a simple model associating peak
backhaul capacity to distance: if the length of thei-th link is ri, the peak capacity
drops as:

d(ri) =

{

1, ri ≤ r0

( r0
ri
)n, otherwise,

(22)

wherer0 is some threshold range within which the maximal rate is obtained (e.g.
Line-of-Sight), andn is the attenuation factor. Hence, the available capacity drops
to d(ri)Ch(j) (≤ Ch(j)). For our simulations, we assumed thatr0 = 200m, and
n = 3. While the above model is perhaps oversimplifying, our main goal is to
simply include the propagation related impact on wireless backhaul, comparedto
wired, without getting into the details of specific backhaul implementations. Fur-
thermore, to evaluate the DL utilization efficiency we introduce the Mean Squared
Error (MSED), between the DL utilization of different BSs, normalized to 1:

MSED =
1

2 ∗ h

∑

i

∑

j

(ρDi − ρDj )
2, (23)

whereh =
⌊

N
2

⌋

×
⌈

N
2

⌉

is the normalizing factor, andN the total number of
BSs (similarMSEU for UL). We define the DL/UL utilization efficiency to be
1 − MSED and1 − MSEU , respectively, that increase on the amount of load
balancing9.

Coverage Snapshots.Fig. 3(b)-3(c) depict the optimal DL and UL associations,
with respect to the traffic arrival rates shown in Fig. 3(a), by ignoring thebackhaul
network (or assuming it’s over-provisioned). In the DL, most users areattached to
the macro BSs due to their high transmission power, whereas in the UL each user
is mainly attached to the nearest BS [23]. In the following, we focus on different
under-provisionedbackhaul scenarios, and study the DL associations. In Fig. 3(d)
we adopt awired-starbackhaul topology, where SCs shrink their coverage areas,
by handing-over users to other BSs, in order to offload the corresponding (under-
provisioned) backhaul links; this phenomenon becomes more intense in the “hot-
spot” areas (i.e. BS4 and BS7 have vastly decreased their coverage areas) due
to the higher traffic demand. Similarly, in Fig. 3(e), we assume awireless-star
backhaul topology, where SCs further decrease their coverage areas, due to the
higher backhaul capacity loss caused from the long wireless links (see Eq.(22)).

9We should note that different load balancing metrics could have been used, e.g. themaximum,
median and minimumBS load; however, we chose to use MSE since it facilitates the visualization of
the network efficiency.
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(a) Traffic Arrival Rate.
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Figure 3: Coverage snapshots with optimal associations in different scenarios.

In Fig. 3(f) we adopt awireless-treetopology, where some SCs are required to
carry also traffic of other SCs, and end up more congested. As a result,most SCs
further decrease their coverage area, compared to the star-wireless topology. How-
ever, BS7 and BS10 enlarge their coverage areas, compared to the starcase. This
occurs because these SCs are far from the eNB, and multi-hop topology allows
them to route their traffic over shorter wireless links with smaller capacity losses,
compared to the star case (Fig. 3(e)). Hence, there are two main factors affecting
the coverage areas (and potentially, the system performance) in such wireless back-
haul networks: (topology) multi-hop backhauling might reduce the available BH
capacity for an SC, because of other loaded SCs sharing links with it; (location) the
higher theη,r0 the worse the capacity loss over a dedicated, direct backhaul link.

Finally, in Fig. 4(a), 4(b), 4(c) we depict the optimal UL user-associations in
the corresponding under-provisioned scenarios. We notice similar behavior as in
the DL.
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Figure 4: Coverage snapshots with optimal associations in the UL scenarios.

As backhaul networks become increasingly complex, e.g. “mesh” topologies,
each BS hasmultiplepossible routing paths to follow, beyond what is shown in the
figures (we remind the reader that the above shown topologies are simply thegiven
spanning routing trees). The above observations thus underline the shortcomings
of predetermined, Layer 2 (L2) backhaul routing mechanisms, and call for a joint
optimization of user-association on the radio access network along with dynamic,
Layer 3 (L3) backhaul routing (see Section 5).
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(b) UL (global) user throughput.

Figure 5: Mean throughputs overall all users in the network.

User performance.Fig. 5(a), 5(b) depict theaverageDL and UL user through-
puts, as a function of the backhaul capacity constraintCh, on different scenarios.
Generally, asCh drops, the mean throughputs are decreased, since users are handed
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over to (potentially far-away) macro BSs, causing performance degradation. Inter-
estingly, the slope of the dropping rate becomes more steep for lower values of
Ch, due to the logarithimic capacity formula chosen in assumption (A.3). Also,
asCh increases, the average throughputs “converge” to the value corresponding
to a provisioned backhaul network. Note that the average UL throughput conver-
gences more quickly, compared to the DL. This happens due to the asymmetry
between the DL and UL traffic demand on the radio access network: the UL one
that is much lower, mainly due to the asymmetry between the transmission powers
of BSs and UEs, as well as different file sizes assumed in each direction.Beyond
this point, the UL backhaul resources will be underutilized. This calls for aflexible
TDD duplexing scheme, that will dynamically distribute the backhaul resources
accordingly, for example by giving more backhaul resources to DL when the UL
demand is already satisfied (e.g. the eIMTA scheme [35]). Finally, in the wired
backhaul links case, star topology is always slightly better than the tree, whereas
in the wireless the opposite, as explained earlier.

Table 2: Mean throughp. for handed-over users (in Mbps).

