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Abstract—One major challenge of relying on Dedicated Short
Range Communication (DSRC)-equipped vehicles for high preci-
sion cooperative localization is related to the high computational
complexity and heavy communication loads of exhaustively con-
sidering links to all neighbors regardless of their quality. This
paper addresses the problem of selecting the best subset of links
to spatial neighbors, considering varying degradation first from
GPS conditions and second from GPS positioning capabilities.
We formulate a computationally efficient particle filter-based
link selection algorithms based on Cramér-Rao Lower Bound
(CRLB) indicators accounting for neighbors uncertainties. We
show that selective fusion significantly reduces the computational
complexity and required network traffic with a modest increase
in the position error in most cases and an acceptable degradation
in the worst-case long-term GPS-denied condition or under severe
neighbor positions uncertainties.

I. INTRODUCTION

Geo-localization is a critical requirement of Cooperative In-
telligent Transport System (C-ITS) safety and traffic efficiency
applications as well as many other applications. The currently
proposed C-ITS Basic Set of Applications (BSA) [1] relies on
the availability of Global Navigation Satellite System (GNSS),
which can provide a positioning precision on the order of 3–
10 meters in favorable conditions [2]. This current precision
level is obviously not sufficient for Road Hazard Warning
(RHW) and most advanced C-ITS applications, such as safety
of vulnerable road users or autonomous driving/platooning.
The latter would indeed require a sub-meter precision (less
than 0.5 m), which is not yet available by any mass market
GNSS technology.

In order to improve the localization functionality, connected
landmarks can be used by vehicles for relative positioning
and multi-lateration [1]. But this approach requires a sufficient
number of landmarks forming a specific constellation around
a vehicle, which is rarely observable in highly mobile urban
conditions.Dedicated Short Range Communication (DSRC)
(a.k.a. IEEE 802.11p or ITS-G5) has been rapidly developing
to enable wireless communications between vehicles (V2V).
Each vehicle periodically broadcasts its GPS-aided estimated
position encapsulated in messages called Cooperative Aware-
ness Message (CAMs) or Basic Safety Message (BSM) in EU
and US terminology respectively, and which allow neighboring

vehicles to get a cooperative situation awareness of the nearby
traffic. These cooperative neighbors, which can be considered
as virtual landmarks, may thus contribute to enhance position-
ing.

In the literature, such cooperative positioning (CP) solutions
have already been described to fuse on-board GPS estimates
with V2V range measurements relying on the Received Sig-
nal Strength Indicator (RSSI) of broadcast CAMs [1]–[3].
However, most of these contributions still assume exhaustive
cooperation (i.e., integrating information from all available
neighbors) and too optimistic models for input measurements
(i.e., in terms of both GPS quality and V2V radio channel
conditions). Actually CP performance is strongly affected by
the number of neighbors and their geometric configuration
while processing and fusing all incoming information. On
the other hand integrating fusion-oriented data from numer-
ous neighbors generates high computational complexity and
significant overhead (and possibly, extra channel load) at the
network level in comparison with more conventional CAM
usage. Thus relevant operating trade-offs (e.g., in terms of
required number of packets, CAM payload occupancy, re-
fresh rates) must still be found for a better exploitation of
the potential of cooperative vehicles, while complying with
practical protocol constraints. Regarding the link selection
itself, previous works relying on the approximated Cramér-Rao
Lower Bound (CRLB) of cooperative position estimates as
criterion (e.g., [4], [5] or more recently, [6] in the V2V context)
cannot properly account for mobile neighbors uncertainty,
whereas more recent Bayesian formulations of such bounds
have not yet been applied into the V2V context.

