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ABSTRACT

Despite being extensively studied in the literature, the problem of gender recognition from face images
remains difficult when dealing with unconstrained images in a cross-dataset protocol. In this work, we
propose a convolutional neural network ensemble model to improve the state-of-the-art accuracy of
gender recognition from face images on one of the most challenging face image datasets today, LFW
(Labeled Faces in the Wild). We find that convolutional neural networks need significantly less training
data to obtain the state-of-the-art performance than previously proposed methods. Furthermore, our
ensemble model is deliberately designed in a way that both its memory requirements and running time
are minimized. This allows us to envision a potential usage of the constructed model in embedded
devices or in a cloud platform for an intensive use on massive image databases.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The human’s gender plays a fundamental role in social in-
teractions. Automatic gender classification has many important
applications like intelligent user interface, visual surveillance,
collecting demographic statistics for marketing, etc. Therefore,
automatic gender recognition from face images has been exten-
sively studied in computer vision. However, the difficulty of
this problem largely depends on the application context and on
the experimental protocol: a recognition model can be trained
and tested on faces from the same dataset or from different
datasets (i.e. cross-dataset experiment), images of input faces
can be taken under controlled or uncontrolled conditions and
finally faces can be aligned before gender prediction or not.
The state-of-the-art performance in the most stringent condi-
tions (i.e. cross-dataset, in uncontrolled environment and with
no image preprocessing) reaches 96.86% of accuracy and was
very recently obtained by Jia and Cristianini (2015) using a
huge private training dataset of 4,000,000 images.

Deep Convolutional Neural Networks (CNNs) (LeCun and
Bengio (1995)) have recently become the golden standard for
object recognition (Krizhevsky et al. (2012); Simonyan and
Zisserman (2014)). Today, CNNs are the primary choice for
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the large variety of computer vision tasks (Goodfellow et al.
(2013); Taigman et al. (2014); Vinyals et al. (2014)). How-
ever, there are 2 problems which make the practical usage of
CNNs difficult in some cases. The first problem is related to
the big size of the training data which is often required to train
them. Collecting large datasets of faces can be costly and can
raise a number of privacy protection issues. That is why, suc-
cessful face-related applications of CNNs are often trained on
huge private datasets containing several millions of images (like
in Taigman et al. (2014)) making the obtained results non-
reproducible for the scientific community. The second prob-
lem lies in the domain of the computational and memory re-
quirements of CNNs (He and Sun (2014); Gong et al. (2014)).
This problem often hinders importing CNNs onto embedded
platforms like smartphones and tablets or their usage in cloud
computations. For example, 16-layers CNN described in Si-
monyan and Zisserman (2014) has a weights file bigger than
500MB and requires about 3.1 · 1010 floating point operations
per image. Specifically, 90% of its weights is taken up by the
fully-connected layers and more than 90% of its running time
is taken by the convolutional layers (He and Sun (2014)). It
means that if we want to minimize both the running time and
the required memory we have to minimize both fully-connected
and convolutional layers.

In this work, we address the problem of gender recogni-
tion from face images taking into account the memory and the
running time issues and by using a relatively small training
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dataset. In particular, we design a CNN-based ensemble model
obtaining the state-of-the-art performance on gender recogni-
tion from face images in the most stringent conditions. We use
a publicly available dataset of face images to train our CNN-
model obtaining the highest recognition accuracy with about
10 times less training data than the state-of-the-art authors ((Jia
and Cristianini, 2015)). Our model is also minimized both in
terms of the running time and the memory requirements mak-
ing its usage possible even on devices with a limited memory
and without dedicated graphical processors for computations.

The rest of the paper is organized as follows: the overview of
the related literature is done in Section 2; the datasets used for
training and test are presented in Section 3; the Starting CNN
and the methodology to progressively minimize it are proposed
in Section 4; the procedure of minimization of the Starting CNN
is described in Section 5; the classification results are analysed
in Section 6; and the conclusions are summarized in Section 7.

2. Related work

In this section, we make on overview of existing works on
gender recognition from face images.

