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Abstract

Cloud computing is a model for enabling ubiquitous and on-demand access
to a shared pool of configurable computing resources, and it has become the
main paradigm for computing, storage and many other applications. This thesis
addresses the problem of scheduling and pricing in cloud computing.

The first part of this thesis address the related scheduling problems. Given
the capacity of a cloud, an important objective is to improve its resource utiliza-
tion or efficiency so as to allow more tenants to be served, increasing the social
welfare or its revenue. Due to the ubiquity of batch data processing in cloud
computing, we consider a foundamental model in which a given set of batch
tasks is scheduled on multiple identical machines and each task is specified by
a value, a workload, a deadline and a parallelism bound. Within the parallelism
bound, the speedup is linear and the number of machines allocated to a task
can vary over time without affecting its workload, i.e., the speedup is linear.
For this model, we first give two core results : the definition of an optimal state
under which multiple machines could be utilized by a set of tasks with hard
deadlines, and, an algorithm achieving such a state.

The optimal utilization state plays a key role in the design and analysis of
scheduling algorithms (i) when several typical objectives are considered, such as
social welfare maximization, machine minimization, and minimizing the maxi-
mum weighted completion time, and, (ii) when the algorithmic design techniques
such as greedy and dynamic programming are applied to the social welfare maxi-
mization problem. As a result, we give four new or improved algorithms for the
above problems. In addition, we also introduce a new class of tasks : the spee-
dup is linear when a task is allocated a small number of machines, while the
speedup decreases when it is allocated more tasks ; this class is an extension of
the above task model. Further, we propose scheduling algorithms for makespan
minimization or social welfare maximization.

In the second part of this thesis, from the point of view of users, we consider
cost-efficient use of the computing resources from public clouds. Cloud providers
offer on-demand and spot instances (virtual machines) to users. The former are
sold at a fixed price and are always available. The latter are cheaper but sold
through dynamic pricing ; hence, their availability is uncertain over time. As a
result, a hybrid use of spot and on-demand instances is needed to guarantee
the quality of service. Furthermore, a user may also have a limited amount of
instances, called self-owned instances. In the instance allocation process, two
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Abstract

underlying theoretical questions are well addressed : to be cost-efficient, what
properties should be kept in the policy for allocating self-owned instances, and
what policy can maximize the utilization of spot instances after self-owned ins-
tances are used up, thus escaping unnecessary consumption of costly on-demand
instances. Based on this, we propose (near-)optimal parametric policies to al-
locating different types of instances among jobs ; further, we use the technique
of online learning to infer the optimal configuration parameters, including one
paramter characterizing the availability of spot instances. The effectiveness of
the proposed policies is also validated by extensive simulations.
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Chapter 1

Overview

There are three principal means of acquiring
knowledge available to us: observation of
nature, reflection, and experimentation.
Observation collects facts; reflection combines
them; experimentation verifies the result of
that combination. Our observation of nature
must be diligent, our reflection profound, and
our experiments exact. We rarely see these
three means combined; and for this reason,
creative geniuses are not common.

Denis Diderot

1.1 Background
This thesis addresses the related problems of scheduling and pricing in cloud

computing. Cloud computing is a model for enabling ubiquitous, on-demand
access to a shared pool of configurable computing resources. Cloud computing
and storage solutions provide users with various capabilities to store and process
their data in third-party data centers. It relies on the sharing of resources to
achieve coherence and economies of scale, similar to a utility (like the electricity
grid) over a network. Hence, it focuses on maximizing the effectiveness of the
shared resources. On the other hand, cloud computing allows users to avoid
upfront infrastructure costs and enables IT to more rapidly adjust resources
to meet fluctuating and unpredictable business demand. It has the advantages
of high computing power, cheap cost of services, high performance, scalability,
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CHAPTER 1. OVERVIEW

accessibility as well as availability and reduce the burden for users to deploy
and manage these computing infrastructure. Cloud providers mostly use a fixed
usage-based pricing, sometimes in association with a spot market to sell remain-
ing resources through auctions. This can lead to higher charges if users do not
adapt to the cloud pricing model. On the other hand, the design of appropri-
ate scheduling and pricing schemes for cloud resources is central to the cloud
computing field since utility maximization is often one of the most important
concerns for cloud providers.

In the scheduling aspect, the following questions are always worth concern-
ing. Given the fixed capacity of a cloud and the scheduling objectives such
as satisfying the deadline requirement, how could the cloud serves as many
tenants as possible or maximizes the sum of values of jobs completed by the
deadlines, therefore increasing the revenue of cloud providers? In scheduling
theory, these questions correspond to the machine minimization and social wel-
fare maximization problems. Given the cloud capacity, how could the cloud
optimize the scheduling objectives such as minimizing the maximum lateness
of jobs? These scheduling problems are the key to the revenue management of
cloud providers and the improvement of quality of service of users, and consti-
tute the main questions to be addressed in this thesis. In the pricing aspect,
the problem that concerns us is that, given the current pricing models such
as the one in Amazon EC2, how could an organization can acquire computing
resources from the cloud in a cost-effective way.

1.2 An Overview of the Thesis
In this section, we briefly introduce the structure of this thesis.

Part I. In the first part of this thesis, we lay some theoretical foundation on
the problem of scheduling in cloud computing.
— Chapter 2

In this chapter, we introduce the importance of scheduling problems in
cloud computing and the model of tasks to be considered in this scenario.

— Chapter 3
In this chapter, we identify the optimal resource utilization state of multi-
ple machines on which a set of tasks with hard deadlines is to be scheduled;
further, we propose a scheduling algorithm that can achieve such an opti-
mal state.

— Chapter 4
The results in Chapter 3 provide a conceptual tool to enable proposing
new analysis and design of algorithms and improving existing algorithms
under various scheduling objectives. In particular, we obtain the following
algorithmic results:
(i) an improved and optimal greedy algorithm for social welfare maxi-
mization (i.e., maximizing the sum of values of tasks completed by their

2
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deadlines),
(ii) the first exact dynamic programming algorithm for social welfare max-
imization with a pseudo-polynomial time complexity,
(iii) an exact algorithm for machine minimization (i.e., minimizing the
number of machines needed to produce a feasible schedule of a set of tasks
such that each task is completed by its deadline),
(iv) an improved algorithm with the objective of minimizing the maximum
weighted completion time.

— Chapter 5
In this chapter, we introduce a variant of the above type of tasks. Through
algorithmic analysis, we propose scheduling algorithms respectively for
makespan minimization and for maximizing the sum of values of tasks
completed by a deadline.

Part II. In the second part of this thesis, we consider how to acquire computing
resource from the cloud in a cost-effective way.
— Chapter 6

In this chapter, we introduce the pricing models in the current cloud mar-
ket such as the ones in Amazon Elastic Cloud Compute (EC2); two pur-
chase options are considered: cheap spot and costly on-demand instances
(virtual machines). Users may also have their own instances, referred to
as self-owned instances.

— Chapter 7
In this chapter, we propose (near-)optimal parametric policies to allocat-
ing different types of instances among jobs 1. Facing the dynamic of spot
instance’s prices and the unknown statistics of job’s characteristics, an
online learning approach is applied to estimate the cost-optimal configu-
ration parameters of policies.

— Chapter 8
In this chapter, we evaluate the effectiveness of the proposed parametric
policies through extensive simulations, in particular that they achieve a
cost reduction of up to 64.51% when spot and on-demand instances are
considered and of up to 43.74% when self-owned instances are considered,
compared to previously proposed or intuitive policies.

1.3 Our Contributions
We further elaborate the main contributions of this thesis. In the first part,

we consider two types of tasks. The first type of tasks in Chapters 2-4 is assumed
to be malleable and work-preserving, i.e., the number of machines assigned to a
task can vary within a parallelism bound during the execution (which brings the

1. In this thesis, we use "jobs" and "tasks" interchangeably.

3
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operation of preempting the execution of a task), and the task’s workload does
not increase with the number of machines assigned to it. The main contrition
of this thesis for scheduling this type of tasks has been pointed out when we
introduce Chapters 3-4 above.

In Chapter 5, motivated by recent benchmark studies, we introduce the
notion of (δ, k)-monotonic tasks under which tasks are moldable and for every
task Tj that is assigned p processors, we have that
(i) when p is small and ranges in [1, δ], its workload Dj,p remains constant

and the speedup is linear;
(ii) when p is large and ranges in [δ+1, k], the workload Dj,p is non-decreasing

as p increases while its execution time first decreases and then even begins
to increase once p exceeds some threshold;

(i) the maximum number of processors that is allowed to assigned to Tj is k.
The (δ, k)-monotonic tasks are the second type of tasks we considered in this
thesis; here, "moldable" means that a task can be allocated a flexible number of
machines in [1, k]; however once specified before the task’s execution this num-
ber cannot change throughout its execution. For the second type of tasks, we
propose a scheduling algorithm to minimize the makespan, whose performance
depends on the value of δ; in realistic scenarios, δ can ranges from 5 to 64 and
its approximation ratio approximately ranges from 4

3 to 11
10 ; here, given any in-

put of tasks, if the approximation ratio of an algorithm is ρ, the makespan that
this algorithm achieves is always no greater than ρ times the makespan of an
optimal algorithm. As a by-product, we also propose a scheduling algorithm to
maximize the sum of values of tasks completed by a deadline.

In the second part of this thesis, we consider the problem of cost-effectively
utilize self-owned instances and the instances from public clouds. In the instance
allocation process, two underlying theoretical questions are well addressed: to
be cost-efficient, what properties should be kept in the policy for allocating self-
owned instances, and what policy can maximize the utilization of spot instances
after self-owned instances are used up, thus escaping unnecessary consumption
of costly on-demand instances. Based on this, we propose (near-)optimal para-
metric policies to allocating different types of instances among jobs. The effec-
tiveness of the proposed policies is also validated by extensive simulations. In
this thesis, the jobs to be processed are assumed to be independent malleable
jobs. It is worth noting that the two theoretical questions will also be a key to
the extension of the results of this thesis to the case for jobs with precedence
constraints.

4
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Theoretical Foundation for
Cloud Scheduling
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Chapter 2

Scheduling in Cloud
Computing

The definition of terms is the beginning of
wisdom.

Socrates

2.1 Background
Cloud computing has become the norm for a wide range of applications and

batch processing acts as one of the most significant computing paradigms [1].
Applications such as web search index update, monte carlo simulations and big-
data analytics require executing a new type of parallel tasks on clusters, termed
malleable tasks. Two basic features of malleable tasks are about workload and
parallelism bound. There are multiple machines, and, throughout the execu-
tion, the number of machines assigned to a task can vary over time within the
parallelism bound but its workload keeps constant regardless of the number of
used machines [2], [3]; here, the offline batch scheduling problems with indepen-
dent tasks are considered. Based on this, many efforts are further devoted to
its online version [4]–[6] and its extension in which each task contains several
subtasks with precedence constraints [7], [8]. In practice, for better efficiency,
companies such as IBM have integrated these smart scheduling algorithms for
various time metrics into their batch processing platforms [8], [9].

In scheduling theory, the above task model can be viewed as an extension
of the classic model of preemptive tasks that can only be executed on one
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machine, i.e., their parallelism bound is one. In the past, the related problems of
scheduling preemptive tasks on a single machine have been extensively studied
[10], [11]. When each task has to be completed by some deadline, the previous
results from the special single machine case have already implied that the state
of optimally utilizing machines plays a key role in the design and analysis of
scheduling algorithms for several objectives [11]. In particular, the famous EDF
(Earliest Deadline First) rule can achieve the optimal resource utilization state,
that is, given a set of tasks, if there is a feasible schedule of these tasks with
deadlines on a machine, the EDF rule can always produce a feasible schedule.

Many applications of the EDF rule have been found to design, e.g., (i) a
schedule that achieves the optimal resource utilization state where each task
is additionally associated with a release time [12], (ii) an exact algorithm for
minimizing the maximum task lateness (i.e., task’s completion time minus due
date) [13], and (iii) an exact algorithm for tasks with deadlines and release
times to minimize the total weighted number of tardy tasks (i.e., tasks missing
their deadlines) [14]. Moreover, the EDF rule is also fundamental in real-time
systems where the scheduling feasibility is analyzed [15].

Similarly, we believed that, a schedule that achieves such an optimal resource
utilization state is also fundamental in scheduling malleable tasks and can bene-
fit the design and analysis of scheduling algorithms (i) under various objectives,
or (ii) when different algorithmic design techniques such as greedy and dynamic
programming are applied for the same objective. Here, the underlying intu-
ition is that, if the resource utilization state is not optimal in an algorithm,
its performance can be improved by utilizing the machines optimally, allowing
more tasks to be completed or reducing the overall completion times of tasks.
All these considerations motivated us to develop a corresponding theoretical
framework in this thesis.

We note that, before our work, Jain et al. considered scheduling independent
malleable tasks to maximize the social welfare (i.e., the sum of values of tasks
completed by their deadlines) and proposed a greedy algorithm that achieves a
performance guarantee C−k

C · s−1
s [3]; here, C is the number of machines, k is

the maximum parallelism bound of all tasks, s is the minimum slackness of all
tasks where each task’s slackness is defined to be the ratio of its deadline to its
minimum execution time (when a task is always allocated the maximum number
of machines throughout the execution). Intuitively, s characterizes the resource
allocation urgency or flexibility, e.g., s = 1 means that, in order not to miss
the deadline, a task has to always utilize the maximum number of machines it
could utilize from the beginning to its deadline. k is a system parameter and is
assumed to be finite [16].

2.2 Outline of Results
In the following, we summarize the main results of this thesis for scheduling

malleable tasks [17], [18].
Core result (Chapter 3). Our core result is to identify a sufficient and nec-
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essary condition under which a set of independent malleable tasks could be all
completed by their deadlines on C machines, referred to as boundary condition.

In particular, by understanding the basic constraints when scheduling mal-
leable tasks, we identify and define a state in which C machines can be said
to be optimally utilized by a set of tasks with deadlines in terms of resource
utilization. Then, we propose an optimal scheduling algorithm LDF(S) (Latest
Deadline First) that achieves such an optimal state. The LDF(S) algorithm has
a polynomial time complexity of O(n2) and is different from the EDF algorithm
that gives an optimal schedule in the single-machine case. Here, the maximum
deadline of tasks is assumed to be finitely bounded.
Applications (Chapter 4). The above core results have several applications to
propose new or improved algorithmic design and analysis for different scheduling
objectives. The scheduling objectives that are separately addressed in this thesis
include:

(a) social welfare maximization: maximize the sum of values of tasks com-
pleted by their deadlines;

(b) machine minimization: minimize the number of machines needed to pro-
duce a feasible schedule for a set of tasks such that each task is completed
by its deadline;

(c) maximum weighted completion time minimization: minimize the maxi-
mum weighted completion time of tasks.

Here, the first and third objectives have been studied in [2], [3], [8]. The second
objective that involves the optimal utilization of machines has been considered
for other types of tasks [19] but we are the first to consider it for malleable
tasks. After applying the core results above, we obtain the following algorithmic
results:

(i) an improved greedy algorithm with a performance guarantee s−1
s for social

welfare maximization with a time complexity O(n2);
(ii) the first exact dynamic programming algorithm for social welfare maxi-

mization with a pseudo-polynomial time complexityO
(
max

{
n · dL · CL, n2}),

where L is the number of deadlines, D and d are the maximum workload
and deadline of tasks;

(iii) the first exact algorithm for machine minimization with a time complexity
O(n2, L · n · logn);

(iv) a polynomial time (1+ε)-approximation algorithm for maximum weighted
completion time minimization.

The greedy algorithm of [3] and ours represent a class of greedy algorithms.
In this class, the tasks are considered in the decreasing order of their marginal
values (i.e., the ratio of a task’s value to its size); then, if the task being consid-
ered could be fully completed by its deadline under the currently idle machines
over time, it will be accepted and fully allocated according to a certain allocation
algorithm; otherwise, it will be rejected. We further show that

9
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— for social welfare maximization, s−1
s is the best possible performance guar-

antee that this class of greedy algorithms could achieve.
— as a result, the proposed greedy algorithm of this thesis is the best possible

among this class of greedy algorithms.
The second algorithm for social welfare maximization can work efficiently

when L is small since its time complexity is exponential in L. However, this
may be reasonable in a machine scheduling context. In scenarios like [7], tasks
are often scheduled periodically, e.g., on an hourly or daily basis, and many tasks
have a relatively soft deadline (e.g., finishing after four hours instead of three
will not trigger a financial penalty). Then, the scheduler can negotiate with
the tasks and select an appropriate set of deadlines {τ1, τ2, · · · , τL}, thereafter
rounding the deadline of a task down to the closest τi (1 ≤ i ≤ L). By reducing
L, this could permit to use the dynamic programming (DP) algorithm rather
than GreedyRLM in the case where the slackness s is close to 1. With s close
to 1, the approximation ratio of GreedyRLM approaches 0 and possibly little
social welfare is obtained by adopting GreedyRLM while the DP algorithm can
still obtain the almost optimal social welfare.
Technical Difference. The second algorithm can be viewed as an extension of
the pseudo-polynomial time exact algorithm in the single machine case [10] that
is also designed via the dynamic programming procedure. However, before our
work, how to enable this extension to malleable tasks was not clear as indicated
in [2], [3]. This is mainly due to the lack of a notion of the optimal state of
machines being utilized by malleable tasks with deadlines and the lack of an
algorithm that achieves such a state. In contrast, the optimal state in the single
machine case can be achieved by the EDF algorithm. The core results of this
thesis are the enabler of the application of a DP procedure to the scenario of
malleable tasks.

The way of applying the core results to a greedy algorithm is less obvious
and in the single machine case there is no corresponding algorithm to hint its
role in algorithmic design. For the above class of greedy algorithms, we manage
to give a new algorithm analysis, figuring out what resource allocation features
of tasks can benefit and determine the performance of such a greedy algorithm.
This analysis is an extended analysis of the greedy algorithm for the knapsack
problem where some items are chosen to be packed into a knapsack and each item
is defined by its size and value [20]; it does not rely on the dual-fitting technique
on which the algorithm in [3] is built. Here, the problem could be viewed
as an extension of the knapsack problem where each item has two additional
dimensions of constraints: a time window in which an item could be placed, i.e.,
a deadline, and the maximum width of this window, i.e., a parallelism bound.
Two of the most important algorithms in the knapsack problem are either based
on the DP technique or of greedy type that also considers items by their marginal
values [20]; we give in this thesis their counterparts in the scenario of malleable
tasks.

In the construction of the greedy and optimal scheduling algorithms, we are
inspired by the algorithm in [3]. After our definition of the optimal resource
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utilization state and a new analysis of the above class of greedy algorithms, we
found that the greedy algorithm in [3] could achieve such an optimal state from
the maximum deadline of tasks d to some earlier time slot t. However, this
is achieved by guaranteeing the existence of a time slot t′ earlier than t such
that the number of available machines at t′ is ≥ k, which leads a suboptimal
utilization of resources in some time interval. In our algorithm, we only require
t′ to be such that the number of available machines at t′ is ≥ 1, which finally
leads to an optimal resource utilization. More details could be found in the
remarks of Chapter 3.2.

The above third and fourth algorithms are obtained by respectively applying
the above core results to a binary search procedure and the related results in
[8].

2.3 Related Work
Now, we introduce the related works.
In this thesis, we consider the basic scenario of offline scheduling independent

malleable tasks [2], [3]; its variants have also been considered so far [4], [5], [7].
In these previous works, the linear programming approach is applied to design
and analyze algorithms where the objective of maximizing the social welfare is
addressed 1. In [2], Jain et al. proposed an algorithm with an approximation
ratio 1

α via deterministic rounding of linear programming where α =
(

1 + C
C−k

)
·

(1 + ε). Subsequently, Jain et al. [3] proposed a greedy algorithm GreedyRTL
and used the dual-fitting technique to derive an approximation ratio C−k

C ·
s−1
s . In

[7], Bodik et al. considered an extension of the basic scenario of this thesis, i.e.,
DAG-structured malleable tasks, and, based on randomized rounding of linear
programming, they proposed an algorithm with an expected approximation ratio

1
α(λ) for every λ > 0, where α(λ) = 1

λ · e
− 1
λ ·
[
1− e−

(1−1/λ)C−k
2ωκ ·lnλ·(1− κ

C )
]
.

The online version of our scenario is considered in [4], [5] where independent
tasks arrive over time. Again based on the dual-fitting technique, two weighted
greedy algorithms are proposed respectively for non-committed and committed
scheduling: the first algorithm achieves a competitive ratio 1

β(s) where β(s) =

2 + O
(

1
( 3√s−1)2

)
and s > 1 [3]; the second algorithm achieves a competitive

ratio 1
β′(s) where β′(s) = β(s·ω·(1−ω))

ω·(1−ω) , ω ∈ (0, 1), and s > 1
ω·(1−ω) .

Methodologically, the works [2]–[5], [7] formulated their problem as an Inte-
ger Programming (IP) and relax the IP to a relaxed linear programming (LP).
The techniques in [2], [7] require to solve the LP to obtain a fractional opti-
mal solution where a task might be partially executed; then they manage to
round the fractional solution to an integer solution of the IP that corresponds
to an approximate solution to their original problem. In [3]–[5], the dual fitting
technique is applied and it first finds the dual of the LP and then construct a

1. We refer readers to [11], [21] for more details on the general techniques to design schedul-
ing algorithms.
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feasible algorithmic solution X to the dual in some greedy way. This solution
corresponds to a feasible solution Y to their original problems, and, due to the
weak duality, the value of the dual under the solution X (expressed in the form
of the value under Y multiplied by a parameter α ≥ 1) will be an upper bound
of the optimal value of the IP, i.e., the optimal value that can be achieved in
the original problem. Hence, the approximation ratio of the algorithm involved
in the dual is 1

α ; it is a lower bound of the ratio of the actual value obtained by
the algorithm to the optimal value.

In addition, Nagarajan et al. [8] considered DAG-structured malleable tasks
and proposed two algorithms with approximation ratios of 6 and 2 respectively
for the objectives of minimizing the total weighted completion time and the
maximum weighted lateness of tasks. Nagarajan et al. showed that optimally
scheduling deadline-sensitive malleable tasks in terms of resource utilization is
a key to the solutions to scheduling for their objectives. In particular, seeking a
schedule for DAG tasks can be transformed into seeking a schedule for tasks with
simpler chain-precedence constraints; then whenever there is a feasible schedule
to complete a set of tasks by their deadlines, Nagarajan et al. proposed a non-
optimal algorithm where each task is completed by at most 2 times its deadline
and give two procedures to obtain near-optimal completion times of tasks in
terms of the above two objectives.

2.4 Problem Description
Now, we formally describe the task model and the objectives of scheduling

tasks on machines.
There are C machines and a set of n tasks, denoted by T = {T1, T2, · · · , Tn}.

Every task Ti is specified by several characteristics: (1) value vi, (2) demand (or
workload) Di, (3) deadline di, and (4) parallelism bound ki. The time horizon
is divided into d consecutive time slots: {1, 2, · · · , d}, where d is the maximum
deadline of tasks, i.e., d = maxTi∈T {di}, and assumed to be finitely bounded;
each slot contains a fixed number of minutes. A task Ti can only utilize the
machines located in time interval [1, di]. The parallelism bound ki limits that Ti
can be simultaneously executed on at most ki machines. Let k be the maximum
parallelism bound of tasks, i.e., k = maxTi∈T {ki}; here, ki is a configuration
parameter of tasks and k is assumed to be finite [16]. An allocation of machines
to a task Ti is a function

yi : [1, di]→ {0, 1, 2, · · · , ki},

where yi(t) is the number of machines allocated to Ti at a slot t ∈ [1, di]. In
this model, Di, di ∈ Z+ for all Ti ∈ T . Denote by W (t) =

∑
Ti∈T yi(t) the

system’s workload at a slot t (i.e., the number of allocated machines at t), and
by W (t) = C −W (t) its complementary (i.e., the number of idle machines at
t). We say that slot t is fully utilized if W (t) = 0, and is not fully utilized if
W (t) > 0.
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Given the model above, the following three scheduling objectives are consid-
ered separately:
— The first objective is social welfare maximization and it aims to choose

an a subset S ⊆ T and produce a feasible schedule of S on C machines
so as to maximize the social welfare

∑
Ti∈S vi (i.e., the sum of values of

tasks completed by deadlines); here, the value vi of a task Ti is gained if
and only if it is fully allocated by the deadline, i.e.,

∑
t≤di yi(t) ≥ Di, and

partial execution of a task yields no value.
— The second objective is machine minimization; it ignores the values of tasks

and aims to find the minimum number of machines needed to produce a
feasible schedule of all tasks T on C machines where the parallelism and
deadline constraints are satisfied.

— The third objective is minimizing the maximum weighted lateness of all
tasks, i.e., maxTi∈T {vi · (ti − di)}, where ti is the completion time of Ti.

In this thesis, we aim to propose good scheduling algorithms. Depending on
the objective of an algorithm, its performance is indicated by the makespan, the
social welfare, or the maximum weighted lateness of all tasks that it achieves.
Given any input of tasks, if an algorithm always produces a schedule of tasks
on m machines with the optimal performance, it is optimal. If the optimal
algorithm cannot be obtained, the algorithm’s quality could be measured by
a performance ratio, i.e., the ratio of the proposed algorithm’s performance to
the performance of an ideally optimal algorithm (that is unknown to us); this
ratio is usually referred to as the approximation ratio [21]. Formally, we denote
by A(T ) and OPT (T ) respectively the performance of an algorithm and the
optimal one, and an algorithm is called a ρ-approximation algorithm if there
exists a value ρ such that, for an arbitrary set T , (i) when a minimization
problem is considered,

A(T )
OPT (T ) ≤ ρ (ρ ≥ 1),

and (ii) when a maximization problem is considered,
A(T )

OPT (T ) ≥ ρ (0 ≤ ρ ≤ 1).

In this thesis, our final goal is to propose scheduling algorithms that achieve
approximation ratios as close to 1 as possible.

Furthermore, we denote by [l] and [l]+ the sets of integers {0, 1, · · · , l} and
{1, 2, · · · , l} respectively. Let leni =

⌈
Di
ki

⌉
and it could be viewed as the (mini-

mum) execution time of Ti when it always utilizes ki machines throughout the
execution. The deadlines of all tasks of T constitute a set {τ1, τ2, · · · , τL}, where
L ≤ n, τ1, τ2, · · · , τL ∈ Z+, and τ1 < τ2 < · · · < τL = d; in other words, given
any task Ti ∈ T , we have di ∈ {τ1, τ2, · · · , τL}. Let Di = {Ti,1, Ti,2, · · · , Ti,ni}
denote the set of tasks with deadline τi (i ∈ [L]+), where |Di| = ni and∑L
i=1 ni = n. We assume that the demand of each task is an integer. Let

D = maxTi∈T {Di} be the demand of the largest task. The notation of this
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section is used in Chapters 3 and 4 and summarized in Table 2.1. Throughout
Chapters 3 and 4, we use i, j, m, l, or m′ as subscripts to index the element of
different sets such as tasks and use t or t to index a time slot.

Table 2.1 – Symbol Interpretation

Notation Explanation
C the total number of machines
T a set of tasks to be scheduled on C machines
Ti a task in T

Di, di, vi the workload, deadline, and value of a task Ti

ki

the parallelism bound of Ti, i.e., the maximum number of
machines that can be allocated to and utilized by Ti

simultaneously

yi(t)
the number of machines allocated to Ti at a slot t where

yi(t) ∈ {0, 1, · · · , ki} and set all yi(t) to 0 initially

W (t) the total number of machines that are allocated out to the
tasks at t, i.e., W (t) =

∑
Ti∈T yi(t)

W (t) the total number of machines idle at t, i,e., W (t) = C −W (t)

leni

the (minimum) execution time of a task Ti when it always
utilizes ki machines throughout the execution, i.e.,

leni =
⌈
Di
ki

⌉
d, D the maximum deadline and workload of all tasks of T , i.e.,

d = maxTi∈T di and D = maxTi∈T Di

{τ1, · · · , τL}
the set of the deadlines di of all tasks Ti of T , where

0 = τ0 < τ1 < · · · < τL = d

Di
all the tasks {Ti,1, Ti,2, · · · , Ti,ni} of T that have a deadline τi,

1 ≤ i ≤ L
[l] a set of integers {0, 1, · · · , l}

[l]+ a set of integers {1, 2, · · · , l}
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Chapter 3

Optimal Schedule

Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing

In this chapter, we identify a state under which C machines can be said to
be optimally utilized by a set of tasks. We then propose a scheduling algorithm
that achieves such an optimal state.

3.1 Optimal Resource Utilization State
All tasks are denoted by a set T ; given any Ti ∈ T , its deadline di ∈ {τ1, τ2,

· · · , τL} where τ1 < τ2 < · · · < τL. We denote by S ⊆ T an arbitrary subset
of T ; all tasks of S with a deadline τl are denoted by Sl where l ∈ [L]+. In
this section, we define the maximum amount of workload of S that could be
processed in a fixed time interval [τm + 1, τL] on C machines for all m ∈ [L− 1],
where τL = d, i.e., the maximum deadline of tasks.

Firstly, we define the maximum amount of resource, denoted by λm(S),
that could be utilized by S in [τL−m + 1, τL] in an idealized case where there is
an indefinite number of machines, i.e., C = ∞, for all m ∈ [L]+. Trivially, we
set τ0 = 0.

To define this, we clarify the maximum amount of resource that an individual
task Ti can utilize in [τL−m + 1, τL]. The deadline and parallelism constraints
imply that:
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Figure 3.1 – The green areas denote the maximum demand of Ti that need or
could be processed in [τL−m + 1, τL].

— Ti can only utilize the machines in [1, di],
— Ti can only utilize at most ki machines simultaneously at every slot.

The tasks with di ≤ τL−m cannot be executed in the interval [τL−m+1, τL]. Let
us consider a task Ti with di ∈ [τL−m + 1, τL]. The number of slots available
in [τL−m + 1, di] is di − τL−m in the discrete case, and, also recall that leni the
(minimum) execution time of Ti when it always utilizes the maximum number
ki of machines throughout the execution. In the interval [τL−m + 1, τL], the
maximum resource that is available for processing Ti is (di − τL−m) · ki and, as
illustrated in Fig. 3.1, we have that
— in the case that leni ≤ di− τL−m, the maximum demand of Ti that needs

to be processed in [τL−m + 1, τL] is Di, i.e., the green area in the left
subfigure; here, we have (di − τL−m) · ki ≥ leni · ki ≥ Di.

— in the case that leni > di − τL−m, the maximum demand of Ti that can
be processed in [τL−m + 1, τL] is (di − τL−m) · ki, i.e., the green area in
the right subfigure; here, we have (di − τL−m) · ki < leni · ki, leading to
(di − τL−m) · ki < Di since leni =

⌈
Di
ki

⌉
, and di, ki, τL−m are integers.

As a consequence of the observation above, we make the following definition.

Definition 1. Given an arbitrary task Ti ∈ S, we denote by βi,m the maximum
workload of Ti that could be processed in [τL−m + 1, τL] and it is defined as
follows:
— βi,m ← 0, if di ≤ τL−m (i.e., Ti ∈ S1 ∪ · · · ∪ SL−m);
— if di ≥ τL−m + 1 (i.e., Ti ∈ SL−m+1 ∪ · · · ∪ SL), as illustrated in Fig. 3.1,

— βi,m ← Di, if leni ≤ di − τL−m;
— βi,m ← ki · (di − τL−m), otherwise.

λm(S) equals the sum of the maximum workload of every task in S that
could be executed in [τL−m + 1, τL] and is defined as follows.

Definition 2. Initially, set λm(S) to zero for all m ∈ [L]+. In the case where
C =∞ (i.e., the capacity constraint is ignored), λm(S) is defined as follows:

λm(S)← λm(S) + βi,m, for every task Ti ∈ S.
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Secondly, built on Definition 2, we move to the case where C is finite and
define the maximum amount of resource that can be utilized by S on C machines
in every [τL−m + 1, τL], denoted by λC

m(S), where m ∈ [L]+.

Figure 3.2 – Derivation from the definition λm(S) to λCm(S).

To help readers grasp the intuition in the process of deriving λCm(S) from
λm(S), we first illustrate this process in the case where L = 2 with the support
of Fig. 3.2. Fig. 3.2 (left) illustrates the parameter λm(S) in Definition 2, where
the green area denotes λ1(S) and the green and blue areas together denote
λ2(S). As illustrated in Fig. 3.2 (right), due to the capacity constraint that C
is finite, we have that
(i) C · (τ2 − τ1) is the maximum possible workload that could be processed

in [τ1 + 1, τ2] due to the capacity constraint, and λ1(S) is the maximum
available workload of S that needs to be processed in [τ1 + 1, τ2] due to
the deadline and parallelism constraints. As a result, on C machines, the
maximum workload λC1 (S) of S that can be processed in [τ1 + 1, τ2] is the
size of the green area in [τ1 + 1, τ2], i.e.,

λC1 (S) = min{C · (τ2 − τ1), λ1(S)} = C · (τ2 − τ1).

(ii) After λC1 (S) workload of S has been processed in [τ1 +1, τ2], the remaining
workload of S that needs to be processed in [1, τ1] is λ2(S) − λC1 (S); the
maximum workload that could be processed in [1, τ1] is C · τ1 due to the
capacity constraint, with min{C · (τ1 − τ0), λ2(S) − λC1 (S)} being the
maximum remaining workload of S that could be processed in [1, τ1]. As
a result, λC2 (S) is defined as follows:

λC2 (S) = λC1 (S) + min
{
C · (τ1 − τ0), λ2(S)− λC1 (S)

}
= min {C · (τ2 − τ0), λ2(S)}
= λ2(S),

i.e., the size of all colored areas in [τ0 + 1, τ2].
Generalizing the above process, we derived a recursive definition of λCm(S).

Definition 3. In the case where C is finite (i.e., with the capacity constraint),
for all m ∈ [L], the maximum amount of resource λCm(S) that could be utilized
by S in [τL−m + 1, τL] is defined by the following recursive procedure:
— set λC0 (S) to zero trivially;
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— set λCm(S) to the sum of λCm−1(S) and
min

{
λm(S)− λCm−1(S), C · (τL−m+1 − τL−m)

}
.

Now, we give some further explanation of Definition 3 where the amount of
resource allocated to S in some slot interval equals the amount of the workload
of S processed in this interval. Recall that λm(S) denotes the maximum work-
load S that could be processed in [τL−m + 1, τL] in the case of considering the
parallelism and deadline constraints but ignoring the capacity constraint. With
all these three constraints considered, when the maximum workload of S that
can be processed in [τL−m+1 + 1, τL] is assumed to be λCm−1(S), we have that
— if λm(S) − λCm−1(S) > C · (τL−m+1 − τL−m), the C machines are un-

able to process the remaining λm(S) − λCm−1(S) workload in [τL−m +
1, τL−m+1] and the maximum workload that can be processed here is
C ·(τL−m+1 − τL−m), leading to λCm(S) = λCm−1(S)+C ·(τL−m+1 − τL−m).

— otherwise, the C machines are able to process the remaining λm(S) −
λCm−1(S) workload in [τL−m + 1, τL−m+1], leading to λCm(S) = λm(S).

We finally state our definition that formalizes the concept of optimal utilization
of C machines by a set S of malleable tasks with deadlines:

Definition 4 (Optimal Resource Utilization State). We say that C machines
are optimally utilized by a set of tasks S, if, for all m ∈ [L]+, S utilizes λCm(S)
resources in [τL−m + 1, d] on C machines.

We define µCm(S) =
∑
Ti∈S Di−λCL−m(S) as the remaining (minimum) work-

load of S that needs to be processed after S has maximally utilized C machines
in [τm + 1, τL] for all m ∈ [L− 1].

Lemma 1 (Boundary Condition). If there exists a feasible schedule of S on C
machines, the following inequality holds for all m ∈ [L− 1]:

µCm(S) ≤ C · τm,

which is referred to as boundary condition.

Proof. Recall the definition of λCL−m(S) in Definition 3. After S has maximally
utilized the machines in [τm + 1, d] and been allocated the maximum amount
of resource, i.e., λCL−m(S), if there exists a feasible schedule for S, the total
amount of the remaining demands of S to be processed should be no more than
the capacity C · τm in [1, τm].

Lemma 2. Let Ŝ denote an arbitrary subset of S, i.e., Ŝ ⊆ S. If S satisfies
the boundary condition, then, Ŝ also satisfies the boundary condition.

Proof. Let us consider an arbitrary allocation to S such that for allm ∈ [L]+ the
total allocation of S in [τL−m + 1, τL] is λCm(S); we let λ̂Cm

(
Ŝ
)
denote the total

allocation of Ŝ in [τL−m + 1, τL] and define µ̂CL−m
(
Ŝ
)

=
∑
Ti∈S Di − λ̂Cm

(
Ŝ
)
,

where Ŝ ⊆ S.
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Since S satisfies the boundary condition, we have µC0 (S) =
∑
Ti∈S Di −

λCL (S) ≤ 0, leading to λCL (S) =
∑
Ti∈S Di; so, in the allocation to S, all work-

load of S will be processed in [1, τL] and we further have that (i) µCL−m(S) =∑
Ti∈S Di − λCm(S) = λCL (S) − λCm(S) and the value of µCL−m(S) denotes the

total allocation of S in [1, τL−m] and (ii) similarly, the value of µ̂CL−m(Ŝ) de-
notes the total allocation of Ŝ in [1, τL−m], which leads to that µ̂CL−m

(
Ŝ
)
≤

µCL−m(S) ≤ C · τL−m since Ŝ ⊆ S. Since λCm
(
Ŝ
)
denotes the maximum work-

load of S that could be processed in [τL−m + 1, τL], we have that µCL−m
(
Ŝ
)

=∑
Ti∈Ŝ Di − λCm

(
Ŝ
)
< µ̂CL−m

(
Ŝ
)
≤ C · τL−m; the lemma thus holds.

As described in Definition 1, given m ∈ [L]+ and a task Ti ∈ T , the maxi-
mum workload of Ti that could be processed in [τL−m + 1, τL] is βi,m. In the
rest of this thesis, when we say that [τL−m + 1, τL] is optimally utilized by Ti,
it means that βi,m workload of Ti is processed in [τL−m + 1, τL]. When we say
that [τL−m + 1, τL] is optimally utilized by S, it means that λCm(S) workload of
S is processed in [τL−m + 1, d] on C machines.

Lemma 3. Let Ŝ ⊆ S, and Ti ∈ S − Ŝ. If λCm
(
Ŝ
)

workload of Ŝ and βi,m
workload of Ti are simultaneously processed in [τL−m + 1, τL] on C machines,
we have that [τL−m + 1, τL] is optimally utilized by Ŝ ∪ {Ti}.

Proof. It suffices to show that λCm
(
Ŝ ∪ {Ti}

)
≤ λCm

(
Ŝ
)

+βi,m. Let us consider

an allocation to Ŝ ∪ {Ti} such that its λCm
(
Ŝ ∪ {Ti}

)
workload is processed on

C machines in [τL−m+1, d]; we denote by α1 and α2 the workload of Ti and the
workload of Ŝ that are simultaneously processed in [τL−m + 1, d]; here, we have
βi,m ≥ α1. According to the meaning of λCm

(
Ŝ ∪ {Ti}

)
, we have that, after α1

workload of Ti has already been allocated on C machines in [τL−m + 1, d] in
advance, the maximum workload of Ŝ that could be processed in [τL−m+1, d] is
α2; in contrast, λCm

(
Ŝ
)
is the maximum workload of Ŝ that could be processed

on C machines in [τL−m + 1, d] under the case that the C machines are idle and
assigned no workload in [τL−m+1, d] in advance. Hence, we have λCm

(
Ŝ
)
≥ α2.