Thus we herein propose new link selection algorithms
that aim at more efficient CP procedures under various GPS
conditions, by enabling lower footprint with respect to com-
munication means and lower computational complexity. The
main related contributions can be summarized as follows: (i)
we describe a generic fusion-based CP framework relying on
a Particle Filter (PF) that copes with ad hoc communication
and positioning characteristics such as distributed and asyn-
chronous position estimates, random CAM transmissions. . . ;
(ii) we propose a couple of computationally efficient link se-
lection criteria based on non-Bayesian and Bayesian versions



of the Cramér-Rao Lower Bound (CRLB) characterizing coop-
erative location estimates (the Bayesian formulation capturing
the “ego” and anchors’ uncertainties), in conjunction with a
fast sub-optimal closest search (instead of a computationally
greedy exhaustive search); (iii) we show that selective CP ex-
periences reduced complexity in terms of both required traffic
and computations, while suffering only little precision degra-
dation in most cases including normal operating conditions,
harsh and even GPS-denied environments in the short term and
even reasonable degradation in very poor or lost GPS signal
in the long term, in comparison with exhaustive cooperation
schemes; (iv) we point out practical conditions in terms of
GPS quality dispersion when the Bayesian CRLB selection
criterion would outperform the non-Bayesian criterion, thus
opening the floor to context-aware selection and fusion.

The paper is organized as follows. In Section II, we formu-
late the distributed CP problem in GPS-aided IEEE 802.11p-
based VANETs. We then describe a general framework of
models and particle filtering strategies dedicated to fusion-
based CP in Section III. Next, Section IV addresses the
computationally efficient link selection algorithms employing
non-Bayesian CRLB and Bayesian CRLB criteria. Simulation
results and scenario-based analyses are presented for compar-
ison with more conventional approaches in Section V. Finally,
Section VI concludes the paper.

II. GENERAL PROBLEM FORMULATION

We consider here a set of cooperative GPS-equipped vehi-
cles exchanging CAM/BSM over DSRC technology. The goal
of an “ego” vehicle is to infer its position (as part of its so-
called ”state” in the following) based on its own estimated
GPS position, on V2V received signal strengths with respect
to 1-hop neighbors (measured out of incoming CAMs), and

Fig. 1. “Ego” car receiving asynchronous CAMs from 1-Hop “virtual”
anchors to perform distributed CP. The dispersion of CP location estimates (i.e.
through GPS+DSRC) is expected to be lower than that of non-CP estimates
(i.e., standalone GPS).

on imperfect state information from these neighbors, viewed
as “virtual” anchors (i.e., estimated locations and their related
uncertainties, encapsulated in the CAMs). Fig. 1 illustrates
this concept of CP. We do not consider V2I communications
here to assist positioning, even though Road Side Units (RSU)
could be helpful (e.g., WiFi access points (APs) in most urban
environments), as our aim is to to remain independent from
any additional infrastructure (i.e., other than the V2V commu-
nications themselves), not only significantly reducing deploy-
ment costs but also operating seamlessly in infrastructure-less
roads. However, CP in pure VANETs introduces additional
challenges that must be overcome.

First of all, distributed data processing (local position es-
timation, CAM trigger. . . ) induces event-driven CAM trans-
missions (and accordingly, RSSI measurements too). Hence
on the receiver side, the aggregation of asynchronous data
(see Fig. 1) makes the whole information misaligned or out-
dated and thus useless to CP, unless a careful prediction
scheme is employed. Secondly, performing the exhaustive
fusion of all the incoming packets from available neighbors
is computationally demanding in the location estimation stage
(possibly with a varying amount of observations depending
on instantaneous connectivity) and maybe not even so infor-
mative. Thus selecting the best cooperative links with respect
to available neighbors is of primary importance. In addition
to decreasing fusion complexity, it would enable to reduce the
number of required packets to achieve a given target precision.
This would thus contribute to save resources at the network
level, either in terms of channel load (e.g., by reducing the
refreshment rate of the CP-oriented CAMs) or overhead (under
fixed refreshment rates, saving the CAM payloads for other
services). However the selection procedure itself shall result
on affordable complexity and latency to be useful to future C-
ITS applications . In the following, we make tangible proposals
to address these different challenges.