Early works on gender recognition from face images focused
on the case of frontal faces in a controlled laboratory environ-
ment. In the beginning of the 90’s, many authors tried neu-
ral networks to deal with this problem. For example, Golomb
et al. (1990) trained a 2-layers fully-connected neural network
and achieved 91.90% accuracy on a tiny test set of 90 images.
The benchmark dataset of frontal faces in a controlled envi-
ronment is FERET (Phillips et al. (1998)). With the emer-
gence of SVM, Moghaddam and Yang (2002) used this clas-
sifier with an RBF kernel on raw pixels and obtained 96.62%
accuracy on FERET (though having the same persons presented
both in training and test sets). Rather than using SVM, Baluja
and Rowley (2007) used AdaBoost on raw pixels and obtained
96.40% on FERET without mixing people in training and test
sets. Li et al. (2012) combined facial information with cloth-
ing and hair components obtaining 95.10% accuracy on the
FERET dataset. Ullah et al. (2012) used the Webers Local tex-
ture Descriptor to reach almost perfect performance of 99.08%
on FERET. This result suggests that the FERET benchmark is
saturated and not enough challenging for modern methods.

As a result, the majority of contemporary works deals with
the problem of gender recognition from face images in an un-
controlled environment. The Labeled Faces in the Wild (LFW)
dataset (Huang et al. (2007)) is the most frequently used one in
this case. Different works on gender recognition in an uncon-
trolled environment are compared in Table 1. Shan (2012) em-
ployed Local Binary Patterns (LBP) features with an AdaBoost
classifier to obtain 94.81% on LFW. Shih (2013) used the Ac-
tive Appearance Model (AAM) in order to align face images
and to model them using small patches around the detected
landmarks. The Bayesian framework was employed as a classi-
fier. The resulting model obtained 86.50% classification accu-
racy on the combination of the color FERET and LFW datasets.
Tapia and Perez (2013) fused LBP features with different radii
and spatial scales and used an SVM classifier above. The au-
thors performed 2 experiments: in the first one, they trained and

tested their models on different subsets of LFW, while in the
second one, the training was done on a separate dataset. Results
of these 2 experiments (95.60% and 98.01%) differ quite signif-
icantly from each other proving that the cross-database protocol
is more challenging. Bekios-Calfa et al. (2014) showed that it
may be advantageous to predict the person’s gender simulta-
neously with the person’s age and pose in the photo. They got
79.11% gender recognition accuracy training their model on the
GROUPS dataset and testing on the LFW dataset. The most re-
cent attempt to employ CNNs for gender recognition from face
images was done by Levi and Hassner (2015). Authors trained
a CNN on the newly created Adience dataset. They obtained a
relatively modest accuaracy of 86.80% mainly because of the
low quality of images in Adience. Finally, the most recent re-
sult on the LFW dataset under the cross-database protocol was
obtained by Jia and Cristianini (2015). The authors used a huge
private dataset of 4,000,000 images to train a C-Pegasos clas-
sifier (a variation of SVM) using LBP fetaures. They obtained
a state-of-the-art accuracy of 96.86% on LFW referring their
success mainly to the size of the training dataset.

In this work, we use the result of Jia and Cristianini as a
baseline for comparison with our models.

Table 1. Gender recognition results in an uncontrolled environment.
Authors Test

dataset
Method Cross-

Dataset
Accuracy

Shan (2012) LFW LPB +

AdaBoost
No 94.81%

Shih (2013) color
FERET
+ LFW

AAM +

Bayesian
No 86.50%

Tapia and
Perez (2013)

LFW
multiscale
LBP + SVM

No 98.01%
Yes 95.60%

Bekios-Calfa
et al. (2014)

LFW appearance-
based +

LDA

Yes 79.11%

Levi and
Hassner
(2015)

Adience CNN No 86.80%

Jia and
Cristianini
(2015)

LFW multiscale
LBP +

C-Pegasos

Yes 96.86%

It should be mentioned that face images are by far not the
only possible modality to predict a person’s gender. There
are works on gender predictions from gait (Lu et al. (2014);
Flora et al. (2015)), speech (Metze et al. (2007)), images of
silhouettes (Antipov et al. (2015)) and even web forum mes-
sages (Zhang et al. (2011)). However, in this work, we focus
only on the gender prediction from face images and therefore
do not consider other modalities.

3. Datasets

In this section, we present face datasets which have been used
in our experiments.