Finally, we have λCm
(
Ŝ ∪ {Ti}

)
= α1 + α2 ≤ λCm

(
Ŝ
)

+ βi,m.

Besides Table 2.1, the additional notation to be used in this chapter is sum-
marized in Table 3.1.

3.2 Scheduling Algorithm
In this section, we show that, if S satisfies the boundary condition above,

then, there exists an algorithm LDF(S) that produces a feasible schedule of S,
achieving the optimal resource utilization state.
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Table 3.1 – Main Notation for Chapter 3

Notation Explanation
S a set of tasks to be allocated by LDF(S) and S ⊆ T
Si the tasks of S with a deadline τi

λm(S)
the maximum amount of resource that could be utilized by S in
[τL−m + 1, τL] in an idealized case where there is an indefinite

number of machines, m ∈ [L]+

λCm(S) the maximum amount of resource that can be utilized by S on
C machines in every [τL−m + 1, τL], m ∈ [L]+

µCm(S)
the remaining workload of S that needs to be processed after S

has optimally utilized C machines in [τm + 1, τL], i.e.,
µCm(S) =

∑
Ti∈S Dj − λCL−m(S), m ∈ [L− 1]

Ti
a task that is being allocated by the algorithm LDF(S); the

actual allocation is done by Allocate-B(i)

S ′ so far, all tasks that have been fully allocated by LDF(S) and
are considered before Ti

S ′′ S ′′ = S ′ ∪ {Ti}

t0

a turning point defined in Property C.2, with time slots
respectively later than and no later than t0 having different

resource utilization state

t1
similar to t0, a turning point defined in Lemma 5 upon

completion of Fully-Utilize(i)

t2
similar to t0, a turning point defined in Lemma 8 upon

completion of Fully-Allocate(i)
t′ the latest time slot in [1, τm] with W (t′) > 0

t′′, t′′′ a time slot that satisfies some property defined and only used in
Chapter 3.2.3

3.2.1 Overview of LDF(S)
Initially, for all Ti ∈ S and t ∈ [1, d], we set the allocation yi(t) to zero; then,

LDF(S) runs as follows:
1. the tasks of S are considered in the decreasing order of their deadlines,

i.e., in the order of SL, SL−1, · · · , S1, where the tasks in the same set are
considered in random order;

2. for a task Ti being considered, the algorithm Allocate-B(i), presented as
Algorithm 1, is called to allocate Di resource to Ti under the deadline and
parallelism constraints.

We will show that, only if S satisfies the boundary condition and the resource
utilization satisfies some properties upon every completion of Allocate-B(·), all
tasks in S will be fully allocated after LDF(S) ends. We first elaborate the
high-level idea in the process of deriving this conclusion.

In LDF(S), when a task Ti is being considered, suppose that Ti belongs to
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Sm and denote by S ′ ⊆ SL ∪ · · · ∪ Sm the tasks that have been fully allocated
so far; the tasks of S ′ are considered before Ti. Here, S satisfies the boundary
condition and so do all its subsets including S ′ and S ′ ∪ {Ti} by Lemma 2.
Before the execution of Allocate-B(i), we assume that the resource allocation
state satisfies the following two properties.

Recall the optimal resource utilization state in Definition 4, and the first
property is that such a state of C machines is achieved by the current allocation
to S ′.

Property 3.2.1. For all l ∈ [L]+, λCl (S ′) workload of S ′ is processed in [τL−l+
1, d] where λCl (S ′) is defined in Definition 3.

The second property is that a stepped-shape resource utilization state is
achieved in [1, τm] by the current allocation to S ′.

Property 3.2.2. If there exists a slot t ∈ [1, τm] such that W (t) > 0, let t0 be
the latest slot in [1, τm] such that W (t0) > 0; then we have W (1) ≥ W (2) ≥
· · · ≥W (t0).

If Property C.1 and Property C.2 hold, we will show in Chapter 3.2.2 and
3.2.3 that, there exists an algorithm Allocate-B(i) such that upon completion
of Allocate-B(i) the following two properties are satisfied:

Property 3.2.3. Ti is fully allocated.

Property 3.2.4. The resource allocation to S ′∪{Ti} still satisfies Property C.1
and Property C.2.

In the case that the above Allocate-B(i) exists, only if S satisfies the bound-
ary condition, S can be fully allocated by LDF(S). The reason for this can be
explained by induction. When the first task Ti in S is considered, S ′ is empty,
and, before the execution of Allocate-B(i), Properties C.1 and C.2 holds triv-
ially. Further, upon completion of Allocate-B(i), Ti will be fully allocated by
Allocate-B(i) due to Property C.3, and Property C.4 still holds.. Then, assume
that S ′ that denotes the current fully allocated tasks is nonempty and Prop-
erties C.1 and C.2 hold; the task Ti being considered by LDF(S) will still be
fully allocated and Properties C.3 and C.4, upon completion of Allocate-B(i).
Hence, all tasks in S will be finally fully allocated upon completion of LDF(S).

In the rest of this section, we will propose an algorithm Allocate-B(i) men-
tioned above: in the case that S satisfies the boundary condition, upon comple-
tion of Allocate-B(i) Properties C.3 and C.4 holds if the resource allocation state
of S ′ before executing Allocate-B(i) satisfies Properties C.1 and C.2. Then, we
immediately have the following proposition:

Proposition 1. If S satisfies the boundary condition, LDF(S) will produce a
feasible schedule of S on C machines.

Overview of Allocate-B(i). Before executing Allocate-B(i), the allocation of
the previously allocated tasks S ′ satisfies Properties C.1 and C.2, also illustrated
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Figure 3.3 – The resource allocation state of Ti and S ′ respectively upon comple-
tion of Fully-Utilize(i), Fully-Allocate(i), and AllocateRLM(i, 1, t2 + 1) where
L = m = 3: on the C machines, the blue area denotes the allocation to S ′ that
satisfies Properties C.1 and C.2 before executing Allocate-B(i) while the green
area denotes the allocation to Ti.

by the blue area of the 1st subfigure of Fig 3.3; S ′, S ′ ∪ {Ti} and S satisfy the
boundary condition where S ′ ∪ {Ti} ⊆ S by Lemma 2. The construction of
Allocate-B(i) will proceed with two phases where di = τm. In the first phase,
we introduce what operations are feasible to make Ti fully allocated Di resource,
which will be presented in two algorithms Fully-Utilize(i) and Fully-Allocate(i).
Fully-Utilize(i) operates as follows:
(i) For every slot t from the deadline di towards earlier time slots, Fully-

Utilize(i) makes Ti fully utilize the maximum amount of machines available
at t with the parallelism constraint. Upon its completion, we have that
— the resource allocation state of Ti is such that yi(1) ≤ y2(t) ≤ · · · ≤

yi(di), as illustrated by the green area of the 1st subfigure of Fig. 3.3,
— the allocation state of S ′ ∪ {Ti} satisfies Property C.2, i.e., W (1) ≤

W (2) ≤ · · · ≤ W (di), as illustrated by the colored area of the 1st
subfigure of Fig. 3.3.

Afterwards, in the case that Ti has not been fully allocated yet (i.e., Di −∑di
t=1 yi(t) > 0), we use the green area with the dotted red frame in the 2nd

subfigure of Fig. 3.3 to denote the remaining workload of Ti and Fully-Allocate(i)
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is proposed to make Ti fully allocated. In this case, there exists a slot not fully
utilized and let t1 denote the latest such slot in [1, di]; otherwise, Ti would have
been fully allocated since S ′ ∪ {Ti} satisfies the boundary condition. Further,
we also have that
— the resource allocation state of Ti is such that yi(1) = · · · = yi(t1) = ki,

as illustrated by the green area of the 1st subfigure of Fig. 3.3.
Based on such resource allocation states, Fully-Allocate(i) transfers the alloca-
tions of S ′ at the slots in [t1 + 1, di] to the latest slots in [1, t1] that have idle
machines so that more machines could be allocated to process the remaining
workload of Ti without violating the parallelism constraint, and it operates as
follows:
(ii) for every slot t from di to t1 + 1, Fully-Allocate(i) transfers the allocation

of S ′ at t to the latest slot t′ ∈ [1, t1] that have not become fully utilized
with idle machines, and the transfer stops until W (t) becomes ki − yi(t)
or Di −

∑di
t=1 yi(t); then, Ti is allocated W (t) extra machines at t, after

which we have that either yi(t) = ki or Ti has been fully allocated.
Upon completion of Fully-Allocate(i), Ti is fully allocated since Di ≤ ki · di;
then, the resource allocation states of Ti and S ′ are illustrated by the green and
blue areas of the 2nd subfigure of Fig. 3.3.

Now, the allocation state will not satisfy Property C.1 if there exists some
interval [τl + 1, τL] that is not optimally utilized by S ′ ∪{Ti} where l ∈ [m− 1],
as illustrated by the blank area in [τ1 +1, τ3] of the 2nd subfigure of Fig. 3.3; let
t2 denote the latest slot in [1, t1] such that W (t2) > 0. So, in the second phase,
an adjustment to the allocations of Ti and S ′ is needed so that Property C.1
is satisfied: partial allocation of S ′ in [t2 + 1, di] is transferred to the latest
slots in [1, t2], aimming to transfer the allocation of Ti in [1, t2] to [t2 + 1, di];
in particular, we propose an algorithm AllocateRLM(i, η1, x) that operates as
follows:
(iii) for every t from di to t2 + 1, if yi(t) < ki, AllocateRLM(·) transfers the

allocation of S ′ at t to the latest slot t′ in [1, t2] that have not become
fully utilized, and the transfer stops until W (t) becomes ki − yi(t) or∑t′−1
t=1 yi(t) = W (t); then, let θ = W (t), allocate θ extra machines to Ti

at t, and equivalently reduce the allcoation of Ti at the earliest slots in
[1, t2] by θ, after which we have that either yi(t) = ki or the allocation of
Ti in [1, t′ − 1] is zero.

Upon completion of AllocateRLM(·), Property C.1 holds, and the resource allo-
cation states of S ′ ∪ {Ti}, S ′, and Ti are illustrated by the green and blue area,
the blue area and the green area in the 3rd subfigure of Fig. 3.3.

During executig Fully-Allocate(i) and AllocateRLM(·), a core operation is
transferring the allocation of S ′ from t to an earlier slot t′. The feasibility
of such transfer lies in that, we can always find a task Ti′ ∈ S ′ such that its
allocation at t is larger than its allocation at t′, i.e., yi′(t) > yi′(t′); then, we
can reduce its allocation at t while increasing its allocation at t′. The existence
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of Ti′ can be guaranteed when (a) yi(t) = ki and W (t) = 0 and (b) yi(t′) < ki
and W (t′) > 0, which will be explained in Lemma 7.

Algorithm 1: Allocate-B(i)
1 Fully-Utilize(i);
2 Fully-Allocate(i);
3 AllocateRLM(i, 1, t2 + 1);

Following the above sketch of Allocate-B(i), the details of the first and second
phases will be presented in Chapter 3.2.2 and Chapter 3.2.3 respectively where
Allocate-B(i) is presented as Algorithm 1.

3.2.2 Phase 1
Now, we introduce Fully-Utilize(i) and Fully-Allocate(i) formally. Before

their execution, recall that we assume in the last subsection Ti ∈ Sm; the
allocation to the previously allocated tasks S ′ satisfies Properties C.1 and C.2,
as illustrated by the blue area in the first subfigure of Fig. 3.3. The whole set
of tasks S to be scheduled satisfies the boundary condition where S ′  S; so,
S ′ and S ′ ∪ {Ti} also satisfy the boundary condition by Lemma 2.
Fully-Utilize(i). Initially, set yi(t) to zero for all time slots, and, Fully-
Utilize(i) operates as follows:
— for every time slot t from the deadline di to 1, set

yi(t)← min{ki,W (t), Di −
∑di

t=t+1
yi(t)}. (3.1)

Here, ki is the parallelism bound, W (t) is the number of machine idle at t,
and Di −

∑di
t=t+1 yi(t) is the remaining workload to be processed upon com-

pletion of its allocations at slots t + 1, · · · , di; specially,
∑di
t=di+1 yi(t) is set to

0, representing the allocation to Ti is zero before Fully-Utilize(i) begins. Their
minimum denotes the maximum amount of machines that Ti can or needs to
utilize at t after the allocation to Ti at slots t+ 1, · · · , di. Upon completion of
Fully-Utilize(i), the allocation of Ti on C machines is illustrated by the green
area of the first subfiture of Fig. 3.3; in this example, only partial demand of Ti
is allocated, illustrated by the green area with the red dotted frame.

Before executing Fully-Utilize(i), the resource allocation to the previously
allocated tasks S ′ satisfies Property C.1. Its execution does not change the
previous allocation to S ′. Let

S ′′ = S ′ ∪ {Ti}.

Since di = τm, the workload of Ti can only be processed in [1, τm]; the maximum
workload of S ′′ that could be processed in [τm+1, τL] still equals its counterpart
when S ′ is considered. We come to the following conclusion in order to not
violate the boundary condition:
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Lemma 4. Upon completion of Fully-Utilize(i), all tasks of S would have been
fully allocated in the case that the total allocation to S ′′ in [1, τm] is C · τm, i.e.,
C · τm =

∑
Tj∈S′′

∑τm
t=1 yj(t).

Proof. Before executing Fully-Utilize(i), the resource allocation to S ′ satisfies
Property C.1. Its execution does not change the previous allocation to S ′. Let
S ′′ = S ′ ∪ {Ti}. Since di = τm, the workload of Ti can only be processed in
[1, τm]; the maximum workload of S ′′ that could be processed in [τm+1, τL] still
equals its counterpart when S ′ is considered, i.e., λCL−m(S ′′) = λCL−m(S ′). Upon
completion of Fully-Utilize(i), if the total allocation to S ′′ in [1, τm] is C · τm,
we could conclude that Ti is the last task of S being considered and all tasks
in S have been fully allocated; otherwise, S ′′ ( S, which contradicts the fact
that S and its subset satisfy the boundary condition, which implies that after
the maximum workload of S ′′ has been processed in [τm + 1, τL], the remaining
workload µCm(S ′′) = µCm(S ′) +Di ≤ C · τm.

Upon completion of Fully-Utilize(i), the other case is the total allocation to
S ′′ is < C · τm; then, there exists a slot t ∈ [1, τm] such that W (t) > 0, and let
t1 denote the latest such time slot in [1, τm] where t1 ≤ t0.

During executing Fully-Utilize(i), at the moment of deciding the allocation
of Ti at t1, we have that

yi(t1) = min{ki, Di −
∑di

t=t1+1
yi(t)} < W (t1) (3.2)

since after the allocation at t1 we still have W (t1) > 0; for all t ∈ [1, t1 − 1], at
the moments of deciding the allocations at t and t+1 respectively, we have that

min{ki, Di −
di∑

t=t+1

yi(t)} ≤ min{ki, Di −
di∑

t=(t+1)+1

yi(t)}. (3.3)

On the other hand, before executing Fully-Utilize(i), we have for all t ∈ [1, t1−1]
that

W (t) ≥W (t+ 1) ≥W (t1). (3.4)

By (3.4), (3.2), and (3.3), we have for all t ∈ [1, t1 − 1] that

W (t) > min{ki, Di −
∑di

t=t+1
yi(t)} (3.5)

Finally, by (3.1), (3.2) and (3.5), we have that, when deciding the allocation of
Ti at t,

yi(t) = min{ki, Di −
∑di

t=t+1
yi(t)}, (3.6)

for all t ∈ [1, t1]; together with (3.3), we have upon completion of Fully-Utilize(i)
that

yi(1) ≤ yi(2) ≤ · · · ≤ yi(t1). (3.7)
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As a result, due to (3.6), we derive the 1st point of Lemma 5 below; due to (3.4)
and (3.7), we derive the 2nd point.

Lemma 5. Upon completion of Fully-Utilize(i), let t1 denote the latest such
time slot in [1, τm] such that W (t1) > 0; in the case that the total allocation to
S ′′ is < C · τm,
— for all t ∈ [1, t1], if the total allocation of Ti in [t, di] is < Di, i.e., Di −∑di

t=t yi(t) > 0, we have yi(t) = ki;
— as illustrated in the 1st subfigure of Fig. 3.3, the numbers of idle machines

in [1, t1] have a stepped shape, i.e., W (1) ≥ · · · ≥W (t1) > 0.

Fully-Allocate(i). Upon completion of Fully-Utilize(i), the resource allocation
states of Ti and S ′′ are described in Lemma 5, respectively illustrated by the
green area and the blue and green area in the first subfigure of Fig. 3.3. This
enables us to propose Fully-Allocate(i), presented as Algorithm 2, to make Ti
fully allocated; please notice that Algorithm 2 is explained by its comments.

Now, we explain the existence of Ti′ in line 12 of Routine(·) and the reason
why Ti will be finally fully allocated by Fully-Allocate(i). The only operation
that changes the allocation to Ti occurs at line 6 of Fully-Allocate(i). Hence,
we have

Lemma 6. Fully-Allocate(i) never decreases the allocation yi(t) to Ti at any
time slot t ∈ [1, di] during its execution, compared with the yi(t) just before
executing Fully-Allocate(i).

We could prove by contradiction that

Lemma 7. When Routine(∆, η1, η2, t) is called, the task Ti′ in line 12 exists
if (i) the condition in line 4 or 7 is false, (ii) yi(t′) = ki, and (iii) yi(t) < ki
and W (t) = 0.

Proof. Recall that W (t) is the sum of the allocations yj(t) of all tasks Tj ∈ S
at t and W (t) +W (t) = C. Initially, we have the inequality that W (t)− yi(t) >
W (t′) − yi(t′) due to the conditions (i)-(iii) of Lemma 7, and, there exists a
Ti′ such that yi′(t′) < yi′(t); otherwise, that inequality would not hold. In
each iteration of Routine(·), W (t) becomes > 0 since partial allocation of Ti′ is
transferred from t to t′; however, it still holds that W (t) < ∆ ≤ ki − yi(t). So,
we have

W (t)− yi(t) = C −W (t)− yi(t) > W (t′)− ki = W (t′)− yi(t′)

and such Ti′ can still be found like the initial case.

At each iteration of Fully-Allocate(i), if there exists a t′ such that W (t′) > 0
in the loop of Routine(·), with Lemmas 5 and 6, we have yi(t′) = ki. Since
Ω > 0 and yi(t) < ki, when Routine(·) is called, we have W (t) = 0; otherwise,
this contradicts Lemma 5. With Lemma 7, we will conclude that the task Ti′ in
line 12 exists when it is called by Fully-Allocate(i). In addition, the operation
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Algorithm 2: Fully-Allocate(i)

/* initially, let Ω = Di −
∑

t≤di
yi(t); it denotes the remaining demand of

Ti after deducting its current allocation, illustrated by the green area
with the red dotted frame in the 2nd subfigure of Fig. 3.3. */

/* for all t ∈ [1, t1], the number of machines allocated to Ti at t is
yi(t) = ki if Ω > 0, by Lemma 5; the slots in [t1 + 1, di] are fully
utilized; such resource allocation states are also illustrated by the
green area and the colored (i.e., blue and green) area in the 1st
subfigure of Fig. 3.3. */

/* for every t from di to t1 + 1, Ti can utilize at most ki − yi(t) more
machines with the parallelism constraint; let ∆← min{ki − yi(t),Ω} and
if ∆ > 0 Fully-Allocate(·) repeatedly transfers the allocations of the
previously allocated tasks S′ at t to earlier slots that are closest to
t and not fully utilized until (i) W (t) = ∆ or (ii) all slots in [1, t1]
are fully utilized (lines 2-5 below); then allocate W (t) more machines
to Ti at t (line 6); Upon completion of the operations above, the
resource allocation states of Ti and S′ are illustrated by the green and
blue areas in the 2nd subfigure of Fig. 3.3 respectively. */

/* when Fully-Allocate(·) ends, we have either (i) all slots in [1, t1] are
fully utilized (see lines 5, 7, 8 of Fully-Allocate(·) and lines 1-5 of
Routine(·)) or (ii) Ti is fully allocated; here Di ≤ ki · di. */

1 for t← di to t1 + 1 do

2 Ω = Di −
di∑
t=1

yi(t);

3 if Ω > 0 then
// Ti has not been fully allocated yet

4 ∆← min{ki − yi(t),Ω}// our aim is to make Ti allocated Di

resource without violating the parallelism constraint.
5 flag ← 0, and call Routine(∆, 1, 0, t), presented as Algorithm 3;
6 allocate W (t) more machines to Ti at t: yi(t)← yi(t) +W (t), and,

Ω← Ω−W (t)// afterwards, W (t) becomes zero again.
7 if flag = 1 then
8 break;

at line 13 of Routine(·) does not change the total allocation to Ti′ , and violate
the parallelism bound ki′ of Ti′ since the current yi′(t′) is no more than the
initial yi′(t).

Proposition 2. Upon completion of Fully-Allocate(i), the task Ti is fully allo-
cated.

Proof. Fully-Allocate(i) ends up with one of the following two events. The first
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Algorithm 3: Routine(∆, η1, η2, t)
/* Given t, Routine(·) repeatedly finds a slot t′ earlier than but closest

to t such that t′ is not fully utilized (line 2 below); it transfers the
allocation of a previously allocated task from t to t′ (lines 12-13),
under which the total allocation at t′ is increased and such t′ will
possibly become fully utilized in future */

/* the loop stops when (i) the number of idle machines W (t) becomes ∆
(line 1), or (ii) one of the conditions at lines 4, 7, 10 is true */

1 while W (t) < ∆ do
2 t′ ← the current time slot earlier than and closest to t so that

W (t′) > 0
3 if η1 = 1 then
4 if there exists no such t′ then

// all slots in [1, t− 1] are fully utilized
5 flag ← 1, break

6 else
7 if t′ ≤ tthm−1, or there exists no such t′ then

// all slots in [tthm−1 + 1, t− 1] are fully utilized
8 flag ← 1, break

9 if η2 = 1 then
10 if

∑t′−1
t=1 yi(t) ≤W (t) then

11 flag ← 1, break

/* when Routine(∆, 1, 0, t) is called in Fully-Allocate(i), we have
Ω > 0 and W (t) = 0, under which the Ti′ in line 12 exists if the
condition in line 1 is true and the condition in line 4 is false;
here, yi(t′) = ki since W (t′) > 0 and Ω > 0, and yi(t) < ki since
∆ > 0. */

/* when Routine(∆, η1, 1, t) is called in AllocateRLM(i, η1, x), the
Ti′ in line 12 exists if the condition in line 1 is true, the t′ in
line 2 exists, and

∑t′−1
t=1 yi(t) > W (t); here, yi(t′) = ki since

W (t′) > 0 and
∑t′−1

t=1 yi(t) > 0, and yi(t) < ki since ∆ > 0. */

12 let i′ be a task such that yi′(t) > yi′(t′)
13 yi′(t)← yi′(t)− 1, yi′(t′)← yi′(t′) + 1

is that the condition in line 4 of Routine(·) is true; then, we have for all t ∈ [1, τm]
that W (t) = 0 and as explained in Lemma 4 we conclude that all tasks in S has
been fully allocated. The second occurs after finishing the iteration of Fully-
Allocate(i) at time slot t1 +1; then, there is always a slot t′ in [1, t1] that are not
fully utilized. As a result, we have that Ti has been fully allocated and we prove
this by contradiction. Otherwise, upon completion of Fully-Allocate(i), Ω > 0,
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which also holds upon completion of each of its iterations at t ∈ [t1 + 1, di]; we
thus have yi(t) = ki. Moreover, we also have yi(t) = ki for all t ∈ [t1]+ due to
Lemma 5. This contradicts Ω > 0 upon completion of Fully-Allocate(·) since
Di ≤ ki · di. Finally, the proposition holds.

Upon completion of Fully-Allocate(i), the resource allocation states of Ti
and S ′ ∪ {Ti} are described as follows, which are illustrated by the green area
and the colored (green and blue) area in the 2nd subfigure of Fig. 3.3.

Lemma 8. Upon completion of Fully-Allocate(i), if there exists a t ∈ [1, τm]
such that W (t) > 0, let t2 be the latest such slot where W (t2 + 1) = · · · =
W (τm) = 0 if t2 < τm:
— for all t ∈ [1, t2], if the total allocation of Ti in [t, di] is < Di (i.e., Di −∑di

t=t yi(t) > 0), we have yi(t) = ki;
— the numbers of available machines in [1, t2] have a stepped shape, i.e,

W (1) ≥ · · · ≥W (t2) > 0.
Here t2 ≤ t1.

Proof. In the case that Ti has been allocated Di resource just upon completion
of Fully-Utilize(·), Fully-Allocate(i) does nothing upon its completion (see line
3) and the conclusion here is the same conclusion in Lemma 5 where t2 = t1;
thus, the lemma holds.

In the following, we analyze the opposite case. Before executing Fully-
Allocate(i), the resource allocation state satisfies Lemma 5: (a) the slots in
[t1 + 1, di] are fully utilized and W (t− 1) ≥W (t) > 0 for all t ∈ [2, t1], and (b)
given any t ∈ [1, t1], if

∑di
t=t yi(t) < Di, we have yi(t) = ki. Fully-Allocate(i)

considers every slot t from di to t1 +1 (line 1). It transfers the allocations of pre-
vious tasks at t to an earlier slot t′ that is closest to t and not fully utilized (line
5); then, the total allocation to all tasks at t′ is increased and W (t′) may grad-
ually become zero; so, some of the slots in [1, t1] may become fully utilized one
by one from t1 towards the earlier ones. Upon completion of Fully-Allocate(i),
let t2 denotes the latest slot in [1, t1] that is not fully utilized: (i) the allocations
of all tasks at every t ∈ [1, t2 − 1] is still the same as the ones before executing
Fully-Allocate(i); (ii) the total allocation of all tasks at t2 may be increased but
the allocation to Ti at t2 does not change; (iii) the slots in [t2 + 1, t1] are fully
utilized. Hence, due to (i)-(ii), the resource allocation state in [1, t2] still satis-
fies Lemma 5. On the other hand, after transferring the allocations of previous
tasks at t to earlier slots, the W (t) idle machines are allocated to Ti (line 6) and
t becomes fully utilized again; hence, (iv) all slots in [t1 + 1, di] are still fully
utilized upon completion of Fully-Allocate(i). Due to (iii)-(iv), we have all slots
in [t2 + 1, di] are fully utilized. Finally the proposition holds.

3.2.3 Phase 2
AllocateRLM(i, η1, x). Now, we introduce AllocateRLM(i, η1, x), presented
as Algorithm 4; please notice that Algorithm 4 is explained by its comments.
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In this subsection, η1 = 1 and x = t2 + 1. The resource allocation states
before executing AllocateRLM(·) are described in Lemma 8 and illustrated in the
2nd subfigure of Fig. 3.3; here, all slots in [t2 + 1, di] are fully utilized and every
slot in [1, t2] is not fully utilized; the allocation state of Ti is illsutrated by the
green area. AllocateRLM(·) transfers the allocations of Ti at the earliest slots
in [1, t2] to the slots in [t2 + 1, di] closest to di; this is achieved by transferring
the allocations of previous tasks in [t2 +1, di] to the slots earlier than but closest
to t2 + 1. In particular, in AllocateRLM(·), every slot t is considered from di
to t2 + 1 (line 1). At each t, let t′ be the latest slot in [1, t2] such that it is not
fully utilized, i.e., W (t′) > 0, and it transfers the allocations of previous tasks
from t to t′ leaving some machines idle at t (line 9 of AllocateRLM(·) and lines
1, 2, 12, 13, 14 of Routine(·)); then, it allocates W (t) more machines to Ti at t
and equivalently reduces its allocations at the earliest slots (line 10). Upon its
completion, the resource allocation states of Ti is illustrated by the green area
in the 3rd subfigure of Fig. 3.3.

Here, at every slot t, if the conditions in line 6 of AllocateRLM(·) and lines
4, 10 of Routine(·) are false, we have (i)

∑t−1
t=1 yi(t) > 0 and yi(t) < ki, and (ii)

W (t′) > 0 and
∑t′−1
t=1 yi(t) > 0. We thus have (i) W (t) = 0 and (ii) yi(t′) = ki;

otherwise, this contradicts Lemma 8. Hence, with Lemma 7, we conclude that
the task Ti′ in line 12 of Routine(·) exists.

Based on our comments in Algorithm 4, we conclude that

Proposition 3. Upon completion of AllocateRLM(i, 1, x) where x = t2 + 1,
the final allocation to S ′′ can guarantee that Property C.4 holds where S ′′ =
S ′ ∪ {Ti}.

Proof. Fully-Utilize(i), Fully-Allocate(i) and AllocateRLM(i, η1, x) never change
the allocation at any slot in [τm + 1, d]. AllocateRLM(i, 1, x) ends up with one
of the following four events. The 1st event occurs when the condition in line
4 of Routine(·) is true; then, the proposition holds trivially since all the slots
t ∈ [1, di] have been fully utilized, i.e., W (t) = 0.

If the 1st event doesn’t occur, there exists a slot in [1, di] such that it is not
fully utilized. Before executing AllocateRLM(·), the resource allocation state
satisfies Lemma 8: (a) the slots in [t2 + 1, di] are fully utilized and W (t− 1) ≥
W (t) > 0 for all t ∈ [2, t1], and (b) given any t ∈ [1, t1], if

∑di
t=t yi(t) < Di, we

have yi(t) = ki. The executing process of AllocateRLM(·) is as follows. (1) It
considers every slot t from di to t2 +1 (line 1). (2) It transfers the allocations of
previous tasks at t to an earlier slot t′ that is closest to t and not fully utilized
currently (line 9); then, the total allocation to all tasks at t′ is increased and
W (t′) may become zero; here, some of the slots in [1, t1] may become fully
utilized one by one from t2 towards the earlier ones. On the other hand, after
transferring the allocations of previous tasks at t to earlier slots, (3) the W (t)
idle machines are allocated to Ti (line 10) and t becomes fully utilized again;
the allocations of Ti at the earliest slots in [1, t′ − 1] are equivalently reduced,
ensuring that Ti is exactly allocated Di resource. As a result, when the resource
allocation state upon completion of AllocateRLM(·) is compared with the state
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Algorithm 4: AllocateRLM(i, η1, x)
/* AllocateRLM(·) transfers the allocation of Ti at the earliest slots in

[1, di] to the slots in [x, di] that are closest to di */
/* in particular, for every slot t from di to x, it transfers the

allocations of previous tasks at t to earlier slots that are not fully
utilized (see lines 1, 5, 9 below); then, allocate more machines to Ti

at t and equivalently reduce its allocation at the earliest slots (line
10) */

/* in the case that η1 = 1, it stops when (i) t = x− 1 (line 1), (ii) the
total allocation of Ti in [1, t− 1] becomes zero (lines 2-3), (iii) the
total allocation of Ti in [1, t′ − 1] becomes zero (lines 10-11 of
Routine(·) and lines 11-12), or (iv) all slots in [1, t− 1] are fully
utilized (lines 4-5 of Routine(·) and lines 11-12) */

1 for t← di to x do
// execute the following operations at every slot t ∈ [x, di]

2 if
∑t−1
t=1 yi(t) = 0 then

// AllocateRLM(·) stops when Ti is fully allocated in [t, di].
3 exit
4 else
5 ∆← min{ki − yi(t),

∑t−1
t=1 yi(t)} // ∆ denotes the maximum

allocation of Ti before t that can be transferred to t with the
parallelism constraint.

6 if ∆ = 0 then
7 continue // go to line 1 if ∆ = 0

8 else
9 flag ← 0, and call Routine(∆, η1, 1, t) // it increases the

number W (t) of available machines at t to ∆ if the conditions
in lines 4 and 10 (or 7 and 10) of Routine(·) are false.

10 set θ ←W (t), and yi(t)← yi(t) + θ; let t′′ be such a slot that∑t′′−1
t=1 yi(t) < θ and

∑t′′

t=1 yi(t) ≥ θ: (i) yi(t)← 0 for all
t ∈ [1, t′′ − 1] and θ ← θ −

∑t′′−1
t=1 yi(t), and (ii)

yi(t′′)← yi(t′′)− θ.
11 if flag = 1 then
12 exit

before executing Allocate-B(i), we have
(i) the allocation to the previously allocated tasks S ′ at every t ∈ [1, t′ − 1]

does not change;
(ii) the allocation to S ′ at t′ is not decreased;
(iii) the slots in [t′+1, di] are fully utilized, i.e., W (t) = 0 for all t ∈ [t′+1, di],
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where di = τm.
The 2nd event that makes AllocateRLM(·) stop is the condition in line 2

of AllocateRLM(·) is true; then, Ti is fully allocated Di resource in [t, di] ⊆
[t2 + 1, di]. The 3rd event is the condition in line 10 of Routine(·) is true; then,
Ti will be fully allocated Di resource in [t′, di] ⊇ [t2 + 1, di]. When the 2nd or
3rd event happens, we have
(iv) Ti is fully allocated Di resource in [t′, di];
The 4th event occurs upon completion of the iteration of AllocateRLM(·) at
t = t2 + 1. In this case, we have that the conditions in line 2 of AllocateRLM(·)
and lines 4 and 10 of Routine(·) are always false; then, upon completion of
AllocateRLM(·), we still have

∑t′−1
t=1 yi(t) > 0; recall the executing process of

AllocateRLM(·) (described in (1)-(3)) and the resource allocation state before
executing it (described in (a)-(b)); then, during executing each iteration of
AllocateRLM(·) at t ∈ [t2 + 1, di], we always have

∑t′−1
t=1 yi(t) > 0 and upon

completion of Routine(·) (line 9), we have W (t) = ∆ = ki − yi(t); Ti is finally
allocated ki machines at every t (line 10). Let t′′′ ∈ [1, t′ − 1] ⊆ [1, t2] denote
the earliest slot such that yi(t′′′) 6= 0 and we have:
(v) Ti is fully allocated Di resource in [t′′′, di];
(vi) for all t ∈ [t′′′ + 1, t′], the allocation to Ti at t is ki, i.e., yi(t) = ki.

Now, we first show that, when the 2nd, 3rd or 4th event happens, Prop-
erty C.2 holds. When the 2nd or 3rd event happens, by (iv), we have 0 =
yi(1) = · · · = yi(t′ − 1) ≤ yi(t′); when the 4th event happens, by (v) and (vi),
we have 0 = yi(1) = · · · = yi(t′′′ − 1) < yi(t′′′) ≤ yi(t′′′ + 1) = · · · = yi(t′) = ki.
Now, we observe the resource allocation state of S ′ in [1, t′] described in (i)-
(ii); then, no matter which of the 2nd, 3rd, and 4th events happens, we have
W (1) ≤ · · · ≤ W (t′) since Property C.2 holds before executing Allocate-B(i)
where t′ ≤ t2. As a result, we conclude that Property C.2 still holds upon
completion of AllocateRLM(·).

Next, we show that Property C.1 holds, i.e., each interval [τl + 1, d] is opti-
mally utilized by S ′ ∪ {Ti} for all l ∈ [L− 1]. The allocation to S ′ in [τm + 1, d]
does not change where the deadline di of Ti is τm; we have for all l ∈ [m,L− 1]
that the interval [τl+1, d] is optimally utilized by S ′∪{Ti} due to Property C.1.
Let m′,m′′ ∈ [m]+ be such that t′ ∈ [τm′−1 + 1, τm′ ] and t′′′ ∈ [τm′′−1 + 1, τm′ ].
By (iii), all slots in [τm′ + 1, di] have been fully utilized; hence, we have for all
l ∈ [m′,m − 1] that every interval [τl + 1, d] is optimally utilized by S ′ ∪ {Ti},
by Definitions 3 and 4. Now, we show for all l ∈ [0,m′ − 1] that [τl + 1, d]
is optimally utilized by S ′ ∪ {Ti}. It suffices to show that (a) the maximum
demand of Ti is processed on C machines in [τl + 1, d], and (b) the maximum
demand of S ′ is processed on C machines in [τl + 1, d]; then, by Lemma 3,
we have [τl + 1, d] is optimally utilized by S ′ ∪ {Ti}. When the 2nd or 3rd
event happens, the maximum demand of Ti is processed in [τl + 1, d] since∑d
t=τl+1 yi(t) = Di by (iv); when the 4th event happens, it also holds since

0 = yi(1) = · · · = yi(t′′′ − 1) < yi(t′′′) ≤ yi(t′′′ + 1) = · · · = yi(di) = ki and
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∑di
t=t′′′ yi(t) = Di. On the other hand, by (i), the total allocation to S ′ in

[1, τl] isn’t changed by Allocate-B(i), and the maximum workload of S ′ will be
processed in [τl + 1, d]. Finally, Property C.1 holds.

Propositions 2 and 3 show that Allocate-B(i) satisfies Properties C.3 and
C.4 and hence completes the proof of Proposition 1. We finally analyze the
time complexity of Allocate-B(i).

Lemma 9. The time complexity of Allocate-B(·) is O(n).

Proof. The time complexity of Allocate-B(i) depends on Fully-Allocate(i) or
AllocateRLM(·). In the worst case, Fully-Allocate(i) and AllocateRLM(·) have
the same time complexity from the execution of Routine(·) at every time slot
t ∈ [1, di]. In AllocateRLM(·) for every task Ti ∈ T , each loop iteration at
t ∈ [1, di] needs to seek the time slot t′ and the task Ti′ at most Di times.
The time complexities of respectively seeking t′ and Ti′ are O(d) and O(n); the
maximum of these two complexities is max{d, n}. Since di ≤ d and Di ≤ D, we
have that both the time complexity of Allocate-B(i) is O(dDmax{d, n}). Since
we assume that d and k are finitely bounded where D ≤ d · k, we conclude that
O(dDmax{d, n}) = O(n).

Since LDF(S) considers a total of n tasks, its complexity is O(n2) with
Lemma 9. Finally, we draw a main conclusion in this chapter from Lemma 1
and Proposition 1:

Theorem 1. A set of tasks S can be feasibly scheduled and be completed by
their deadlines on C machines if and only if the boundary condition holds, where
the feasible schedule of S could be produced by LDF(S) with a time complexity
O(n2).

In other words, if LDF(S) cannot produce a feasible schedule for S on C
machines, then S cannot be successfully scheduled by any algorithm; as a re-
sult, LDF(S) is optimal. The relationships between the various algorithms in
Chapters 2-3 are illustrated in Fig. 3.4 where GreedyRLM will be introduced in
the next chapter.

Figure 3.4 – Relationship among Algorithms: for A → B, the blue and green
arrows denote the relations that the algorithm A calls B, and, the algorithm B
is executed upon completion of A.

Remarks. We are inspired by the GreedyRTL algorithm [3] in the construction
of LDF(·). In terms of the two algorithms themselves, LDF(·) considers tasks in
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the decreasing order of deadlines while the order is determined by the marginal
values in GreedyRTL(·). In both algorithms, the allocation to a task Ti is con-
sidered from di to 1 (once in GreedyRTL, and possibly three times in LDF(·));
to make time slots t closest to the deadline of a task Ti being considered fully
utilized, the key operations are finding a time slot t′ earlier than t such that
there exists a task Ti′ with yi′(t) > yi′(t′) when W (t), and transferring a part
of the allocation of Ti′ at t to t′. In GreedyRTL(·), the existence of Ti′ requires
that (i) the numberW (t′) of available machines at t′ is ≥ k and (ii) 1 W (t) < ki;
as a result, before doing any allocation to Ti at t, the existence could be proved
by contradiction. In LDF(·), to achieve the optimality of resource utilization,
one requirement for such existence is relaxed to be that the number of available
machines at t′ is ≥ 1. The existence is guaranteed by (i) first make every time
slot from di to 1 fully utilized, as what Fully-Utilize(i) does, and (ii) a stepped-
shape resource utilization state in [1, di] upon completion of the allocation to
the last task, as described in Property C.2.