III. SYSTEM MODELS AND FILTERING STRATEGIES

The core of any tracking problem is the mobility model to
which many different model-based filtering techniques can be
applied. Generally, models that are linear in the state dynamics
and non-linear in the observations are employed [7]

θi,k+1 = Fiθi,k + fi,k + Giwi,k, (1a)
zi,k = h(θi,k) + ni,k, (1b)

where θi,k =
(
x†i,k,v

†
i,k

)†
is the true state vector of vehicle i

including, for a 2-D system, its position xi,k = (xi,k, yi,k)
†

and its velocity vi,k =
(
vxi,k, v

y
i,k

)†
at time ti,k according to

its local estimation timeline1, Fi the state transition matrix, fi
the control inputs (e.g., throttle settings, braking forces), Gi

the matrix that applies the effects of each noise component
in the process noise vector wi,k on the state vector, h(θi,k)
the transformation matrix that maps the state vector parameters

1Due to asynchronously sampled time instants, ti,k 6= tj,k if i 6= j.



Fig. 2. Example of the space-time schematic managed by the “ego” i whose
neighbors are vehicle j and l. Due to asynchronous estimates, the “ego” i
needs to perform prediction of received information at its time of interest ti,k .

θi,k into the measurement/observation zi,k, which is corrupted
by a measurement noise term ni,k. Additionally, throughout
this paper, we will use the following notations (some of them
being also illustrated in Fig. 2)
• θj,ki is the true state vector of vehicle j at ti,k according

to vehicle i’s estimation timeline (and similarly for x̂j,ki
and v̂j,ki ). For j ≡ i, it means θi,k (See Fig. 2);

• θj,k∗ is the true state vector of neighbor j at its latest
estimation instant before the “ego” estimation instant k
(i.e., ti,k), thus it can vary from car to car as shown in
Fig. 2. For i ≡ j, it means θi,k−1;

• θ̂j,ki is the estimate of θj,ki (at time ti,k) pro-
duced/predicted by the “ego” i depicted in Fig. 2 (and
similarly for x̂j,ki and v̂j,ki ). For i ≡ j, it means θ̂i,k;

• Ni,k:k−1 indicates the set of i’s neighbors in its commu-
nication range rmax in the time interval

[
ti,k−1, ti,k

)
;

• Si,k ⊂ Ni,k:k−1 is the set of car i’s virtual an-
chors/reference nodes whose CAMs are selected to feed
car i’s fusion engine (thanks to link selection. . . );

• θref,i,k denotes the aggregate state vector of i’s |Si,k| ref-
erence neighbors at fusion time ti,k (thanks to prediction);

• zGPS
i,k =

(
zxi,k, z

y
i,k

)†
denotes the 2-D GPS position of

vehicle i at time ti,k;
• zj→i,k is the approximated/extrapolated RSSI values2 at

exact filtering/fusing time ti,k under some circumstances;
• Zki denotes the set of all vehicle i’s observations up to

(and including) time ti,k;
• Zk

∗

j is the set of neighbor j’s observations up to (and
including) the its latest instant (falling in the window k or
k− 1) before the “ego” estimation instant k (See Fig. 2).

A. The Gauss-Markov Mobility Model

In the vehicular context, we consider a stochastic mobility
model, also called modified Gauss-Markov prediction model,
since it describes well the correlated velocity of the vehicle
as a time-correlated process and makes good prediction of the
position and velocity of the vehicle [6]. In discrete time, the

2In practice, due to random/event-driven CAMs, the time at which the RSSI
value is read does not necessarily coincide with the filter/fusion time (Fig. 2).