We have used 2 publicly available face datasets: CASIA
WebFace and Labeled Faces in the Wild (LFW). The first one is



3

used for training and validation whereas the second one is used
only for testing. While collecting the CASIA WebFace dataset,
its authors made sure that there are no subject intersections be-
tween CASIA WebFace and LFW (Yi et al. (2014)).

3.1. CASIA WebFace dataset

CASIA WebFace dataset was collected for the face recogni-
tion purposes by Yi et al. (2014). The dataset contains photos
of actors and actresses born between 1940 and 2014 from the
IMDb website.1 Images of the CASIA WebFace dataset include
random variations of poses, illuminations, facial expressions
and image resolutions. In total, there are 494,414 face images
of 10,575 subjects. To the best of our knowledge, CASIA Web-
Face is the biggest publicly available face dataset today, and
that is why we have used it to train CNNs in this work.

Authors of CASIA WebFace provide names of 10,575 sub-
jects but not their genders. We have annotated genders using the
metadata provided by IMDb and also by manual annotation.

3.2. LFW dataset

Being collected by Huang et al. (2007), the LFW dataset has
become a benchmark for face gender recognition in an uncon-
strained environment. It consists of 13,233 face images of 5,749
celebrities. Contrary to CASIA WebFace, LFW does not only
contain photos of actors and actresses but it also contains pho-
tos of politicians, sportsmen and sportswomen.2

3.3. Data preprocessing

Images of both CASIA WebFace and LFW are face-centred
and have an initial resolution of 250x250 pixels. The two
datasets have been processed in the same way: the faces are
firstly extracted with the Viola-Jones face detector (Viola and
Jones (2001)), and then they are rescaled to a certain square
size (the particular size depends on the input dimensions of a
CNN). This process is illustrated in Figure 1. In case if sev-
eral faces are found in an image, only the biggest one is taken;
if no faces are found in an image, the image is ignored. Af-
ter face extraction, we have obtained 452,042 face images from
the CASIA WebFace dataset. These images have been split into
training and validation sets in the proportion of 95% and 5% re-
spectively. We have ensured that there are no subject intersec-
tions between training and validation sets. In order to be able
to fairly compare our results with the current state-of-the-art in
gender recognition on LFW, we have used exactly the same test
set of 10,147 face images as the authors of the current best re-
sult on LFW (Jia and Cristianini (2015)). Following their work,
we have not performed any sort of alignment to the test images
prior to gender classification. More details on the data split into
training, validation and test sets are given in Table 2.

1http://www.imdb.com/ Intenet Movie Database (IMDb) is an online
database of information related to films, television programs and video games.

2Gender annotations for the LFW dataset are available at http://face.
cs.kit.edu/431.php

Fig. 1. Example of an extracted face which is used as an input to a CNN.

Table 2. Data split into training, validation and test sets.
Dataset Men faces Women faces

Training CASIA WebFace 229,330 197,129
Validation CASIA WebFace 12,440 13,143

Test LFW 7,804 2,343

4. Starting CNN and the way to minimize it

In order to address the problem of gender recognition from
face images, we design a powerful and complex CNN perform-
ing as good as the current state-of-the-art by Jia and Cristianini
(2015) (96.86%) on the LFW dataset. This CNN is referred as
“Starting CNN” below.

Starting CNN is a simplification of the CNN proposed by Si-
monyan and Zisserman (2014) for the Imagenet classifica-
tion (Russakovsky et al. (2014)) (in particular, we simplify the
CNN B from their article). Following the work of Simonyan
and Zisserman, in the Starting CNN, filters of all convolutional
layers have a spatial dimension of 3x3 pixels and in all layers,
rectified linear units (ReLU) are used as activation functions.

However, the Starting CNN has several differences from its
initial prototype by Simonyan and Zisserman (2014). In the
Starting CNN, the input image resolution is 128x128 pixels in-
stead of 224x224 pixels. We use a lower resolution because
initial resolutions of face images in CASIA WebFace and LFW
vary approximately from 60x60 to 120x120 pixels, and it does
not make sense to significantly upsample input faces. Taking
into account the smaller inputs, Starting CNN contains 8 in-
stead of 10 convolutional layers. Finally, due to the fact that
our problem is less complex than Imagenet classification (2 tar-
get classes instead of 1000 classes), we have reduced the num-
ber of filters in the convolutional layers and we have used only
one fully-connected layer. The architecture of Starting CNN is
described in details in the first column of Table 3.