1. The particular condition there is W (t) < min{ki, Di −
∑di

t=t+1 yi(t)}.
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Chapter 4

Scheduling with Various
Objectives

The majority see the obstacles; the few see the
objectives; history records the successes of the
latter, while oblivion is the reward of the
former.

Alfred A. Montapert

In this chapter, we illustrate the applications of the results in Chapter 3 to (i)
two algorithmic design techniques for the social welfare maximization objective
in [2], [3], giving the optimal greedy algorithm and the first exact dynamic
programming algorithm and (ii) two other objectives.

4.1 Greedy Algorithm
In this section, we illustrate the application of the results in Chapter 3 to the

greedy algorithm for social welfare maximization. In terms of the maximization
problem, the general form of a greedy algorithm is as follows [20], [22]: it tries to
build a solution by iteratively executing the following steps until no item remains
to be considered in a set of items: (1) selection standard: in a greedy way, choose
and consider an item that is locally optimal according to a simple criterion at the
current stage; (2) feasibility condition: for the item being considered, accept it if
it satisfies a certain condition such that this item constitutes a feasible solution
together with the items that have been accepted so far under the constraints of
this problem, and reject it otherwise. Here, an item that has been considered
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and rejected will never be considered again. The selection criterion is related
to the objective function and constraints, and is usually the ratio of ’advantage’
to ’cost’, measuring the efficiency of an item. In the problem of this thesis, the
constraint comes from the capacity to hold the chosen tasks and the objective is
to maximize the social welfare; therefore, the selection criterion here is the ratio
of the value of a task to its demand, which we refer to as the marginal value
of this task. Formally, the marginal value of a task Ti is defined as v′i = vi

Di
,

i.e., the value obtained from per unit of demand when Ti is completed by its
deadline.

Given the general form of greedy algorithm, we define a class GREEDY of
algorithms that operate as follows:

1. Considers the tasks in the decreasing order of the marginal values; assume
without loss of generality that v′1 ≥ v′2 ≥ · · · ≥ v′n;

2. Denoting by A the set of the tasks that have been accepted so far, a task
Ti being considered is accepted and fully allocated iff there exists a feasible
schedule for A ∪ {Ti}.

In the following, we refer to the generic algorithm in GREEDY as Greedy. Recall
that leni is the (minimum) execution time of a task Ti when it always utilizes ki
machines throughout the execution where leni =

⌈
Di
ki

⌉
. We define by si = di

leni

the slackness of Ti that measures the urgency or flexibility of machine allocation
where si ≥ 1, e.g., si = 1 may mean that Ti should always utilize the maximum
number of machines ki from the slot 1 until its completion in order to meet the
deadline; we let s = minTi∈T {si} denote the slackness of the least flexible task.
Besides the notation in Chapter 2.4, the additional key notation used for this
section is also summarized in Table 4.1.

Proposition 4. The best performance guarantee that a greedy algorithm in
GREEDY can achieve is s−1

s .

Proof. Let us consider a special instance: (i) let Di = {Tj ∈ T |di = d′i}, where
i ∈ [2]+, d′2 and d′1 ∈ Z+, and d′2 > d′1; (ii) for all Tj ∈ D1, v′j = 1 + ε, Dj = 1,
kj = 1, and, there is a total of C ·d′1 such tasks, where ε ∈ (0, 1) is small enough;
(iii) for all Tj ∈ D2, v′j = 1, kj = 1 and Dj = d′2 − d′1 + 1. Greedy will always
fully allocate resource to the tasks in D1, with all the tasks in D2 rejected to
be allocated any resource. The performance guarantee of Greedy will be no
more than C·d′1

C·[(1+ε)(d′1−1)+1·(d′2−d′1+1)] . Further, with ε → 0, this performance

guarantee approaches d′1
d′2
. In this instance, s = d′2

d′2−d′1+1 and s−1
s = d′1−1

d′2
. When

d′2 → +∞, d
′
1
d′2

= s−1
s . Hence, the proposition holds.

4.1.1 The Executing Process of Greedy
Greedy will consider tasks sequentially. The first considered task will be

accepted definitely and then it will use the feasibility condition to determine
whether or not to accept or reject the next task according to the current available
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resource and the characteristics of this task. To describe the process under
which Greedy accepts or rejects tasks, we define the sets of consecutive accepted
(i.e., fully allocated) and rejected tasks A1,R1,A2, · · · . Specifically, let Am =
{Tim , Tim+1, · · · , Tjm} be the m-th set of the adjacent tasks that are accepted
by Greedy where i1 = 1 whileRm = {Tjm+1, · · · , Tim+1−1} is them-th set of the
adjacent tasks that are rejected following the set Am, where m ∈ [K]+ for some
integer K. Integer K represents the last step: in the K-th step, AK 6= ∅ and
RK can be empty or non-empty. We also denote by cm the maximum deadline
of all rejected tasks in the first m phases, i.e.,

cm = max
Ti∈
⋃m

l=1
Rl
{di},

and by c′m the maximum deadline of all accepted tasks in the first m phases,
i.e.,

c′m = max
Ti∈
⋃m

l=1
Al
{di}.

While the tasks in Am ∪Rm are being considered, we refer to Greedy as being
in the m-th phase. Before the execution of Greedy, we refer to it as being in the
0-th phase. Upon completion of the m-th phase of Greedy, we define a threshold
parameter tth

m such that
(i) if cm ≥ c′m, set tth

m = cm, and

(ii) if cm < c′m, set tth
m to some time slot in [cm, c′m];

here, di ≤ tthm for all Ti ∈ ∪mj=1Rj . For ease of the subsequent exposition, we
let tth0 = 0 and tthK+1 = d. We also add a dummy time slot 0 but the task
Ti ∈ T can not get any resource there, that is, yi(0) = 0 forever. We also let
A0 = R0 = AK+1 = RK+1 = ∅.

4.1.2 A New Algorithmic Analysis
We will show that as soon as the resource allocation done by Greedy satisfies

some features, its performance guarantee can be deduced immediately, i.e., the
main result of this subsection is Theorem 2.

For all m ∈ [K]+, upon completion of Greedy, we define the following two
features that we want the allocation to ∪mj=1Aj to satisfy. The first feature says
that the utilization of the C machines achieved by the allocation to

⋃m
j=1Aj in

[1, tthm ] is no smaller than r, where r ∈ [0, 1]:

Feature 4.1.1. The total allocation to
⋃m
j=1Aj in [1, tthm ] is at least r · C · tthm .

There are C machines on which tasks are executed and each task has the
paralellelism and deadline constraints. As elaborated in Chapter 3.1, given any
slot t ∈ [1, d], these factors constrain the maximum workload of ∪mj=1Aj that
could be processed in [t, d] on C machines, denoted by λCt

(
∪mj=1Aj

)
. The second

feature is as follows.
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Table 4.1 – Main Notation for Chapter 4

Notation Explanation
A1,R1,

A2, · · · , RK
the sets of consecutive accepted (i.e., fully allocated) and
rejected tasks by Greedy where

⋃K
m=1Am ∪Rm = T

cm the maximum deadline of all rejected tasks of ∪ml=1Rl
c′m the maximum deadline of ∪ml=1Al

tth
m

a threshold parameter such that (i) if cm ≥ c′m, set
tth
m = cm, and (ii) if cm < c′m, set tth

m to any time slot in
[cm, c′m]; when introducing GreedyRLM, it will be set to a

specific value
v′i the marginal value of Ti, i.e., v′i = vi

Di

leni
the (minimum) execution time of Ti when Ti always utilizes
ki machines throughout the execution, i.e., leni = dDiki e

si
the slackness of a task, i.e., di

leni
, measuring the urgency of

machine allocation to complete Ti by the deadline
s the minimum slackness of all tasks of T , i.e., minTi∈T {si}

Feature 4.1.2. Upon completion of Greedy, the interval
[
tthm + 1, d

]
is opti-

mally utilized by
⋃m
j=1Aj, i.e., λCt

(
∪mj=1Aj

)
workload of ∪mj=1Aj is processed

in
[
tthm + 1, d

]
.

Theorem 2. If Greedy achieves a resource allocation state that satisfies Fea-
ture 4.1.1 and Feature 4.1.2 for all m ∈ [K]+, it gives a r-approximation to the
optimal social welfare.

In the rest of this subsection, we prove Theorem 2. We refer to the original
problem of scheduling A1, R1, · · · , AK , RK on C machines to Maximize the
Social Welfare as the MSW-I problem.

In the following, we define a relaxed version of the MSW-I problem whose
optimal social welfare is an upper bound of the optimal of the MSW-I problem.
There are C machines and a set of tasks including A1, R′1, A2, · · · , R′K . Here,
R′m only consists of a single task T ′m whose deadline is tthm , whose size is infi-
nite, and whose marginal value is the largest one of the tasks in Rm, denoted
by v̂′m; here, different from the tasks of Rm, we assume that there is no paral-
lelism constraint on T ′m, i.e., the parallelism bound is C, and tth

m is ≥ the task
deadlines of Rm. The task characteristics of A1, · · · ,AK are the same as the
ones in the MSW-I problem. However, partial execution of any task can yield
linearly proportional value, e.g., if a task Ti ∈ Al is allocated

∑di
t=1 yi(t) < Di

resource by its deadline, a value (
∑di
t=1 yi(t)/Di) · vi will still be added to the

social welfare. We refer to the problem of scheduling A1,R′1, · · · ,AK ,R′K on
C machines as the MSW-II problem.

Lemma 10. The optimal social welfare of the MSW-II problem is an upper
bound of the optimal social welfare of the MSW-I problem.
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Proof. Let us consider an optimal allocation to A1,R1, · · · ,AK ,RK for the
MSW-I problem. If we replace an allocation to a task in Rm with the same
allocation to a task inR′m and do not change the allocation toAm, this generates
a feasible schedule for the MSW-II problem, which yields at least the same social
welfare since the marginal value of the task in R′m is ≥ the ones of the tasks in
Rm; hence, Lemma 10 holds.

Due to Feature 4.1.1, Feature 4.1.2, and the fact that the marginal value of
T ′m is smaller than the ones of the tasks of ∪ml=1Al, we derive the following two
lemmas:

Lemma 11. The following schedule that may violate the capacity constraint
achieves an upper bound of the optimal social welfare of the MSW-II problem:

1. for all tasks of A1, · · · ,AK , their allocation is the same as the one achieved
by Greedy with Features 4.1.1 and 4.1.2 satisfied;

2. for all m ∈ [K]+, execute a part of the task T ′m such that the amount
of workload processed in

[
tthm−1 + 1, tthm

]
is αm · C where αm = (1 − r) ·(

tthm − tthm−1
)
.

Proof. We will show in an optimal schedule of the MSW-II problem that (i)
only the tasks of R′m, A1, · · · ,AK will be executed in [tthm−1 + 1, tthm ] for all
m ∈ [K]+, and (ii) each interval [τm + 1, d] is optimally utilized by ∪Kj=1Aj for
all m ∈ [K]+; the latter uniquely determines the amount of resources occupied
by ∪Kj=1Aj in each interval. When the machines are optimally utilized (i.e.,
Feature 4.1.2 holds), we have that (iii) Feature 4.1.1 also holds here. With the
three points above, an optimal schedule of the MSW-II problem is as follows: (a)
the allocation of

⋃K
j=1Aj satisfies Property 4.1.2 and 4.1.1 and (b) afterwards,

execute the workload of T ′m as much as possible in the interval [τm−1 +1, τm] for
all m ∈ [K]+ such that all the remaining idle resource in this interval is utilized;
let βm denote the amount of the workload of T ′m processed in [τm−1 +1, τm]. By
Property 4.1.1, the allocation to

⋃m
j=1Aj achieves a resource utilization ≥ r in

each interval [1, τm] for all m ∈ [K]+; we thus have
∑m
l=1 αm = tth

m · (1− r) ·C ≥∑m
l=1 βm.
In the optimal schedule of the MSW-II problem, the total gain from execut-

ing T ′1, · · · , T ′K is
∑K
m=1 βm · v̂′m; its upper bound can be the optimal value of

the following maximization problem where we view β1, · · · , βK as variables:

maximize
K∑
m=1

βm · v̂′m (4.1)

subject to

β1 ≤ tth
1 · (1− r) · C

β1 + β2 ≤ tth
2 · (1− r) · C

· · ·
β1 + β2 + · · ·+ βK ≤ tth

K · (1− r) · C

(4.2)
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and

v′1 > v′2 > · · · > v′K (4.3)

Due to (4.3), an optimal solution to (4.1) is to make β1, then β2, · · · , finally
βK as large as possible with the constraint (4.2), leading to β1 = α1, · · · ,
βK = αK . Hence, the total value generated by executing all tasks of A1, · · · ,AK
and (1−r) · (tthm − tthm−1) ·C workload of each R′m (m ∈ [K]+) is an upper bound
of the optimal social welfare for the MSW-II problem and the lemma holds.

Now, we prove the first point mentioned at the beginning of this proof by
contradiction. Given a m ∈ [K]+, if m ≥ 2, all tasks of R′1, · · · ,R′m−1 could
not be processed in [tthm−1 + 1, tthm ] due to the deadline constraint. If m ≤ K−1,
the marginal value of the task in R′m is larger than the ones of R′m+1, · · · ,R′K ;
instead of processing R′m+1, · · · ,R′K in [tthm−1 + 1, tthm ], processing R′m could
generate a higher value. Hence, the first point holds. The second point is also
proved by contradiction. In an optimal schedule if there exists a m ∈ [K]+ such
that the interval

[
tth
m + 1, d

]
is not optimally utilized by ∪mj=1Aj , the following

operations will improve the gain of this schedule, which contradicts the fact that
this schedule is optimal: (1) transfer a unit of workload of ∪mj=1Aj in [1, tth

m ] to[
tth
m + 1, d

]
, (2) equivalently reduce the allocation of T ′m+1, · · · , T ′K in

[
tth
m + 1, d

]
by one if m ≤ K − 1, and (3) execute a unit of extra workload of ∪mj=1R′j in
[1, tth

m ].

Lemma 12. In the schedule of Lemma 11, we have for all m ∈ [K]+ that the
total value generated by executing T ′1, · · · , T ′m is no larger than 1−r

r times the
total value generated by the allocation to ∪ml=1Al in

[
1, tthm

]
.

Proof. There are C machines and the allocation of a task Ti at t is yi(t) ∈
{0, 1, · · · , ki}. Let xi(t, c) ∈ {0, 1} denote the allocation of Ti at slot t on the
c-th machine; here, yi(t) =

∑C
c=1 xi(t, c). Let U denote the allocations of all

tasks of ∪ml=1Al in
[
1, tthm

]
, i.e.,

U =
{
xi(t, c) |Ti ∈ ∪mj=1Aj , t ∈ [tth

m ]+, c ∈ [C]+, xi(t, c) = 1
}
.

An allocation xi(t, c) will generate a value v′i · xi(t, c), and the total value gen-
erated from ∪mj=1Aj is

∑
xi(t,c)∈U v

′
i · xi(t, c); since the allocaiton of ∪ml=1Al

achieves a utilization ≥ r in
[
1, tth

m

]
, we have that |U| ≥ r · tth

m · C.
By Property 4.1.1, the allocation of ∪lj=1Aj achieves a utilization ≥ r in

[1, tth
l ] for all l ∈ [m]+. This enables defining a series of sets of allocations as

follows: (i) U1 is an arbitrary subset of{
xi(t, c) |Ti ∈ A1, t ∈

[
tth
1
]+
, c ∈ [C]+, xi(t, c) = 1

}
such that |U1| = r · tth

1 ·C, and (ii) for all l ∈ [2,m], Ul is an arbitrary subset of{
xi(t, c) |Ti ∈ ∪lj=1Aj , t ∈

[
tth
l

]+
, c ∈ [C]+, xi(t, c) = 1

}
−
⋃l−1
j=1 Uj
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such that |Ul| = r ·
(
tth
l − tth

l−1
)
· C. Here, Ul is composed of the allocations of

the tasks of ∪lj=1Aj ; U1, · · · ,Um are disjoint sets and their union is a subset of
U , with which we have that∑

xi(t,c)∈U v
′
i · xi(t, c) ≥

∑
xi(t,c)∈U1

v′i · xi(t, c) + · · ·+
∑
xi(t,c)∈Um v

′
i · xi(t, c).

In the schedule of Lemma 11, the total value generated by executing T ′1, · · · , T ′m
is α1 · v̂′1 + α2 · v̂′2 + · · · + αm · v̂′m where αl

1−r = |Ul|
r . For all l ∈ [m − 1]+, the

marginal values of tasks of Al are larger than the marginal value of T ′l that
are further larger than the ones of Al+1; thus, for all l ∈ [m]+, considering the
allocation composition of Ul, we have that∑

xi(t,c)∈Ul
v′i ·

xi(t,c)
r >

∑
xi(t,c)∈Ul

v̂′l ·
xi(t,c)
r = v̂′l ·

|Ul|
r > v̂′l ·

αl
1−r ,

that is, v̂′l · αl < 1−r
r ·

∑
xi(t,c)∈Ul v

′
i · xi(t, c). Hence, we have that

1−r
r ·

∑
xi(t,c)∈U

v′i · xi(t, c) ≥
m∑
l=1

αl · v̂′l

and the lemma holds.

In the case thatm = K, the total value from T ′1, · · · , T ′K is no larger than 1−r
r

times the total value from the allocation to ∪Kl=1Al in [1, tthK ]. Hence, the total
value generated by the schedule in Lemma 11 is no larger than 1 + 1−r

r = 1
r

times the total value generated by the allocation to all tasks of A1, · · · ,AK .
The totoal value of Greedy is from A1, · · · ,AK ; hence, by Lemmas 11 and 10,
Theorem 2 holds.

4.1.3 Optimal Algorithm Design
In this subsection, under the guidance of Theorem 2, we propose a best

possible greedy algorithm GreedyRLM that achieves an approximation ratio
s−1
s . An overview of GreedyRLM is as follows and its executing process is

presented in Algorithm 5:
(1) consider tasks in the decreasing order of their marginal values (line 2 of

Algorithm 5).
(2) in the m-th phase, for a task Ti being considered,

— if the allocation condition is satisfied, i.e.,∑
t≤di min{W (t), ki} ≥ Di,

then, Ti is accepted and Allocate-A(i) is called to make it fully allo-
cated, presented as Algorithm 6 where the details on Fully-Utilize(i)
and AllocateRLM(i, 0, tthm−1 + 2) can be found in Chapter 3.2.2 and
Chapter 3.2.3.

— if the allocation condition is not satisfied, Ti is rejected; when Ti is the
last task rejected in the m-th phase, set the correspoding threshold
parameter tth

m that is defined by lines 11-14 of Algorithm 5.
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Algorithm 5: GreedyRLM
Input : n tasks with typei = {vi, di, Di, kj}
Output: A feasible allocation of resources to tasks

1 initialize: yi(t)← 0 for all Ti ∈ T and t ∈ [1, d], m = 1, tth0 = 0;
2 sort tasks in the decreasing order of their marginal values:

v′1 > v′2 > · · · > v′n;
3 i← 1; // in the 1st phase of Greedy, the first accepted task is T1, i.e.,

i1 = i = 1
4 while i ≤ n do
5 if

∑
t≤di min{W (t), ki} ≥ Di then

6 Allocate-A(i); // allocate resource to the accepted task Ti in the
m-th phase

7 i← i+ 1;
8 else

/* the first rejected task in the m-th phase is the current Ti,
i.e., jm + 1 = i */

9 while
∑
t≤di+1

min{W (t), ki+1} < Di+1 do
10 i← i+ 1; // when this while loop stops, the current Ti is the

first accepted task in the (m+ 1)-th phase where im+1 = i

11 if cm ≥ c′m then
12 tth

m ← cm;
13 else
14 set tth

m to the earliest time slot t in [cm, c′m] such that there
exist idle machines at t+ 1, i.e., W (t+ 1) > 0;

15 m← m+ 1;

When the condition in line 5 of GreedyRLM is true, the considered task Ti is
accepted and Allocate-A(i) is called where Fully-Utilize(i) and AllocateRLM(i,
0, tthm−1 + 2) are sequentially executed. In that condition, W (t) is the num-
ber of available machines idle at t and ki is the parallelism bound; further,
min{W (t), ki} is the maximum number of machines that could be utilized by Ti
at slot t and the condition means that the total amount of machines available
over [1, di] is no smaller than the workload of Ti. So, Ti can be fully allocated
Di resource by Fully-Utilize(i). Here, Fully-Utilize(i) considers every slot t from
the deadline di to 1 and at slot t,

— Ti is allocated min{W (t), ki} machines if after such an allocation there is
still remaining workload to be processed, i.e., Di −

∑di
t=t yi(t) > 0;

— otherwise, Ti is allocatedDi−
∑di
t=t+1 yi(t) machines; here,Di−

∑di
t=t+1 yi(t)

is the remaining workload to be processed after the allocations of Ti over
[t+ 1, di].
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Algorithm 6: Allocate-A(i)
/* below, for every slot t from the deadline di to 1, Fully-Utilize(i) sets

yi(t) to min{ki, Di −
∑di

t=t+1 yi(t),W (t)}; as a result, Ti is fully
allocated Di resource since the condition in line 5 of GreedyRLM is
true */

1 Fully-Utilize(i);
2 if di ≥ tthm−1 + 2 then

/* below, AllocateRLM(·) transfers the allocations of Ti at the
earliest slots to the slots in [tthm−1 + 2, di] closest to di; here,
x = tthm−1 + 2 and η1 = 0 */

/* in particular, for every slot t from di to tth
m−1 + 2, it transfers the

allocations of previous tasks at t to a slot t′ ∈ [tth
m−1 + 1, t− 1] with

W (t′) > 0 (lines 1, 5, 9 of AllocateRLM(·)); then, allocate W (t)
more machines to Ti at t and equivalently reduce its allocation at
the earliest slots (line 10 of AllocateRLM(·)) */

3 AllocateRLM(i, 0, tthm−1 + 2);

In terms of GreedyRLM, we have the following conclusion.

Proposition 5. GreedyRLM gives a s−1
s -approximation to the optimal social

welfare with a time complexity of O(n2).

In the following, we prove Proposition 5. There are n tasks and GreedyRLM
considers tasks one by one; for an accepted task, Allocate-A(i) is called and its
time complexity depends on AllocateRLM(·). Using the analysis of AllocateRLM(·)
in Lemma 9, we get that its time complexity is O(n); so the time complexity
of GreedyRLM is O(n2). Next, due to Theorem 2, we only need to prove that
Features 4.1.1 and 4.1.2 hold in GreedyRLM where r = s−1

s , which is given in
Propositions 6 and 7 below.

The utilization of GreedyRLM is derived mainly by analyzing the resource
allocation state when a task Ti cannot be fully allocated (then, the condition in
line 5 of GreedyRLM is not satisfied), and we have that

Proposition 6. Upon completion of GreedyRLM, Feature 4.1.1 holds in which
r = s−1

s .

Proof. Our analysis is retrospective and we first show that the resource uti-
lization of A1 ∪ · · · ∪ Am in [1, τm] is r upon completion of the m-th phase of
GreedyRLM. Let us consider a task Ti ∈ ∪ml=1Rl such that di = cm and assume
that Ti ∈ Rm′ for some m′ ∈ [m]+. Since Ti is not accepted when being con-
sidered, it means that

∑
t≤di min{ki,W (t)} < Di at that time and there are at

most leni−1 =
⌈
di
si

⌉
−1 time slots t withW (t) ≥ ki in [1, cm]. Then, we assume

that the number of the time slots t with W (t) ≥ ki is µ. Since Ti isn’t fully
allocated, we have the current resource utilization of A1 ∪ · · · ∪Am′ in [1, cm] is
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at least

C · di − µ · C − (Di − µ · ki)
C · di

≥ C · di −Di − (leni − 1)(C − ki)
C · di

≥C · (di − leni) + (C − ki) + (leni · ki −Di)
C · di

≥ s− 1
s
≥ r.

Hence, upon completion of the m′-th phase of GreedyRLM, the utilization of C
machines in [1, cm] is at least r.

Now, we first show that, after Ti ∈ Rm′ is rejected, the subsequent execution
of Allocate-A(j) for each accepted task Tj ∈ Al in the (m′ + 1)-th, · · · , K-
th phases of GreedyRLM doesn’t change the utilization in [1, cm] where l ∈
[m′ + 1,K]. Fully-Utilize(j) does not change the allocation of the previously
accepted tasks; in AllocateRLM(j, 0, tthl−1 + 2), the operations of changing the
allocation of other tasks happen in its call to Routine(∆, 0, 1, t) where we have
cm = cm′ ≤ tthm′ ≤ tthl−1. Due to the function of lines 6-8 of Routine(∆, 0, 1, t),
we have that the subsequent execution of Allocate-A(j) will never change the
allocation of A1 ∪ · · · ∪ Am′ in [1, cm]. Secondly, we discuss two cases with tth

m

and cm. In the first case that tthm = cm, we have from the above analysis that
upon completion of GreedyRLM the resource utilization of A1 ∪ · · · ∪ Am in
[1, tthm ] is ≥ r where m′ ≤ m. In the second case that tthm > cm, upon completion
of the m-th phase, the slots in [cm + 1, tth

m ] are fully utilized by the definition
of tthm and the resource utilization in [cm + 1, tthm ] is 1; so, we have from the
above analysis that the resource utilization of A1, · · · ,Am in [1, tthm ] is also at
least r. Here, if m = K, the lemma has held; otherwise, as discussed above,
the execution of Allocate-A(j) in the (m+ 1)-th, · · · , K-th phases will also not
change the allocation state of A1 ∪ · · · ∪ Am in [1, tth

m ] upon completion of the
m-th phase and the lemma also holds.

For any m ∈ [K]+, in the m-th phase of GreedyRLM, when a task Ti is
accepted (lines 5 and 6), Allocate-A(i) is called to make it fully allocated. Now,
we compare the resource utilization states before and after executing Allocate-
A(i). In Allocate-A(i), Fully-Utilize(i) and AllocateRLM(·) are sequentially
executed; both of them consider every time slots t from the deadline towards
earlier ones.
Initial Allocation to Ti. Fully-Utilize(·) makes Ti utilize the remaining (idle)
machines at t, and it does not change the allocations of the previous tasks;
afterwards, the total allocation of tasks, i.e., W (t), may be increased at t due
to the allocation of machines to Ti.
Transferring the Allocation of Ti. AllocateRLM(i, 0, tthm−1 + 2) transfers
the allocation of Ti at the earliest slots to the latest slots in [tthm−1 + 2, di], by
equivalently transferrig the allocations of the previously allocated tasks at these
latest slots to earlier slots, under the parallelism constraint. Here, we have that
— upon completion of Allocate-A(i), the number of allocated machines at

each slot does not decrease, in contrast to the amount before its execution,
i.e., before executing Fully-Utilize(i).
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In particular, in AllocateRLM(·), there is a loop; for each iteration at t ∈
[tm−1 + 2, di], in the case that some conditions are satisfied (lines 2, 4, 5, 6, 8
of AllocateRLM(·) and line 10 of Routine(·)), the operations of changing the
allocation of tasks happen: (a) they transfer the allocations of the previously
allocated tasks from t to an earlier slot t′ that is closest to t but not fully utilized
(i.e., with idle machines) (lines 5, 9), and (b) afterwards let θ = W (t), and they
increase the allocation of Ti at t by θ and, correspondingly reduce the allocations
of Ti (allocated by Fully-Utilize(i)) at the earliest slots in [1, t′ − 1] by θ (line
10), ensuring that the total allocation to Ti is still Di. For every iteration at
t, if the related conditions are satisfied so that the operations of changing the
allocation of tasks will be executed, we have yi(t) < ki, and

∑t′−1
t=1 yi(t) > 0.

Lemma 13. During executing AllocateRLM(i, 0, tthm−1 + 2), at the beginning
of an iteration at t, if yi(t) < ki, and

∑t′−1
t=1 yi(t) > 0, we have W (t) = 0.

Proof. We prove this by contradiction. If
∑t′−1
t=1 yi(t) > 0 at the beginning of

the iteration at t, we have it also holds upon completion of Fully-Utilize(i);
the reason for this is that the past execution of AllocateRLM(·) transferred the
allocation of Ti at the earliest slots in [1, t′ − 1] to the latest slots in [t + 1, di]
and the allocation of Fully-Utilize(i) to Ti at the earliest slots was reduced if
t < di. Similarly, if W (t) > 0 at the beginning of the iteration at t, it also holds
upon completion of Fully-Utilize(i); the reason is that, the past execution of
AllocateRLM(·) transferred the allocation of Ti at the earliest slots in [1, t′− 1]
to the latest slots in [t+ 1, di] and the allocation of all tasks at t has never been
reduced by AllocateRLM(·).

So, we have that, upon completion of Fully-Utilize(i), W (t) > 0, yi(t) < ki,
and

∑t′−1
t=1 yi(t) > 0; in the following, we show these three condtions cannot

hold simultaneously.
∑t′−1
t=1 yi(t) > 0 implies that after the allocation of Fully-

Utilize(i) at t we have Di −
∑di
t=t yi(t) > 0; then, Fully-Utilize(i) allocates

min
{
W (t), ki

}
machines to Ti at t. Further, yi(t) < ki implies that W (t) < ki

and Ti is allocated W (t) machines at the moment of deciding the allocation of
Ti at t; after the allcoation at t, t will be fully utilized, which contradicts that
W (t) > 0 upon completion of Fully-Utilize(i).

The threshold tth
m is defined in lines 11-14 of Algorithm 5 where we have

W (tth
m + 1) > 0 upon completion of the m-th phase of GreedyRLM. Since each

execution of Allocate-A(·) does not reduce the amount of idle machines at every
slot, we have that, for every accepted task in the first m phases of GreedyRLM,
i.e., for every Ti ∈

⋃m
l=1Al,

— upon each completion of Allocate-A(i), time slot tth
m+1 is not fully utilized,

i.e., W (tth
m + 1) > 0;

conversely, we can draw the following conclusion:

Lemma 14. For all m ∈ [K]+, given any accepted task Ti in the m-th phase,
upon completion of each Allocate-A(i),
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— we have for all j ∈ [m,K] that time slot tthj + 1 is not fully utilized, i.e.,
W (tthj + 1) > 0.

During executing Allocate-A(i), AllocateRLM(i, 0, tth
m−1 + 2) is called in

which there is a loop, and for its iteration at t ∈ [tth
m−1 + 2, di], when Routine(·)

is called (line 9), it will search for a slot t′ earlier than but closest to t such that
W (t′) > 0.

Lemma 15. For all m ∈ [K]+, let Ti denote any accepted task in the m-th
phase, i.e., Ti ∈ Am. During executing AllocateRLM(i, 0, tthm−1 + 2), when
t ∈ [tthj + 2, di] where j ∈ [m,K], if such t′ exists, we have t′ ∈ [tthj + 1, t− 1].

Proof. We prove this by contradiction. By Lemma 14, the slot tth
j +1 is not fully

utilized upon completion of Allocate-A(i). If Lemma 15 does not hold, there
exists an iteration at some t such that t′ ≤ tth

j and all slots in [tth
j + 1, t − 1]

are fully utilized; then, in the iterations at t, · · · , tth
j + 1, AllocateRLM(·) will

never changes the total allocation at tth
j + 1 since t′ will always be ≤ tth

j and
the current t′ will becomes smaller than smaller as the sequential execution of
the iterations at t, · · · , tth

j + 1 goes, which contradicts that tth
j + 1 is not fully

utilized upon completion of Allocate-A(i).

Lemma 16. At the beginning of an iteration at t ∈ [tthm−1 + 2, di], when the
conditions in lines 2, 6 of AllocateRLM(·) and lines 7, 10 of Routine(·) are all
false, we have that W (t) = 0 and yi(t′) = ki.

Proof. AllocateRLM(·) is executed upon completion of Fully-Utilize(i) and it
considers every slot t from di to tth

m−1 + 2. At t, it transfers the allocation of
previous tasks to an earlier slot t′ that is closest to t and not fully utilized; then,
it allocates more machines to Ti at t and equivalently reduces its allocations at
the earliest slots.

At t, if the conditions in lines 2, 6 of AllocateRLM(·) are false, it means that
after Fully-Utilize(i) allocates machines to Ti at t, we have (a) Di−

∑di
t=t yi(t) >

0, and (b) yi(t) < ki; so, we have W (t) = 0 by Lemma 13. At t, if the
conditions in lines 7, 10 of Routine(·) are false, we have (i) W (t′) > 0 and
(ii)

∑t′−1
t=1 yi(t) > 0; due to (ii), the allocation of Ti at t′ is still the same as

the allocation achieved by Fully-Utilize(i). During executing the iterations at
di, · · · , t + 1 of AllocateRLM(·), the total allocation of previous tasks at t′ is
not decreased and the allocations to Ti at 1, · · · , t′ are not increased; hence,
we have that after Fully-Utilize(i) decides the allocation at t, W (t′) > 0 and
Di −

∑di
t=t′ yi(t) > 0; as a result, we have yi(t′) = ki.

By Lemmas 16 and 7, when the conditions in lines 2, 6 of AllocateRLM(·)
and lines 7, 10 of Routine(·) are false, we have that there exists a Ti′ in line 12
of Routine(·).

Now, like Definition 1, given any t ∈ [1, d], the maximum workload of a
task Ti that could be processed in the time interval [t, d] under the parallelism
and deadline constraints, denoted by βi,t, is defined as follows: (i) βi,t = 0 if
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di < t, (ii) βi,t = ki · (di − t + 1) if leni > di − t + 1 > 0, and (iii) βi,t = Di

if leni ≤ di − t + 1. We say that the interval [t, d] is optimally utilized by Ti
if the total allocation of Ti over [t, d] is βi,t. In the following, to prove that
Feature 4.1.2 holds in GreedyRLM, it suffices to show that upon completion of
GreedyRLM the total allocation of each task Ti ∈

⋃m
j=1Aj over

[
tth
m + 1, d

]
is

βi,m.

Lemma 17. Upon completion of Allocate-A(i), we have for all j ∈ [m,K] that
[tthj + 1, d] is optimally utilized by each task Ti ∈ Am.

Proof. By Lemma 15, for each iteration of AllocateRLM(·) at t ∈ [tth
j + 2, d],

there always exists a t′ in line 2 of Routine(·) such that t′ ∈ [tth
j +1, t−1]. There

are five cases to discuss. In the 1st case that di ≤ tth
j , [tth

j + 1, d] is optimally
utilized by Ti trivially. In the 2nd case, the condition in line 2 of AllocateRLM(·)
is true; then, Ti is fully allocated in [t, di] and [tth

j +1, d] is optimally utilized by
Ti; afterwards, AllocateRLM(·) will stop. In the 3rd case, the condition in line
10 of Routine(·) is true; then, Ti is fully allocated in [t′, di] ⊆ [tth

j + 1, di] and
[tth
j + 1, d] is optimally utilized by Ti; afterwards, AllocateRLM(·) will stop.
In the 4th case, the condition in line 6 is true and nothing is done in the

iteration at t; then, Ti has been allocated ki machines at t. In the 5th case,
all conditions in the 2nd, 3rd, and 4th cases are always false and the loop of
Routine(·) stops when W (t) = ∆ (see line 9 of AllocateRLM(·)); afterwards,
either yi(t) = ki or

∑di
t=t yi(t) = Di (line 10). Hence, when every iteration of

AllocateRLM(·) at t ∈ [tth
j + 2, di] is executed where the 4th or 5th case occurs,

we have that either yi(t) = ki for all t ∈ [tth
j + 2, di] or

∑di
t=tth

j
+2 yi(t) = Di.

Here, if yi(t) = ki for all t ∈ [tth
j + 2, di], we need to further consider two

subcases. The first is
∑tth

j

t=1 yi(t) = 0, showing that Ti is fully allocated in

[tth
j + 1, di]; the second is

∑tth
j

t=1 yi(t) > 0. For every iteration of AllocateRLM(·)
at t ∈ [tth

j + 2, di], t′ ∈ [tth
j + 1, t − 1] by Lemma 15; the total allocation of

Ti in [1, tth
j ] is not increased by AllocateRLM(·), compared with the allocation

achieved by Fully-Utilize(i). Hence, upon completion of Fully-Utilize(i), Ti is
allocated ki machines at tthj + 1; further, upon completion of AllocateRLM(·),
we have yi(t) = ki for all t ∈ [tth

j + 1, di]. In the 2nd subcase, [tth
j + 1, d] is also

optimally utilized by Ti.

Lemma 18. Upon completion of GreedyRLM, we have for all j ∈ [m,K] that
[tthj + 1, d] is optimally utilized by each task Ti ∈ Am.

Proof. By Lemma 17, upon completion of Allocate-A(i), we have for all j ∈
[m,K] that [tth

j + 1, d] is optimally utilized by each task Ti ∈ Am. Now, we
show that, such a conclusion still holds upon each completion of Allocate-A(i1)
where Ti1 denotes an arbitrary task accepted after Ti.

For all m1 ∈ [m,K], assume that Ti1 is accepted in the m1-th phase where
Ti1 ∈ Am1 . During executing Allocate-A(i1), Fully-Utilize(i1) does not make
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any change to the allocations of previously allocated tasks. AllocateRLM(i1, 0,
tth
m1−1 + 2) considers every slot t from di1 to tth

m1−1 + 2. For each iteration at t,
it transfers the allocation of some previously allocated tasks (possibly including
Ti) to an earlier slot t′ that is closest to t and not fully utilized; then, it allocates
more machines to Ti1 at t and equivalently reduces the allocations of Ti1 at the
earliest slots.

Hence, for each iteration at t, the adjustment of the allocation of the pre-
viously allocated tasks (possibly including Ti) only happens at t and t′ where
t′ < t and t ∈

[
tth
m1−1 + 2, di1

]
; after the adjustment, the total allocation of the

previously allocated tasks in [t′, t] does not change. Now, given anym1 ∈ [m,K]
and Ti1 ∈ Am1 , we show after executing AllocateRLM(i1, 0, tth

m1−1 + 2) that
the total allocation of Ti in [tth

j + 1, d] does not change and [tth
j + 1, d] is still

optimized by Ti, where j ∈ [m,K].
Firstly, given any j ∈ [m,L], in the case that j ≥ m1, tth

j > tth
m1−1 and we

have for each iteration of AllocateRLM(i1, 0, tth
m1−1 + 2) at t ∈ [tth

j + 2, di1 ]
that t′ ∈ [tth

j + 1, t − 1] by Lemma 15; hence, the total allocation of Ti in
[tth
j + 1, d] does not change. For the iteration at t = tth

j + 1, we have at the
beginning that W (t) > 0; then, by Lemma 13, we either have yi1(t) = ki

or
∑t′−1
t=1 yi1(t) = 0; when the condition in line 6 of AllocateRLM(·) or the

condition in 10 of Routine(·) is true, the operations of changing the allocation
of tasks (lines 9, 10 of AllocateRLM(·)) will not be executed and nothing is done
for the iteration at t. Finally, we have upon completion of AllocateRLM(i1, 0,
tth
m1−1 + 2) that the total allocation of Ti in [tth

j + 1, di] ⊆ [tth
j + 1, d] does not

change. Secondly, in the case that j = m1 − 1, we have tth
j = tth

m1−1 and always
have t′ > tth

j if such t′ exists by line 7 of Routine(·); hence, upon completion
of AllocateRLM(i1, 0, tth

m1−1 + 2), the total allocation of Ti in [tth
j + 1, d] does

not change. Thirdly, in the case that j ≤ m1 − 2, we have tth
j < tth

m1−1. As
analyzed in the second case, the total allocation of Ti in [tth

m1−1 + 1, d] does not
change upon completion of AllocateRLM(i1, 0, tth

m1−1 + 2) and the allocation
of Ti over [tth

j + 1, tth
m1−1] will not be changed. Hence, for any m1 ∈ [m,K] and

Ti1 ∈ Am1 , the execution of AllocateRLM(i1, 0, tth
m1−1 + 2) does not affect the

total allocation of Ti in [tth
j + 1, d] and the lemma holds.