predicted velocity in 2-D is computed based on its previous
value and a Gaussian i.i.d process, as follows

v
(·)
i,k+1 = αv

(·)
i,k + (1− α)µ

(·)
i + ∆T

√
1− α2w

(·)
i,k, (2)

where (·) can be either x- or y-coordinate, α is the memory
level, ∆T the time step, µ(·)

i the asymptotic 1-D mean velocity,
and a

(·)
i,k =

√
1− α2w

(·)
i,k the Gaussian i.i.d. 1-D acceleration

noise. It is important to remember that vehicles usually move
along the lanes on the roads. Intuitively, the uncertainty along
the road direction is much higher than that along the dimension
orthogonal to the road. If (σai )

2 and (σoi )
2 represent the

variances of the uncertainties along and perpendicular to the
road respectively, therefore (σai )

2 � (σoi )
2. As a road runs in

a direction with an angle Ω counterclockwise from x-axis, a
transformation must be applied to account for the bias in the
direction, providing information on road geometry within the
prediction model (1a) to reduce uncertainty and achieve better
predictions. Thus, the process covariance matrix is no longer
diagonal, as follows

E
{

wi,kw
†
i,k

}
= E

{(
wxi,kw

x†
i,k wxi,kw

y†
i,k

wyi,kw
x†
i,k wyi,kw

y†
i,k

)}

=

(
cos Ω − sin Ω
sin Ω cos Ω

)(
(σai )

2
0

0 (σoi )
2

)(
cos Ω − sin Ω
sin Ω cos Ω

)†
,

(3)

where wi,k =
(
wxi,k, w

y
i,k

)†
denotes 2-D process noise vector.

Recall that the state of vehicle i at its local discrete time k
is represented by the vector θi,k = (xi,k,vi,k)

† where xi,k =

(xi,k, yi,k)
† and vi,k =

(
vxi,k, v

y
i,k

)†
are the 2-D position and

velocity respectively, the resulting mobility model (1a) yields(
xi,k+1

vi,k+1

)
︸ ︷︷ ︸

θi,k+1

=

(
I2 α∆T · I2

02 α · I2

)
︸ ︷︷ ︸

Fi(α,∆T )

(
xi,k
vi,k

)
︸ ︷︷ ︸

θi,k

+ (1− α)

(
∆T · I2

I2

)
︸ ︷︷ ︸

fi(α,∆T )

µi +
√

1− α2

(
∆T 2 · I2

∆T · I2

)
︸ ︷︷ ︸

Gi(α,∆T )

wi,k,

(4)

where I2 is the identity matrix of size 2.
In the following, we will use this mobility model to per-

form the predictions of both “ego” and neighbors’ estimated
locations and re-synchronize related data before fusion (See
step 2 of Algorithm 1).

B. Measurement Model

1) GPS Absolute Position: Generally speaking, the 2-D
position xi,k is determined by a GPS receiver and the cor-
responding measurement zGPS

i,k is corrupted by additive noise

nGPS
i,k =

(
nxi,k, n

y
i,k

)†
, as follows

zxi,k = xi,k + nxi,k, zyi,k = yi,k + nyi,k. (5)

For simplicity, the latter errors affecting 2-D coordinates,
nxi,k and nyi,k, are supposed to be independent and identically



distributed (i.i.d) centered Gaussian like in [2], [3], [6].
2) V2V Received Power: Received Signal Strength Indica-

tor (RSSI) measurements are directly performed out of the
received CAMs, originally used to encapsulate and share geo-
graphical awareness information over DSRC channels between
vehicles (V2V). The approximated/extrapolated RSSI zj→i,k (on
a dB scale) at vehicle i at local time ti,k (i.e., while occupying
position xi,k) with respect to vehicle j (i.e., occupying position
xj,k), is assumed to be measured in Line-Of-Sight (LOS) and
to follow the widely used log-distance path loss model3 [8]

zj→i,k = P (d0)− 10np log10

(
‖xi,k − xj,k‖

d0

)
+ sj→i,k , (6)

where P (d0) [dBm] is the averaged received power at a
reference distance d0 = 1 m, np the path loss exponent, ‖·‖ the
Euclidean distance, and finally sj→i,k , a shadowing component
that is centered Gaussian with standard deviation σSh. In the
following filtering scheme, observations will be composed
of GPS and/or V2V RSSI measurements, depending on the
cooperation level.