Having constructed the Starting CNN, we have focused on
its optimization: the objective is to drastically reduce the run-
ning time and the memory requirements while preserving the
classification performance.

We propose to perform this optimization by:

1. Minimizing the input image size and the associated num-
ber of convolutional layers. We associate the input image
size with the number of convolutional layers in order to
keep the number of connections between the last convolu-
tional layer and the fully connected layer fixed. It allows
us to optimize the running time without varying the total
number of connections too much.

http://www.imdb.com/
http://face.cs.kit.edu/431.php
http://face.cs.kit.edu/431.php
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2. Minimizing the number of filters in convolutional layers.
3. Minimizing the size of the fully-connected layer.

In the steps 1 and 2, we minimize the size and the number
of convolutional layers while in the last step, we minimize the
fully-connected layer. Thus, in the steps 1 and 2, we minimize
the running time of the CNN while in the last step, we minimize
its memory requirements.

The optimization proceeds as follows: in every step, we pro-
gressively reduce each parameter by a factor of 2 until the CNN
performance on the validation set starts to deteriorate signifi-
cantly. Every step of the proposed methodology is described in
details in the next section.

5. Minimization of the Starting CNN

We design an optimal CNN for gender recognition from faces
by progressively minimizing the Starting CNN described in
Section 4. Every optimization step, a certain CNN architecture
is selected to be further optimized in the following step.

5.1. Progressive optimization

5.1.1. Step 1. Input size and number of convolutional layers
In the first step, we minimize the size of input images and

the number of convolutional layers. We progressively reduce
the size of input images from 128x128 pixels in the Starting
CNN by a factor of 2. Thus, we obtain 3 CNNs: A, B and C.
They are detailed in Table 3. The size of the outputs of the last
convolutional layer is kept constant (64 feature maps of 8x8
pixels) among all networks (the Starting CNN, A, B and C) by
varying the number of the convolutional and the pooling layers.

The performances of different CNNs are assessed based on
the classification accuracies that are observed on the validation
set. The results are presented in Figure 2. In this figure, the
bars are ordered in the same way as columns in Table 3. For
each considered CNN architecture, 3 CNN instances have been
trained from scratch (each time an initialization of weights is
random) and in Figure 2, the bars represent the mean accura-
cies. Corresponding standard deviations are given by error seg-
ments. We have fixed a selection threshold accuracy of 97.5%
on the validation set (shown by the dash-dotted horizontal line
in Figure 2), which corresponds to the accuracy of the Start-
ing CNN on the validation set. This threshold is used to se-
lect CNN architectures in all 3 steps of the optimization pro-
cedure.4 In order to illustrate how the validation accuracy on
the CASIA WebFace dataset is related to the test accuracy on
the LFW dataset, we also present the test accuracies of all com-
pared CNNs as well as the state-of-the-art baseline by Jia and
Cristianini (2015) in Figure 2. However, we highlight that the
results on the test set are not used in the model selection.

3“Conv: N@MxM” denotes a convolutional layer with N filters of size
MxM. “MaxPool: MxM” means that input maps are downsampled by a fac-
tor of M using Max-Pooling. “FC: N” denotes a fully-connected layer with N
neurons.

4We consider that a certain CNN architecture satisfies the selection thresh-
old if the threshold (i.e. 97.5%) is inside the [−σ,σ] segment for this
architecture (where σ is the standard deviation).

There is no significant difference between the accuracies of
the Starting CNN, the CNN A and the CNN B. All of them show
the validation results which are very close to the threshold ac-
curacy (with respect to standard deviations). The accuracy of
the CNN C is significantly lower than accuracies of the first 3
networks: about 1.5% decrease of accuracy is observed on the
validation set. Therefore, as the objective is to reduce the com-
plexity of the Starting CNN while preserving its performance,
the CNN B is selected after this first optimization step.

Fig. 2. Step 1: performances of the Starting CNN and the CNNs A and B.