By Lemma 18, we conversely have that given any m ∈ [K]+, the interval
[tth
m + 1, d] is optimally utilized by each task Ti ∈ Aj for all j ≤ m. Hence, we

conclude that

Proposition 7. Upon completion of GreedyRLM, for all m ∈ [K]+, the interval[
tthm + 1, d

]
is optimally utilized by

⋃m
j=1Aj.

4.2 Dynamic Programming
In this section, we show the application of the dynamic programming tech-

nique to the social welfare maximization problem.
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By Theorem 1, a set of malleable tasks with deadlines can be feasibly sched-
uled on C machines if and only if the boundary condition in Lemma 1 is satisifed.
For any solution to the social welfare maximizatioin problem, a subset of tasks
is chosen and there must exist a feasible schedule of these chosen tasks; the set
of tasks in an optimal solution also satisfies the boundary condition. Then, to
find the optimal solution, we only need address the following problem: if we are
given C machines, how can we choose a subset S of tasks in T such that (i)
this subset satisfies the boundary condition, and (ii) no other subset of selected
tasks achieves a better social welfare? This problem can be solved via dynamic
programming (DP).

To propose a DP algorithm, we need to identify a dominant condition for the
model of malleable tasks [21]. Let F be an arbitrary subset of T , i.e., F ⊆ T , and
recall that the notation λCm(F) in Chapter 3.1 denotes the maximum workload
of F that could be processed in [τL−m + 1, d] on C machines. Now, we define a
L-dimensional vector

H(F) = (λC1 (F)− λC0 (F), · · · , λCL (F)− λCL−1(F)),

where λCm(F)−λCm−1(F), m ∈ [L]+, denotes the maximum resource that F can
utilize on C machines in the segmented timescale [τL−m + 1, τL−m+1] after F
has utilized λCm−1(F) resource in [τL−m+1 + 1, τL]. Let v(F) denote the total
value of the tasks in F , i.e., v(F) =

∑
Ti∈F vi.

Now, we introduce the notion of one pair dominating another pair: given two
subsets F ,F ′ ⊆ T , we say that the pair (F , v(F)) dominates the pair (F ′, v(F ′))
if H(F) = H(F ′) and v(F) ≥ v(F ′); when F and F ′ are two feasible solution
to the social welfare maximization problem, if (F , v(F)) dominates (F ′, v(F ′)),
the solution F uses the same amount of resource as the solution F ′, but obtains
at least the same total value.

Armed with the notion of one pair dominating another pair, we give a general
DP procedure DP(T ), also presented as Algorithm 7 [21]. Here, we iteratively
construct the lists A(i) for all i ∈ [n]+. Each A(i) is a list of pairs (F , v(F)):
F is a subset of {T1, T2, · · · , Ti} satisfying the boundary condition, and v(F)
is the total value of the tasks in F . Each list only maintains all the dominant
pairs. Specifically, we start with A(1) = {(∅, 0), ({T1}, v1)}. For each i =
2, · · · , n, we first set A(i) ← A(i − 1), and for each (F , v(F)) ∈ A(i − 1), we
add (F ∪ {Ti}, v(F ∪ {Ti})) to the list A(i) if F ∪ {Ti} satisfies the boundary
condition. We finally remove from A(i) all the dominated pairs. DP(T ) will
select a subset S of T from all pairs (F , v(F)) ∈ A(n) so that v(F) is the
maximum possible.

Proposition 8. DP(T ) outputs a subset S of T such that v(S) is the maximum
value subject to the condition that S satisfies the boundary condition, and its
time complexity is O(n · dL · CL).

Proof. The proof is similar to the one in the knapsack problem [21]. By in-
duction, we need to prove that A(i) contains all the non-dominated pairs cor-
responding to feasible sets F ∈ {T1, · · · , Ti}. When i = 1, the proposition
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Algorithm 7: DP(T )

1 F ← {T1};
2 A(1)← {(∅, 0), (F , v(F))};
3 for i← 2 to n do
4 A(j)← A(i− 1);
5 for each (F , v(F)) ∈ A(i− 1) do
6 if {Ti} ∪ F satisfies the boundary condition then
7 if there exist a pair (F ′, v(F ′)) ∈ A(i) so that (1)

H(F ′) = H(F ∪ {Ti}), and (2) v(F ′) ≥ v(F ∪ {Ti}) then
8 Add ({Ti} ∪ F , v({Ti} ∪ F)) to A(i);
9 Remove the dominated pair (F ′, v(F ′)) from A(i);

10 else
11 Add ({Ti} ∪ F , v({Ti} ∪ F)) to A(i);

12 S ← argmax
(F,v(F))∈A(n)

{v(F)};

holds obviously. Now suppose it hold for A(i − 1). Let F ′ ⊆ {T1, · · · , Ti}
and H(F ′) satisfies the boundary condition. We claim that there is some pair
(F , v(F)) ∈ A(i) such that H(F) = H(F ′) and v(F) ≥ v(F ′). First, suppose
that Ti /∈ F ′. Then, the claim follows by the induction hypothesis and by the
fact that we initially set A(i) to A(i − 1) and removed dominated pairs. Now
suppose that Ti ∈ F ′ and let F ′1 = F ′−{Ti}. By the induction hypothesis there
is some (F1, v(F1)) ∈ A(i− 1) that dominates (F ′1, v(F ′1)). Then, the algorithm
will add the pair (F1 ∪ {Ti}, v(F1 ∪ {Ti})) to A(i). Thus, there will be some
pair (F , v(F)) ∈ A(i) that dominates (F ′, v(F ′)). Since the size of the space of
H(F) is no more than (C ·T )L, the time complexity of DP(T ) is n ·dL ·CL.

Proposition 9. Given the subset S output by DP(T ), LDF(S) gives an optimal
solution to the welfare maximization problem with a time complexity O(max{n2, n·
dL · CL}).

Proof. It follows from Propositions 8 and 1.

Remark. As in the knapsack problem [21], to construct the algorithm DP(T ),
the pairs of the possible state of resource utilization and the corresponding
best social welfare have to be maintained and a L-dimensional vector has to be
defined to indicate the resource utilization state. This seems to imply that we
cannot make the time complexity of a DP algorithm polynomial in L.

4.3 Machine Minimization
Given a set of tasks T , the minimal number of machines needed to produce

a feasible schedule of T is exactly the minimum C∗ such that the boundary

50



CHAPTER 4. SCHEDULING WITH VARIOUS OBJECTIVES

condition is satisfied, by Theorem 1, where the feasible schedule could be pro-
duced with a time complexity O(n2). An upper bound of the minimum C∗ is
k · n and this minimum C∗ can be obtained through a binary search procedure
with a time complexity of log (k · n) = O(logn); the corresponding algorithm is
presented as Algorithm 8.

Lemma 19. In each iteration of the binary search procedure, the time complex-
ity of determining the satisfiability of boundary condition (line 4 of Algorithm 8)
is O(L · n) where L ≤ n.

Proof. Recall the process of defining µCm(S) where S = T . In Definition 2
that defines λm(T ), n tasks are considered sequentially for each m ∈ [L]+,
leading to a complexity L · n. In Definition 3 that derives λCm(T ) from λm(T ),
λC1 (T ), λC2 (T ), · · · , λCL (T ) are considered sequentially, leading to a complexity
O(L). Finally, µCm(T ) =

∑
Ti∈T Di − λCm(T ). Hence, the time complexity of

determining the satisfiability of boundary condition depends on Definition 2 and
is O(L · n).

With Lemma 19, the loop of Algorithm 8 has a complexity O(L · n · logn).
Based on the above discussion, we conclude that

Proposition 10. Algorithm 8 produces an exact algorithm for the machine
minimization problem with a time complexity of O(n2, L · n · logn).

Algorithm 8: Machine Minimization

1 L← 1, U ← k · n; // L and U are respectively the lower and upper bounds
of the minimum number of needed machines

2 mid← L+U
2 ;

3 while U − L ≤ 1 do
4 if the boundary condition is satisfied with C = mid then
5 U ← mid; // successful

6 else
7 L← mid; // failed

8 mid← L+U
2 ;

9 C∗ ← U ; // the optimal number of machines
10 call the algorithm LDF(T ) to produce a schedule of T on C∗ machines;

4.4 Minimizing MaximumWeighted Completion
Time

When independent malleable tasks are considered with the objective of mini-
mizing the maximum weighted completion time of tasks, a direction application
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of LDF(S) improves the algorithm in [8] by a factor 2. In particular, in [8],
Nagarajan et al. first associated a unique deadline di with each task Ti and pro-
posed a scheduling algorithm such that whenever there exists a feasible schedule
to complete every task by its deadline, their proposed algorithm can produce a
schedule of all tasks by at most two times their deadlines; then, with a polyno-
mial time complexity, they found for each task Ti a completion time di that is
1+ε times the optimal completion time. As a result, when using their algorithm
to complete every task by 2 · (1 + ε) · di, a (2 + 2ε)-approximation algorithm is
obtained. Instead, by using the optimal scheduling algorithm LDF(S) proposed
in this thesis, we have that

Proposition 11. There is a (1 + ε)-approximation algorithm for scheduling
independent malleable tasks under the objective of minimizing the maximum
weighted completion time of tasks.
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Chapter 5

Other Scheduling Problems

There is nothing so practical as a good theory.

Kurt Lewin

5.1 Introduction
5.1.1 Background and Motivations

In Chapters 2-4, the tasks are assumed to be malleable and work-preserving,
i.e., the number of machines assigned to a task can be varying during the execu-
tion (which brings the operation of preempting the execution of a task), and the
workload of a task does not increase with the number of machines assigned to it.
In a more general case when the parallelism bound is large, parallelizing tasks
and preempting their execution will inevitably introduce inefficiencies due to the
extra communication overhead among machines etc. So, we consider another
type of monotonic moldable tasks. For a monotonic task, its workload increases
with the number of machines assigned to execute it while its execution time
decreases. For a moldable task, it may be allocated any number of machines;
however once specified before the task’s execution, this number cannot change
throughout the execution (modeling a potentially high cost of migration).

A key aspect of moldable tasks that crucially conditions their scheduling
is the dependence of the execution time of a task on the number of assigned
processors. A popular speedup model is to assume that tasks are monotonic: as
more processors are assigned to a task, its execution time decreases but its total
workload increases [23], [24]. This model takes well into account the overhead of
communications among different parts of a parallel task that are run on different
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processors. It allows designing algorithms with bounded worst-case performance
for objectives such as minimizing the makespan (i.e., the maximum completion
time of all tasks).

To date, the most efficient result for makespan minimization is a ( 3
2 + ε)-

approximation algorithm with a time complexity of O(mn log n
ε ) [24], where n

is the number of tasks and m is the number of processors. Here, for a minimiza-
tion problem, a ρ-approximation algorithm is such that its performance (e.g.,
makespan) is always ≤ ρ times the performance of an optimal algorithm where
ρ ≥ 1. In practice, it is always desired to have performance bounds closer to one,
while keeping algorithms simple to run efficiently. As shown in our subsequent
analysis (see our ideas in Chapter 5.2.1), the monotonicity of tasks does not
hinder us to achieve better algorithms when every task is executed on a large
number of processors; however, it indeed do when there exist tasks executed on
a small number of processors. In the latter case, a precise speedup description
could help.

Fortunately, many typical benchmarks have been studied so far; here, each
benchmark represents a type of computations whose instances form the tasks
to be executed in this chapter, and the tasks of the same type of computations
have the same speedup behaviour (with the same δj and kj below). Let Dj,p

denote the workload to be processed when a task Tj is assigned p processors,
and the execution time tj,p of this task is Dj,p/p. The following speedup mode
was observed in [25]. When a small number of processors (up to a threshold
δj) is assigned to Tj , the speedup is linear, i.e., the workload remains constant
and the execution time decreases linearly as p ranges from 1 to δj . Then when
the task is assigned > δj processors, the speedup declines, i.e., the execution
time still decreases as p increases but the workload begins to increase (as for
monotonic tasks). Finally, there is a larger threshold kj such that when p > kj ,
the workload of Tj begins to increase to a greater extent and its execution time
does not decrease any more as p increases.

The study [25] considered typical computations that arise in a wide range
of applications: Conjugate Gradient (CG), Fourier Transform (FT), Integer
Sort (IS), Block Tridiagonal (BT), Embarrassingly Parallel [26], Multi-Grid [27],
High Performance Linpack (HPL). For example, the CG and BT benchmarks
solve a system of linear equations whose matrix are symmetric and positive-
definite, and block-tridiagonal respectively. The FT benchmark is a 3-D partial
differential equation solver. The HPL benchmark involves floating point compu-
tations and has been used to classify the top 500 fastest computers in the world.
In these benchmarks, the parameter δj ranges from 25 to 150 and kj ranges from
75 to 300. Besides, parallel implementations of many other computations are
also consistent with the observations in [25]. For example, in cryptography, cen-
tral to the lattice-based cryptosystems is a shortest vector problem (SVP) and
an implementation of the SVP-solver [28] shows that δj could be set to 64. In
computer vision, the scale-invariant feature transform (SIFT) algorithm is used
to detect and describe local features in images where δj = 8 [29]. Its applica-
tions include object recognition, robotic mapping and navigation, 3D modeling,
etc. More examples can be found in [30]–[32].
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Table 5.1 – The value of µ(δ) when the value of δ is in different ranges.

δ µ(δ) δ µ(δ) δ µ(δ)
[5, 9] 0.7500 [22, 26] 0.8571 58 0.9000
[10, 16] 0.8000 [27, 37] 0.8750 [59, 74] 0.9091
[17, 21] 0.8333 [38, 57] 0.8889 [75, 101] 0.9167

As a result, given a set of tasks that might execute one or multiple types of
computations, we let δ and k respectively denote the maximum and minimum
integers such that δ ≤ δj and k ≥ kj for every task Tj ; as shown in the above
study, δ ≥ 8 and k could be set to a value ≤ 300. Finally, by summarizing
the speedup mode observed in [25], we introduce in this thesis the notion of
(δ, k)-monotonic tasks [33] under which tasks are moldable and for every task
Tj that is assigned p processors, we have that

(i) when p ranges in [1, δ], its workloadDj,p remains constant and the speedup
is linear;

(ii) when p ranges in [δ + 1, k], the workload is non-decreasing in p while its
execution time first decreases and then even begins to increase once p
exceeds some threshold (i.e., kj);

(iii) the parallelism bound (i.e., the maximum number of processors that is
allowed to assigned to a task) is k.

We show that this speedup model allows designing simpler yet more efficient
scheduling algorithms than the monotonic model.

Here, we note that, in [25], the speedup mode above is also approximated
and expressed by a unified function tj,p = Dj,1/p+(p−1)·c, where Dj,p = p·tj,p,
and c is a very small positive real number 1. Under this function, related online
scheduling problems have been studied [34]–[37]. Previously, the case that the
parallelism bound is δj where the speedup is linear has been studied when offline
batch scheduling is considered by [3]; the case that all tasks have a common
parallelism bound δ = minTj∈T {δj} has been studied when online scheduling
is considered by [3]; differently, their tasks are malleable, i.e., the number of
assigned processors is allowed to vary during the execution of a task, rather
than moldable.

It should be pointed out that m is large since our problem arises in large-
scale parallel systems such as modern clusters and massively parallel processing
systems; for example, earlier supercomputers such as IBM BlueGene/L have
m = 216 processors inside [38], [39], and modern clusters contain even more
processors [3], [40].

1. When the number p of assigned processors is also small, the effect of the term (p− 1) · c
on the task’s execution time t is negligible.
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5.1.2 Algorithmic Results
Specifically, we consider the problem of scheduling a set of n moldable tasks

on m processors under the proposed notion of (δ, k)-monotonic tasks, and a
main algorithmic result for scheduling this type of tasks is
— a 1

θ(δ) · (1+ ε)-approximation algorithm with a time complexity O(n log n
ε )

to minimize the makespan. In particular, θ(δ) is of the following form:

θ(δ) = µ(δ)−O( 1
m ).

Here, the value of µ(δ) under a particular δ is a constant, illustrated in Table 5.1;
m is large in large-scale parallel systems such that O( 1

m )→ 0, and θ(δ)→ µ(δ).
Every task is an instance of some type of computations (e.g., a procedure

of solving linear equations); as discussed above, we have in many typical com-
putations [25], [28]–[32] that δ ≥ 8 and then the approximation ratio of our
algorithm approaches 4

3 . When the benchmarks/computations of [25] are con-
sidered alone, δ ≥ 25 and the ratio approaches 7

6 . When the computations in a
lattice-based cryptosystem are executed [28], δ = 64 and the ratio approaches
11
10 . As a result, we have proposed better approximation algorithms than the
best ( 3

2 + ε)-approximation algorithm under the monotonic assumption, by tak-
ing advantage of a new description of the relation between the speedup and the
number of processors assigned to a task.

Besides, as a by-product in the process of deriving the algorithm above,
another result that we obtain is a θ(δ)-approximation algorithm with a time
complexity O(n2) to maximize the social welfare (i.e., the sum of values of tasks
completed by a deadline)—see the definition of approximation algorithms in
Chapter 5.3. To the best of our knowledge, we are the first to address the social
welfare maximization objective for moldable tasks, while this objective has been
addressed for other types of tasks [3], [41]–[43].

5.2 Related Work
We introduce the related works following which our high-level ideas for

scheduling (δ, k)-monotonic tasks are also described.

5.2.1 Makespan Minimization
We discuss some typical works on scheduling moldable tasks for makespan

minimization [23], [24], [44]–[55]. The problem is strongly NP-hard when m ≥ 5
[56]. The first two lines of works are based on a two-phases approach; the first
phase selects the number of processors assigned to every task and the second
phase goes to solve the resulting non-moldable scheduling problem.
First Line of Works. Of the great relevance to our work is the first line
of works where monotonic tasks are considered [23], [24]; here, the following
definition is given:
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Definition 5. Given a positive real number d, we define for every task Tj its
canonical number of processors γ(j, d) as the minimum number of processors
needed to execute task Tj by time d; here, for every task Tj ∈ T , 1 ≤ γ(j, d) <
+∞.

A monotonic task is such that its execution time decreases but its workload
increases with the number of used processors. We denote by Dj,p and tj,p
the workload of Tj and its execution time when assigned p processors where
Dj,p = p · tj,p. By the definition of γ(j, d) and the relation that Dj,γ(j,d) >
Dj,γ(j,d)−1 = (γ(j, d)− 1) · tj,γ(j,d)−1 > (γ(j, d)− 1) · d, we conclude that

d ≥ tj,γ(j,d) >
γ(j, d)− 1
γ(j, d) · d. (5.1)

In this type of works, the key is classifying tasks by solving a knapsack problem
and so far the best result is presented in [24]. In particular, the algorithm of [24]
classifies the tasks into two subsets T1 and T2, by solving a knapsack problem via
dynamic programming with a complexity of O(m), where the tasks respectively
in T1 and T2 are allocated γ(j, d) and γ(j, d2 ) processors, and then the total
workload of the tasks is ≤ m ·d. Then, the total number of processors allocated
to T2 may be > m and a series of reductions to the numbers of processors
assigned to tasks is taken to get a feasible schedule with a makespan ≤ 3

2 · d.
Finally, Mounié et al. obtained a 3

2 · (1 + ε)-approximation algorithm with a
complexity of O(mn log n

ε ) in [24].
Our Ideas for Makespan Minimization. Similar to the work of [24], we
also determine the number of processors assigned to every task in advance and it
originates from the following preliminary observation for monotonic tasks. Tasks
are available at time 0. Suppose there exists a schedule of all tasks, denoted by
Sched, whose makespan is d and that achieves a resource utilization r in [0, d];
under the condition that the minimum workload of every task Tj is processed
(i.e., assigned γ(j, d) processors), the schedule Sched will be a 1

r -approximation
algorithm for makespan minimization. The reason is as follows. Denote by d∗
the makespan of an optimal schedule denoted by Sched∗, where d∗ ≤ d; thus,
the workload of Tj when assigned γ(j, d∗) processors Dj,γ(j,d∗) ≥ Dj,γ(j,d). In
the schedule Sched∗, the workload of every task is ≥ Dj,γ(j,d∗) since the number
of processors assigned to a task Tj is at least γ(j, d∗); thus the total workload
of all tasks is ≤ m · d∗ but ≥ its counterpart in Sched that is ≥ r ·m · d. So, we
derive that the optimal makespan d∗ is ≥ r·m·d

m = r · d, that is, d
d∗ ≤

1
r .

Now, only if we could design such a schedule Sched with a utilization r > 2/3,
an algorithm better than the one in [24] could be obtained. Our first problem is
to give the schedule Sched; to achieve this, a challenge arises from the existence
of tasks with small γ(j, d). In particular, given an integer H ≥ 4, we call the
tasks with γ(j, d) ≥ H as the tasks with large γ(j, d). Every task with large
γ(j, d) has an execution time > H−1

H ·d by Inequality (5.1) when assigned γ(j, d)
processors; these processors could achieve a utilization ≥ H−1

H ≥ 3
4 in [0, d].

To cope with the tasks with small γ(j, d) ≤ H − 1, we introduce the notion of
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(δ, k)-monotonic tasks where H−1 ≤ δ, enabling a generic classification of these
tasks (see Chapter 5.4.1); here, every task will be assigned the same number of
processors (≤ δ) and its minimum workload is processed. We can thus propose
such a schedule Sched whose utilization r approximates H−1

H (see Chapter 5.4.2
and 5.4.3).

As seen later, our second problem is that the utilization of Sched can be
derived only when m processors are not enough to process all tasks by time d
where some tasks are rejected; however, what we need is the utilization when
all tasks are scheduled. To address this, let U and L be such that Sched can
produce a feasible schedule of all tasks by time U but fails to do so by time L,
and we apply a binary search procedure to Sched. After the procedure ends,
we have for such U and L that U ≤ L · (1 + ε) and r denotes the utilization of
Sched when d = U . After an extended analysis of our preliminary observation,
we could derive that the final schedule of all tasks by time U is a 1

r · (1 + ε)-
approximation algorithm (see Chapter 5.5.1).
Second and Third Lines of Works. As for the second line of works, Turek
et al. and Ludwig et al. showed that any λ-approximation algorithm of a time
complexity O(f(m,n)) for the problem of scheduling rigid tasks can be adapted
into a λ-approximation algorithm of a complexity O

(
n log2 m+ f(m,n)

)
for

the moldable scheduling problem [57]–[59]; here, a rigid task requires to be exe-
cuted on a fixed number of processors; then, the strip packing algorithm in [60]
could be applied to obtain a polynomial time 2-approximation algorithm. The
third line of work [61] formulates the original problem as a linear programming
problem and propose an (1+ε)-approximation algorithm with a time complexity
of O(n) given a fixed number of processors; here, independent of ε, the actual
complexity is also exponential in the number of processors.

5.2.2 A Unified Speedup Function
As stated in Chapter 5.1.1, the speedup model for (δ, k)-monotonic tasks

is also approximated by tj,p = Dj,1/p + (p − 1) · c [25], under which related
scheduling problems have been studied for makespan minimization where tasks
arrive over time. In particular, Havill and Mao studied an algorithm that assigns
pj processors to a task Tj such that its execution time tj,pj is minimized [34] and
showed that it achieves an approximation ratio 4− 4

m and 4− 4
m+1 respectively

when m is even and odd. Subsequently, some special cases are also studied
where the number of processors m is ≤ 4. For example, assume that the arrival
time of a task Tj is aj and Dutton and Mao studied an algorithm that assigns
pj processors such that its completion time aj + tj,p is minimized subject to the
number of processors idle at aj ; they showed that it has an approximation ratio
2, 9/4, and 20/9 respectively for m = 2, 3, and 4 [35], [36]. Furthermore, a more
general speedup model was studied in [37] where c is a task-dependent value (i.e.,
cj); here, Guo and Kang showed any online algorithm has an approximation
ratio ≥ φ = 1+

√
5

2 and in the special case where m = 2 gave an algorithm with
an approximation ratio φ.
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5.2.3 Social Welfare Maximization
Several works have studied the problems of scheduling other types of parallel

tasks to maximize the sum of values of tasks completed by a common deadline
[41], [43] or individual deadlines [3], [4].

In [41], [43], Jansen et al. considered rigid tasks each of which requires to
be executed on a fixed number of processors; for example, in [41], they applied
the theory of knapsack problem and linear programming to propose an ( 1

2 + ε)-
approximation algorithm. Here, different types of tasks have different features
and, given a set of tasks, the type (e.g., rigid or moldable) will determine the
way that we can design a schedule (that will specify for each chosen task a time
interval within which it is executed and the number of assigned processors). For
(δ, k)-monotonic tasks, the moldablity of tasks requires us to determine how
many processors to be assigned to every task, and the involved monotonicity
also implies that the value obtained from processing a unit of its workload might
vary with the number of assigned processors. These are different from the cases
with rigid tasks.

Recently, [3] and [4] studied malleable tasks whose speedup is linear within
a parallelism bound, as introduced in Chapter 5.1.1. Jain et al. proposed a
(C−δmaxC · s−1

s )-approximation algorithm for the offline scheduling problem [3]
and afterwards proposed a 1

g(s) -approximation algorithm for the online schedul-

ing problem 2 [3], where g(s) =
(

2 +O( 1
( 3√s−1)2 )

)
. Here, δmax is the maximum

parallelism bound of all tasks, i.e., δmax = maxTj∈T {δj}; every task Tj has the
minimum execution time when the number of assigned processors is its paral-
lelism bound δj , and the parameter s has a value ≤ the ratio of every task’s
deadline minus arrival time to its minimum execution time. The motivation of
designing such algorithms is that many applications are delay-tolerant such that
s could be much greater than 1.
Our Ideas for Social Welfare Maximization. In this thesis, our ideas are
as follows. We first give a generic (greedy) algorithm that will define the order in
which tasks are accepted for scheduling; here, the final algorithm will only accept
a part of tasks due to the capacity constraint. Then we retrospectively analyze
this algorithm and define what parameters will determine its performance. As
a result, since the minimum workload of every accepted task is processed in our
scheduling procedure in Chapter 5.4, a direct application of this procedure to
that greedy algorithm leads to an algorithm whose approximation ratio is its
utilization.

5.3 Problem Description
There is a set of n independent moldable tasks T = {T1, T2, · · · , Tn}, which

is considered to be scheduled on m identical processors. When a task Tj is
assigned p processors, we denote by Dj,p its workload to be processed and

2. See the conclusion part of [3] for this updated approximation ratio.
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by tj,p its execution time where Dj,p = tj,p · p. All tasks of T are available
at the starting time 0. Before executing a moldable task, the scheduler has
the opportunity to determine the number of processors assigned to each task;
however, once executed, the task could not be terminated until its completion
and this number of assigned processors cannot be changed during execution.
We consider a class of moldable tasks defined as follows.

Definition 6 ((δ, k)-monotonic tasks). A (δ, k)-monotonic task Tj is a moldable
task that satisfies:

1. its workload remains constant when p ranges in [1, δ], i.e., Dj,1 = Dj,p;
2. its workload is non-decreasing in p when p ranges in [δ, k], i.e., Dj,p ≤

Dj,p+1 if δ ≤ p ≤ k − 1;
3. the maximum number of processors assigned to Tj is ≤ k;

here, its execution time tj,p is Dj,p/p for any p.

By the definition of (δ, k)-monotonic tasks, we have that

Lemma 20. The workload of Tj is non-decreasing in p when p ranges in [1, k],
that is, Dj,p ≤ Dj,p+1 for p ∈ [1, k − 1].

As is given in Definition 5 for monotonic tasks, we still use γ(j, d) to denote
the minimum integer such that tj,γ(j,d) ≤ d.

Lemma 21. Inequality (5.1) holds under Definition 6.

Proof. By the definition of γ(j, d), we have tj,γ(j,d) ≤ d and tj,γ(j,d)−1 > d. By
Lemma 20, Dj,γ(j,d) ≥ Dj,γ(j,d)−1 and we have tj,γ(j,d) · γ(j, d) ≥ tj,γ(j,d)−1 ·
(γ(j, d)− 1) > (γ(j, d)− 1) · d. Hence, Inequality (5.1) holds.

We consider two scheduling objectives separately. The first objective is min-
imizing the makespan, i.e., the maximum completion time of all tasks T . In
addition, every task in T may be associated with a value and the second objec-
tive is maximizing the social welfare, i.e., the sum of values of tasks completed
by a deadline τ , where partial execution of a task by the deadline yields no
value. The problem with the second objective involves selecting a subset of
T where not all tasks could be completed by time d due to the constraint of
available machines. Our goal for each objective is to propose appropriate sched-
ules/algorithms to specify for each processed task a time interval within which
it is executed and the number of processors assigned to it.

As introduced in Chapter 2.4, the performance of an algorithm is indicated
by the makespan or social welfare that it achieves; the algorithm’s quality could
be measured by a performance’s ratio, i.e., the ratio of the proposed algorithm’s
performance to the performance of an ideally optimal algorithm (that is un-
known to us), which is referred to as approximation ratio [21]. Formally, we
denote by A(T ) and OPT (T ) respectively the performance of an algorithm
and the optimal one, and an algorithm is called a ρ-approximation algorithm if
there exists a value ρ such that, for an arbitrary set T , (i) when a minimization
problem is considered,
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A(T )
OPT (T ) ≤ ρ, ρ ≥ 1,

and (ii) when a maximization problem is considered,

A(T )
OPT (T ) ≥ ρ, 0 ≤ ρ ≤ 1.

In particular, given an arbitrary T , a ρ1-approximation algorithm (ρ1 ≥ 1) for
the makespan minimization problem always returns a solution whose makespan
is at most ρ1 times the optimal makespan, while a ρ2-approximation algorithm
(ρ2 ≤ 1) for the social welfare maximization problem returns a solution whose
social welfare is at least ρ2 times the optimal one. In this thesis, our final goal
is to propose low-complexity algorithms that achieve approximation ratios as
close to 1 as possible for both problems.

5.4 Scheduling for Utilization
In this section, we consider the situation where the number of tasks is so

large that only a subset of T could be completed by a deadline d onm processors
due to the capacity constraint; we will manage to select an appropriate subset
of tasks such that a simple schedule of them could achieve a high utilization of
processors.

5.4.1 Parameter Identification and Task Classification
In this subsection, we will classify all tasks of T according to their execution

time when assigned γ(j, d) processors or another number of processors (i.e.,
δ′ processors). The classification enables understanding the way of assigning
tasks onto processors efficiently, and our final aim in this section is to propose
a schedule whose utilization approaches r = H−1

H where H is an integer in
[4, δ + 1]. As seen later, all tasks of T will be classified as follows: (i) the tasks
with tj,γ(j,d) ≥ r · d, (ii) the tasks with tj,δ′ < (1− r) · d, and (iii) the tasks with
tj,γ(j,d) < r ·d and tj,δ′ ≥ (1−r) ·d. Now, we start to elaborate the classification,
as well as the meaning of related parameters.
First Class of Jobs. Every task Tj ∈ T is associated with an integer γ(j, d),
i.e., the minimum number of processors assigned to Tj such that it can be
completed by time d. By Inequality (5.1), every task Tj ∈ T with γ(j, d) ≥ H
has an execution time ≥ r · d when assigned γ(j, d) processors. For every h ∈
[1, H − 1], we denote by

A′h = {Tj ∈ T | γ(j, d) = h, tj,h ≥ r · d}

the set of tasks satisfying (i) γ(j, d) = h and (ii) their execution time is ≥ r · d
when assigned h processors.

The first class of tasks is denoted by A′ and defined as follows:

A′ = {Tj ∈ T | γ(j, d) ≥ H} ∪ A′1 ∪ · · · ∪ A′H−1,
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containing all the tasks whose execution time is ≥ r · d when assigned γ(j, d)
processors. We thus conclude that

Proposition 12. Each task in A′ has an execution time ≥ r · d when assigned
γ(j, d) processors.

Second Class of Jobs. We proceed to classify the remaining tasks in T −A′.
Recall the definition of A′ and we have

T − A′ = {Tj ∈ T | γ(j, d) ∈ [1, H − 1], tj,γ(j,d) < r · d}.

By Definition 6, we have the knowledge of speedup when a task is assigned ≤ δ
processors, i.e., it is linear; to have such knowledge, we assume in the following
that H − 1 ≤ δ.

Firstly, we consider the tasks of T −A′ with small γ(j, d), i.e., γ(j, d) smaller
than some value ν where ν ≤ H − 1; in this case, assigning a properly large
number of processors (i.e., δ′ processors) to such a task can greatly reduce its
execution time to an extent we expect (i.e., < (1− r) · d) where ν − 1 < δ′ ≤ δ.
As will be seen in Observation 5.4.1, this can bring some desired feature when
designing a schedule, e.g., sequentially executing as many such tasks as possible
on δ′ processors in [0, d] can lead to a utilization ≥ r.

In particular, let δ′ be an integer in [ν, δ] and for every Tj ∈ T − A′ with
γ(j, d) ≤ ν−1 we have by Definition 6 that tj,γ(j,d)·γ(j, d) = tj,δ′ ·δ′. Hence, when
Tj is assigned δ′ processors, its execution time tj,δ′ is < γ(j,d)

δ′ · r · d ≤
ν−1
δ′ · r · d.

We thus go to seek two integers ν and δ′ such that

ν ≤ H − 1 ≤ δ, and ν ≤ δ′ ≤ δ, (5.2a)
ν

δ′
· r ≥ 1− r, (5.2b)

ν − 1
δ′
· r <1− r. (5.2c)

The existence of such parameters ν and δ′ will be shown subsequently. Here,
when the parameter ν satisfies Inequality (5.2c), we can guarantee the relation
tj,δ′ < (1 − r) · d for every Tj ∈ T − A′ with γ(j, d) ≤ ν − 1, which will be
formalized in Lemma 22; (5.2b) indicates that ν is the maximum such integer
that can guarantee this relation. Formally, for every h ∈ [1, ν − 1], we let

A′′h = {Tj ∈ T −A′ | γ(j, d) = h} =
{
Tj ∈ T | γ(j, d) = h, tj,γ(j,d) < r · d

}
,

and have that

Lemma 22. Every task Tj ∈ A′′1 ∪· · ·∪A′′ν−1 has an execution time < (1−r) ·d
when assigned δ′ processors.

Next, the rest are the tasks of T − A′ − A′′1 ∪ · · · ∪ A′′ν−1, i.e., the tasks of
T −A′ with γ(j, d) ∈ [ν,H − 1]. For every h ∈ [ν, H − 1], all tasks Tj ∈ T − A′
with γ(j, d) = h are classified as follows:
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— Ah = {Tj ∈ T −A′|γ(j, d) = h, tj,δ′ ≥ (1− r) · d};
— A′′′h = {Tj ∈ T −A′|γ(j, d) = h, tj,δ′ < (1− r) · d}.

The second class of tasks is denoted by A′′ and defined as follows:

A′′ = the union of
ν−1⋃
h=1
A′′h and

H−1⋃
h=ν
A′′′h ;

it contains all tasks of T −A′ with γ(j, d) ≤ ν − 1 and all tasks of T −A′ with
ν ≤ γ(j, d) ≤ H − 1 and tj,δ′ < (1− r) · d. Due to Lemma 22 and the definition
of A′′′h , we conclude that

Proposition 13. Each task in A′′ has an execution time < (1 − r) · d when
assigned δ′ processors.

As described below, all tasks of A′′ have some desired properties when de-
signing a schedule.

Observation 5.4.1. Assume that there are δ′ processors on which a set of tasks
T ′ has already been sequentially executed in the time interval [0, d]. Given a task
Tj whose execution time is < (1−r) ·d when assigned δ′ processors, if T ′∪{Tj}
cannot be sequentially completed by time d on these δ′ processors, the sequential
execution of the tasks in T ′ leads to that the utilization of these δ′ processors in
[0, d] is ≥ r.

Proof. We prove this by contradiction. Suppose that the utilization of the δ′
processors in [0, d] is < r; the sequential execution time of the tasks in T ′ on the
δ′ processors is < r ·d. As a result, Tj can still be completed on these processors
by time d after sequentially executing the tasks of T ′, since Tj has an execution
time ≤ (1− r) · d on these processors.

Third Class of Jobs. So far, all tasks with tj,γ(j,d) ≥ r · d are denoted by A′
while all tasks with tj,δ′ < (1 − r) · d are denoted by A′′. Now, only the tasks
of T − A′ − A′′ are left, i.e., the tasks of Aν ∪ · · · ∪ AH−1 defined above; the
property of these tasks in terms of their execution time enables the following
observation: for every h ∈ [ν,H − 1], after sequentially executing several tasks
of Ah on δ′ processors, the total execution time of these tasks is in [r · d, d]. We
thus seek an integer xh for every h ∈ [ν,H − 1] such that

H − 1 ≤ δ′, (5.3a)
h

δ′
· r · xh ≤ 1, (5.3b)

max{1− r, h− 1
δ′
} · xh ≥ r. (5.3c)

Here, since γ(j, d) is the minimum number of processors needed to complete Tj
by time d and we are considering the tasks with γ(j, d) ≤ H−1, (5.3a) is required
to ensure that every task can be completed by d. With Inequalities (5.3b)-(5.3c),
we come to the following conclusion:
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Proposition 14. When assigned δ′ processors,
(i) a task of Ah has an execution time < h

δ′ · r · d, and
(ii) any xh tasks of Ah have a total execution time in [r · d, d],

where h ∈ [ν,H − 1].
Proof. When assigned γ(j, d) = h processors, a task Tj ∈ Ah has an execution
time < r · d but > h−1

h · d by Inequality (5.1) where h ≤ H − 1 ≤ δ; by
Definition 6, when assigned δ′ processors where δ′ ≤ δ, the execution time
of Tj is linearly reduced by a factor h

δ′ and is in
(
h−1
δ′ · d,

h
δ′ · r · d

)
. So, the

proposition’s first point holds. Besides, by the definition of Ah, when assigned
δ′ processors, the execution time of Tj ∈ Ah is also ≥ (1 − r) · d and is in[
d ·max{1− r, h−1

δ′ },
h
δ′ · r · d

]
. Further, due to Inequalities (5.3b)-(5.3c), any

xh tasks have a total of execution time in [r · d, d] and the proposition’s second
point holds.

Observation 5.4.2. When assigning one or multiple tasks of Ah onto δ′ pro-
cessors where h ∈ [ν,H − 1], we have the following observation:

1. After sequentially executing as many tasks of Ah on δ′ processors until the
next task of Ah cannot be completed by time d, the δ′ processors achieve
a utilization ≥ r in [0, d].

2. If some other tasks (each of which can have an arbitrary execution time
in [0, d]) have been sequentially executed on δ′ processors by time d but the
next task that is from Ah cannot be completed on these processors by d,
these processors achieve a utilization ≥ 1− h

δ′ · r in [0, d].
Proof. By the second point of Proposition 14, at least xh tasks of Aj will be
executed in the first point of Observation 5.4.2 and this point thus holds. In the
second point of Observation 5.4.2, in the process of assigning tasks to processors,
there exists a task such that (a) its execution time is < h

δ′ · r · d when assigned
δ′ processors by Proposition 14, and (b) when considering assigning it to the δ′
processors, it could not be completed by d. The existence of such a task means
that, all the previous executed tasks on these processors have a total execution
time ≥ d− h

δ′ · r · d = (1− h
δ′ · r) · d; otherwise, the next task from Ah could be

completed by d. The second point thus holds.