C. Particle Filter Tracking

As the observation model of interest linking the state vector
to the measurements is non-linear here (e.g., See (6)), filtering
strategies relying on numerical approximations (e.g., PF) are
expected to outperform that based on linear approximations
(e.g., Extended Kalman Filters) in terms of accuracy, at the
price of higher computational complexity. However, in the
vehicular context, the relative extra-cost to supply adequate
powerful hardware and software capabilities looks still rea-
sonable (comparing with the cost of the whole car). The
key idea of PF is to approximately represent the a posteriori
density function4 by a set of random samples with associated
weights and to compute estimates based on these samples and
weights [7]. Hence, we approximate the optimal solution by

θ̂i,k ≈
Np∑
p=1

w
(p)
i,k θ

(p)
i,k , (7)

where
{
θ

(p)
i,k

}Np

p=1
is a set of particles (samples of the state

vector) with associated weights
{
w

(p)
i,k

}Np

p=1
. A classical and

intuitive choice for computing these weights involves the
likelihood function [7]. We propose to apply the PF described
below in Algorithm 1 as the core filter/fusion engine of our
CP framework.

3Without loss of generality, we assumed a simplified log-distance model
in this work, but the proposed core data fusion engine is not restricted to
it. Moreover, detailed measurement campaigns are currently conducted in the
frame of the HIGHTS project to provide more sophisticated input models for
future evaluations.

4In our proof-of-concept validations, CAMs encapsulate the particles cloud
to account for local estimates uncertainty, what could result in prohibitive
overhead under current standard specifications. This issue, which does not
fall in the paper scope, has started been investigated in other works, without
contradicting the first findings exposed herein.

Algorithm 1 Bayesian bootstrap (iteration k, “ego” vehicle i)
1: receive CAMs from the set Ni,k−1:k of neighboring vehicles,

read the RSSI values, and extract the neighboring particle clouds
θ
(p)
j,k∗ , p = 1 . . . Np j ∈ Ni,k−1:k

2: perform prediction/data resynchronization at the “ego” estima-
tion instance k (i.e., the global time ti,k)

θ
(p)
j,ki
∼ p

(
θj,ki

∣∣∣θ(p)
j,k∗

)
, j ∈ {i} ∪ Ni,k−1:k,

w
(p)

j,k|k−1 = w
(p)
j,k−1 = 1/Np, p = 1, . . . , Np,

and build the local dynamic map (LDM) of vehicle i’s neighbors
as the first output

θ̂j,ki ≈
Np∑
p=1

w
(p)

j,k|k−1θ
(p)
j,ki

=
1

Np

Np∑
p=1

θ
(p)
j,ki

, j ∈ Ni,k−1:k

3: select the subset Si,k ⊂ Ni,k−1:k of the best links
4: update new weights according to the likelihood based on (1b)

w
(p)
i,k ∝ p

(
zi,k

θ(p)
i,k ,θ

(p)
ref,i,k

)
, p = 1, . . . , Np,

normalize them to sum to unity, and compute the approximate
mean as the second filter/fusion output

θ̂i,k ≈
Np∑
p=1

w
(p)
i,kθ

(p)
i,k

5: perform resampling and broadcast

IV. LINK SELECTION

As already mentioned, additional links selection mecha-
nisms must be applied to reduce errors propagation, compu-
tational complexity or over-the-air CAM traffic and overhead.
We herein set a priori the number of selected links to 4 without
degrading too significantly the performance [4]–[6], while still
considering extra diversity from the minimum number required
for non-ambiguous 2-D positioning.