5.1.2. Step 2. Number of convolutional filters
In this step, the goal is to minimize the width of convolutional

layers (here, the width refers to a number of convolutional fil-
ters at each convolutional layer).

As detailed in Table 3, the number of convolutional filters
of the CNN D is divided by 2 comparing to the CNN B (which
has been selected during the first optimization step). The results
obtained using CNNs B and D are summarized in Figure 3.

The CNN D is clearly below the selection threshold on the
validation set (with respect to standard deviations). Therefore,
the CNN B is selected again after the second optimization step.

5.1.3. Step 3. Size of the fully-connected layer
This step focuses on the minimization of the fully-connected

layer size. Starting from 512 neurons in the CNN B, we have
reduced the number of neurons by a factor of 2 until only 2 neu-
rons are left in the CNN L (see Table 3). We also evaluate the
performance of the CNN M where there is no fully-connected
layer at all (in this case, the outputs of the last convolutional
layer are directly connected with 2 neurones of the Softmax
layer). The obtained results are presented in Figure 4.

This time, the difference between CNNs is less significant
than in the 2 first optimization steps. Apparently, the size of the
fully-connected layer is less influential on the final accuracy
than the number and the width of the convolutional layers.

However, we can observe that CNNs B, E — I reach the se-
lection threshold of 97.5% classification accuracy with respect
to standard deviations, while the performances of the CNNs
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Table 3. Optimization of the Starting CNN.3

Starting CNN Optimization: candidates at step 1 Optimization:
candidate at
step 2

Optimization: candidate at step 3

A B C D E F G H I J K L M
Input:
128x128

Input:
64x64

Input:
32x32

Input:
16x16

Input: 32x32 Input: 32x32

Conv:
32@3x3

Conv:
32@3x3

Conv:
32@3x3

Conv:
64@3x3

Conv:
16@3x3

Conv: 32@3x3

Conv:
32@3x3

Conv:
32@3x3

Conv:
32@3x3

Conv:
64@3x3

Conv:
16@3x3

Conv: 32@3x3

MaxPool:
2x2

MaxPool:
2x2

MaxPool:
2x2

MaxPool:
2x2

MaxPool:
2x2

MaxPool: 2x2

Conv:
32@3x3

Conv:
32@3x3

Conv:
64@3x3

Conv:
32@3x3

Conv: 64@3x3

Conv:
32@3x3

Conv:
32@3x3

Conv:
64@3x3

Conv:
32@3x3

Conv: 64@3x3

MaxPool:
2x2

MaxPool:
2x2

MaxPool:
2x2

MaxPool:
2x2

MaxPool: 2x2

Conv:
64@3x3

Conv:
64@3x3

Conv:
64@3x3

Conv:
64@3x3

MaxPool:
2x2

MaxPool:
2x2

Conv:
64@3x3
Conv:
64@3x3
MaxPool:
2x2

FC: 512 FC:
256

FC:
128

FC:
64

FC:
32

FC:
16

FC:
8

FC:
4

FC:
2

Softmax: 2

Fig. 3. Step 2: performances of the CNN B and the CNN D.

J — M are below the selection threshold on the validation set.
Hence, the CNN I is selected after the last optimization step.

5.2. The optimization gain

In order to better understand the computational and memory
gains of the optimization, we have compared the Starting CNN,
the CNN B and the CNN I. CNNs B and I have been selected
in different steps of the optimization procedure. The compari-
son is performed both in terms of the required memory and the

Fig. 4. Step 3: performances of the CNN B and the CNNs E — M.

running time. Results are presented in Table 4.
The number of weights and the size of the weights file are

clearly proportional. The exact size of the weights file depends
on the particular implementation of the weights storage, there-
fore corresponding values in Table 4 are indicative.