Final Task Classification. To sum up, in this subsection, all tasks of T are
finally partitioned as follows:

A′′, AH−1, · · · , Av, A′, (5.4)

which are illustrated in Figure 5.1. The desired properties of these tasks have
been presented in Propositions 12, 13, and 14; their functions in the design of a
schedule are also clarified in Observations 5.4.1 and 5.4.2.
Existence of Parameters. Now, we need to show the existence of parameters
H, ν, δ′ and xh in Inequalities (5.2a), (5.2b), (5.2c), (5.3a), (5.3b), and (5.3c).
Here, (5.2a) and (5.3a) are unified as follows:

1 ≤ ν ≤ H − 1 ≤ δ′ ≤ δ. (5.5)
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ℎ ≤ 𝜈 − 1 ℎ = 𝜈,⋯ ,𝐻 − 1 ℎ ≥ 𝐻

𝑡𝑗,ℎ < 𝑟 ⋅ 𝑑

𝑨′′ 𝑨′𝑨𝒉

All tasks of 𝑇

𝑡𝑗,ℎ < 𝑟 ⋅ 𝑑

𝑡𝑗,𝛿′ < (1 − 𝑟) ⋅ 𝑑

yes yes yes

no

yes yes

no

no

yes

ℎ = γ(𝑗, 𝑑)

Figure 5.1 – Task Classification

Proposition 15. Given an arbitrary δ ≥ 1, there exists a set of feasible parame-
ters H, δ′, ν, and xν , · · · , xH−1 that satisfy Inequalities (5.2b), (5.2c), (5.3b), (5.3c)
and (5.5).

Proof. Given an arbitrary δ ≥ 1, we set H = 1 = δ′ = 1 where r = H−1
H = 1

2 ;
then, we set ν = 1 and x1 = 1 where h ∈ [ν,H − 1]. The values of these
parameters satisfy Inequalities (5.2b), (5.2c), (5.3b), (5.3c) and (5.5). Hence,
the proposition holds.

In this thesis, our aim is to find the maximumH and feasible δ′, ν, xν , · · · , xH−1
such that Inequalities (5.2b), (5.2c), (5.3b), (5.3c) and (5.5) are satisfied where
r = (H − 1)/H. Given the value of δ, we can achieve this by exhaustive search;
a corresponding search procedure is presented in Algorithm 9; here the 5 loops
that respectively begin at the lines 1, 2, 3, 8, and 9 of this procedure lead to
that it has a time complexity O(δ5) where δ is a fixed system parameter.

5.4.2 Example
Now, we illustrate how to apply the above classification of tasks to propose

a scheduling algorithm by considering a special case with δ = 5. In the next
subsection, we will give a generic schedule.

Using Algorithm 9 to obtain a set of feasible parameters satisfying Inequal-
ities (5.2b), (5.2c), (5.3b), (5.3c) and (5.5), we have that ν = 2, H = 4, δ′ = 5,
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Algorithm 9: A Search Procedure to Obtain Feasible Parameters
/* seek the maximum possible H under which there exist feasible δ′, ν, xν,
· · · , xH−1 such that Inequalities (2b), (2c), (3b), (3c) and (5) are
satisfied */

/* By (5), we have 1 ≤ H − 1 ≤ δ, H − 1 ≤ δ′ ≤ δ, and 1 ≤ ν ≤ H − 1 */
1 for H ← δ + 1 to 2 do
2 for δ′ ← δ to H-1 do
3 for ν ← 1 to H − 1 do
4 r ← (H − 1)/H;
5 temp1← ν

δ′ · r + r, temp2← ν−1
δ′ · r + r;

6 if temp1 ≥ 1 ∧ temp2 < 1 then
// (2b) and (2c) are satisfied; next, we go to seek feasible

xν , · · · , xH−1 under the current H, δ′, ν

7 flag ← an array of H − 1 elements whose initial values are
all set to 0;

/* for every h ∈ [ν,H − 1], if a feasible xh exists, we will
set flag(h) to 1 */

8 for h← ν to H − 1 do
9 for xh ← 1 to

⌈
δ′

r·h

⌉
do

// the upper bound of xh is determined by (3b)

10 temp3← h
δ′ · r · xh, temp4← max

{
1− r, h−1

δ′

}
· xh;

11 if (temp3 ≤ 1) ∧ (temp4≥ r) then
// (3b) and (3c) are satisfied, and a feasible

xh is found
12 flag(h)← 1;
13 break;

14 temp5 ← the sum of all the element’s values of the array
flag;

15 if temp5 = H − ν then
// we have found all feasible xν , · · · , xH−1 under the

maximum possible H

16 exit Algorithm 9;

x3 = 2, and x2 = 3. Here, r = H−1
H = 3

4 . As a result, all tasks of T are finally
divided into 4 subsets A′, A3, A2, and A′′ as shown in (5.4):

(1) Every task of A′ has an execution time ≥ r · d when assigned γ(j, d)
processors by Proposition 12.

(2) Every x3 = 2 tasks of A3 or every x2 = 3 tasks of A2 have a total
execution time in [r ·d, d] when sequentially executed on δ′ = 5 processors
by Proposition 14.
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Figure 5.2 – Basic Scheduling Structure

(3) Every task of A′′ has an execution time < (1 − r) · d when assigned δ′

processors by Proposition 13.
We illustrate the proposed schedule in Figure 5.2 where each green, orange,

gold, and blue rectangle denotes a task in A′, A3, A2, and A′′, respectively; the
particular way to schedule T is as follows:
Step 1. Assign every (green) task Tj of A′ on the leftmost γ(j, d) unoccupied
processors.
Step 2. The remaining tasks are considered in the order of A3,A2,A′′.

(a) Assign as many (orange) tasks of A3 on the leftmost δ′ = 5 unoccupied
processors by time d.

(b) When there is one (orange) task of A3 left, assign it to the leftmost δ′
unoccupied processors; then, assign as many (gold) tasks of A2 as possible
on these δ′ processors by time d.

(c) For the remaining tasks of A2, assign as many (gold) tasks of A2 to the
leftmost δ′ unoccupied processors by time d.

(d) When there is one (gold) task left in A2, assign it to the leftmost δ′
unoccupied processors; then, assign as many (blue) tasks in A′′ as possible
by time d.

(e) Subsequently, assign as many (blue) tasks in A′′ on the leftmost δ′ unoc-
cupied processors by time d.

(f) Stop assigning tasks to processors when there are < δ′ processors, even if
there are still remaining tasks that are unassigned.

In Figure 5.2, the γ(j, d) or δ′ processors that are used to exclusively process
the task(s) with the same color have a utilization ≥ r · d, which is due to
Proposition 12, Observation 5.4.2 and Observation 5.4.1; here, the tasks of A′,
A3, A2, and A′′ are processed respectively in Steps (1), (2.a), (2.c), and (2.e).
In Step (2.d), both gold and blue tasks are assigned and when it stops assigning
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tasks, there exists a (blue) task of A′ that cannot be completed by time d; by
Observation 5.4.1, the δ′ processors here have a utilization ≥ r in [0, d]. As a
result, there are only two places where the processors might have a utilization
< r in [0, d]. The first place is Step (2.f) where the schedule stops: there
are at most δ′ − 1 processor idle. The second place is Step (2.b) where both
orange and gold tasks are assigned; here, when this step finishes, there exists a
(gold) task of A2 that cannot be completed by time d. By the second point of
Observation 5.4.2, the δ′ processors here have a utilization ≥ 1− h

δ′ ·r = 7
10 where

h = 2. In Steps (2.b) and (2.f), there are a total of 2 · δ′ − 1 processors whose
utilization is < r. Finally, the above schedule achieves an average utilization of
at least

(m− 2δ′ + 1) · r · d+ δ′ · (d− 3
10 · d) + (δ′ − 1) · 0

m · d
= 3

4 −
3.25
m

=

r − δ′ − 1
m

· r − δ′

m
·
(
r − (1− h

δ′
· r)
)
,

(5.6)

where h = 2. We emphasize that in the above example there are two places
where the occupied processors have a utilization < r in [0, d]: (i) Step (2.f)
where the schedule stops, and (ii) Step (2.b) where tasks from multiple sub-
sets are sequentially executed on δ′ processors and there exists a task from
AH−2, · · · ,Aν (excluding AH−1 and A′′) that cannot be completed by time d
on these processors.

5.4.3 Generic Schedule
In this subsection, we generalize the example in Chapter 5.4.2 to the case

with an arbitrary δ; the corresponding algorithm is presented in Algorithm 10,
also referred to as UnitAlgo; as seen later, its utilization is a generalization of
Expression (5.6). In Algorithm 10, the set T of tasks is partitioned in several
sets A′,AH−1, · · · , Av, A′′, and these sets are also sorted and considered in this
order where the tasks in each set will be chosen in a randomized order:
(i) Assign every task Tj of A′ to γ(j, d) idle processors alone.
(ii) For every δ′ idle processors, assign onto them as many tasks as possible

from the remaining unassigned tasks of AH−1∪· · ·∪Av∪A′′ such that the
sequential execution time of these tasks is ≤ d (see the formal description
in the lines 12-15 of Algorithm 10).

Algorithm 10 ends when there is no enough idle processors for assigning the
remaining tasks of T (i.e., it ends at line 9 or 17) or when all tasks of T have
been assigned onto the m processors by time d (i.e., the conditions at lines 3 and
10 have become false). Recall that we consider in this section the situation that
m processors are not enough for completing T by time d and our subsequent
analysis of Theorem 3 is based on this.

Now, we give some explanation of the lines 12-15 of Algorithm 10. We also
denote A′′ by Aν−1 to be uniform with AH−1, · · · , Aν ; in Algorithm 10, the
initial XH−1, · · · , Xν−1 are set to AH−1, · · · , Aν−1 for recording the currently
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Algorithm 10: UnitAlgo

1 X ′ ← A′, XH−1 ← AH−1, · · · , Xν ← Aν , Xν−1 ← A′′ // X′,
XH−1, · · · ,Xν, Xν−1 are used to record the currently unassigned tasks
during the algorithm execution

2 m′ ← m // record the number of currently unoccupied processors
3 while X ′ 6= ∅ do
4 Randomly choose a task Tj ∈ X ′.
5 if γ(j, d) ≤ m′ then

/* the following corresponds to Step (1) in the example of
Chapter 5.4.2 */

6 Assign the unassigned task Tj onto the leftmost γ(j, d)
unoccupied processors.

7 Remove Tj from X ′: X ′ ← X ′ − {Tj}, and reset the number of
currently unoccupied processors: m′ ← m′ − γ(j, d).

8 else
9 exit Algorithm 10 // the currently unoccupied processors are not

enough

10 while XH−1 ∪ · · · ∪ Xv ∪ Xν−1 6= ∅ do
11 if δ′ ≤ m′ then

/* each loop corresponds to one of the Steps (2.a)-(2.e) in
Chapter 5.4.2 */

12 Consider the tasks in the order of XH−1, · · · , Xν , Xν−1; here, a
task in Xi will never be chosen if the set Xi+1 is non-empty, and
the tasks in each set will chosen in a randomized order.

13 Choose as many tasks as possible from XH−1, · · · , Xν , Xν−1 such
that they could be sequentially completed by time d on δ′
processors, denoting the set of the chosen tasks by C.

14 Assign the chosen tasks onto the leftmost δ′ unoccupied
processors.

15 Remove the assigned tasks:
XH−1 ∪ · · · ∪ Xv ∪Xν−1 ← XH−1 ∪ · · · ∪ Xv ∪Xν−1 − C, and reset
the number of currently unoccupied processors:
m′ ← m′ − γ(j, d).

16 else
17 exit Algorithm 10 // it corresponds to Step (2.f) in

Chapter 5.4.2
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unassigned tasks of T . For every δ′ processors, there are two cases upon com-
pletion of the task assignment onto them:

1. The δ′ processors are used to sequentially process tasks from the same
subset alone, i.e. some Ah where h ∈ [ν − 1, H − 1];

2. Tasks from multiple subsets will be processed in these processors. In
this case, assume the first task that is assigned onto these processors is
from Ah where h ∈ [ν, H − 1] and subsequently some tasks from the sets
Ah−1, · · · ,Ah′ are also assigned where h′ ≤ h− 1; here, the value of h′ is
such that, after finishing the task assignment on these processors in [0, d],
(i) there is no unassigned tasks in Ah, · · · ,Ah′+1, and (ii) there still exist
unassigned tasks in Ah′ that cannot be completed by time d.

Examples of the first case include the Steps (2.a), (2.c), and (2.e) in Chap-
ter 5.4.2 where every δ′ processors process the same colored tasks; examples of
the second case include Steps (2.b) and (2.d), e.g., in Step (2.b), both orange
and gold tasks are processed where h = 3 and h′ = 2.

In the first case, we conclude by Observation 5.4.1 and the first point of
Observation 5.4.2 that
— no matter whether the processed tasks are from Aν−1 or from AH−1, · · · ,
Aν , these δ′ processors have a utilization ≥ r in [0, d].

In the second case, since h ∈ [ν, H−1] and h′ ≤ h−1, we have h′ ∈ [ν−1, H−2]:
we conclude by the second point of Observation 5.4.2 that
— if h′ ∈ [ν,H − 2], these processors have a utilization ≥ 1− h′

δ′ · r;
we conclude by Observation 5.4.1 that
— if h′ = ν − 1, these processors have a utilization ≥ r.

By observing the possible values of h′, we conclude that in the while loop of
lines 10-17 there are at most (H−ν−1) ·δ′ processors whose utilization in [0, d]
is < r; here, the second case occurs H − ν − 1 times with h′ ∈ [ν,H − 2].

Theorem 3. With a time complexity of O(n), UnitAlgo achieves a resource
utilization of at least

θ(δ) =

 r − r·(k−1)
m , if ν = H − 1,

r −max
{
r·(k−1)
m ,

r·(δ′−1)+
∑H−2

h=ν
(r+h·r

δ′ −1)·δ′

m

}
, otherwise,

where ν, δ′, r, and H are computed by Algorithm 9.

Proof. At the line 6 of Algorithm 10, when a task is allocated γ(j, d) processors,
these processors achieve a utilization ≥ r in [0, d] by Proposition 12.

Firstly, we analyze the case that Algorithm 10 stops at line 9; then, there are
at most γ(j, d)−1 processors idle and the average utilization of them processors
is ≥

(m− γ(j, d) + 1) · r · d
m · d

≥ r − r · (k − 1)
m

, (5.7)
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where γ(j, d) ≤ k.
Secondly, we analyze the case that Algorithm 10 stops at line 17; then, there

are at most δ′ − 1 processors idle. In this case, lines 12-15 will be executed
where two cases will occur, which have been explained above. As explained, in
the first case, for every h ∈ [ν − 1, H − 1], the δ′ assigned processors have a
utilization ≥ r in [0, d].

In the second case, we discuss two possibilities for H − 1 and ν. The first
possibility is H−1 = ν; then the value of h can only be ν and we have h′ = ν−1.
As a result, the δ′ processors have a utilization ≥ r in [0, d]. Hence, if H−1 = ν,
there are at most δ′− 1 idle processors that occur at line 17, and the utilization
of the m processors is ≥

(m− δ′ + 1) · r · d
m · d

≥ r − r · (δ′ − 1)
m

. (5.8)

To sum up, if H − 1 = ν, the worst-case utilization is the minimum of (5.7) and
(5.8), i.e., (5.7); it happens when Algorithm 10 exits at line 9.

The other possibility is H−1 > ν and the worst-case utilization occurs when
h′ = h−1 for every h ∈ [ν+1, H−1]: there is a total of (H−1−ν) ·δ′ processors
whose utilization is < r · d in [0, d]. Hence, when Algorithm 10 stops at line 17,
the utilization of the m processors is ≥

(m− (δ′ − 1)− (H − 1− ν) · δ′) · r · d+
H−2∑
h′=ν

δ′ · (1− r·h′
δ′ ) · d+ (δ′ − 1) · 0

m · d

= r −
r · (δ′ − 1) +

∑H−2
h=ν ( r·hδ′ + r − 1) · δ′

m
.

(5.9)

As a result, if H− 1 > ν, the worst-case utilization is the minimum of (5.7) and
(5.9).

By summarizing the utilizations derived above, we conclude that the worst-
case utilization is (5.7) if H − 1 = ν, and the minimum of (5.7) and (5.9) if H −
1 > ν. Finally, in Algorithm 10, tasks are sequentially considered and assigned
to processors one by one and it stops until there are not enough processors to
assign the remaining tasks (see line 9 or 17 of Algorithm 10); hence, Algorithm 10
has a time complexity of O(n).

In Theorem 3, we let θ(δ) = µ(δ) − ϑ(δ) where µ(δ) = r and ϑ(δ) =
max

{
β1 · k−1

m , β2 · 1
m

}
; here, if ν = H − 1, β2 = 0. Under a particular δ,

the value of µ(δ) is illustrated in Table 5.1, and the values of β1 and β2 are
illustrated in Table 5.2; since β1 and β2 under a particular δ are constants and
k is a system parameter, we have

θ(δ) = µ(δ)−O( 1
m ).

Given a set of tasks T , let S denote the subset of tasks that are selected
by Algorithm 10 and scheduled on m processors. We give the following lemma
that will be used in Chapter 5.5.
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Table 5.2 – The values of β1 and β2 when δ is in different ranges.

δ {β1, β2} δ {β1, β2} δ {β1, β2}
[5, 9]

{ 3
4 , 3.25

}
[22, 26]

{ 6
7 , 19.43

}
58

{ 9
10 , 53.2

}
[10, 16]

{ 4
5 , 7.6

}
[27, 37]

{ 7
8 , 25.75

}
[59, 74]

{ 10
11 , 58.55

}
[17, 21]

{ 5
6 , 13.83

}
[38, 57]

{ 8
9 , 36.22

}
[75, 101]

{ 11
12 , 74

}
Lemma 23. In the schedule of S output by Algorithm 10, each task Tj ∈ S has
a workload Dj,γ(j,d) to be processed; here, Dj,γ(j,d) is the minimum workload
needed to be processed in order to be complete Tj by time d.

Proof. All tasks of T are divided into several subsets: A′, AH−1, · · · , Aν , A′′.
To complete Tj by d, the minimum number of processors needed is γ(j, d) and
the minimum workload to be processed is Dj,γ(j,d). In Algorithm 10, every
scheduled task Tj ∈ A′ is allocated γ(j, d) processors. For every scheduled task
Tj ∈ AH−1, · · · ,Aν ,A′′, we have γ(j, d) ≤ H − 1 ≤ δ and it is executed on
δ′ processors where δ′ ≤ δ. Due to Definition 6, the workload of a task is a
constant when assigned ≤ δ processors, and thus the minimum workload of Tj
is processed. Hence, the lemma holds.

5.5 Optimizing Objectives
In this section, we propose algorithms to separately optimize two specific

scheduling objectives: (i) minimizing the makespan, and (ii) maximizing the
total value of tasks completed by a deadline.

5.5.1 Makespan
The main idea for makespan minimization has been introduced in Chap-

ter 5.2. Built on Algorithm 10, we propose in this subsection a binary search
procedure to find a feasible makespan for all tasks of T , referred to as the OMS
algorithm (Optimized MakeSpan). It proceeds as follows. At its beginning, let
U and L be such that UnitAlgo can produce a feasible schedule of all tasks by
time U but fails to do so by time L, e.g., U = 2 · n ·maxTj∈T {tj,1} and L = 0;
we explain the reason why UnitAlgo can produce a schedule of all tasks by time
U at the end of this subsection. The OMS algorithm will repeatedly execute
the following operations, and stop when U ≤ L · (1 + ε) where ε ∈ (0, 1) is small
enough:

1. M ← U+L
2 ;

2. if Algorithm 10 fails to produce a feasible schedule for all tasks of T by
the deadline M (i.e., Algorithm 10 exits at line 9 or 17), set L←M ;

3. otherwise, set U ← M , and Algorithm 10 produces a feasible schedule of
T by time M .
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When the OMS Algorithm stops, we have that (i) Algorithm 10 could produce
a feasible schedule of T with a makespan ≤ U but > L, and, (ii) U ≤ (1 + ε) ·L.
Recall that the makespan is the maximum completion time of tasks, and a
schedule of all tasks with a makespan ≤ d represents a schedule that completes
all tasks by the deadline d.

Theorem 4. The OMS algorithm gives a 1
θ(δ) · (1 + ε)-approximation to the

makespan minimization problem with a time complexity of O(n log(nε )) .

Proof. By abuse of notation, let θ = θ(δ) and by Theorem 3 it is the worst-
case utilization achieved by Algorithm 10. In the following, we consider the
state when the OMS Algorithm ends. Algorithm 10 fails to generate a feasible
schedule for all the tasks of T with a makespan L but could generate it with a
makespan ≤ U . Let d∗ denote the optimal makespan when scheduling T on m
processors where d∗ ≤ U . The proof proceeds by considering two cases where
L ≤ d∗ and L > d∗ respectively.

In the case where L ≤ d∗, since U ≤ L · (1 + ε), we have U
d∗ ≤ 1 + ε; the

produced schedule with a makespan ≤ U has a makespan ≤ (1 + ε) times d∗. In
the other case where L > d∗, we have for all Tj ∈ T that γ(j, L) ≤ γ(j, d∗) and
further Dj,γ(j,L) ≤ Dj,γ(j,d∗) by Lemma 20. By time L, Algorithm 10 can only
schedule a subset of T due to the capacity constraint; the processed workload
of each scheduled task is Dj,γ(j,L) by Lemma 23, and the total workload of the
scheduled tasks is ≥ θ ·m · L. In contrast, in an optimal schedule of all tasks
of T to minimize the makespan, the workload of every task is ≥ Dj,γ(j,d∗) since
the task needs to be assigned at least γ(j, d∗) processors in order to complete
it by time d∗. As a result, in an optimal schedule of T , the total workload of
T is ≤ m · d∗ but > θ ·m · L since Dj,γ(j,L) ≤ Dj,γ(j,d∗). Further, we have that
d∗ ≥ θ·m·L

m = θ ·L, and U
d∗ ≤

U
θ·L ≤

1
θ · (1 + ε). Since the OMS algorithm finally

produce a schedule with a makespan ≤ U , it achieves an approximation ratio
1
θ · (1 + ε).

Finally, the initial values of U and L are 2 ·n ·maxTj∈T {tj,1} and 0. The bi-
nary search stops when U ≤ L·(1+ε) and the number of iterations is O(log(nε )).
Further, at each iteration, Algorithm 10 is run and it has a time complexityO(n)
and, as a result, the OMS algorithm has a complexity O(n log(nε )).

Finally, we explain the reason why UnitAlgo can produce a schedule of all
tasks by time U = 2·n·maxTj∈T {tj,1}. The values ofH, δ′ and ν are determined
by the parameter δ and could be computed by Algorithm 9. As introduced at the
beginning of this chapter, we have that δ ≥ 3; then, we have ν ≥ 2 and H ≥ 3
where r = (H−1)/H ≥ 2/3. When the initial value of U is 2 ·n ·maxTj∈T {tj,1},
which is ≥ two times the total execution time of all tasks when every task is
assigned one processor, where |T | = n. Then, we have for all Tj ∈ T that
γ(j, U) = 1, and tj,γ(j,U) ≤ U/2 < r · U . As illustrated in Fig. 1 in the main
manuscript, all tasks of T belong to A′′, and the other A′,AH−1, · · · ,Aν are
empty; all tasks of A′′ can be sequentially completed by time U on δ′ processors
since tj,1 = tj,δ′ ·δ′. Hence, UnitAlgo can produce a feasible schedule of all tasks
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of T by time U (mainly see lines 1 and 13 of Algorithm 10) when the value of
U is 2 · n ·maxTj∈T {tj,1}.

5.5.2 Scheduling to Maximize the Total Value
In this subsection, we consider the objective of maximizing the social welfare,

i.e., the sum of values of tasks completed by a deadline τ . The main idea of this
subsection has been introduced in Chapter 5.2.

Analysis of a Generic Greedy Algorithm. For a (δ, k)-monotonic task Tj ,
we define v′j,pj as its marginal value vj

Dj,pj
= vj

pj ·tj,pj
and it is the value obtained

from processing a unit of workload of Tj when Tj is assigned pj processors and
completed by the deadline τ . When pj ≤ δ, the workload of Tj is a constant by
Definition 6 and so is its marginal value; however, it is possible that its workload
becomes increasing with pj when pj ranges from δ + 1 to k, with its marginal
value decreasing with pj .

In order to complete Tj by time τ , the minimum number of processors needed
is γ(j, τ) by Definition 5; thus, Dj,γ(j,τ) is the minimum workload that re-
mains to be processed. Let v′j = vj/Dj,γ(j,τ), and v′j is the maximum possible
marginal value of Tj that has to be completed by time τ . In this subsection,
we assume without loss of generality that v′1 ≥ v′2 ≥ · · · ≥ v′n. We propose
a generic greedy algorithm called GenGreedyAlgo; here some scheduling algo-
rithm is used but not specified for now, referred to as GS (short for Generic
Schedule). GenGreedyAlgo is presented in Algorithm 11: it considers tasks in
the non-increasing order of their maximum possible marginal values v′j and fi-
nally finds the maximum i′ such that GS can output a feasible schedule by time
τ for Si′ that includes the first i′ tasks of T .

Algorithm 11: GenGreedyAlgo
1 initialize Si = {T1, T2, · · · , Ti} (1 ≤ i ≤ n);
2 for i← 1 to n do
3 if a feasible schedule of Si by time τ is output by GS then
4 i′ = i;
5 else
6 exit;

Before analyzing GenGreedyAlgo, we first give an upper bound of the opti-
mal social welfare of the problem of this subsection, denoted by OPT . Let S ′
contain the first σ tasks of T with the highest marginal values such that the
total workload of these tasks satisfies

D1,γ(1,τ) +D2,γ(2,τ) + · · ·+Dσ−1,γ(σ−1,τ) + β ·Dσ,γ(σ,τ) = m · τ ,

where β ∈ (0, 1]; then, we have that

Lemma 24. The sum v1 + v2 + · · ·+ vσ−1 + β · vσ is an upper bound of OPT .
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Proof. The minimum workload of each task Tj is Dj,γ(j,τ) when assigned the
minimum number of processors in order to be completed by τ . We consider a
relaxed scheduling problem: each task Tj has a value vj , a workload Dj,γ(j,τ),
and a deadline τ ; however, Tj can be executed on any number of processors and
partial execution of Tj by time τ will yield partial value linearly proportional to
the amount of processed workload D′j , i.e., vj · (D′j/Dj,γ(j,τ)). In the problem
of this subsection, we assume in an optimal solution that S∗ denotes the set
of tasks selected to be processed, and each task Tj ∈ S∗ is assigned p∗j proces-
sors; the optimal social welfare is

∑
Tj∈S∗ vj . Since

∑
Tj∈S∗ Dj,p∗

j
≤ τ ·m and

Dj,p∗
j
≥ Dj,γ(j,τ) where γ(j, τ) ≤ p∗j , a feasible solution of the relaxed problem

is scheduling S∗ where the workload of each task is Dj,γ(j,τ); thus, we conclude
that the optimal social welfare of this relaxed problem is an upper bound of∑
Tj∈S∗ vj .
In the relaxed problem, the maximum workload that can be processed on m

processors in [0, τ ] is m ·τ , and it is equivalent to a fractional knapsack problem
[62]: a knapsack has a capacity m · τ and there are n divisible items, each with
a size Dj,γ(j,τ) and a value vj ; its optimal solution is just like what is described
before this lemma: choose the first σ items with the highest marginal values to
fill the knapsack where possibly only a fraction of the last item could be packed
into the knapsack. Hence, its optimal social welfare is v1 +v2 +· · ·+vσ−1 +β ·vσ,
which is an upper bound of the optimal social welfare of the problem of this
subsection

∑
Tj∈S∗ vj ; the lemma thus holds.

Without loss of generality, we assume that every task Tj accepted for pro-
cessing in GenGreedyAlgo is finally assigned pj processors where pj ≥ γ(j, τ).
To bound the optimal social welfare, we define for every scheduled task Tj a
parameter

αj = Dj,γ(j,τ)
Dj,pj

.

To complete a task Tj by time τ , the minimum workload to be processed is
Dj,γ(j,τ), and the ratio αj represents the efficiency of processing a single task
Tj : as more processors are assigned, completing the same task possibly needs to
occupy more resource for processing an increased workload but yields the same
value vj , possibly leading to a smaller αj and a lower marginal value. In terms
of the set of chosen tasks Si′ , we define

α = min1≤j≤i′{αj}.

We denote by ω the utilization of the m processors in [0, τ ] achieved by Gen-
GreedyAlgo, i.e., ∑i′

j=1 Dj,pj = ω · τ ·m.

Finally, we have the following bound:

Theorem 5. An upper bound of the optimal social welfare of our problem is
1/(ω·α) times the social welfare achieved by GenGreedyAlgo, i.e.,

∑
Tj∈Si′

vj/(ω·
α).
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Proof. GenGreedyAlgo accepts the first i′ tasks with the highest marginal values
v′j , and the achieved social welfare is

∑i′

j=1 vj . Let

X1 = 1
ω ·

i′∑
j=1

Dj,pj −
i′∑
j=1

Dj,γ(j,τ), and X2 =
σ−1∑
j=i′+1

Dj,γ(j,τ) + β ·Dσ,γ(j,τ);

recall τ ·m = (1/ω) ·
∑i′

j=1 Dj,pj = D1,γ(1,τ) + · · ·+Dσ−1,γ(σ−1,τ) + β ·Dσ,γ(σ,τ)

and we have X1 = X2 since τ ·m−X1 =
∑i′

j=1 Dj,γ(j,τ) = τ ·m−X2.∑i′

j=1 vj is the total value obtained by GenGreedyAlgo and we have

∑i′

j=1 vj

ω · τ ·m
=

∑i′

j=1
vj

Dj,γ(j,τ)
· αj ·Dj,γ(j,pj)

ω · τ ·m
≥
α ·
∑i′

j=1 v
′
j ·Dj,pj

ω · τ ·m
(a)=
∑i′

j=1 vj +
∑i′

j=1 v
′
j · ( 1

ω ·Dj,pj −Dj,γ(j,τ))
(τ ·m)/α

(b)
≥
∑i′

j=1 vj + v′i′ ·X1

(τ ·m)/α

(c)=

i′∑
j=1

vj + v′i′ ·X2

(τ ·m)/α
(d)
≥

i′∑
j=1

vj +
(

σ−1∑
j=i′+1

vj + β · vσ

)
(τ ·m)/α

(e)
≥ OPT

(τ ·m)/α.

(5.10)

Here, in Equation (a), vj = v′j ·Dj,γ(j,τ); Inequalities (b) and (d) are due to that
v′1 ≥ · · · ≥ vi′ ≥ · · · ≥ v′n; (c) is due to that X1 = X2; (e) is due to Lemma 24.
Due to Inequality (5.10), we have OPT ≤

∑i′

j=1 vj/(ω · α), and the theorem
thus holds.

Recall the definition of approximation algorithms in Chapter 5.5.2, and The-
orem 5 shows that GenGreedyAlgo achieves an approximation ratio ω ·α. Now,
it has been clear that a good greedy algorithm can be obtained only if the
scheduling algorithm GS in GenGreedyAlgo could achieve both a high utiliza-
tion in [0, τ ] on m processors and a large α; the latter could be achieved by
making the number of processors assigned to every task Tj close to γ(j, τ) where
its workload to be processed is close to Dj,γ(j,τ).

In the following, we consider the case when GS is replaced by the scheduling
algorithm UnitAlgo, i.e., Algorithm 10 in Chapter 5.4.

Proposition 16. GenGreedyAlgo, with GS replaced by UnitAlgo, gives an θ(δ)-
approximation algorithm with a complexity of O(n2) for the social welfare max-
imization problem.

Proof. Due to Lemma 23, the workload of each task Tj scheduled by UnitAlgo is
Dj,γ(j,τ); we thus have αj = 1 and further α = 1. As a result of Theorem 5, the
approximation ratio of GenGreedyAlgo is the utilization achieved by UnitAlgo,
which is bounded by θ(δ) according to Theorem 3. Hence, GenGreedyAlgo is
a θ(δ)-approximation algorithm. GenGreedyAlgo considers S1, · · · ,Sn one by
one until UnitAlgo cannot produce a feasible schedule for some Si (i ∈ [1, n]);
when UnitAlgo attempts to schedule tasks on m processor by time τ , it has a
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time complexity at most O(n). Hence, the time complexity of GenGreedyAlgo
is O(n2). Finally, the proposition holds.
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Part II

Cost-Optimal Use of Cloud
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Chapter 6

Introduction

A good designer must rely on experience, on
precise, logic thinking; and on pedantic
exactness. No magic will do.

Niklaus Wirth

6.1 Background
Many businesses possess a small infrastructure that they can use for their

computing tasks, but also often need to buy extra computing resources from
clouds, as illustrated in Fig. 6.1. Infrastructure as a Service (IaaS) holds excit-
ing potential of elastically scaling users’ computation capacity up and down to
match their time-varying demand. This eliminates the users’ need of purchasing
servers to satisfy their peak demand, without causing an unacceptable latency.
IaaS is seeing a fast growth and nowadays has become the second-largest public
cloud subsegment [63], [64], accounting for almost half of all data center in-
frastructure shipments. Cost management in IaaS clouds is therefore a premier
concern for users and has received significant attention as illustrated in Fig. 6.2.

Two common purchase options in the cloud are on-demand and spot in-
stances. The former are always available with a fixed price and tenants 1 pay
only for the period in which instances are consumed at an hourly rate. Users
can also bid a price for spot instances and can successfully get them only if their
bid price is above the spot price. Spot instances will then run as long as the bid
is above the spot price but they will be terminated if the spot price becomes

1. In this thesis, we use "users" and "tenants" interchangeably.
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Figure 6.1 – Motivation of using IaaS clouds.

Figure 6.2 – Our Question.

higher. Here, spot prices usually vary unpredictably over time and users will be
charged the spot prices for their use [65]. Compared to on-demand instances,
spot instances can reduce the cost by up to 50-90% [66].

Users purchasing instances on the cloud may have their own instances, re-
ferred to as self-owned instances, which can be used to process jobs but are
insufficient at times (hence the need to purchase extra IaaS instances). They
may also not have any self-owned instances (e.g., in the case of startups) and
therefore need to buy from the cloud all necessary computing resources. In
both cases though, the fundamental question for users is to determine how to
purchase instances from IaaS clouds and utilize different instances to process
their jobs in a way that minimizes their cost.

Tenants’ jobs arrive over time and often have constraints that must be satis-
fied while trying to minimize cost [3], [6], [67], [68]. For example, one constraint
is the parallelism bound and it specifies the maximum number of instances that
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could be utilized by a job simultaneously; another is on timing, i.e., a deadline
by which to complete the job’s workload. Subject to the parallelism constraint,
an arriving job will be allocated instances of different types (self-owned, on-
demand and spot) and the allocation can be updated at most once every hour
(since billing is done per hour). The problem is then to find an allocation that
minimizes cost while ensuring that every job will be completed by its deadline.

6.2 Challenges and Results
Challenges. In this part of the thesis, we make the natural assumption that
self-owned instances are cheaper than spot instances, which are further cheaper
than on-demand instances. So, to be cost-optimal, an allocation policy should
allocate as many self-owned instances as possible, then spot instances, and fi-
nally on-demand instances. This is, however, a difficult task. For instance, a
naive policy to achieve a high utilization of self-owned instances would be, when
a job arrives, to assign as many remaining self-owned instances as possible to it.
However, this policy turns out not to be good wrt cost. Indeed, it ignores the
difference of jobs and treats all jobs equally when assigning instances, whereas
we find that a good policy wrt cost needs instead to determine the allocations
of self-owned instances to jobs according to their capabilities of utilizing spot
instances alone to complete themselves by deadlines.

In particular, when self-owned instances are inadequate, actively assign self-
owned instances to the jobs with poor capabilities and assign nothing to the
others; otherwise, such poor jobs will have to consume more costly on-demand
instances, and it also causes a waste of other rich jobs’ capabilities together
with self-owned instances (even if no self-owned instances are allocated, they
can be completed by utilizing spot instances alone). When self-owned instances
are adequate, assign them to jobs with both poor and strong capabilities such
that after the allocations all jobs are expected to be completed by utilizing spot
instances alone, eliminating the need of consuming costly on-demand instances.

After allocating self-owned instances, the left question is to identify a job’s
capacity for utilizing spot instances, i.e., the maximum workload that could be
processed by spot instances, and propose an expected optimal policy to achieve
such capacities of jobs, further escaping unnecessary consumption of on-demand
instances.
Our Contributions. In this thesis, we propose a framework to design policies
to allocate various instances [69], [70]. Based on the two principles that (i)
self-owned instances should be allocated to maximize their utilization while
maximizing the opportunity of all jobs utilizing spot instances and (ii) on-
demand instances should be allocated to maximize the opportunity to utilize
spot instances, we propose parametric policies for the allocation of self-owned,
on-demand and spot instances that achieve near-minimal costs. To cope with
the cloud market dynamic and the uncertainty of job’s characteristics, we use
the online learning technique in [6], [68] to infer the optimal parameters. More
specifically:
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— We propose a cost-effective policy for allocating self-owned instances that
is smarter than the naive allocation mentioned above and hits a good
trade-off between the utilization of self-owned instances and the opportu-
nity of utilizing spot instances. We show in our numerical experiments
that this policy improves the cost by up to 43.74% compared to the naive
policy.

— We propose a cost-optimal policy for the utilization of on-demand and spot
instances, based on a formulation of the original problem as an integer
program to maximize the utilization of spot instances. This policy can
be used both when the tenant has self-owned resources and when he does
not. Our simulation results show that it improves the cost of previous
policies in [6], [68] by up to 64.51%.

6.3 Related Work
In this thesis, we use online learning technique to learn the most-effective

parameters for utilizing various instances. Jain et al. were the first to consider
the application of this approach to the scenario of cloud computing 2 [6], [68].
However, they do not consider the problem of how to optimally utilize the
purchase options in IaaS clouds and self-owned instances are also not taken into
account. The online learning approach is interesting because it does not impose
the restriction of a priori statistical knowledge of workload, compared to other
techniques such as stochastic programming (see Chapter 8.4 for an introduction
of online learning). However, it can achieve good performances only if the
potentially optimal scheduling policies are identified among all possible policies.

Similar to our work and [6], [68], executing deadline-constrained jobs cost-
effectively in IaaS clouds is also studied in [71], [72]. In particular, Zafer et
al. characterize the evolution of spot prices by a Markov model and propose an
optimal bidding strategy to utilize spot instances to complete a serial or parallel
job by some deadline [71]. Yao et al. study the problem of utilizing reserved
and on-demand instances to complete online batch jobs by their deadlines and
formulate it as integer programming problems; then heuristic algorithms are
proposed to give approximate solutions [72].

There have been substantial works on cost-effective resource provisioning
in IaaS clouds [73], and we introduce some typical approaches. Built on the
assumption of a priori statistical knowledge of the workload or spot prices, sev-
eral techniques could be applied. For example, in [74], [75], the techniques of
stochastic programming is applied to achieve the cost-optimal acquisition of
reserved and on-demand instances; in [76], the optimal strategy for the users
to bid for the spot instances are derived, given a predicted distribution over
spot prices. However, a high computational complexity arises when implement-
ing these techniques, though the statistical knowledge could be derived by the
techniques such as dynamic programming [77].