Topology Ch = 50 Ch = 250 Ch = 500(Mbps)

DL and UL thr.: Star-Wired 1.1 and 0.2 3.1 and 1.6 4.1 and X
DL and UL thr.: Tree-Wired 0.6 and 0.1 2.4 and 0.7 3.2 and X
DL and UL thr.: Tree-Wirel. 0.2 and 0.03 1.7 and 0.07 2.1 and 0.15
DL and UL thr.: Star-Wirel. 0.1 and 0.001 1.4 and 0.05 1.7 and 0.02

One could notice that user throughputs drop slightly on theCh constraint, e.g.
in a wired-star topology ifCh drops500 → 50 Mbps (10 times), the mean user
throughput only drops15 → 6 Mbps (∼ 3 times). This is due to the fact that,
under-provisioned backhaul links do not affect the whole network, but specific
groups of users associated to the cells that suffer from low backhaul capacity. To
better illustrate this, in Table 2 we show the average throughput of thehanded-over
users, as a function ofCh. Indeed, their performance is severely affected: for the
same scenario, their DL throughput drops all the way to1.1 Mbps (∼ 15 times).
(In scenarios with no handovers, we mark the respective table entry with anX.)

Network Performance.Turning out attention to network-related performance,
Fig. 6(a) considers spectral efficiency (bit/s/Hz), normalizedby the maximum
corresponding value when the network is provisioned. Load-balancing(“Utiliza-
tion”) efficiency is further considered in Fig. 6(b) in terms of the MSE metric,
described earlier. Both efficiencies converge to1 as the network gets provisioned.
Low Ch values will push users to handover to far-away BSs, and this will po-
tentially decrease theirSINR (spectral efficiency decrease), and create steep dif-
ferences between BSs loads, e.g. by congesting macro BSs and under-utilizing
the SCs (utilization efficiency decrease). Note that, the joint degradation ofthese
performances also impacts user performance negatively (e.g. user throughput), as
explained in assumption (A.7). Regarding spectral efficiency, more specifically,
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Figure 6: Downlink Network Efficiencies.

although in the wired scenario, star topology is always better compared to thetree,
in the wireless scenario this is not the case. For low values ofCh, the star topology
is worse, due to the higher capacity loss of the long and direct links. However, as
Ch is increased, and some links start becoming provisioned in the star topology,
the capacity loss cost due to the long wireless links in a star topology, is dominated
from the capacity cost due to multi-sharing links of the tree topology, by making
tree worse. We highlight that this trade-off can suggest different topologies as opti-
mal in different under-provisioned scenarios, and can affect different performance
metrics.

Table 3: Split Vs. Non-Split Improvements

Performance τ = 0 τ = 0.5 τ = 1

DL and UL Throughput 6% and 32% 4% and 35% 0% and 37%
DL and UL Spectr. Eff. 4% and 29% 3% and 31% 0% and 33%
DL and UL Uiliz. Eff. 7% and 34% 4% and 38% 0% and 41%

Split and non-split impact.Joint DL/UL association or “non-split” (described
in Section 2.3) is incapable of achieving optimal DL and UL performancesimulta-
neously, as DL/UL split is; using0 ≤ τ ≤ 1 we can trade-off which carries more
importance, though. Hence, we focus on comparing the split and non split: Table 3
illustrates the potentialperformance improvementsthat UL/DL split promises over
the non-split, in terms of various metrics, for variousτ . Indeed, the higher theτ
for the non-split scenario, the higher the emphasis on the DL (and less on the UL),
and so the higher the gain over the UL performance that split promises (the inverse
holds for lowτ ). We remark that split enhances UL performance considerably, e.g.
the average UL throughput is increased up to 37%. This is due to thedependency
that split generates between the DL and UL associations in the access network, that
often makes the DL the bottleneck (due to aforementioned asymmetry between the
peak rates). Thus, DL will often ”preempt” the backhaul constraint, andpotentially
(i) leave some UL resources unused, (ii) degrade UL performance.
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5 Discussion and Future work

In this section, we briefly discuss potential limitations of our framework, and
how to possibly extend it to address them.

Additional flow-types.In our framework, we assumed all flows to be best-
effort. Modern cellular networks will need to also considerdedicatedflows that are
subject to admission control, i.e., require resources for exclusive usage [27]. The
user QoS related to such flows is often captured with a blocking probability, which
could captured by a k-loss queueing system [26, 36]. The blocking probability
in such a system again depends on the channel quality tox (since this decides
how many resources must be allocated to satisfy a given performance requirement)
and the load of that BS (this decides the total resources remaining unused), as we
showed in [37]. Hence, one could introduce an additional term in the objective
related to dedicated flow performance, and attempt to derive an optimal policythat
takes both best effort and dedicated flows, as well as related access and backhaul
resources into account.

Dynamic TDD scheme.In our simulations we assume that the backhaul re-
sources are fixed, and equally distributed between the downlink and uplink(As-
sumption A.9). Interestingly, we showed that this scheme can result in rathersub-
optimal performance, and waste backhaul resources. The design of amore flexi-
ble TDD scheme, that distributesdynamicallythe backhaul resources between the
downlink and uplink dimension, can enhance the system performance.

Joint radio and L3 backhaul routing.Mesh backhaul topologies with multiple
available routing paths are expected to be the rule, rather than the exceptionin
future networks. Our assumption of fixed, L2 backhaul routing is restrictive, and
as we saw in the simulations also penalizes performance. It would be interesting to
consider choosing both the BS to associate to, as well as how traffic from this BS
is routed towards an aggregation point (L3 routing).

6 Conclusion

In this paper, we propose a user-association framework for future backhaul-
limited HetNets. We showed how different backhaul topologies and capacitylim-
itations affect the user and network performance, when one jointly considers the
access and backhaul resources. Initial simulation results corroboratethe correct-
ness of our framework, and reveal interesting tradeoffs mostly related tounder-
provisioned backhaul resources.
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