5The timings have been calculated based on 5 trials. Used CPU: Intel E5-
1620v2, 3.70GHz, 8-cores. Used GPU: Tesla K20c.
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Table 4. Computational and memory gains from the optimization.5

CNN Number of
weights

Size
of the
weights
file
(KB)

Time to
classify 100
images (s)

GPU CPU
Starting
CNN

2,256,610 8,851 0.2395±
0.0003

27.9624±
0.0278

CNN B 2,164,258 8,477 0.0184±
0.0001

2.5013±
0.0065

CNN I 131,154 534 0.0180±
0.0001

2.4657±
0.0091

Ensemble
of 3 CNNs I

131, 154∗3 =

393, 462
534∗3 =

1, 602
0.0501±
0.0005

7.3951±
0.0312

The CNN B has fewer convolutional layers than the Starting
CNN. The fully-connected layer is exactly the same in both net-
works. Hence, the two CNNs have similar numbers of weights
but the CNN B is about 11 to 13 times faster (depending on
CPU/GPU processing). The absolute running time values show
that the time gain becomes really essential when the processing
is done by a CPU, which is often the case in big computational
clusters or when images are processed separately rather than in
batches (in the latter case, an impact from GPUs is negligible).

CNNs B and I share the same number of convolutional lay-
ers. However, the fully-connected layer of the CNN I is 32
times smaller than the fully-connected layer of the CNN B. As
a result, the difference in running times between the CNNs B
and I is negligible, but the weights file of the network I is about
16 times smaller than the weights file of the network B.

Thus, by performing the progressive minimization of the
Starting CNN, we have obtained an equally accurate CNN I
which is about 11 − 13 times faster and about 16 times more
memory efficient than the initial network.

As a result, the proposed 3-step methodology has proved to
be very efficient in minimizing the Starting CNN for the gender
prediction from face images. However, the problem of choos-
ing an optimal CNN architecture for a specific problem remains
an open subject. In this paper, we do not pretend to answer it
in a general case, as the main goal of our study is designing
an optimized and efficient CNN model for gender recognition
from face images. Nevertheless, the proposed empirical CNN
optimization methodology can be easily adapted to any prob-
lem of interest. For that, we suggest to start from an established
and well-known CNN architecture (as it is done with the Start-
ing CNN in this work) and progressively minimize it using the
proposed 3-step methodology. Moreover, our approach can be
combined with other optimization strategies (e.g. He and Sun
(2014); Gong et al. (2014)) to minimize running time and re-
quired memory of a CNN model.

5.3. Training details

The training of all CNNs in this work has been carried out
by optimizing the cross-entropy objective function using the
mini-batch Nesterov’s accelerated gradient descent (Nesterov
(1983)). Backpropagation of the gradient has been performed

with an initial learning rate of 0.01 and the momentum of 0.9.
Contrary to some recent works where CNNs are used just as
feature extractors and followed by other classification meth-
ods (like SVM (Razavian et al. (2014)) or ELM (Zeng et al.
(2015))), in our experiments, CNNs have been used both as
feature extractors and as classifiers. Input RGB-images have
been normalized before CNN processing. Every epoch, faces
are randomly substituted by their mirrored copy with the prob-
ability 0.5 (i.e. either face or its mirrored copy participates in
every epoch). The size of a mini-batch has been set to 128. In
order to prevent the CNNs from overfitting, we have employed
the “dropout” regularization (Srivastava et al. (2014)) on the ac-
tivations of convolutional layers and the fully-connected layer.
We have made the ratio of the “dropout” to be dependent on
the particular size of the convolutional or the fully-connected
layer varying it from 0 (i.e. no “dropout”) to 0.5. The training
has been stopped once the validation accuracy stops improv-
ing. It corresponds to the moment when the training accuracy
is between 98.0 and 98.1% (depending on the particular CNN
architecture). Training has taken about 30 epochs with slight
variations depending on the particular CNN, which corresponds
to about 27 hours of training for the Starting CNN and 2.5 hours
of training for the CNN I on the contemporary GPU. All exper-
iments in this work have been performed using Theano deep
learning library (Bastien et al. (2012)).

6. Analysis of classification results

In this section, we compare classification results of the se-
lected CNN I performing alone and of several instances of the
CNN I combined in a single model (which is referred as an “en-
semble” model below). We also measure the impact of the size
of the training data on the performance of a single CNN I.

6.1. Ensemble of models

In order to evaluate a gain from combining several CNNs I
together, we have trained 3 instances of the CNN I (each in-
stance is trained from scratch with a random initialization of
weights). These instances have been combined in a single en-
semble model by averaging the outputs of the corresponding
softmax layers. Performances of a single CNN I and the en-
semble model are compared in Table 5. For the single CNN
I, we provide the resulting mean accuracy alongside with the
corresponding standard deviation.