2. The objective of this thesis corresponds to a special case of [6], [68] where the value of
each job is larger than the cost of completing it.
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Wang et al. use the competitive analysis technique to purchase reserved
and on-demand instances without knowing the future workload [78], where the
Bahncard problem is applied to propose a deterministic and a randomized al-
gorithm. In [79], a genetic algorithm is proposed to quickly approximate the
pareto-set of makespan and cost for a bag of tasks where on-demand and spot
instances are considered. In [77], the technique of Lyapunov optimization is
applied and it’s said to be the first effort on jointly leveraging all three common
IaaS cloud pricing options to comprehensively reduce the cost of users. The less
interesting aspect of this technique is that a large delay will be caused when
processing jobs; in order to achieve an O(ε) close-to-optimal performance, the
queue size has to be Θ(1/ε) [80].
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Chapter 7

Model, Assumption, and
Objectives

Nothing has such power to broaden the mind
as the ability to investigate systematically and
truly all that comes under thy observation in
life.

Marcus Aurelius

In this chapter, we introduce the cloud pricing models, define the operational
space of a user to utilize various instances, and characterize the scheduling
objective.

7.1 Pricing Models in the Cloud
We first introduce the pricing models in the cloud. The price of an on-

demand instance is charged on an hourly basis and it is fixed and denoted by p.
Even if on-demand instances are consumed for part of an hour, the tenant will
be charged the fee of the entire hour, as illustrated in Fig. 7.1.

An instance

A unit price 𝑝 per an hour

Total price 4 × 𝑝

Figure 7.1 – On-demand price: users are charged on an hourly basis.
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Furthermore, tenants can bid a price for spot instances and spot prices are
updated at regular time intervals/slots (e.g., every L = 5 minutes in Amazon)
[76]. Spot instances are assigned to a job and continue running if the spot price
is lower than the bid price, as illustrated in Fig. 7.2. Since spot prices usually
change unpredictably over time [65], once the spot price exceeds the bid price
of a job, its spot instances will get lost suddenly and terminated immediately
by the cloud; here, the termination occurs at the very beginning of a time slot.
The tenant will be charged the spot prices for the maximum integer hours of
execution. A partial hour of execution is not charged in the case where its
instances are terminated by the cloud; in contrast, if spot instances run until a
job is completed and then are terminated by the tenant, for the partial hour of
execution, the tenant will also be charged for the full hour.

Spot prices

×Bid price 𝑏

On-demand 

price 𝑝

Timet0

Figure 7.2 – Spot price: a user bid a price b for an instance at time 0 and can
use it until time t.

Finally, a user might have its own computing instances, i.e., self-owned in-
stances. The (averaged) hourly cost of utilizing self-owned instances is assumed
to be p1. We assume that it is the cheapest to use self-owned instances so that
p1 is without loss of generality assumed to be 0. An example of self-owned
instances is academic private clouds, which are provided to researchers free of
charge.

7.2 Jobs to be Processed
The job arrival of a tenant is monitored every time slot of L minutes (i.e.,

at the time points when spot prices change) and time slots are indexed by
t = 1, 2, · · · . Each job j has four characteristics: (i) an arrival slot aj : If job
j arrives at a certain continuous time point in [(t − 1) · L, t · L), then set aj
to t; (ii) a relative deadline dj ∈ Z+: it is a time constraint on completing a
job, that is, every job must be completed at or before time slot aj + dj − 1;
(iii) a job size zj (measured in CPU time slots that need to be utilized), i.e.,
the workload to complete j; (iv) a parallelism bound δj : the upper bound on
the number of instances that could be simultaneously utilized by j. The tenant
plans to rent instances in IaaS clouds to process its jobs and aims to minimize
the cost of completing a set of jobs J (that arrive over a time horizon T ) by
their deadlines.
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7.3 Operational Rules for Allocating Instances
to Jobs

The pricing models define the rules of allocating instances to jobs and also
the operational space of a user, i.e., (a) when the resource allocation to jobs is
done and updated, and, (b) how various instances and especially spot instances
are utilized by jobs at every allocation update. Generally, the allocation of
various instances to every job will be simultaneously updated at most once
every hour, since on-demand instances are charged on an hourly basis. Upon
arrival of every job, the allocation to it is done immediately due to the time
constraint. Now, we elaborate this.

7.3.1 On-demand and spot instances
We first consider the allocation of on-demand and spot instances alone, ig-

noring self-owned instances temporarily.
To meet deadlines, we assume that (i) whenever a job j arrives at aj, the

allocation of spot and on-demand instances to it is done immediately. The fol-
lowing rules apply to the case where j has flexibility to utilize spot instances.
Given the fact that the tenant is charged on hourly boundaries, (ii) the allo-
cation of on-demand and spot instances to each job j is updated simultaneously
every hour. At the i-th allocation to j, the number of on-demand instances
allocated to j is denoted by oij and they can be utilized for the entire hour;
we assume that (iii) the tenant will bid a price bij for a fixed number siij of
spot instances. At the i-th allocation of j, bij together with the spot prices de-
termines whether j can successfully obtain spot instances and how long it can
utilize them. Usually, spot instances are on average cheaper than on-demand
instances, and we assume that (iv) at every allocation the tenant will bid for
the maximum number of spot instances under the parallelism constraint, i.e.,
siij = δj − oij. The crucial question is thus how to determine the proportion
of on-demand and spot instances, i.e., oij and siij , that are acquired from the
cloud.

Before the i-th allocation to j, we use zij to denote the remaining workload
of j to be processed, i.e., zj minus the workload of j that has been processed,
where z1

j = zj , and we define the current slackness of j as

sij = (dj − (i− 1) · Len) · δj
zij

, (7.1)

where Len = 60/L is the number of slots per hour. Let sj = s1
j = (dj · δj)/zj .

The slackness can be used to measure the time flexibility that j has to utilize
spot instances; the process of allocating on-demand and spot instances to j is
in fact divided into two phases by the value of sij :
Definition 7. When spot instances get lost at the very beginning of slot t′ and
are not utilized for the entire hour at the i-th allocation of j, we say that, at the
next allocation,
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1. j has flexibility to utilize spot instances, if si+1
j ≥ 1;

2. j does not have such flexibility, otherwise.

1st 2nd 3rd

2

4

0
𝑎𝑗 𝑑𝑗 − 𝑎𝑗 − 1

Figure 7.3 – Illustration of the process of allocating resource to j where δj = 4,
dj equals 3 hours, L = 5 minutes and zj = 132: the area between two red lines
illustrates the workload processed at every allocation and the height of green
(resp. yellow) areas denote the number of spot (resp. on-demand) instances.

Now, we illustrate Definition 7 by Fig. 7.3. As illustrated in Fig. 7.3, zj =
z1
j = 132 and, at the 1st allocation, o1

j = si1j = 2; then z2
j = 132−2·12−2·8 = 92.

At the 2nd update, o2
j and si2j are still 2 and then z3

j = 92− 2 · 12− 2 · 8 = 52.
Further, s3

j = Len·δj
z3
j

< 1 and there is no flexibility for j to utilize unstable spot
instances at the 3rd allocation. We use ij to index the last allocation of j after
which there is no flexibility to utilize spot instances; in Fig. 7.3, ij = 2. As a
result, the decision on how to determine the (ij + 1)-th allocation of instances
to j has to be done earlier, since there exists an on-demand instance that has
to be utilized for 4

3 hours to satisfy the deadline constraint.
As illustrated above, the instance allocation is divided into two phases. In

the first phase,
— the instance allocation is updated every hour (i.e., every Len slots).

At every i-th allocation of j, the remaining workload to be processed by spot and
on-demand instances is zij ; on-demand instances are charged on an hourly basis
and the workload that could be processed by on-demand instances is Len · oij .
At every i-th allocation, as time goes by, there are two possible states for spot
instances:
(i) if zij − Len · oij workload of j has been processed by spot instances, they

will be terminated by the user itself;
(ii) if the bid price is below the spot price, the user will lose its spot instances

immediately; otherwise, they will be utilized for an hour.
The first state occurs because j will be finally completed after the on-demand
instances acquired at this allocation are consumed. If the second state occurs,
we need to check whether or not job j still has flexibility to utilize spot instances
using Definition 7: if there is such flexibility, the next allocation update of j is
still in the first phase; otherwise,
— the next allocation of j (i.e., the (ij + 1)-th allocation) needs to be done

immediately after the spot instances of the ij-th allocation get lost,
which is referred to as the second phase of instance allocation. In the second
phase, only stable on-demand instances will be used to meet the deadline.
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7.3.2 Self-owned instances
When self-owned instances are also taken into account, we assume that (v)

the allocation of self-owned instances to a job can be updated at most once at
every allocation of j. We denote by rij the number of self-owned instances
assigned to j at the i-th allocation; the parallelism constraint further translates
to oij+siij+rij = δj . In this thesis, oij and siij denotes the numbers of on-demand
and spot instances acquired at the i-th allocation and will be used to track the
cost of completing j. As we will see in Chapter 8.2, the acquired on-demand
instances may not be fully utilized for an entire hour at the ij-th allocation, and,
we use oj(t), sij(t) and rj(t) to denote the numbers of on-demand, spot and self-
owned instances that are actually utilized by j at every slot t ∈ [aj , aj +dj − 1],
where rj(t) = rij for all t ∈ [aj+(i−1) ·Len, aj+i ·Len−1]; then the parallelism
constraint translates to oj(t) + sij(t) + rj(t) = δj .

As shown later, allocating properly self-owned instances enables escaping
unnecessary consumption of on-demand instances that are more expensive than
the others, which can be achieved by simply allocating j the same number of
self-owned instances at every time slot, i.e., rj(t) = rj . So, the allocation of
self-owned instances is done only once upon arrival of j; after the allocation,
the job can could be viewed as a new job with a parallelism bound δj − rj , a
size zj − rj · dj , and the same arrival time and deadline as j , and it will be
completed by utilizing spot and on-demand instances alone.

7.4 Scheduling Objectives
7.4.1 Proposed principles for cost efficiency

We refer to the ratio of the total cost of utilizing a certain type of instances
to the total workload processed by this type of instances as the average unit
cost of this type of instances. As described in Chapter 7.1, we assume that

Assumption 7.4.1. The average unit costs of self-owned instances is lower
than the average unit cost of spot instances, which is lower than that of on-
demand instances.

Accordingly, to be cost-optimal, we should consider allocating various in-
stances to each arriving job in the order of self-owned, spot and on-demand
instances. Further, in Principles 7.4.1 and 7.4.2, we give the objectives that
should be achieved when considering allocating each type of instances to the
arriving jobs.

Principle 7.4.1. The scheduler should make self-owned instances (i) fully uti-
lized, and (ii) utilized in a way so as to maximize the opportunity that all jobs
have to utilize spot instances.

Principle 7.4.2. After self-owned instances are used, the scheduler should uti-
lize on-demand instances in a way so as to maximize the opportunity that all
jobs have to utilize spot instances.
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Table 7.1 – Main Notation

Symbol Explanation
L length of a time slot (e.g., 5 minutes)
Len the number of time slots in an hour, i.e., 60

L

J a set of jobs that arrive over time
j and aj a job of J and its arrival time

dj
the relative deadline: j must be completed by a deadline

aj + dj − 1
zj the job size of j, measured in CPU × time slots

δj
the parallelism bound, i.e., the maximum number of instances

that can be simultaneously used by j

sj
the slackness, i.e., dj

zj/δj
where zj/δj denotes the minimum

execution time of j
T the number of time slots, i.e., maxj∈J {aj}

siij , bij , and
oij

the number of spot instances bid for, the bid price, and the
number of on-demand instances acquired at the i-th allocation

update of j
rj(t), sij(t)
and oj(t)

the number of self-owned, spot and on-demand instances
utilized by j at a slot t

pij the spot price charged at the i-th allocation of j

zij
the remaining workload of j to be processed at the i-th

allocation update to j

sij
the slackness at the i-th allocation update, i.e.,

(dj − (i− 1) · Len) · δj/zij
p and p1

the price of respectively using an on-demand and self-owned
instance for an hour

R the number of self-owned instances

{β, β0, b}
a tuple of parameters that defines a policy and determines the

allocation of various instances to j at every allocation

P a set of parameterized policies, each indexed by π and defined
by {β, β0, b}

rj
the number of self-owned instances allocated to a job j at every

t ∈ [aj , aj + dj − 1]
N(t) the number of currently idle self-owned instances at a slot t

mt1(t2) the maximum number of self-owned instances idle at every slot
in [t1, t2], i.e., min {N(t1), · · · , N(t2)}

Principles 7.4.1 and 7.4.2 are intuitive under Assumption 7.4.1.

7.4.2 Decision variables
Our main objective is to propose scheduling policies that can realize Princi-

ples 7.4.1 and 7.4.2. To do so, we will first determine the allocation of self-owned
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instances and then the allocation of on-demand and spot instances for every ar-
riving job j. For every arriving job j, it will be first allocated rj self-owned
instances in [aj , aj + dj − 1]. Then, as described in Chapter 7.3, the allocation
of spot and on-demand instances will be updated per hour in the first phase
and we need to determine the number of spot instances to be bid for and the
number of on-demand instances to be purchased (i.e., siij and oij); once there is
no flexibility for j to utilize spot instances, we need to determine the allocation
of on-demand instances alone in order to complete j by deadline. Hence, the
main decision variables are rj , siij , and oij where oij + siij + rj = δj .

In this part of the thesis, we apply the online learning approach and it does
not require the exact statistical knowledge on jobs and spot prices. At every
allocation update of j in the first phase, only the current characteristics of j
(i.e., zij , δj , aj , and dj) and the amount of available self-owned instances are
definitely known for a user to determine oij and siij .

The value of spot price is jointly determined by the arriving jobs of numer-
ous users and the number of idle servers at a moment, usually varying over time
unpredictably. In this thesis, it is assumed that the change of spot prices over
time is independent of the job’s arrival of a user [71], [76]. At the i-th allocation
update of j, when a user bids some price for siij spot instances, without consid-
ering the case where the spot instances of j is terminated by a user itself, the
period in which j can utilize spot instances is a random variable and we assume
that the expected time for which j could utilize spot instances is β ·Len where
β ∈ [0, 1]. Finally, Table 7.1 summarizes the main notation of this part of the
thesis.
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Chapter 8

The Design of
Near-Optimal Policies

To become an academic expert takes years of
studying. · · · · · · They use case studies and
observation to understand a subject.

Simon Sinek

In this chapter, we propose a theoretical framework to design (near-)optimal
parametric policies, aiming at realizing Principles 7.4.1 and 7.4.2. Facing diverse
users, the proposed policies should have good adaptability against the unknown
statistics of the spot prices and each individual user’s job characteristics; then,
by applying the online learning technique, the best configuration parameter that
corresponds to each user could be inferred to minimize its cost of processing jobs.

Upon arrival of a job j, the scheduler first considers the allocation of self-
owned instances to it, aiming to realize the two goals in Principle 7.4.1. Next,
as described in Chapter 7.3.1, the allocation of spot and on-demand instances
is updated on an hourly basis.

8.1 Self-owned Instances
8.1.1 Challenge

We first show the challenges in cost-effectively utilizing self-owned instances
by an example. Let N(t) denote the number of self-owned instances that are
currently idle at a slot t; let mt1(t2) = min {N(t1), · · · , N(t2)}, where t1 ≤ t2,
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and it represents the maximum number of self-owned instances idle at every slot
in [t1, t2]. An intuitive policy would be, whenever a job j arrives, to allocate
as many self-owned instances to j to make self-owned instances fully utilized,
i.e.,

rj = min{maj (aj + dj − 1), zj/dj}. (8.1)

However, this intuitive policy may not maximize the opportunity that all jobs
have to utilize spot instances as illustrated in the following example.

There are two self-owned instance available, and two jobs whose haved the
same arrival time, relative deadline of 2 hours and parallelism bound of 4. Jobs 1
and 2 have a size of 4×Len and 6×Len, respectively. It is expected that a job can
utilize spot instances for β = 1

2 hour (β · Len slots) at every allocation update.
In Fig. 8.1, the green, blue and yellow areas denote the workload respectively
processed by spot, self-owned and on-demand instances. Using the policy (8.1),
the whole process of allocating instances is illustrated in Fig. 8.1 (left), where
the user has to utilize two on-demand instances for 0.5 hour; however, it is
not necessary to purchase more expensive on-demand instances if the allocation
process is like Fig. 8.1 (right). In Fig. 8.1 (left), the cost of completing jobs 1
and 2 is 2 · p while it is zero in Fig. 8.1; here, on-demand instances are charged
on an hourly basis, and the fee of utilizing spot instances is zero when they are
terminated by the cloud.

Job 2

Job 1

× √

0

4

2 × Len

Figure 8.1 – The Challenge in Cost-Effectively Utilizing Self-owned Instances.

The above example reveals some challenges in designing cost-effective policies
for allocating self-owned instances. For example, the policy should have the
ability of (i) identifying the subset of jobs that can be expected to be completed
by utilizing spot instances alone even if they are not allocated any self-owned
instance, e.g., the job 1 in Fig. 8.1 (right), and (ii) properly allocating self-owned
instances to the rest of jobs, when self-owned instances are inadequate. All in
all, our aim is to realize Principle 7.4.1.

8.1.2 Policy Design
In the following, we propose a policy that has the abilities described above.

In the subsequent analysis, the issue of rounding the allocations of a job to
integers is ignored temporarily for simplicity; in reality, we could round the
allocations up to integers, which does not affect the related conclusions much
as shown by the analysis.
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Recall the meaning of β in Chapter 7.4. For every job j, we will go to find
a function gj(x) ∈ [0, zjdj ] that satisfies the following properties where zj

dj
≤ δj :

Property 8.1.1. gj(x) is non-increasing as x increases in [0, 1).

Property 8.1.2. gj(β) is the minimum number such that when a job j is as-
signed rj self-owned instances in [aj , aj + dj − 1] where rj ≥ gj(β), it could be
expected that
— job j could be completed by its deadline by utilizing spot instances alone if

δj − rj spot instances are bid for at every allocation update of j, where no
on-demand instances is acquired.

The value of gj(β) is an indicator of the capability that j has such that it can
be completed by utilizing spot instances alone. By Property E.2, if gj(β) ≤ 0,
it is expected that no self-owned or on-demand instances is needed in order to
complete j and such jobs have strong capability to feed themselves with spot
instances. Otherwise, gj(β) self-owned instances are needed, or j has to consume
some amount of expensive on-demand instances in order to be completed by its
deadline; for a job j, the larger the value of gj(β), the weaker its capability to
feed itself with spot instances.

Let κ0 = d djLene − 1, and we set

rj(x) =
{

r′j(x) if dj − κ0 · Len > x · Len,
r′′j (x) if dj − κ0 · Len ≤ x · Len,

where

r′j(x) = δj −
dj · δj − zj

dj − (κ0 + 1) · Len · x,

and

r′′j (x) =
{

0 if κ0 = 0,
δj − dj ·δj−zj

(1−x)·κ0·Len if κ0 ≥ 1.

We further set

gj(x) = max {rj(x), 0} . (8.2)

When x = 0, gj(x) = max{r′j(x), 0} = zj
dj
. When x→ 1, gj(x) = max{r′′j (x), 0}

and we have that (i) if κ0 = 0, gj(x) = 0, (ii) if κ0 ≥ 1 and dj · δj = zj , gj(x) =
zj
dj
, and (iii) if κ0 ≥ 1 and dj · δj > zj , gj(x) = 0 since r′′j (x) → −∞. Now,

we proceed to show that the particular gj(x) in (8.2) satisfies Properties E.2
and E.1.

Proposition 17. The function gj(x) in (8.2) satisfies Property E.2.

Proof. Assume that a job j is allocated rj self-owned instances in [aj , aj+dj−1].
At each of the first κ0 allocations of j, the expected time of utilizing spot
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instances is β · Len. If a job can be expected to be completed by the deadline
by totally utilizing spot instances after the allocation of self-owned instances,
we have that (i) it could be expected that the workload processed by self-owned
instances plus the workload processed by spot instances at every allocation
of j is no less than zj , and (ii) after the allocation of self-owned instances,
the allocation of spot and on-demand instances is always in the first phase as
described in Chapter 7.3, i.e., the allocation is updated every hour where only
spot instances are bid for.

Now, we analyze two cases. The first one is dj − κ0 · Len > β · Len. In
this case, at the (κ0 + 1)-th allocation of j, the expected time of utilizing spot
instances is β · Len; then, it is expected that

rj · dj + (κ0 + 1) · (δj − rj) · Len · β ≥ zj .

This leads to that rj ≥ r′j(β). The second case is dj − κ0 · Len ≤ β · Len. In
this case, at the (κ0 + 1)-th allocation of j, the expected time of utilizing spot
instances is min{β ·Len, dj −κ0 ·Len} = dj −κ0 ·Len; then, it is expected that

rj · dj + κ0 · (δj − rj) · Len · β + (dj − κ0 · Len) · (δj − rj) ≥ zj .

This leads to that rj ≥ r′′j (β). As a summary of our analysis of both cases, the
proposition holds.

Proposition 18. The function gj(x) in (8.2) satisfies Property E.1.

Proof. When x ∈ [0, dj
Len −κ0), gj(x) = max{r′j(x), 0}; since dj · δj − zj ≥ 0 and

(κ0 + 1) · Len > 0, r′j(x) is a non-increasing function and so is gj(x). Similarly,
when x ∈ [ djLen − κ0, 1), gj(x) = max{r′′j (x), 0} is also non-increasing. In the
rest of this proof, if suffices to show gj(x1) ≥ gj(x2) when 0 ≤ x1 <

dj
Len − κ0 ≤

x2 < 1. Given a job j, if κ0 = 0, we have gj(x1) ≥ 0 = gj(x2). If κ0 ≥ 1
and dj · δj = zj , we have gj(x1) = δj = gj(x2). If κ0 ≥ 1 and dj · δj > zj ,
our analysis proceeds as follows. To prove gj(x1) ≥ gj(x2), it suffices to show
r′′j (x2) ≤ r′j(x1); the function r′′j (x) itself is non-increasing when x ∈ [0, 1), and
we have r′′j (x2) ≤ r′′j (x1). Hence, to prove r′′j (x2) ≤ r′j(x1), it suffices to prove
r′′j (x1) ≤ r′j(x1), which can be proved by showing A = (1 − x1) · κ0 · Len ≤
dj − (κ0 + 1) · Len · x1 = B. Since x1 ∈ [0, dj

Len − κ0), we have

B −A = dj − (κ0 + x1) · Len > 0.

Finally, the proposition holds.

In this part of the thesis, we consider a set of jobs T that arrive over time
and can have diverse characteristics. When x ranges in [0, 1), we illustrate the
function gj(x) in Fig. 8.2 where zj = 240, L = 5, δj = 20, and Len = 12.
The job’s minimum execution time is zj

δj
= Len where j is assigned δj instances

throughout its execution. The job’s deadline reflects its ability to utilize spot
instances and in Fig. 8.2 the solid curves from left to right represent gj(x) where
dj is respectively 5, 3, 2.1, 1.47, 1.25, 1.11, and 1.02 times Len: under the same
x, the larger the deadline, the smaller the value of gj(x). Given zj , δj and dj ,
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we can see in Fig. 8.2 that the function gj(x) is non-increasing as x ranges in
[0, 1).

0 0.2 0.4 0.6 0.8 1
x

0

5

10

15

20

g
j(x

)

Figure 8.2 – As x ranges in [0, 1), the function gj(x) for jobs respectively with
different flexibility to utilize spot instances.

Proposed Policy. Based on Propositions 17 and 18, we propose the following
policy for allocating self-owned instances. Upon arrival of every job j, it is
allocated rj(β0) self-owned instances where

rj(β0) = min {gj(β0),mt(aj + dj − 1)} , (8.3)

where β0 ∈ [0, 1) is a parameter to be learned.
This policy achieves more cost-effective resource allocation as illustrated in

Fig. 8.1 (right) where β0 is set to β = 1
2 . Furthermore, this policy is also

adaptive. For example, given another user who owns more instances (e.g., 5
instances), β0 can be set to a value < β (e.g., 0); then, both jobs are allocated
more self-owned instances: r1 = 2, and r2 = 3. As a result, self-owned instances
are fully utilized and there is no need purchasing spot or on-demand instances.

8.1.3 Explanation
Now, we further explain that the policy (8.3) has desired properties to realize

Principle 7.4.1, which will also be validated by the simulations.
The allocations of self-owned instances to all jobs are based on the same

function (8.3) whose value depends on a single parameter β0. Together with
Properties E.2 and E.1, the power of the proposed policy can be achieved by
setting β0 to a value properly small in [0, 1). Now, we explain this.
High Utilization. As illustrated in Fig. 8.2, the function gj(x) is non-increasing;
no matter how many self-owned instances a user possesses, a high utilization of
them is achieved after
— we set β0 to a small enough value in [0, 1).

This is because every arriving job will be assigned a large number of self-owned
instances when β0 is small, as illustrated in Fig. 8.3.
Fair Allocation. Fair allocation means that the allocations of self-owned in-
stances among jobs need to be balanced according to their capabilities of utiliz-
ing spot instances. Fair allocation avoids ignoring the difference among jobs and
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Figure 8.3 – As the (relative) deadline dj increases from 12 to 48, the function
gj(β0) decreases respectively under β0 = 31

64 ,
5

16 ,
1

16 , where zj = 240, δj = 20,
and Len = 12.

treating them equally where a policy like (8.1) is used; together with Property
E.2, the latter can lead to that "rich" jobs (i.e., jobs with strong capabilities
where gj(β) is small) are consuming unnecessary self-owned instances, i.e.,
— rj > gj(β), where rj denotes the number of self-owned instances allocated

to a job; the job’s remaining zj−rj ·dj workload is expected to be processed
by spot instances alone;

whereas the others (with large gj(β)) are allocated poorly and still starving for
more self-owned instances, i.e.,
— rj < gj(β); here, on-demand instances are expected to be consumed.

Indiscriminate allocations of instances to jobs do harm to the process of achiev-
ing the capacity that jobs have for utilizing spot instances, causing unneces-
sary consumption of more on-demand instances and a higher cost of completing
all jobs. In particular, for every rich job, only gj(β) self-owned instances are
needed to complete its remaining workload without on-demand instances; the
saved rj−gj(β) self-owned instances can be used for those poorly allocated jobs
so as to reduce their consumption of on-demand instances, which improves the
cost-efficiency of instance utilization.

Now, we explain that the proposed policy achieves fair allocation by properly
setting the value of β0. The cost-optimal β0, denoted by β∗0 , depends on the
statistics of jobs and the amount of self-owned instances available; the online
learning technique will be used subsequently in Chapter 8.4 to infer β∗0 . When
β∗0 = 0, self-owned instances themselves are enough to complete all jobs by their
deadlines where gj(β0) = zj

dj
.

When there are adequate self-owned instances such that β∗0 ∈ (0, β], ev-
ery arriving job j will be allocated ≥ gj(β) self-owned instances whenever the
amount of idle self-owned is large (i.e., maj (aj + dj − 1) ≥ gj(β0)), according
to the policy (8.3); this is illustrated in Fig. 8.3 where β = 5

16 and β∗0 = 1
16 .

Afterwards, the job j is expected to be completed by utilizing spot instances
alone. No job will be allocated < gj(β) self-owned instances whenever possible,
and fair allocation is achieved. Furthermore, the arriving jobs are allocated on
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a first come first served basis and we note that β0 should be properly small but
cannot be set to a value too small. If β0 is too small, jobs that arrive earlier
might consume too many self-owned instances and then the jobs that arrive
late have less opportunity to get ≥ gj(β) self-owned instances subject to the
availability of these instances (i.e., the value of maj (aj + dj − 1)).

When self-owned instances are deficient such that β∗0 ∈ (β, 1), every arriving
job will be allocated < gj(β) self-owned instances; this is illustrated in Fig. 8.3
where β = 5

16 and β∗0 = 31
64 . Afterwards, the job j is expected to have to

utilizing some amount of on-demand instances to meet its deadline. No job will
be allocated > gj(β) self-owned instances, achieving fair allocation among jobs:
if there exists such allocation, a waste of self-owned instances is caused since we
can reduce this allocation to gj(β) and allocate these saved instances to other
jobs to reduce the consumption of on-demand instances.

8.2 Spot and On-demand Instances
As described in Chapter 7.3.1, the instance allocation process is divided

into two phases. Now, we analyze the expected optimal strategy to utilize spot
instances.

8.2.1 First phase
In the first phase, the allocation of j is updated per hour and there is flex-

ibility for j to utilize spot instances. Now, we analyze the expected optimal
policy in the first phase. One of the following two cases will happen: (i) the
job j is completed in the first phase, and (ii) At some allocation update of j
(i.e., the ij-th allocation in Chapter 7.3.1), after spot instances are terminated
by the cloud, there is no flexibility for j to utilize spot instances.

As seen later, the value of β will be estimated by the online learning tech-
nique. If the previous allocation of self-owned instances rj is ≥ gj(β), it is
expected that the first case will happen; then, by Property E.2, we conclude
that

Proposition 19. An expected optimal strategy is to bid for δj−rj spot instances
at every allocation of j.

Next, we analyze the optimal strategy when the second case happens. Job j
is allocated rj self-owned instances at every t ∈ [aj , aj + dj − 1]; afterwards, it
can be viewed as a new job with a workload zj − δj ·dj and a parallelism bound
δj − rj , as described in Chapter 7.3.2. So, without loss of generality, we just
analyze the optimal strategy in the case where a job j is completed by utilizing
on-demand and spot instances alone.

Our decision variables are oij and siij where oij + siij = δj . Let κ1 denote the
total number of allocation updates in the first phase where j has flexibility for
spot instances; let κ0 = ddj/Lene denoting the maximum possible number of

101



CHAPTER 8. THE DESIGN OF NEAR-OPTIMAL POLICIES

allocation updates of j and we have

κ1 ≤ κ0. (8.4)

At the i-th allocation of j where i ∈ [1, κ1], it is expected that the workloads
processed by spot and on-demand instances are respectively (δj − oij) · Len · β
and oij ·Len. By Definition 7, j has flexibility to utilize unstable spot instances
at the κ1-th allocation, i.e.,

sκ1
j = δj ·(dj−(κ1−1)·Len)

zj−
∑κ1−1

i=1 (oij ·Len+(δj−oij)·Len·β) ≥ 1,

and has no flexibility to utilize spot instances at the (κ1 + 1)-th allocation, i.e.,

sκ1+1
j = δj ·(dj−κ1·Len)

zj−
∑κ1

i=1 (oij ·Len+(δj−oij)·Len·β) < 1.

They are respectively equivalent to the following relations:∑κ1−1

i=1
(δj − oij) · Len · (1− β) ≤ dj · δj − zj , (8.5)∑κ1

i=1
(δj − oij) · Len · (1− β) > dj · δj − zj . (8.6)

For the condition that sκ1+1
j < 1, a special case is κ1 = κ0 where this condition

holds trivially since dj − κ1 ·Len ≤ 0; since sκ1
j ≥ 1, the κ1-th allocation of j is

still in the first phase. In this subsection, our objective is to maximize the total
workload processed by spot instances at the first κ1 allocations, i.e.,

maximize
κ1∑
i=1

(δj − oij) · Len · β, (8.7)

subject to the constraints (8.4), (8.5), (8.6), and the constraint that oij is an
integer in [0, δj ]. Our decision variables are o1

j , · · · , o
κ1
j .

Now, we give an optimal solution to (8.7).

Proposition 20. An solution to (8.7) is optimal if it is of the following form:
(i)
∑κ1−1
i=1 (δj − oij) = min{ν(zj , dj), (κ0 − 1) · δj}, and (ii) oκ1

j = 0, where

ν(zj , dj) =
⌊
dj ·δj−zj
Len·(1−β)

⌋
.

Proof. Firstly, we prove by contradiction that the optimal value of oκ1
j is 0. As-

sume that ô1
j , · · · , ô

κ1
j are an optimal solution to (8.7) where ôκj ≥ 1. The con-

straint (8.5) has no effect on the value of oκ1
j . We can reduce the value of ôκ1

j to 0;
such reduction can still guarantee that (8.6) is satisfied, and ô1

j , · · · , ô
κ1−1
j , oκ1

j =
0 are a feasible solution to (8.7) under which (8.7) achieves a higher value, which
contradicts that ô1

j , · · · , ô
κ1
j are an optimal solution to (8.7). Secondly, when

oκ1
j = 0, the objective function (8.7) equals (

∑κ1−1
i=1 (δj − oij)+δj)·Len·β. Under

constraint (8.5),
∑κ1−1
i=1 (δj − oij) ≤

dj ·δj−zj
Len·(1−β) . Since o1

j , · · · , o
κ1−1
j are integers,
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the maximum possible value of
∑κ1−1
i=1 (δj − oij) is ν(zj , dj). On the other hand,

since δj−oij ≤ δj , the constraint (8.4) indicates that
∑κ1−1
i=1 (δj − oij) ≤ (κ0−1)·

δj . Hence, the maximum possible value of
∑κ1−1
i=1 (δj − oij) is min{ν(zj , dj), (κ0−

1) · δj}. Now, we further show it is feasible. If (κ0 − 1) · δj ≤ ν(zj , dj),∑κ1−1
i=1 (δj − oij) = (κ0−1) ·δj which leads to κ0−1 ≤ κ1−1; to satisfy (8.4), we

have κ1 = κ0. Then, constraint (8.6) holds trivially and constraint (8.5) is also
satisfied. If (κ0 − 1) · δj > ν(zj , dj),

∑κ1−1
i=1 (δj − oij) = ν(zj , dj); in this case,

we have κ1 − 1 ≤ κ0 − 1. Furthermore, we also have ν(zj , dj) + δj >
dj ·δj−zj
Len·(1−β)

and (8.6) is satisfied. Finally, the proposition holds.

Proposition 20 indicates the maximum number of spot instances that can
be bid for in the first phase, i.e., the maximum value of

∑κ1
i=1 (δj − oij). As a

corollary of Proposition 20, we conclude that

Proposition 21. Given a job j, the expected maximum workload that can be
processed by spot instances is

(min {ν(zj , dj), (κ0 − 1) · δj}+ δj) · Len · β.

Proposition 20 also implies an expected optimal strategy for spot instances.

Proposition 22. Let κ2(zj , dj) = bν(zj ,dj)
δj
c and κ3 = ν(zj ,dj)

δj
. To maximize

the total workload processed by spot instances, if (κ0− 1) · δj ≤ ν(zj , dj), we can
set κ1 = κ0 and an expected optimal strategy is to
— bid for δj spot instances at each allocation update of j.

If ν(zj , dj) < (κ0 − 1) · δj, in the case that κ2(zj , dj) = κ3, we can set κ1 =
κ2(zj , dj) + 1 and an expected optimal strategy is to
— bid for δj spot instances at each of the first κ1 allocations of j, i.e., o1

j =
· · · = oκ1

j = δj;
in the case that κ2(zj , dj) < κ3, we can set κ1 = κ2(zj , dj) + 2 and an expected
optimal strategy is to
— bid for δj spot instances at the 1st, · · · , (κ1 − 2)-th, κ1-th allocations of

j, i.e., o1
j = · · · = oκ1−2

j = oκ1
j = δj,

— bid for ν(zj , dj)−κ2(zj , dj) · δj spot instances at the (κ1− 1)-th allocation
of j, i.e., oκ1−1

j = ν(zj , dj)− κ2(zj , dj) · δj.

Proof. We can check that when the strategy of utilizing spot instances is as
above, o1

j , · · · , o
κ1
j are of the form in Proposition 20; hence, it is optimal.

We illustrate proposition 22 in Fig. 8.4 where the orange and green areas
denote the workload processed respectively by spot and on-demand instances; in
the grey areas, no workload of j is processed. We assume that β = 1

2 and L = 5
where Len = 12; job j has dj = 42 (3.5 hours), zj = 122 and δj = 4. Here,
we have ν(zj , dj) = 7 and κ2(zj , dj) = 1. From the left to the right, the first
four subfigures illustrate the expected optimal allocation. At the 1st allocation
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the first allocation update the second allocation update

the third allocation update the fourth allocation update

the first allocation update the second allocation update

the third allocation update

Figure 8.4 – Illustration of Proposition 22 in the case that ν(zj , dj) < (κ0−1)·δj
and κ2(zj , dj) < κ3.

of j, δj = 4 spot instances are bid for and the expected execution time of spot
instances is β ·Len = 6. At the 2-th allocation of j, (ν(zj , dj)−δj ·κ2(zj , dj)) = 3
spot instances are bid for and one on-demand instance is purchased. So far,
ν(zj , dj) = 7 spot instances have been bid for. At the 3rd allocation of j, δj
spot instances are bid for and after the execution of spot instances, j has no
flexibility to utilize spot instances and it turns to totally utilize on-demand
instances as illustrated by the fourth subfigure. In contrast, we also use the last
three subfigures to illustrate an intuitive way to bid for spot instances where δj
spot instances are bid for at every allocation of j when it has flexibility to utilize
spot instances. After the execution of spot instances at the 2nd allocation of j,
it does not have such flexibility and has to turn to utilize on-demand instances
since s3

j < 1.

Based on Proposition 22, we propose Algorithm 12 to dynamically deter-
mine the numbers of on-demand and spot instances allocated to j at every i-th
allocation update when there is flexibility to utilize spot instances. At every
allocation of j that occurs at slot t, the remaining workload of j to be processed
could be viewed as a new job with the arrival time t, workload z′j , parallelism
bound δj , and relative deadline aj + dj − t; we always use Proposition 22 to
determine the first allocation of this new job whose arrival time is t.

104



CHAPTER 8. THE DESIGN OF NEAR-OPTIMAL POLICIES

Algorithm 12: Proportion(j, β, b)

/* At the i-th allocation of j, its remaining workload is viewed as a new
job with an arrival time t, and a relative deadline aj + dj − t */

1 κ0(t)←
⌈
aj+dj−t
Len

⌉
/* the case (κ0 − 1) · δj ≤ ν(zj , dj) in Proposition 22 */

2 if (κ0(t)− 1) · δj ≤ ν(zj , aj + dj − t) then
3 siij ← δj , oij ← 0;
4 else

/* both cases κ2(zj , dj) = κ3 and κ2(zj , dj) < κ3 where κ2(zj , dj) ≥ 1 */
5 if κ2(z′j , aj + dj − t) ≥ 1 then
6 siij ← δj , oij ← 0;

/* the case κ2(zj , dj) < κ3 where κ2(zj , dj) = 0 */
7 if κ2(z′j , aj + dj − t) = 0 ∧ ν(zj , aj + dj − t) > 0 then
8 siij ← ν(zj , aj + dj − t), oij ← δj − siij ;

/* the case κ2(zj , dj) = κ3 = 0 */
9 if ν(zj , aj + dj − t) = 0 then

10 siij ← δj , oij ← 0;

11 bij ← b;
12 at the i-th allocation update, bid a price bij for siij spot instances;

8.2.2 Second phase

As described in Chapter 7.3.1, once spot instances get lost at every alloca-
tion of j, the scheduler uses Definition 7 to check the flexibility to utilize spot
instances. At the ij-th allocation, when spot instances get lost at the beginning
of some slot t′1, there is no such flexibility; then, the instance allocation enters
the second phase where only on-demand instances are utilized. Now, we analyze
their optimal utilization.