A. Link Selection Criteria

1) Non-Bayesian Cramér-Rao Lower Bound: The non-
Bayesian CRLB characterizes here the best achievable per-
formance (in the minimum expected mean squared error
(MSE) sense) for any non-biased (position) estimator (i.e.,
conditioned on a given set of reference neighbors). From the
positioning point of view, this criterion reflects both the pair-
wise radio link quality and the geometry of the reference
vehicles relative to the “ego” one or Geometric Dilution Of
Precision (GDOP). The bound is determined by processing
an inverse of the Fisher Information Matrix (FIM) [9], [10].
Consider at the “ego” estimation instant k, xi,k, the position
of the “ego” vehicle i and {xj,ki}j∈Si,k , the positions of its
selected reference vehicles, the FIM is defined as

Ji,k =
∑
j∈Si,k

Esj→i,k

{
−∆

xi,k
xi,k log p

(
zj→i,k

∣∣∣xi,k,xj,ki)} , (8)

where ∆x
xf(x) denotes the Laplacian of f(x). Note that as

its name suggests, the non-Bayesian CRLB treats both xi,k
and xj,ki , j ∈ Si,k as deterministic variables even though



they are actually random (i.e., affected by estimation noise).
Accordingly, the expectation in (8) is taken with respect to
the measurement noise only (i.e., over the shadowing). Under
the assumption of centered Gaussian shadowing in (6), the
expectation can be computed in closed-form solution [9]

Ji,k =
∑
j∈Si,k

1

σ̃2
Sh

(xi,k − xj,ki) (xi,k − xj,ki)
†

‖xi,k − xj,ki‖
4 , (9)

where σ̃2
Sh = σSh log 10/(10np). Nevertheless, neither the true

position xi,k of the “ego” vehicle nor its neighboring positions
{xj,ki}j∈Si,k are known, thus, the approximate FIM Ĵi,k can
be computed with the predicted positions instead i.e., x̂i,k|k−1,
{x̂j,ki}j∈Si,k . Thus, the bound on the location MSE can be
expressed in terms of the FIM as follows

MSE(x̂i,k) ≥ tr
(
Ĵ−1
i,k

)
. (10)

This expression shows the expected MSE conditioned on a
particular subset Si,k ⊂ Ni,k−1:k of neighbors, as the cost
function to be minimized by the link selection algorithm.

2) Bayesian Cramér-Rao Lower Bound: The Bayesian
CRLB (BCRLB) considers the positions as realizations of
random variables [4], [10]. Therefore, besides the radio link
quality and the geometry of the reference neighbors relative to
the “ego” vehicle, this criterion also captures the uncertainties
of the “ego” and neighbors’ estimated positions. Assume that
at “ego” estimation time epoch k, xi,k ∼ p (xi,k), the position
of the “ego” i and xj,ki ∼ p (xj,ki), j ∈ Si,k, the positions
of its selected reference vehicles, the Bayesian FIM (BFIM)
is now expressed as [11]

JBi,k = JPi,k +
∑
j∈Si,k

[(
JPj,ki

)−1
+
(
JMj→i,k

)−1
]−1

, (11)

where JPi,k, JPj,ki are the a priori FIMs of the positions of the
“ego” i and its reference neighbors j ∈ Si,k respectively, while
JMj→i,k denotes the FIM obtained from the link measurement
(j → i). In particular, the prior FIMs are defined as

JPi,k = Exi,k

{
−∆

xi,k
xi,k log p

(
xi,k

∣∣Zk−1
i

)}
, (12)

and

JPj,ki = Exj,ki

{
−∆

xj,ki
xj,ki

log p
(
xj,ki

∣∣∣Zk∗j )} , (13)

where again Zk−1
i is similar to the previously defined no-

tations and Zk
∗

j indicates the set of neighbor j’s observa-
tions before “ego” estimation instant k (i.e., ti,k). Assuming
p
(
xi,k