Table 5. Overall performance.
Classification
accuracy (LFW)

Jia and Cristianini (2015) 96.86%
CNN I 96.94 ± 0.18%
Ensemble of 3 CNNs I 97.31%

The ensemble of 3 CNNs I performs better than the single
CNN I. The gain is about 0.4% comparing to the mean accuracy
of the single CNN I. The ensemble of CNNs I improves the
current state-of-the-art performance by about 0.5%.
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In the last row of Table 4, we provide the memory require-
ments and the running time for the ensemble of 3 CNNs I.
Though the running time has been calculated by executing 3
CNNs one after another (executing them in parallel should be
faster), the ensemble model is about 4 times faster than the
Starting CNN. The total size of 3 weights files used in the en-
semble CNN remains 5 times smaller than the weights file of
the Starting CNN.

We have not observed better results by combining more than
3 CNNs in one ensemble. Therefore, we have chosen the en-
semble of 3 CNNs I as the final model in this work.

6.2. Size of the training data

In order to assess the impact of the size of the training set on
the resulting performance, we have trained several instances of
the CNN I varying the number of images in the training set. The
corresponding subsets of images have been selected randomly
from the initial training set. For each considered training set
size, we have trained 3 instances of the CNN I. Results of the
comparison are summarized in Figure 5.

Fig. 5. Impact of the training set size on the performance of the CNN I.

Surprisingly, the accuracy of the CNN I trained only on a half
of available images does not distinguish significantly from the
accuracy of the CNN I trained on all data (with respect to stan-
dard deviations). In other words, the CNN I (performing alone)
obtains the same performance as the baseline model by Jia and
Cristianini (2015) with the training set of only 225, 000 images,
which is almost 20 times smaller than the training set used
by Jia and Cristianini (2015).

Further reducing of the training set down to 25% and 10%
of its initial size leads to a loss of performance. However, this
loss is relatively small. Thus, the CNN I which is trained on
only 10% of the initial data (i.e. on 45, 000 images) performs
reasonably well: 95.98% of correct gender predictions on LFW
(it is better than, for example, the model by Shan (2012) which
was the state-of-the-art on LFW in 2012).

The obtained results do not however show that the gender
recognition performance of the CNN I is saturated. To illustrate

this, we have trained the CNN I using the training images cor-
responding to only one half of the available persons in CASIA
WebFace (contrary to the experiment in Figure 5, in this case
we have reduced the number of different persons and not just
the number of images). The resulting classification accuracy of
the CNN I trained on one half of the persons has been about
0.3% lower than that of the CNN I trained on one half of the
images. This result suggests that the CASIA WebFace dataset
is a little bit redundant in the sense that the number of images is
excessive with respect to the number of subjects. Therefore, the
classification accuracy of the CNN I could have been improved
even further with more diverse training dataset.

7. Conclusion

In this work, we have designed a CNN-based ensemble
model for gender recognition from face images. The follow-
ing results have been achieved:

1. The record performance of 97.31% on the LFW dataset
has been set using the ensemble of 3 CNNs.

2. The record-breaking ensemble model has been trained
with almost 10 times less images than the previous state-
of-the-art model (Jia and Cristianini (2015)). Moreover, a
single CNN I performs as good as the the model by Jia
and Cristianini (2015) with almost 20 times less training
images. This result is of a particular importance, given the
cost and complexity of collecting large image datasets.

3. The CNNs that are used in the final ensemble model have
been optimized in terms of their memory requirements and
running times. As a result, the ensemble model requires
about 1.5MB of the memory storage and is able to process
10 face images in less than 1 second on a contemporary
CPU. It allows our ensemble model to be used in the con-
text of limited computational and memory resources or in
the context of processing of massive image datasets.

4. The proposed CNN optimization methodology is simple
but efficient. It can be employed to minimize CNNs in
other problems and combined with other CNN optimiza-
tion approaches. This is a part of our future work.

The designed gender recognition ensemble model can be
freely tested online via a simple demo website.6 The results
of this work are fully reproducible, since the final model and all
dataset annotations have been made public.7
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