3

The 𝑖𝑗-th allocation begins

1

𝛿𝑗 = 4

𝑚1 = 𝑠𝑖𝑗
𝑖 = 2

𝑡1
′

𝑡2
′

𝑡1
′′

𝑡2
′′

Ƹ𝜅1 = 2

Ƹ𝜅2 = 1

𝑑𝑗
′

Figure 8.5 – The second phase of allocation where i = ij : the orange area
denotes the available space in the second phase; the green and yellow areas
denote the workload processed at the ij-th allocation by spot instances and
on-demand instances that are utilized for an hour.
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As shown in Algorithm 13, at every allocation of j in the first phase (in-
cluding the ij-th allocation), the number of on-demand instances allocated to
j is either 0 (see lines 3, 6, 10) or > 0 (see line 8). Let t′2 = aj + ij · Len,
d′j = aj + dj − 1, and we define two parameters that represent the maximum
multiple of an hour (containing Len slots) respectively in time intervals [t′1, d′j ]
and [t′2, d′j ]:

κ̂1 =
⌊
d′j−(t′1−1)

Len

⌋
, and κ̂2 =

⌊
d′j−t

′
2+1

Len

⌋
;

Let t′′i = d′j − κ̂i · Len + 1 (i ∈ {1, 2}), and after deducting κ̂1 and κ̂2 hours
respectively from the two intervals, the numbers of remaining slots in [t′1, t′′1 −1]
and [t′2, t′′2 − 1] are denoted by φ1 and φ2:

φ1 = t′′1 − t′1, and φ2 = t′′2 − t′2,

where 0 ≤ φ1, φ2 < Len. The related notation is also illustrated in Fig. 8.5. Let

m0 = siij · κ̂1 + oij · κ̂2, m1 = siij , and m2 = oij ,

where i = ij . In Fig. 8.5, the available space in the second phase is the orange
area and m0 represents the maximum integer of instance hour that can be
utilized by j.

3
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𝑚1 = 2

𝑡1
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𝑡2
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′
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′

𝑡1
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′ 𝑡1
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′′
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′ 𝑡2

′′

An arbitrary allocation An allocation of the form 𝐴′

An optimal allocation of the form 𝐴′

Figure 8.6 – Illustration for Proposition 23: the yellow area denotes the alloca-
tion of on-demand instances to j.

Since every on-demand instance is charged on an hourly basis, a cost-optimal
strategy in the second phase is to minimize the integer instance hours (i.e., the
number of on-demand instances × the time for which they are utilized). The
following conclusion possibly is intuitive although a formal proof is also provided:
whenever an instance is purchased for an hour, it should be utilized as long as
possible with the space constraint.
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Proposition 23. Let y = y0 + y1 + y2 be the minimum such that y0 · Len +
y1 · φ1 + y2 · φ2 ≥ z

ij+1
j subject to y0, y1, y2 are non-negative integers and

y0 ∈ [0,m0], y1 ∈ [0,m1], y2 ∈ [0,m2]. In the second phase, a cost-optimal
strategy is to
— purchase on-demand instances for y instance hours.

Proof. Let us consider an arbitrary allocation of on-demand instances to process
the remaining zij+1

j workload, denoted by A, also illustrated in the 1st subfigure
of Fig. 8.6. These workload will be processed on δj instances, and let xh denote
the total workload processed at the h-th instance where∑δj

h=1
xh ≥ z

ij+1
j , (8.8)

x1, · · · , xm1 ∈ [0, d′j − t′1 + 1],
xm1+1, · · · , xδj ∈ [0, d′j − t′2 + 1].

(8.9)

The allocation A can be transformed into an allocation A′ with the following
form without increasing the total cost of utilizing instances: the xh workload
of the h-th instance is processed from the deadline d′j towards earlier slots, i.e.,
in [d′j − xh + 1, d′j ], which is illustrated in the 2nd subfigure of Fig. 8.6. Hence,
in the following, we only need to show the cost-optimal strategy of utilizing
instances when the allocation is of the form A′.

As illustrated in Fig. 8.5, let Î1 = [t′1, d′j ] and Î2 = [t′2, d′j ]. From d′j towards
earlier slots in Î1 (resp. in Î2), let every Len slots constitute a time interval, i.e.,
Ii = [d′j+1−i·Len, d′j−(i−1)·Len]; for Î1 the last interval is Iκ̂1+1 = [t′1, t′′1−1]
(resp. for Î2 the last is Iκ̂2+1 = [t′2, t′′2−1]). Now, we describe the cost structure
when the allocation of j is of the form A′. We use xh,i to denote the workload
processed by the h-th instance in Ii where for all h ∈ [1,m1],

xh,1, · · · , xh,κ̂1 ∈ [0, Len], xh,κ̂1+1 ∈ [0, φ1], (8.10)

and for all h ∈ [m1 + 1, δj ],

xh,1, · · · , xh,κ̂2 ∈ [0, Len], xh,κ̂2+1 ∈ [0, φ2]. (8.11)

Let ψh =
⌈
xh
Len

⌉
; under the allocation form of A′, we have for all h ∈ [1, δj ] that

xh,1 = · · · = xh,ψh−1 = Len,

xh,ψh = xh − (ψh − 1) · Len,
the other xh,i = 0,

(8.12)

and

xh =
∑κ̂1+1

i=1
xh,i, if h ∈ [1,m1]

xh =
∑κ̂2+1

i=1
xh,i, if h ∈ [m1 + 1, δj ]

(8.13)
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where 0 ≤ xh,ψh < Len. We define the sign function sgn(x): it equals 1 if x > 0
and 0 if x = 0. Let

yh,i = sgn(xh,i) ∈ {0, 1}, (8.14)

and the price of utilizing the h-th instance is p times the sum of all yh,i; here,
by (8.12), the sum of all yh,i is ψh.

The cost minimization problem under the allocation form of A′ is as follows,
referred to as Q-I:

min
m1∑
h=1

κ̂1+1∑
i=1

p · yh,i +
δj∑

h=m1+1

κ̂2+1∑
i=1

p · yh,i (8.15)

subject to the constraints (8.8)-(8.14). Q-I corresponds to another optimization
problem: its objective function is also (8.15), subject to (8.8), (8.9), (8.13),
(8.14), and for all h ∈ [1,m1]

xh,1, · · · , xh,κ̂1 ∈ {0, Len}, xh,κ̂1+1 ∈ {0, φ1}, (8.16)

and for all h ∈ [m1 + 1, δj ],

xh,1, · · · , xh,κ̂2 ∈ {0, Len}, xh,κ̂2+1 ∈ {0, φ2}. (8.17)

The above mathematical problem is referred to as Q-II. In the following, we
prove that (i) any solution to Q-I corresponds to a solution to Q-II and their
objective function (8.15) under these two solutions achieves the same value;
then, (ii) an optimal solution to Q-II corresponds to a solution to Q-I, and their
objective function under these two solutions also achieves the same value. The
first point shows that the optimal value of Q-II is a lower bound of the optimal
value of Q-I. The second point shows that there is a solution to Q-I under which
the value of (8.15) equals the optimal value of Q-II; hence, this solution to Q-I is
optimal and we will give such an optimal solution while proving the two points
above.

The decision variables of both Q-I and Q-II are the same, i.e., {yh,i|h ∈
[1,m1], i ∈ [1, κ̂1 + 1]} ∪ {yh,i|h ∈ [m1 + 1, δj ], i ∈ [1, κ̂2 + 1]}. Given a solution
to Q-I denoted by Y , we set the decision variables of Q-II to the same values.
Now, we show Y is a feasible solution to Q-II. Both in Q-II and Q-I, the same
xh,i is set to non-zero and the others are set to zero by (8.14), and the non-zero’s
xh,i in Q-II is ≥ the xh,i in Q-I by (8.10), (8.11), (8.16), and (8.17). Since (8.8)
holds in Q-I where the value of xh is defined in (8.13), we have (8.8) also holds in
Q-II. Hence, Y is feasible. Furthermore, Q-I and Q-II have the same objective
function (8.15) that achieves the same value under the same Y . This finishes
proving the first point above.

Now, we give an optimal solution to Q-II. The physical meaning of Q-II can
be explained as follows. There are 3 types of items each with a weight p: (i)
κ̂1 ·m1 + κ̂2 ·m2 items each with a size Len, (ii) m1 items each with a size φ1
(< Len), and (iii)m2 items each with a size φ2 (< Len); the objective is to select
some items such that the total size of chosen items is ≥ zij+1

j (satisfying (8.8))
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while their total weight (i.e., (8.15)) is minimized. Since items have the same
weight, an optimal solution is just to select the minimum number of items,
e.g., the items with the largest sizes, to exactly satisfy the size requirement;
correspondingly, an optimal solution toQ-II is such that the value of yh,i ∈ {0, 1}
satisfies

y0 =
m1∑
h=1

κ̂1∑
i=1

yh,i +
δj∑

h=m1+1

κ̂2∑
i=1

yh,i,

y1 =
m1∑
h=1

yh,κ̂1+1, y2 =
δj∑

h=m1+1
yh,κ̂2+1,

(8.18)

where y0, y1, y2 are described in Proposition 23. We denote such a solution by
OPT2. Here, we set xh,i to non-zero if yh,i = 1 and zero otherwise by (8.14);
the particular value of xh,i depends on (8.16) and (8.17), and it determines the
value of xh by (8.13) that can satisfy (8.9); by (8.18), xh can satisfy (8.8).

Next, we show OPT2 corresponds to a solution OPT1 to Q1-I, and their
objective function (8.15) under OPT1 and OPT2 achieves the same value. In
Q-I, we set the value of xh to the same value when the solution to Q-II is OPT2
where the constraints (8.8) and (8.9) in Q-I are naturally satisfied; then, we use
(8.12) to obtain feasible xh,i that will also satisfy (8.10) and (8.11); by (8.14),
the value of yh,i in Q-I can be set, deriving a feasible solution OPT1 to Q-I. In
both Q-I and Q-II, we have the number of non-zero’s yh,i is dxh/Lene; hence,
Q-I under OPT1 and Q-II under OPT2 achieve the same value. Finally, OPT
is an optimal solution to Q-I by the two points above.

In the proof of Proposition 23, we have given an optimal solution OPT1 to
Q-I; it is a particular cost-optimal allocation of on-demand instances, which is
also illustrated in the 3rd subfigure of Fig. 8.6.

8.3 Scheduling Framework
As described above, a general policy is defined by a tuple {β0, β, b} and

determines the amounts of self-owned, spot, and on-demand instances allocated
to a job, and the bid price.

The instance allocation process has been described in Chapter 7.3. Based
on this, at every slot t, if a job j just arrives or it has arrived before but not
been completed yet, we propose a framework, presented in Algorithm 13, to
determine the action of allocating instances to j after checking the state of j.
Actions are needed in the following three states: (i) t is the arrival time of j,
determining the allocation of self-owned instances, (ii), t equals aj +(i−1) ·Len
where the i-th allocation update of spot and on-demand instances needs to be
done, (iii) the spot instances of j get lost at t where we need to check whether j
still has flexibility for spot instances. In Algorithm 13, z′j denotes the remaining
workload of j to be processed after deducting its current allocations from zj ;
upon arrival of j, z′j = zj .
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Algorithm 13: Dynalloc
Input : the job’s current characteristics {aj , dj , z′j , δj} where z′j is still

> 0, and a parameterized policy {β0, β, b}
/* allocate instances at the very beginning of slot t */

1 if aj = t then
// upon arrival of j, allocate self-owned instances to it

2 set the value of rj using Equation (8.3);
3 for t← aj to aj + dj − 1 do
4 rj(t)← rj ;

5 i←
⌊
t−aj
Len

⌋
+ 1// used to number the allocation update

6 if t−aj
Len = i− 1 then
// at the i-th allocation of j where it has flexibility for spot

instances
7 if rj ≥ gj(β) then

// it is expected that j will be completed by utilizing spot
instances alone after allocating self-owned instances

8 apply the strategy in Proposition 19 here;
9 else

10 call Algorithm 12;

11 if the spot instances of j get lost at the beginning of slot t then
12 if (δj−rj)·(dj−Len·i)

z′
j

< 1 then
// j has no flexibility to utilize spot instances at the next

allocation update by Definition 7
13 apply the strategy in Proposition 23 here;

// otherwise, j still has the flexibility at the next allocation update
where z′j = zi+1

j

8.4 The Application of Online Learning
Upon arrival of a job j, the allocation process in Algorithm 13 is determined

by parameters β0, β, b. In this subsection, we show how online learning is applied
to learn the most cost-effective parameters {β0, β, b}.

The online learning algorithm that we adopt is the one in [6], [68], presented
as Algorithm 14, and is also a form of the classic weighted majority algorithm.
It runs as follows. There are a set of jobs J that arrive over time and a set of
n parametric policies P each specified by {β0, β, b}. Let d = maxj∈J {dj}, i.e.,
the maximum relative deadline of all jobs. Let Jt ⊆ J denote all jobs j that
arrive at time slot t, i.e., aj = t. There is also an initial distribution over n
policies, e.g., a discrete uniform distribution {1/n, · · · , 1/n}. Whenever a job
j ∈ Jt arrives, the algorithm randomly picks a policy from P according to the
distribution and bases the allocation of various instances to j on that policy. In
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the meantime, when t > d, if Jt−d 6= ∅, since the history of spot prices in the
time interval [aj − d, aj − 1] has been known, we are enabled to compute the
cost of each policy on a job in Jt−d. Subsequently, the weight of each policy
(i.e., its probability) are updated so that the lower-cost (higher-cost) polices
of this job are re-assigned the enlarged (resp. reduced) weights. As more and
more jobs are processed and the above process repeats, the most cost-effective
policies of P will be identified gradually, i.e., the ones with the highest weights,
well realizing Principles 7.4.1 and 7.4.2 and finally minimizing the total cost of
completing all jobs.

Algorithm 14: OptiLearning
Input : a set P of n policies, each π parameterized for indexing so that

π ∈ {1, 2, · · · , n}; the set Jt of jobs that arrive at t;
1 initialize the weight vector of policies:

w1 = {w1,1, · · · , w1,n} = {1/n, · · · , 1/n};
2 for t← 1 to T do
3 if Jt 6= ∅ then
4 for each j ∈ Jt, pick a policy π with a probability wj,π, being

applied to j;
5 if t ≤ d then
6 wj+1 ← wj ;
7 else
8 while Jt−d 6= ∅ do
9 ηt ←

√
2 logn
d(t−d) ;

10 get a job j from Jt−d;
11 for π ← 1 to n do
12 w′j+1,π ← wj,π exp−ηtcj(π);
13 for π ← 1 to n do
14 wj+1,π ←

w′j+1,π∑n

i=1
w′
j+1,i

;

15 Jt−d ← Jt−d − {j};

As modeled in Chapter 7.1, the cost of completing a job is from the use
of spot and on-demand instances alone and is defined as their cost. For every
job j ∈ J , let πj denote the policy defined by Algorithm 13 under which j is
completed. Denote by cj(π) the cost of completing j under some policy π ∈ P.
Let N ′ = | ∪Tt=d+1 Jt|, i.e., the number of all jobs that arrive in [d+ 1, T ], and,
as proved in [6], we have that
Proposition 24. For all δ ∈ (0, 1), it holds with a probability at least 1 − δ
over the random of online learning that

maxπ∈P
{∑

t∈∪T
t=d+1Jt

cj(πj)−cj(π)
N ′

}
≤ 9
√

2d log (n/δ)
N ′ .
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Proposition 24 says that, as an online learning algorithm runs, the actual
total cost of completing all jobs is close to the cost of completing all jobs under
a policy π∗ ∈ P that generates the lowest total cost. Recall that a policy is
defined by a tuple of parameters from P.
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Chapter 9

Evaluation

Nothing in the world can take the place of
Persistence. Talent will not; nothing is more
common than unsuccessful men with talent.
Genius will not; unrewarded genius is almost a
proverb. Education will not; the world is full
of educated derelicts. Persistence and
determination alone are omnipotent.

Calvin Coolidge

The main aim of our evaluations is to show the effectiveness of the proposed
policies.

9.1 Simulation Setups
The on-demand price is p = 0.25 per hour. We set L to 5 (minutes) and all

jobs have a parallelism bound of 20. Following [81], [82], we generate the jobs as
follows. The job’s arrival is generated according to a poisson distribution with
a mean of 2. The size zj of every job j is set to 12 × 20 × x where x follows a
bounded Pareto distribution with a shape parameter ε = 1

1.01 , a scale parameter
σ = 1

6.06 and a location parameter µ = 1
6 ; the maximum and minimum value of

x is set to 1 and 10. The job’s relative deadline is generated as x · zj/δj , where
x is uniformly distributed over [1, x0]. x represents the slackness of a job; it
affects the jobs’ capability to utilize spot instances as shown by Proposition 21,
and is a main factor that determines the performance. We consider three types
of jobs respectively with a small, medium, and large slackness: the 1st, 2nd, 3rd
types of jobs respectively with x0 = 3, 7, 13. Spot prices are updated every time
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slot and their values can follow an exponential distribution where its mean is
set to 1.1 [76].
Proposed Policies. The policies proposed in this thesis are parameterized: β
and b are used for determine the allocation of spot and on-demand instances
(see lines 5-13 of Algorithm 13), and β0 is for self-owned instances (see lines
1-4 of Algorithm 13). The parameter β0 is chosen in C1 = { i10 | 1 ≤ 0 ≤
6}. As illustrated in Fig. 8.2, for jobs with x0 > 1.25, the amount of self-
owned instances allocated to jobs can be effectively controlled by selecting a
value ≤ 0.6; for the others with little flexibility to utilize spot instances, they
will be a large number of self-owned instances whenever possible to reduce the
consumption of on-demand instances. The parameter β is chosen from C2 =
{ i10 | 0 ≤ i ≤ 9} ∪ {0.9999}. The bid price b is chosen in B = {bi = 0.13 +
0.03 · (i − 1) | 1 ≤ i ≤ 6}. When only spot and on-demand instances are
considered, let P = {(β, b) | β ∈ C2, b ∈ B}, representing all the proposed
policies to be evaluated; when self-owned instances are also taken into account,
let P = {(β, b, β0) | β0 ∈ C1, β ∈ C2, b ∈ B}.
Compared Policies. The proposed policies are compared with (i) the naive
policy (8.1) for self-owned instances and (ii) the policy proposed in [6], [68]
only for spot and on-demand instances (see Algorithm 1 in [6]). The latter
randomly selects a parameter θ ∈ Θ = { i10 | 0 ≤ i ≤ 10} for every job j:
(i) the user will bid a price b for θ · δj spot instances and acquire (1 − θ) · δj
on-demand instances at every allocation update of j; (ii) it monitors at every
slot t whether there is a risk of not completing the job by its deadline if only
(1− θ) · δj on-demand instances are utilized in the remaining slots; (iii) if such
risk exists, there is no flexibility for utilizing spot instances and it turns to utilize
min

{
δj ,
⌈
z
ij+1
j /Len

⌉}
on-demand instances alone until j is completed 1. Let

P ′ = {(θ, b) | θ ∈ Θ, b ∈ B}, representing all the policies of [6], [68].
Performance Metric. Let π denote a policy in P or P ′. Given a set of jobs
J that arrive over time, our aim is to minimize the cost of completing all jobs
in J ; and a main performance metric is the average unit cost of processing jobs
when the x2-th type of jobs are processed with x1 self-owned instances available,
i.e.,

— the ratio of the total cost of utilizing various instances to the processed
workload of jobs, denoted by αx1,x2 , where αx1,x2 =

∑
j∈J cj(π)/

∑
j∈J zj .

When a policy in P or P ′ is applied to process all jobs, we denote by αx1,x2(π)
the corresponding average unit cost of processing jobs. Against the unknown
statistics of spot prices and job’s characteristics, there are some policies in P or
P ′ that are the most cost-effective. We use αx1,x2 (resp. α′x1,x2

) to denote the
minimum of the average unit costs of our policies (resp. the policies in [6], [68]
and defined by (8.1)), where x2 = 1, 2, e.g., αx1,x2 = minπ∈P{αx1,x2(π)}.

The performance of the intuitive policy (8.1) (for self-owned instances) and
the existing policy in [6], [68] (for spot and on-demand instances) are used

1. In [6], [68], the workload of j is measured in instance hours.
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as the baseline to measure the performance of the proposed policies; so, one
performance indicator can be as follows:

ρx1,x2 = 1− αx1,x2
α′x1,x2

;

it represents the performance improvement of the proposed policies P over the
baseline, that is, the ratio in cost reduction. Moreover, in this thesis, the online
learning algorithm, i.e., Algorithm 14, is run to actually select a policy for each
arriving job. The selection is random according to a distribution that will be
updated according to the cost of completing that job; after numerous jobs are
processed, the policies that generate the lowest cost will be associated with the
highest probability. In this case, we use αx1,x2(P) or αx1,x2(P ′) to denote the
average unit cost of processing jobs when P or P ′ is applied to Algorithm 14.
When online learning is applied, the performance indicator can be as follows:

ρx1,x2 = 1− αx1,x2 (P)
αx1,x2 (P′) ;

it represents the ratio in cost reduction when online learning is applied.

9.2 Results
In the following, we give the results of simulations that are taken over about

60000 jobs, mainly listed in Tables 9.1, 9.3, 9.6, and 9.7. In our simulations, all
fractional solutions will be rounded up to the nearest integers.
Experiment 1. We aim to evaluate the effectiveness of the proposed policies
P for spot and on-demand instances alone by means of comparisons with the
policies P ′ in [6], [68], where x1 = 0. The simulation results are listed in
Table 9.1 and show a noticeable cost reduction by up to 64.51%.

Table 9.1 – Performance Improvements for Spot and On-Demand Instances

ρ0,1 ρ0,2 ρ0,3
58.87% 60.84% 64.51%

There are a total of 66 policies in P. In our simulations, every 11 policies are
grouped together and they use the same bid price. We have in the same group
of policies that the cost-optimal value of β (denoted by β∗) is the same even
under different types of jobs; the particular results are illustrated in Table 9.2.
So, in the rest of our simulations, the effective range of β will be defined in
{0.5, 0.6, 0.7, 0.8, 0.9, 0.999999}, to which we reset the value of C2.

Table 9.2 – The Optimal β under a Bid Price b

b 0.13 0.16 0.19 0.22 0.25 0.28
β 0.7 0.8 0.9 0.9 0.999999 0.999999
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Experiment 2. We aim to evaluate the proposed policy for self-owned in-
stances, compared with the naive policy in (8.1); here, the allocation of spot
and on-demand instances will use the same policy P proposed in this thesis. The
simulation results are listed in Table 9.3, showing a noticeable cost reduction
by up to 43.74%.

Table 9.3 – Performance Improvement for Self-Owned Instances

ρ200,x2 ρ400,x2 ρ600,x2 ρ800,x2

x2 = 1 15.73% 21.41% 27.07% 22.83%
x2 = 2 27.25% 39.59% 34.04% 17.85%
x2 = 3 33.05% 34.41% 43.74% 31.88%

The utilizations of self-owned instances under different policies are illustrated
in Fig. 9.1, where the red, blue, magenta, and black stars are respectively in the
case where x1 = 200, 400, 600 and 800. The allocation of self-owned instances
are determined by the policy (8.3) or (8.1). Given a set of jobs, the utilization
of self-owned instances under the policy (8.3) only depends on the parameter
β0 since their allocation is before and independent of the allocation of spot and
on-demand instances. The intuitive policy (8.1) is a special form of the policy
(8.3) when β0 = 0. In the case that x2 = 2, when x1 = 200, 400, 600, 800, the
minimum average unit cost is generated when β = 0.3, 0.2, 0.2, 0.1 respectively;
the corresponding utilizations are given in Table 9.4; the utilization of the in-
tuitive policy (8.1) is illustrated in Table 9.5. We can see that, given a case of
x1 and x2, the proposed policy achieves a lower utilization than the intuitive
policy; even so, it still achieves a lower average unit cost as shown in Table 9.3
where x2 = 2. This is because the proposed policy could effectively reduce the
unnecessary consumption of on-demand instances as explained in Chapter 8.1.3.

Table 9.4 – The Instance Utilization of the Proposed Policy under Cost-Optimal
β0

(β0, x1) (0.3, 200) (0.2, 400) (0.2, 600) (0.1, 800)
Utilization 89.89% 92.41% 72.70% 96.39%

Table 9.5 – The Instance Utilization of the Intuitive Policy

x1 200 400 600 800
Utilization 99.73% 99.57% 99.31% 98.89%

Experiment 3. Assume that there are some amount of self-owned instances,
and we show the performance improvement of the proposed policies P, compared
with the policies that use P ′ for spot and on-demand instances and (8.1) for
self-owned instances. The simulation is done under the 2nd type of jobs that

116



CHAPTER 9. EVALUATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999999

0

0

0.3

0.5
0.6

0.9
1

U
til

iz
at

io
n

Figure 9.1 – The utilization of self-owned instances under different values of β0.

have a medium slackness, and the results are listed in Table 9.6, showing the
improvement of performance by up to 75.68%.

Table 9.6 – Performance Improvement for Three Types of Instances

ρ200,2 ρ400,2 ρ600,2 ρ800,2
71.30% 75.68% 72.83% 66.65%

Experiment 4. Now, we show the performance of the proposed policies when
online learning is applied. The simulation setting is the same as Experiment 3
except that only the 2nd type of jobs is processed here. The related results are
illustrated in Table 9.7, showing a cost reduction by up to 66.71%.

Table 9.7 – Performance Improvement under Online Learning

ρ0,2 ρ200,2 ρ400,2 ρ600,2 ρ800,2
60.89% 63.28% 66.71% 63.60% 51.11%
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Concluding Remarks

When you’re trying to solve a problem, you
initially spend a lot of time in the foothills.
Your progress is very slow.
Then you reach a point where you can carry
the problem with you, and your progress
becomes very rapid. You quickly get to the
top of the mountain. At this point you’ve
solved the problem, and it’s tempting to climb
down and begin something new.
But you should stay on the top of the
mountain. See how far you can go in different
directions. Often there are discoveries you can
make very rapidly because you’ve already done
a lot of the climbing.

Donald Knuth

10.1 Conclusions
The problem of scheduling and pricing is central to the cloud computing field

since resource efficiency and utility maximization are often the most significant
concern for cloud providers and users. In this thesis, for the fundamental model
of malleable tasks arising in cloud computing, we are the first to identify the op-
timal state such that the machines can be said to be optimally utilized by a type
of malleable tasks that arises in the cloud and propose the first polynomial-time
optimal algorithm to achieve the optimal state. Its importance can be perceived
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by the following fact: if the resource utilization state is not optimal in an al-
gorithm, its performance can be improved by utilizing the machines optimally,
allowing more tasks to be completed or reducing the overall completion times of
tasks. The core results have provided a conceptual tool to enable proposing new
analysis and design of algorithms or to enable improving existing algorithms for
extensive scheduling objectives. These scheduling algorithms either improve the
quality of service of the cloud provider or allow the cloud to serve more jobs,
increasing its revenue.

The above tasks are assumed to be work-preserving, i.e., the speedup is lin-
ear and a task’s workload remains constant when the number p of processors
on which to execute this task is small and does not exceed a parallelism bound.
We also consider a more general model to incorporate the case when a task is
assigned a larger number of processors: when p exceeds the parallelism bound,
the workload of a task increases but its execution time decreases as p increases;
however, there is a threshold value that the number of assigned to a task can-
not exceed. In this thesis, we propose scheduling algorithms to minimize the
makespan or maximize the sum of values of tasks completed by a deadline.

On the other hand, in the pricing aspect, we study the problem of cost-
efficiently utilizing self-owned instances and the instances (spot, on-demand)
from public clouds such as Amazon EC2. The workload to be processed is as-
sumed to be independent malleable tasks where there is a constraint of time by
which to complete the task, and we propose (near-)optimal parametric policies
to allocate different types of instances among the arriving tasks and the effec-
tiveness of these policies is also validated by simulations. What is more, we
identify and address in this thesis two underlying questions in the instance allo-
cation process: to be cost-efficient, what properties should be kept in the policy
for allocating self-owned instances and what policy can maximize the utilization
of spot instances. This also enables us to extend the work of this thesis to the
case where there are precedence constraints among tasks, which will be one of
our future works.

10.2 Outlook of the Future
This thesis focuses on the performance improvement to cloud systems and

the cost-effective ways for the user to utilize the computing resources under
the current purchase options. There are still lots of future works to be done.
In the scheduling aspect, for malleable tasks, future works include exploring
the possibility of extending the definition in this thesis of the optimal state of
executing malleable tasks on identical machines respectively to the case with
release time and to the case in which each task consists of several subtasks
with precedence constraints. Then, based on this, one may attempt to find the
optimal schedule for those cases and to propose similar algorithms in this thesis
for those extended cases. According to the results in [8], the optimal schedule
that achieves the optimal resource utilization is also the key to the objective of
minimizing the total weighted completion time of all the tasks. Hence, one can
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also consider how to apply the results in this thesis to improve the algorithms
in [8].

In the pricing aspect, Infrastructure as a Service (IaaS) is a means of deliv-
ering value to users by facilitating user’s access to computing capacities without
the ownership and maintenance of infrastructures. The design of IaaS service
obeys fundamental principles in service design: plan and organize people, in-
frastructure, communication and material components of the service, aiming
at excellence along three dimensions, namely, the service quality, the system’s
efficiency, and the interaction between the service provider and its users. This
requires a joint effort to understand both the needs of customers and implement
efficient resource management.

Thanks to this thesis, our work on scheduling has made us better understand
what task’s characteristics can bring better resource efficiency [17], [33], [83]–
[85] while our work on cost-efficiently utilizing public clouds enables us to better
perceive what pricing models could be of high usability [69], [70]; the pricing
models in Amazon EC2 define the process under which users can acquire them
and are not very user-friendly, as indicated by some works [65], [76], [86]. We
were considering what forms of computing service should be offered to users
by the cloud so that the offered services can be more user-friendly while the
revenue of the cloud is maximized; here, the forms of services offered require a
corresponding resource management scheme used inside the cloud system. We
believed that, QoS-differentiation is an important lens in order to efficiently al-
locate shared resources in many domains where both (i) users have potentially
diverse preferences for QoS and (ii) different preferences take differentiable ef-
fects on resource efficiency; to realize this, appropriate pricing is needed to shape
user’s preferences, incentivizing potential users (whose demand of resources is of
time elasticity) to express their demand/jobs in forms that enable maximizing
the power of QoS-differentiation in resource management.

For example, at the moment of submitting this thesis, we have completed the
performance analysis of a type of QoS-differentiated pricing in cloud computing
via an analytical approach where the cloud offers multiple QoS classes: the jobs
of each class will be completed with a finite waiting time and the smaller the
waiting time, the higher the price; our numerical simulations have shown that
the proposed architecture could improved the revenue of a cloud provider by
up to a five-fold increase [87]. Other examples of QoS-differentiation includ-
ing colocating two types of workloads on the same servers where one type has
a definite delay requirement while the other only requires best-effort service,
commonly used in traditional private computer systems to improve resource ef-
ficiency greatly. In the cloud computing context, the aspect of pricing shared
resources needs to be incorporated and one could also use the analytical mod-
eling method to study the related problems; here, the resource management
model is very similar to the model in Amazon EC2, where the idle instances
of the on-demand market are sold in the form of spot instances to improve the
resource efficiency [88]. This form of QoS differentiation is also a promising
direction that remains to be addressed in future. To sum up, QoS-differentiated
pricing and resource management is still an important and rich area for future
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research in cloud computing.
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Appendix A

Résumé en français

What I cannot create, I do not understand.

Richard Feynman

Dans l’annexe, nous donnons un aperçu de la thèse, récapitulons ses résultats
principaux, et expliquons les idées de haut niveau derrière ces résultats.

A Introduction
Cette thése aborde les problèmes liés à la ordonnancement et à la tarifica-

tion dans le cloud computing. Le cloud computing est un modèle qui permet un
accès omniprésent à la demande à un pool partagé de ressources informatiques
configurables. Les solutions de stockage et d’informatique en nuage offrent aux
utilisateurs diverses capacités pour stocker et traiter leurs données dans des cen-
tres de données tiers. Les ressources sont partagées par différents utilisateurs
pour assurer la cohérence et des économies d’échelle similaires à celles d’un ser-
vice public (comme le réseau) sur un réseau. Par conséquent, il se concentre
sur l’optimisation de l’efficacité des ressources partagées. D’autre part, le cloud
computing permet aux utilisateurs d‘éviter les coûts d‘infrastructure initiaux et
au service informatique d’adapter plus rapidement les ressources pour répon-
dre aux demandes changeantes et imprévisibles de l’entreprise. Il présente les
avantages d’une puissance de calcul élevée, d’un coût élevé, de l’évolutivité, de
l’accessibilité et de la disponibilité, tout en réduisant la charge de l’utilisateur
liée au déploiement et à la gestion des infrastructures informatiques. Les four-
nisseurs de cloud utilisent généralement une tarification basée sur l’utilisation,
parfois en association avec une tarification dynamique pour vendre les ressources
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restantes à travers des enchères. Cela peut entraîner des frais plus élevés si les
utilisateurs ne s’adaptent pas au modèle de tarification en nuage. D’autre part,
maximiser l’utilité des ressources est souvent l’une des préoccupations les plus
importantes des fournisseurs de cloud.

Les problèmes d’ordonnancement suivants sont importants pour les four-
nisseurs de cloud. Compte tenu de la capacité fixe d’un fournisseur de cloud,
comment le fournisseur de cloud pourrait-il desservir autant de locataires que
possible tout en respectant leurs délais; lorsque les valeurs des tâches sont dif-
férentes et que la capacité d’un fournisseur de cloud est limitée, comment le
fournisseur de services cloud peut-il sélectionner un sous-ensemble de tâches
pour maximiser la valeur totale des tâches? En théorie de la ordonnancement,
ces questions correspondent aux objectifs de ordonnancement: "machine min-
imization" and "social welfare maximization". Compte tenu de la capacité du
cloud, comment le cloud pourrait-il optimiser les objectifs de ordonnancement,
tels que la réduction des retards dans l’exécution des tâches? Ces problèmes
d’ordonnancement sont essentiels pour gérer les revenus d’un fournisseur de
cloud et améliorer la qualité de service des utilisateurs; ils constituent les prin-
cipales questions à aborder dans cette thèse.

En ce qui concerne la tarification, nous abordons le problème suivant: compte
tenu des modèles de tarification actuels, comment un utilisateur peut-il acquérir
des ressources informatiques dans le cloud de manière rentable? La motivation
pour cette question est la suivante. De nombreuses entreprises possèdent une
petite infrastructure qu’elles peuvent utiliser pour leurs tâches informatiques; ils
ont souvent besoin d’acheter des ressources informatiques supplémentaires dans
les clouds. L’infrastructure en tant que service (IaaS) permet aux utilisateurs
d’ajuster dynamiquement leur capacité de calcul en fonction de la demande, qui
varie dans le temps. Du point de vue de l’utilisateur, cela élimine le besoin
d’acheter des serveurs pour répondre à la demande de pointe, sans provoquer
une latence inacceptable. L’utilisation rentable des clouds IaaS est donc une
préoccupation majeure des utilisateurs.

B Un aperçu de la thèse et des principaux ré-
sultats

La thèse comporte deux parties. La première partie aborde les questions de
ordonnancement et étudie deux types de tâches. La deuxième partie aborde le
problème de l’utilisation rentable des ressources du cloud public.

B.1 Partie I: vue d’ensemble et résultats

Vue d’ensemble de la partie II. Dans la première partie de cette thèse,
nous posons des bases théoriques sur le problème de la ordonnancement en
informatique en nuage.
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— Chapitre 2
Dans ce chapitre, nous introduisons l’importance des problémes d’ordonnancement
dans le cloud computing et du modèle de tâches à prendre en compte dans
ce scénario.

— Chapitre 3
Dans ce chapitre, nous identifions l’état d’utilisation optimale des ressources
de plusieurs machines sur lesquelles un ensemble de tâches avec des délais
stricts est planifié; nous proposons ensuite un algorithme de ordonnance-
ment pouvant atteindre un tel état optimal.

— Chapitre 4
Les résultats du Chapitre 3 fournissent un outil conceptuel pour proposer
de nouvelles conceptions d’algorithmes et l’amélioration des algorithmes
existants en fonction de divers objectifs de ordonnancement. En partic-
ulier, on obtient les résultats algorithmiques suivants:
(i) un algorithme gourmand optimal pour la maximisation du bien-être
social (maximiser la somme des valeurs des tâches accomplies dans leurs
délais),
(ii) le premier algorithme de programmation dynamique exact pour la
maximisation du bien-être social avec une complexité de calcul pseudo-
polynomiale,
(iii) un algorithme exact pour la minimisation de la machine (minimiser
le nombre de machines nécessaires pour produire un programme réalisable
d’un ensemble de tâches où chaque tâche est terminée avant la date limite),
(iv) un algorithme amélioré ayant pour objectif de minimiser le temps
d’achèvement pondéré maximal.

— Chapitre 5
Dans ce chapitre, nous introduisons une variante du type de tâches ci-
dessus. A travers une analyse algorithmique, nous proposons des algo-
rithmes de ordonnancement pour la minimisation de makespan et pour
la maximisation de la somme des valeurs des tâches exécutées avant une
date limite.

Pour les problèmes d’ordonnancement ci-dessus, nous visons à proposer de
bons algorithmes. Pour un ensemble arbitraire de tâches, si un algorithme
génère toujours une planification de tâches sur des machines m avec des per-
formances optimales, il est optimal. Si l’algorithme optimal ne peut pas être
obtenu, l’algorithme peut être mesuré par un rapport de performance: le rapport
entre la performance de l’algorithme proposé et la performance d’un algorithme
idéalement optimal (inconnu de nous); ce ratio est généralement appelé ratio
d’approximation. Formellement, on dénoter les performances d’un algorithme et
de l’algorithme optimal respectivement par A(T ) et OPT (T ), et un algorithme
š’appelle un algorithme ρ-approché s’il existe une valeur ρ: pour un ensemble
arbitraire T , (i) quand l’objectif est de minimiser quelque chose

A(T )
OPT (T ) ≤ ρ (ρ ≥ 1),
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et (ii) lorsque l’objectif est de maximiser quelque chose
A(T )

OPT (T ) ≥ ρ (0 ≤ ρ ≤ 1).

Dans cette thèse, notre objectif final est de proposer des algorithmes d’ordonnancement
atteignant des rapports d’approximation proches de 1.

Principaux résultats. Le premier type de tâches est traité dans les Chapitres
2 à 4 et s’appelle tâches malléables; ils sont assumé être malléables:
— lors de l’exécution d’une tâche, le nombre de machines attribuées peut

varier dans une limite de parallélisme (ce qui amène l’opération consistant
à préempter l’exécution d’une tâche),

— la charge de travail d’une tâche est constante et ne change pas avec le
nombre de machines qui lui sont affectées.

Avant nos travaux, elles avaient été bien étudiées par d’autres techniques algo-
rithmiques telles que le "dual-fitting" et "the rounding of linear programs".

Plus récemment, Jain et al. a utilisé la technique du dual-fitting pour pro-
poser un algorithme glouton qui permet d’obtenir un rapport d’approximation
C−k
C · s−1

s [3]; ici, C est le nombre de machines, k est une limite supérieure
du parallélisme, s est le slackness minimum de toutes les tâches où le slackness
d’une tâche est défini comme étant le rapport entre son date limite et son temps
d’exécution minimal (lorsqu’une tâche est toujours affectée au nombre maximal
de machines tout au long de l’exécution). Intuitivement, s caractérise l’urgence
ou la flexibilité de l’affectation des ressources, par exemple, s = 1 signifie que,
pour rencontrer l’échéance, une tâche doit toujours utiliser le nombre maximal
de machines qu’elle peut utiliser du début à la fin.

Les principaux résultats de cette thèse ont été résumés lorsque nous intro-
duisons les Chapitres 3 à 4 ci-dessus. En particulier, l’algorithme glouton pro-
posé dans cette thèse a un rapport approximatif s−1

s . L’algorithme glouton de
Jain et al. [3] et le nÃ´tre représentent une classe d’algorithmes gloutons. Dans
cette classe, les tâches sont considérées dans l’ordre décroissant de leurs valeurs
marginales (c’est-à-dire le rapport entre la valeur d’une tâche et sa taille); si
une tâche peut être complétée avant son échéance en fonction des machines
disponibles, il sera accepté et entièrement alloué selon un certain algorithme
d’allocation; sinon, il sera rejeté. Nous montrons en outre que
— s−1

s est la meilleure garantie de performance possible que cette classe
d’algorithmes glouton pourrait réaliser.

— par conséquent, l’algorithme glouton proposé dans cette thèse est le meilleur
possible parmi cette classe d’algorithmes gloutons.

Le deuxième algorithme du Chapitre 4 est une application de la procédure de
programmation dynamique. Cependant, avant notre travail, comment activer
cette application est un problème ouvert, comme indiqué dans [2], [3]. Ceci
est principalement dê à l’absence de notion de l’état optimal d’utilisation de
la machine lorsque des tâches malléables avec des délais sont considérées, et
l’absence d’algorithme permettant d’atteindre un tel état. En revanche, l’état
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optimal dans le cas d’une seule machine peut être obtenu par l’algorithme EDF.
Les principaux résultats de cette thèse permettent d’appliquer la procédure de
programmation dynamique au scénario de tâche malléable. Les troisième et
quatrième algorithmes ci-dessus sont obtenus en appliquant respectivement les
résultats centraux du Chapitre 3 à une procédure de recherche binaire et les
résultats correspondants dans [8].

Le deuxiéme type de tâches est étudié au Chapitre 5. En particulier, mo-
tivés par de récentes études de référence, nous introduisons la notion de (δ, k)-
monotonic tâches:
— les tâches sont moulables,

et pour chaque tâche Tj assignée à p processeurs, nous avons
(i) lorsque p est petit et compris entre [1, δ], sa charge de travail Dj,p reste

constante et l’accélération est linéaire;
(ii) lorsque p est grand et que sa valeur est comprise dans [δ+ 1, k], la charge

de travail Dj,p ne diminue pas lorsque p augmente alors que son temps
d’exécution diminue et commence même à augmenter lorsque p dépasse
un certain seuil;

(iii) le nombre maximal de processeurs pouvant être affectés à Tj est k.
Le (δ, k)-monotonic tâches sont le deuxième type de tâches que nous avons

considáráes dans cette thèse; ici, "moldable" signifie qu’une tâche peut être
assignáe un nombre flexible de machines dans [1, k]; cependant, après que le
nombre soit dáterminá avant l’exácution de la tâche, ce nombre ne peut pas
changer dans toute son exácution. Pour le deuxième type de tâches, nous pro-
posons un algorithme d’átablissement du programme pour ráduire au minimum
le makespan, dont la performance dápend de la valeur de δ; dans des scánarios
ráalistes, δ can va de 5 à 64 et son rapport d’approximation va de 4

3 à 11
10 ; ici, si

le rapport d’approximation d’un algorithme est ρ, la makespan atteinte par cet
algorithme n’est pas toujours supárieure à ρ fois la makespan d’un algorithme
optimal. En tant que sous-produit, nous fournissons ágalement un algorithme
de planification qui maximise la somme des valeurs des tâches termináes avant
une date limite.

B.2 Partie II: vue d’ensemble et résultats

Vue d’ensemble de la partie II. Dans la deuxième partie de cette thèse,
nous considérons comment acquérir la ressource informatique du nuage d’une
manière rentable.
— Chapitre 6

Dans ce chapitre, nous présentons les modèles actuels de tarification du
marché du cloud, tels que les modèles d’Amazon Elastic Cloud Compute
(EC2); deux options d’achat sont envisagées: les instances ponctuelles
bon marché et les instances coûteuses á la demande (machines virtuelles).
Les utilisateurs peuvent également avoir leurs propres instances, appelées
instances auto-possédé.
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— Chapitre 7
Dans ce chapitre, nous proposons des stratégies paramétriques rentables
pour affecter différents types d’instances á des travaux 1. Les circonstances
sont dynamiques: les prix des "spot instances" varient de manière imprévis-
ible dans le temps et les statistiques sur les emplois sont inconnues; en-
suite, une approche d’apprentissage en ligne est appliquée pour estimer les
paramètres de configuration optimaux en termes de coûts des politiques.

— Chapitre 8
Dans ce chapitre, nous évaluons l’efficacité des politiques paramétriques
proposées au moyen de simulations approfondies, en particulier une réduc-
tion des coûts pouvant aller jusqu’á 64,51% lorsque les instances spot et
on-demand sont prises en compte et jusqu’á 43,74% lorsque des instances
"auto-possédées" sont considérées, par rapport aux stratégies proposées
précédemment ou intuitives.

Résultats principaux. Dans la deuxième partie de cette thèse, nous exam-
inons le problème de l’utilisation rentable des instances auto-possédées et les
instances des clouds publics. Les deux options d’achat courantes dans le cloud
sont les instances on-demand et spot. Les premiers sont toujours disponibles
avec un prix fixe et les locataires 2 ne payez que pour la période au cours de
laquelle les instances sont consommées á un taux horaire. Les utilisateurs peu-
vent également proposer un prix pour les instances spot et ne peuvent les obtenir
avec succès que si leur prix est supérieur au prix au comptant. Les instances
spot seront alors exécutées tant que l’offre sera supérieure au prix spot, mais
elles seront résiliées si le prix spot devient plus élevé. Ici, les prix spot varient
généralement de manière imprévisible dans le temps et les utilisateurs devront
payer les prix spot pour leur utilisation. Par rapport aux instances on-demand,
les instances spot peuvent réduire les coûts de 50% á 90%.

Les utilisateurs qui achètent des instances sur le cloud peuvent disposer
de leurs propres instances, appelées instances auto-possédées, qui peuvent être
utilisées pour traiter des travaux mais sont parfois insuffisantes (d’où la néces-
sité d’acheter des instances IaaS supplémentaires). Ils peuvent également ne
pas avoir d’instances auto-possédées (par exemple, dans le cas de startups) et
doivent donc acheter dans le cloud toutes les ressources informatiques néces-
saires. Dans les deux cas, la question fondamentale pour les utilisateurs est
de déterminer comment acheter des instances auprès de clouds IaaS et utiliser
différentes instances pour traiter leurs travaux de manière à minimiser leurs
coûts.

Les emplois des locataires arrivent avec le temps et ont des contraintes à
satisfaire. Par exemple, une contrainte est liée au parallélisme et spécifie le
nombre maximal d’instances pouvant être utilisées simultanément par un travail;
un autre est sur la synchronisation, c.-à-d., une date-butoir avant laquelle le
emplois doit être accompli.

1. Dans cette thèse, nous utilisons indifféremment "emplois" et "tâches".
2. Dans cette thèse, nous utilisons indifféremment "utilisateurs" et "locataires".
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Dans le processus d’allocation d’instance, deux questions théoriques sous-
jacentes sont bien traitées: pour économiser de l’argent, quelles propriétés
doivent être conservées dans la politique d’allocation des instances self-owned
et quelle politique peut maximiser l’utilisation des instances spot après les in-
stances self-owned sont utilisées, évitant ainsi une consommation inutile d’instances
à on-demand coûteuses. Sur cette base, nous proposons de bonnes straté-
gies paramétriques pour affecter différents types d’instances à des travaux.
L’efficacité des politiques proposées est également validée par des simulations
approfondies. Dans cette thèse, les emplois à traiter sont supposés être des
emplois indépendants malléables. Il convient de noter que les deux questions
théoriques seront également une clé pour l’extension des résultats de cette thèse
au cas des emplois avec contraintes de précédence.

C Partie I: l’ordonnancement de tâches malléables
Nous présentons maintenant les idées principales de la conception algorith-

mique pour les tâches malléables.

C.1 Motivation
Nous présentons d’abord le movitation en cours de dériver les résultats re-

latifs. Les tâches malléables sont une généralisation des tâches de préemption
qui peuvent seulement être exécutées sur une machine simple. Dans le passé,
les problèmes relatifs de programmer des tâches de préemption sur une ma-
chine simple ont été intensivement étudiés [10], [11]. Quand chaque tâche doit
être accomplie par une certaine date-butoir, les résultats précédents dans le cas
particulier d’une machine ont déjà impliqué cela l’état d’utiliser de façon opti-
male des machines joue une fonction clé En particulier, la politique d’EDF peut
réaliser l’état optimal d’utilisation de ressource, c.-à-d., donné un ensemble de
tâches, s’il y a un programme faisable de ces tâches avec des dates-butoirs sur
une machine, la politique EDF (Earliest Deadline First) peut produire un pro-
gramme faisable.dans la conception et l’analyse des algorithmes d’établissement
du programme pour plusieurs objectifs [11]. De nombreuses applications de la
règle EDF ont été trouvées pour concevoir, par exemple, ( rmnum 1) une planifi-
cation qui permet d’atteindre l’état optimal d’utilisation des ressources, chaque
tâche étant en outre associée à une heure de libération [12], (ii) un algorithme
exact permettant de minimiser le retard maximal d’une tâche (c’est-à-dire le
temps d’achèvement de la tâche moins la date d’échéance) [13], et (iii) un algo-
rithme exact pour les tâches avec des délais afin de minimiser le nombre total
de tâches en retard (c’est-à-dire des tâches dont les délais ne sont pas respectés)
[14].

De même, nous avons cru que, une l’ordonnancement qui permet d’atteindre
un tel état d’utilisation optimale des ressources est également fondamentale pour
la ordonnancement de tâches malléables, et peut être bénéfique pour la concep-
tion et l’analyse d’algorithmes de ordonnancement. Ici, l’intuition sous-jacente
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est que, si l’utilisation des ressources n’est pas optimale dans un algorithme,
ses performances peuvent être améliorées en utilisant les machines de manière
optimale, ce qui permet d’achever davantage de tâches ou de réduire le temps
d’achèvement global des tâches. Toutes ces considérations nous ont motivés à
développer le cadre théorique de cette thèse.

C.2 L’état optimal de utilisation machine

Le temps est divisé en créneaux discrets et chaque créneau peut contenir
un nombre fixe de minutes. Il y a des machines C et un ensemble de tâches
T = {T1, T2, · · · , Tn}. Chaque tâche Ti une charge de travail Di, une date limite
di, et une limite de parallélisme ki; Ti doit être complété avant la fente di et
il peut utiliser simultanément au plus ki machines. Laisser {τ1, τ2, · · · , τL} =
{di |Ti ∈ T }, dénotant toutes les échéances des tâches.

Laissez S dénoter un sous-ensemble arbitraire de T . In this thesis, nous
identifions l’état d’utilisation optimale des ressources de plusieurs machines sur
lesquelles un ensemble de tâches avec des délais stricts est planifié. L’état est
dérivé au-dessous de trois contraintes: dates-butoirs, limites de parallélisme, et
la ressource maximum disponible (capacité). Premièrement, nous ignorons la
contrainte de capacité et prenons en considération les contraintes de date-butoir
et de parallélisme:

(i) chaque tâche Ti peut seulement utiliser les machines dans [1, di],

(ii) Ti peut utiliser tout au plus des machines de ki à une fente.

Sous de telles contraintes, nous définissons la charge de travail maximale de
S pouvant être traitée dans [τL−m + 1, τL], dénoté par λm(S) où m ∈ [1, L];
trivialement, τ0 = 0. De plus, nous prenons en considération la contrainte de
capacité:

(iii) il y a seulement des machines de C disponibles,

et définissez la charge de travail maximum de S qui pourraient être traités
dedans [τL−m+1, τL], dénoté par λCm(S). Notre définition est récursive. Laissez
λC0 (S) = 0 trivialement. Avec la contrainte de capacité, le λCm−1(S) est la charge
de travail maximum de S qui pourraient être traités dedans [τL−(m−1) + 1, τL];
λCm(S) est soit λm(S) ou la somme de λCm−1(S) et C · (τL−m+1 − τL−m), c’est à
dire,

— λCm(S)← λCm−1(S) + min
{
λm(S)− λCm−1(S), C · (τL−m+1 − τL−m)

}
.

Nous définissons µCm(S) =
∑
Ti∈S Di − λCL−m(S) comme charge de travail

(minimum) demeurante S ce doit être traité après que S ait au maximum utilisé
des machines de C dedans [τm + 1, τL] pour tous m ∈ [L− 1]. Dans cette thèse,
nous appelons les inégalités suivantes la condition aux frontière

µCm(S) ≤ C · τm, pour tous m ∈ [0, L− 1]
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L’algorithme optimal d’ordonnancement

Dans ce subsubsection, nous montrons cela, si S remplit la condition de fron-
tière ci-dessus, alors, là existe un algorithme LDF (S) qui produit un programme
faisable de S, réalisant l’état optimal d’utilisation de ressource.

Laissés Sm dénotent toutes les tâches de S avec la date-butoir τm. À la
fente t, nous dénotons le nombre de machines qui ont été assignées aux tâches
par W (t); W (t) = C −W (t) dénote le nombre de machines disponible à t. Au
commencement, W (t) = 0 et W (t) = C. LDF(S) fonctionne comme suit:

1. les tâches de S sont considérées dans l’ordre décroissant de leurs dates-
butoirs, i.e., dans les l’ordre de SL, SL−1, · · · , S1, là où les tâches dans le
même ensemble sont considérées dans l’ordre aléatoire;

2. quand une tâche Ti est considérée, l’algorithme Allocate-B(i) s’appelle
pour faire Ti entièrement assigné sous les contraintes de date-butoir et de
parallélisme.

Nous prouverons que, seulement si S remplit la condition de frontière et
l’état d’utilisation de ressource de machines satisfait quelques propriétés sur
chaque achèvement Allocate-B(i), toutes les tâches dans S seront entièrement
assignées après LDF (S) finit. Dans LDF(S), quand une tâche Ti est considérée,
supposent que Ti appartient à Sm et dénotent par S ′ ⊆ SL ∪ cdots ∪ Sm les
tâches qui ont été entièrement assignées jusqu’ici; les tâches de S ′ sont consid-
érées avant Ti. Ici, S remplit la condition de frontière; tout son sous-ensemble
comprenant S ′ et S ′ ∪ {Ti} remplissent également la condition de frontière.
Avant que l’exécution de Allocate-B(i), nous supposons que l’état d’attribution
de ressources satisfait les deux propriétés suivantes.

La première propriété est que, pour les machines C, l’état optimal d’utilisation
des ressources est obtenu par l’allocation actuelle à S ′.

Property C.1. Pour toute l ∈ [1, L], la quantité de la charge de travail de S ′
qui est traité dedans [τL−l + 1, d] est λCl (S ′).

La deuxième propriété est que, l’état d’utilisation de ressource dans [1, τm]
a une forme faite un pas.

Property C.2. Si là existe une fente t ∈ [1, τm] tels que W (t) > 0, a laissé
t0 soit la dernière fente dans [1, τm] où W (t0) > 0; alors nous avons W (1) ≥
W (2) ≥ · · · ≥W (t0).

Si les deux propriétés ci-dessus sont satisfaisantes, nous montrerons en Chapitre
3.2.2 et 3.2.3 cela, là existe un algorithme Allocate-B(i): après avoir terminé
Allocate-B(i), les deux propriétés suivantes sont satisfaites:

Property C.3. Ti est entièrement assigné.

Property C.4. L’allocation de ressources à S ′ ∪ {Ti} satisfait Property C.1 et
Property C.2.
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Dans le cas que ce qui précède Allocate-B(i) existe, seulement si S remplit la
condition de frontière, S peuvent être entièrement assigné par LDF(S). La rai-
son de ceci peut être expliquée par induction. Quand la première tâche Ti dans
S est considérée, S ′ est vide, et, avant l’exécution Allocate-B(i), Properties C.1
et C.2 sont satisfaits trivialement. De plus, après avoir terminé Allocate-B(i),
Ti sera entièrement alloué par Allocate-B(i) en raison de Property C.3, et Prop-
erty C.4 est conservé. Ensuite, supposons que S ′ n’est pas vide et que les
Properties C.1 et C.2 soient conservées. Lorsque la tâche Ti est considérée par
LDF(S), elle est toujours entièrement allouée et les Properties C.3 et C.4 sont
conservées après Allocate-B(i) est terminé. Par conséquent, toutes les tâches de
S seront finalement entièrement attribuées à la fin de LDF(S).

C.3 Algorithme glouton
Nous associons chaque tâche Ti à une valeur vi; cette valeur est obtenue

lorsque Ti est terminé avant la date limite. Dans cette sous-section, nous pro-
posons un algorithme pour maximiser le bien-être social, c’st-à-dire pour max-
imiser la somme des valeurs des tâches accomplies avant leur date limite. Dans
cette section, nous illustrons l’application des résultats ci-dessus à l’algorithme
avide pour la maximisation de bien être social. La forme générale d’un algo-
rithme glouton est la suivante [20], [22]: il tente de construire une solution en
exécutant de manière itérative les étapes suivantes jusqu’à ce qu’il ne reste plus
aucun élément à prendre en compte: (1) norme de sélection: de manière gour-
mande, choisissez et considérez une tâche localement optimale en fonction de
certains critères; (2) condition de faisabilité: quand une tâche est considérée,
acceptez-la si elle remplit une certaine condition et rejetez-la autrement.

Le critère de sélection est lié à la fonction objective et aux contraintes, et
est habituellement le rapport du ’avantage’ au ’coût’; le ratio mesure l’efficacité
d’une tâche. Dans le problème de cette thèse, la contrainte vient de la capacité
à tenir les tâches choisies et l’objectif est de maximiser le bien-être social; donc,
le critère de sélection ici est le rapport de la valeur d’une tâche à sa charge
de travail, appelé la valeur marginale de cette tâche. Formellement, la valeur
marginale d’une tâche Ti est définie as v′i = vi

Di
, i.e., la valeur obtenue à partir

de par l’unité de la charge de travail quand Ti est accompli avant sa date-butoir.
Etant donné la forme générale d’algorithme avide, nous définissons une classe
des algorithmes avides qui fonctionnent comme suit, dénoté par GREEDY:

1. Considère les tâches dans l’ordre décroissant des valeurs marginales; as-
sumez sans perte de généralité cela v′1 ≥ v′2 ≥ · · · ≥ v′n;

2. Dénoter l’ensemble des tâches qui ont été acceptées par A; quand une
tâche Ti est considérée, on l’accepte et est entièrement assigné si là existe
un programme faisable pour exécuter A ∪ {Ti} sur des C machines.

Dans le suivant, nous nous référons à l’algorithme générique dans GREEDY
comme Greedy. Le meilleur rapport d’approximation qu’un algorithme avide
dans GREEDY peut réaliser est s−1

s .
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Greedy considérera des tâches séquentiellement. La première tâche sera ac-
ceptée certainement et alors elle emploiera l’condition de faisabilité pour déter-
miner si accepter ou rejeter la prochaine tâche, selon les ressources disponibles
actuelles et les caractéristiques de ceci tâche. Pour décrire le processus dans
lequel Greedy accepte ou des tâches de rejets, nous définissons les ensembles
de tâches admises et rejetées consécutives A1,R1,A2, · · · . Spécifiquement, lais-
sez Am = {Tim , Tim+1, · · · , Tjm} être le m-th réglé des tâches adjacentes qui
sont acceptées par avide où i1 = 1, tandis Rm = {Tjm+1, · · · , Tim+1−1} est
l’ensemble de m-th des tâches adjacentes qui sont rejetées après l’ensemble Am,
où m ∈ [K]+ pour un certain nombre entier E. Le nombre entier K représente
la dernière étape : dans le K-th étape, AK 6= ∅ et RK peut être vide ou non
vide. Nous dénotons également par cm que la date-butoir maximum de toutes
les tâches rejetées dans le premier m met en phase, i.e.,

cm = max
Ti∈
⋃m

l=1
Rl
{di},

et par c′m la date-butoir maximum de toutes les tâches admises dans aux pre-
mières m-th phases, i.e.,

c′m = max
Ti∈
⋃m

l=1
Al
{di}.

Tandis que les tâches dans Am ∪Rm sont considérées, nous disons cela Greedy
est dans la m-th phase. Avant l’exécution Greedy, nous disons cela Greedy est
pendant la 0-th phase. À la fin de la m-th phase de Greedy, nous définissons
un paramètre B de seuil comme suit
(i) si cm ≥ c′m, laisser tth

m = cm, et
(ii) si cm < c′m, laisser tth

m être un fente dans [cm, c′m];
Dans cette thèse, nous prouvent que dès que l’attribution de ressources faite

par Greedy satisfera quelques caractéristiques, son rapport d’approximation
peut être déduit immédiatement. Les caractéristiques sont comme suit:
(i) pour tous m ∈ [1,K] l’attribution aux tâches admises pendant les pre-

mières m phases (i.e., ∪ml=1Al) réalise une utilisation ≥ r in [1, tth
m ] où

r ∈ [0, 1], et
(ii) la charge de travail maximale de ∪ml=1Al est traitée dans [tth

m + 1, d] après
l’achèvement de Greedy, où d = maxTi∈T {di}.

La conclusion est comme suit: Greedy réalise un rapport d’approximation r.
Puis, en appliquant l’algorithme qui réalise l’état optimal d’utilisation de ma-
chine, nous pourrions concevoir un algorithme greedy qui réalise un rapport
d’approximation s−1

s .

D Partie I: l’ordonnancement de tâches (δ, k)-
monotonic

Maintenant, nous expliquons les idées principales pour (δ, k)-monotonic tâches,
là où deux objectifs de établissement du programme sont adressés séparément :
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réduisez au minimum le makespan et maximisez la somme de valeurs des tâches
accomplies par une date-butoir; ce dernier désigné sous le nom de la maximisa-
tion de bien être social.

D.1 Minimisation de makespan
Maintenant, nous présentons l’idée principale dans l’algorithme proposé pour

la minimisation makespan. Laissez γ(j, d) dénoter le nombre minimal de ma-
chines requises afin d’accomplir une tâche Tj par le temps d; tj,p est le moment
d’exécution où Tj est assigné des p machines. Avant que nous présentions la
notion des (δ, k)-monotonic tâches, beaucoup d’efforts avaient jamais fait pour
étudier des tâches monotoniques: la charge de travail augmente pendant qu’une
tâche est assignée plus de machines, alors que son temps d’exécution diminue ;
jusqu’ici, le meilleur résultat est un algorithme de ( 3

2 + ε)-approximation [24].
Notre idée pour des (δ, k)-monotonic tâches provient de l’observation suivante
pour des tâches monotoniques; ici, nous avons

d ≥ tj,γ(j,d) >
γ(j, d)− 1
γ(j, d) · d. (D.1)

Supposez que là existe un ordonnancement de toutes les tâches, dénoté par
Sched, dont makespan est d et cela réalise une utilisation r de ressource dans
[0, d]; dans la condition que la charge de travail minimum de chaque tâche Tj est
traitée (c.-à-d., assigné des γ(j, d) processeurs), le ordonnancement Sched sera
un algorithme de 1

r -approximation pour la minimisation makespan. La raison
est comme suit. Dénotez par d∗ le makespan d’un ordonnancement optimal a
dénoté par Sched∗, où d∗ ≤ d; ainsi, la charge de travail de Tj quand γ(j, d∗)
processeurs assignés Dj,γ(j,d∗) ≥ Dj,γ(j,d). Dans le ordonnancement Sched∗, la
charge de travail de chaque tâche est ≥ Dj,γ(j,d∗) puisque le nombre de pro-
cesseurs assignés à une tâche Tj est au moins γ(j, d∗); ainsi toute la charge de
travail de toutes les tâches est ≤ m·d∗ mais ≥ ses homologues dans Sched qui est
≥ r ·m ·d. Donc, nous déduisons que le makespan optimal d∗ est ≥ r·m·d

m = r ·d,
c’est-à-dire, d

d∗ ≤
1
r .

Maintenant, seulement si nous pourrions concevoir un tel ordonnancement
Sched avec une utilisation r > 2/3, un algorithme mieux que celui dans [24]
pourrait être obtenu. Notre premier problème est de donner le ordonnancement
Sched; pour réaliser ceci, un défi résulte de l’existence des tâches avec petit
γ(j, d). En particulier, donné un nombre entier H ≥ 4, nous appelons les
tâches avec γ(j, d) ≥ H comme tâches avec le grand γ(j, d). Chaque tâche avec
grand γ(j, d) a un temps d’exécution > H−1

H · d par Inequality (D.1) quand
γ(j, d) processeurs de assignés; ces processeurs ont pu réaliser une utilisation
≥ H−1

H ≥ 3
4 dans [0, d]. Pour faire face aux tâches avec petit γ(j, d) ≤ H − 1,

nous présentons la notion des (δ, k)-monotonic tâches où H−1 ≤ δ, permettant
une classification générique de ces derniers des tâches (voir Chapitre 5.4.1);
ici, chaque tâche sera assignée le même nombre de processeurs (≤ δ) et sa
charge de travail minimum est traitée. Nous pouvons proposer ainsi un tel
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ordonnancement Sched dont l’utilisation r rapproche H−1
H (voir Chapitre 5.4.2

et 5.4.3).
Comme est vu plus tard, notre deuxième problème est que l’utilisation de

Sched peut être dérivée seulement quand les processeurs de m ne sont pas assez
pour traiter toutes les tâches par le temps d où quelques tâches sont rejetées;
cependant, de ce que nous avons besoin est l’utilisation quand toutes les tâches
sont programmées. Pour adresser ceci, laissez U et L être tel que Sched peut
produire un programme faisable de toutes les tâches par le temps U mais ne fait
pas ainsi par le temps L, et nous nous appliquons une procédure de recherche
dichotomique à Sched. Après que les fins de procédure, pour un tel U et L, nous
aient U ≤ L · (1 + ε) et r dénote l’utilisation de Sched quand d = U . Après une
analyse prolongée de notre observation préliminaire, nous pourrions dériver que
le ordonnancement final de toutes les tâches par le temps U est un algorithme
de 1

r · (1 + ε)-approximation (voir Chapitre 5.5.1).

D.2 Maximisation de bien-être social
Notre idée pour la maximisation de bien être social est comme suit. Nous

donnons d’abord un algorithme (glouton) générique qui définira l’ordre dans
lequel des tâches sont acceptées pour l’établissement du programme ; ici, l’algorithme
final acceptera seulement une partie de tâches dues à la contrainte de capac-
ité. Alors nous analysons rétrospectivement cet algorithme et définissons quels
paramètres détermineront sa performance. En conséquence, puisque la charge
de travail minimum de chaque tâche admise est traitée de notre procédure
de établissement du programme dans Chapitre 5.4, une application directe de
cette procédure à cet algorithme avide mène à un algorithme dont le rapport
d’approximation est son utilisation.

E Partie II: utilisation rentable des clouds publics
Maintenant, nous expliquons les idées principales pour utiliser de manière

rentable les clouds publics.

E.1 Défis
Dans la présente partie de la thèse, nous faisons l’hypothèse naturelle qui

les instances self-owned sont meilleur marché que les instances de spot, qui sont
encore meilleur marché que instances de on-demand. Ainsi, pour être coût-
optimale, une politique naÃ¯f devrait assigner autant de instances self-owned
comme possible, alors instances de spot, et finalement des instances on-demand.
C’est, cependant, une tâche difficile. Par exemple, une politique naÃ¯ve pour
réaliser une utilisation élevée des instances self-owned serait, quand un travail
arrive, d’assigner autant de instances self-owned demeurants comme possible
lui. Cependant, cette politique s’avère ne pas être bonne en termes de coût. En
effet, elle ignore la différence des travaux et traite tous les travaux également
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en assignant des instances, tandis que nous constatons qu’une bonne politique
en termes de coût doit à la place déterminer les attributions des instances self-
owned aux travaux selon leurs capacités d’utiliser seuls des instances de spot
pour s’accomplir par des dates-butoirs.

En particulier, quand instances self-owned sont insuffisants, activement as-
signez instances self-owned aux emploi avec des capacités pauvres et n’assignez
rien aux autres ; autrement, de tels emploi pauvres devront consommer instances
on-demand plus coûteux, et il cause également un gaspillage des capacités de
d’autres emploi riches, ainsi que instances self-owned (même si aucun instances
self-owned n’est assigné, ils peuvent être accomplis en utilisant seulement in-
stances spot). Quand instances self-owned sont assez, assignez-les aux emplois
avec pauvre et les capacités fortes tels qu’après les attributions tous les emplois
sont prévus d’être accompli en utilisant seulement la instances spot, éliminant
le besoin de consommer coûteux instances on-demand.

Après attribution instances self-owned, la question gauche est d’identifier la
capacité d’un travail pour utiliser la instances spot, c.-à-d., la charge de travail
maximum qui pourrait être traitée par instances spot, et propose une politique
optimale ordonnancement pour réaliser telles capacités des emplois, eliminating
unnecessary consumption of instances on-demand.

E.2 Notre solution
Le temps est les fentes discrètes divisées et chaque fente ont un nombre

fixe de minutes. Les travaux arrivent au fil du temps. Chaque travail j a
une heure d’arrivée aj , une taille zj , une limite du parallélisme δj et une date-
butoir relative dj ; le emploi j doit être accompli par la fente aj + dj − 1. Sur
l’arrivée d’un emploi j, l’attribution des instances self-owned est prise et finie
immédiatement; l’attribution de sur on-demand and spot instances est prise
sur son arrivée et a puis mis à jour chaque heure. Le coût d’utiliser instances
self-owned est plus petit que le coût d’utiliser la instances spot, qui est plus
petite que le coût d’utiliser instances on-demand; pour être coût-optimal, j
utilisera d’abord instances self-owned dans [aj , d′j ] où d′j = aj + dj − 1; puis, si
instances self-owned ne sont pas assez pour accomplir j, l’attribution de spot et
on-demand instances est prise.

Self-owned instances. Les prix de spot varient au fil du temps; chaque fois
que, après que l’attribution de j soit mise à jour, le moment prévu pour lequel j
pourrait utiliser des instances spot est β ·Len où β ∈ [0, 1]. Laissez rj dénotent
le nombre instances self-owned assignés à j; pour chaque emploi j, nous irons
trouver une fonction gj(x) ∈ [0, zjdj ] qui satisfait les propriétés suivantes où
zj
dj
≤ δj :

Property E.1. gj(x) est une fonction non-croissante à mesure que x augmente
dans [0, 1).
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Property E.2. gj(β) est le nombre minimal tels que quand un travail j est
assigné rj instances self-owned dans [aj , aj + dj − 1] où rj ≥ gj(β), il pourrait
être prévu cela

— emploi j pourrait être accompli par sa date-butoir sans utiliser instances
on-demand, si δj−rj instances spot sont offerts pour à chaque mise à jour
de l’attribution à j, où aucun instances on-demand n’est acquis.

La valeur de gj(β) est un indicateur de la capacité que j doit accomplir lui-
même en utilisant seulement la instances spot. Par Property E.2, si gj(β) ≤ 0,
il est prévu qu’aucun self-owned ou on-demand instances n’est nécessaire afin
d’accomplir j et de tels travaux ont la capacité forte pour s’alimenter avec la
instances spot. Autrement, gj(β) instances self-owned sont nécessaires, ou j doit
consommer une certaine quantité instances on-demand chers afin d’être complet
elle-même par la date-butoir ; pour un emploi j, une plus grande valeur de gj(β)
signifie que une capacité plus faible pour alimenter un emploi j avec la instances
spot.

En conséquence, nous pouvons employer la fonction gj(x) pour commander
de manière rentable l’attribution instances self-owned à chaque j. En particulier,
sur l’arrivée de j à t, laissez le N(t) dénotent le nombre instances self-owned
disponibles à t ; laissez Nt(d′j) être le minimum de N(t), · · · , N(d′j), c.-à-d., le
nombre maximum instances self-owned disponibles à chaque fente dans le [t, d′j ].
Laissez β0 être un paramètre et le emploi j est assigné rj instances self-owned
où

rj = min{gj(β0), Nt(d′j)}.

Quand il y a assez instances self-owned, nous pourrions placer β0 à une valeur
plus petit que β et assigner un plus grand nombre instances self-owned à chaque
travail j ; puis, instances self-owned seront entièrement utilisés et après l’attribution
à j, il pourrait prévoir que les besoins de j seulement d’utiliser la instances spot
pour s’accomplir par la date-butoir, éliminant la consommation inutile des in-
stances on-demand coûteux. Quand il n’y a pas assez instances self-owned, nous
pourrions placer β0 à une valeur pas plus petit que β et assigner rj instances
self-owned à j où rj ≤ gj(β); en conséquence, le travail ne consommera pas plus
que gj(β) instances self-owned, évitant les déchets des instances self-owned.

Spot and on-demand instances. Après l’attribution instances self-owned,
la charge de travail restante dont la taille est zj − rj · dj doit être accomplie
par d′j avec une limite du parallélisme δj − rj . Chaque fois que, après que
l’attribution de j soit mise à jour, le moment prévu pour lequel j pourrait
utiliser des instances spot est β ·Len; de plus, nous pouvons dériver la quantité
prévue de instances spot qui pourrait être utilisée par j et la quantité minimum
instances on-demand requis afin de satisfaire la contrainte de date-butoir. Basé
sur ceci, nous pourrions concevoir une politique coût-optimale ordonnancement
pour utiliser la instances spot et instances on-demand.
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F Remarques finales

F.1 Conclusion
Le problème de la ordonnancement et de la tarification est au coeur du do-

maine du cloud computing, étant donné que l’utilisation optimale des ressources
et la maximisation de l’utilité sont souvent la principale préoccupation des four-
nisseurs et des utilisateurs de cloud. Dans cette thèse, pour le modèle fondamen-
tal des tâches malléables, nous sommes les premiers à identifier l’état optimal,
dans lequel plusieurs machines sont utilisées de manière optimale par un ensem-
ble de tâches malléables avec des délais, et propose le premier algorithme de
ordonnancement optimal pour atteindre l’état optimal. Son importance peut
être perçue par le fait suivant: si l’état d’utilisation des ressources n’est pas
optimal dans un algorithme, ses performances peuvent être améliorées en util-
isant les machines de manière optimale, ce qui permet de terminer davantage
de tâches ou de réduire les temps de réalisation globaux des tâches. Les résul-
tats ci-dessus ont fourni un outil conceptuel pour proposer de nouvelles con-
ceptions d’algorithmes ou améliorer les algorithmes existants. Ces algorithmes
d’ordonnancement améliorent la qualité de service du fournisseur de cloud ou
permettent au cloud de servir plus de travaux, augmentant ainsi les revenus.

Pour les tâches malléables, l’accélération est linéaire: la charge de travail
d’une tâche reste constante lorsque le nombre de processeurs sur lesquels exé-
cuter cette tâche est petit et ne dépasse pas une limite de parallélisme. Pour
les tâches malléables, l’accélération est linéaire: la charge de travail d’une tâche
reste constante lorsque le nombre p de processeurs sur lesquels exécuter cette
tâche est petit et ne dépasse pas une limite de parallélisme.

Nous considérons également un modèle plus général qui incorpore le cas
où une tâche est affectée à un plus grand nombre de processeurs: lorsque p
dépasse la limite de parallélisme, la charge de travail d’une tâche augmente
mais son temps d’exécution diminue à mesure que p augmente; cependant, il
existe une valeur seuil que le nombre de machines affectées à une tâche ne peut
pas dépasser. Dans cette thèse, nous proposons des algorithmes de planification
pour minimiser le makespan ou pour maximiser la somme des valeurs des tâches
accomplies avant une date limite.

D’autre part, en ce qui concerne la tarification, nous avons étudié les moyens
économiques d’utiliser des instances self-owned et des instances (spot, on-demand)
de clouds publics tels qu’Amazon EC2. La charge de travail à traiter est sup-
posée être une tâche indépendante et malléable, pour laquelle il existe une con-
trainte de temps, et nous proposons des les politiques paramétriques renta-
bles pour affecter différents types d’instances à des tâches. L’efficacité de ces
politiques est également validée par des simulations. Ici, nous identifions et
abordons deux questions sous-jacentes dans le processus d’allocation d’instance:
pour être rentable, quelles propriétés doivent être conservées dans la stratégie
d’allocation d’instances self-owned et quelle stratégie peut maximiser l’utilisation
de d’instances spot. Cela nous permet également d’étendre les travaux de cette
thèse au cas suivant: il existe une préséance entre les tâches, ce qui constituera
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l’un des travaux futurs.

F.2 Perspectives d’avenir
Cette thèse se concentre sur l’amélioration de représentation pour opacifier

des systèmes et les manières rentables pour que l’utilisateur utilise les ressources
informatiques sous les options actuelles d’achat. Il reste encore beaucoup de
travaux futurs à faire.

En ce qui concerne la tarification, l’IaaS est un moyen de créer de la valeur
pour les utilisateurs en facilitant leur accès aux capacités de calcul sans la pro-
priété et la maintenance des infrastructures. La conception du service IaaS obéit
aux principes fondamentaux de la conception de service: planifier et organiser les
personnes, l’infrastructure, la communication et les composants matériels du ser-
vice, visant l’excellence selon trois dimensions: la qualité du service, l’efficacité
du système et l’interaction entre le service fournisseur et ses utilisateurs. Cela
nécessite un effort commun pour comprendre les besoins des clients et mettre
en place une gestion efficace des ressources.

Avec cette thèse, nos travaux sur la ordonnancement nous ont permis de
mieux comprendre quelles caractéristiques des tâches peuvent conduire à une
efficacité élevée des ressources, tandis que nos travaux sur l’utilisation des clouds
publics nous permettaient de mieux comprendre quels modèles de tarification
sont faciles à utiliser. Les modèles de tarification dans Amazon EC2 définissent
le processus selon lequel les utilisateurs peuvent acquérir des ressources infor-
matiques et ne sont pas très conviviaux, comme l’indiquent certains travaux
[65], [76], [86]. Actuellement, nous examinions quelles formes de service infor-
matique devraient être offertes aux utilisateurs par le cloud afin que les ser-
vices proposés puissent être plus conviviaux, tout en maximisant les revenus du
cloud; ici, les formes de services doivent être liées à un système de gestion des
ressources correspondant utilisé dans le système en nuage. Nous avons cru que,
la QoS-différenciation est une lentille importante afin d’allouer efficacement les
ressources partagées dans beaucoup de domaines là que (i) les utilisateurs ont des
préférences potentiellement diverses pour QoS et (ii) les différentes préférences
prennent des effets différentiables sur l’efficacité de ressource; pour ce faire, une
tarification appropriée est nécessaire pour inciter les utilisateurs potentiels à
exprimer leur demande/leurs emplois sous des formes permettant d’optimiser la
puissance de la différenciation QoS dans la gestion des ressources.

Par exemple, au moment de soumettre cette thèse, nous avons achevé l’analyse
des performances d’un système de tarification différencié en fonction de la QoS
dans le cloud computing via une approche analytique, le cloud offrant plusieurs
classes de QoS: les emplois de chaque classe seront complétés par un temps
d’attente fini; plus le temps d’attente est petit, plus le prix est élevé; nos sim-
ulations numériques ont prouvé que l’architecture proposée pourrait a amélioré
le revenu d’un fournisseur de nuage jusqu’à de 500% [87]. D’autres exemples de
QoS-différenciation comprenant exécuter deux types de charges de travail sur
les mêmes serveurs: un type de charges de travail a une condition définie de
retard tandis que l’autre exige seulement le service de meilleur-effort, ce qui est
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utilisé généralement dans des systèmes informatiques privés traditionnels pour
améliorer l’efficacité de ressource considérablement. Dans le contexte du cloud
computing, il convient d’intégrer l’aspect tarification des ressources partagées;
ici, le modèle de gestion des ressources est très similaire au modèle Amazon
EC2, dans lequel des instances tourner au ralenti du marché à la demande sont
vendues comme des instances spot pour améliorer l’efficacité des ressources [88].
Cette forme de différenciation de QoS est également une direction prometteuse
qui reste à adresser à l’avenir.
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