∣∣Zk−1
i

)
∼ N

(
E{xi,k},Σ−1

i,k|k−1

)
and p

(
xj,ki

∣∣Zk∗j ) ∼
N
(
E {xj,ki} ,Σ

−1
j,ki

)
in first approximation, thus JPi,k =

Σ−1
j,k|k−1 and JPj,ki = Σ−1

j,ki
. On the other hand, the term

related to the measurements is now calculated as follows

JMj→i,k = Esj→i,k ,xi,k,xj,ki

{
−∆

xi,k
xi,k log p

(
zj→i,k

∣∣∣xi,k,xj,ki)}
=

1

σ̃2
Sh
Exi,k,xj,ki

{
(xi,k − xj,ki)(xi,k − xj,ki)

†

‖xi,k − xj,ki‖4

}
.

(14)

Note that the expectation over the measurement noise is
performed analytically in (14) still considering the Gaussian
shadowing (in dB). Besides, as the expectation with respect
to xi,k and xj,ki is tedious to derive analytically, we propose
to use numerical integration instead following a Monte Carlo

approach. Accordingly, we draw Np samples
{

x
(p)
i,k

}Np

p=1
and{

x
(p)
j,ki

}Np

p=1
from p

(
xi,k

∣∣Zk−1
i

)
and p

(
xj,ki

∣∣Zk∗j ), j ∈ Si,k
respectively, leading to

JDj→i,k =
1

σ̃2
Sh

∫
(xi,k − xj,ki)(xi,k − xj,ki)

†

‖xi,k − xj,ki‖4
p
(
xi,k

∣∣Zk−1
i

)
× p

(
xj,ki

∣∣∣Zk∗j ) dxi,kdxj,ki
≈ 1

σ̃2
Sh

1

Np

Np∑
p=1

(
x

(p)
i,k − x

(p)
j,ki

)(
x

(p)
i,k − x

(p)
j,ki

)†
∥∥∥x(p)

i,k − x
(p)
j,ki

∥∥∥4 .

(15)

Finally, similarly to the non-Bayesian CRLB, the final bound
on the MSE can be calculated by replacing the FIM Ĵi,k in
Equation (10) with the BFIM JBj→i,k The goal is again to
identify the best subset Si,k ⊂ Ni,k−1:k that minimizes the
conditional positioning MSE.

B. Link Selection Algorithms

In the previous subsection, we have derived the cost func-
tions (in the MSE sense) for the link selection problem.
Particularly, considering the “ego” vehicle i at k, given the
set Ni,k−1:k of neighboring vehicles, we propose solutions
to search for the minimum MSE conditioned on all possible
subsets of length S of Ni,k−1:k denoted by PS (Ni,k−1:k) to
find S∗i,k yielding the best contribution to the CP problem
resolution. The optimal link selection would result from an
exhaustive search, which is by far too complex in case of high
V2V connectivity and thus, not really intended for implemen-
tation in a real system. This exhaustive search simply evaluates
the cost functions for non-Bayesian or Bayesian CRLBs, for
all the possible combinations listed by PS (Ni,k−1:k). For
instance, choosing 4 links out of 10 leads to 210 combinations,
what seems still reasonable but 4845 evaluations in case of
20 neighbors appears much more challenging. Therefore, in
order to reduce the computational burden, one straightforward
approach is to develop a search algorithm that hopefully yields
the same solution as that of the exhaustive approach (or
at least an equivalent solution). A closer look at the FIMs
in both criteria (e.g., in (9) and (14)) reveals that its link-
dependent sub-components are inversely proportional to the
squared distances between the nodes. Intuitively, this means
that performing CP with more distant neighbors leads to suffer
from larger MSE or in other heuristic words, the optimal subset
of neighbors is expected to be formed among the nearest ones
(say, the 8–10 closest neighbors are expected sufficient on
most common European highways having 3 lanes). Of course,
this intuitive interpretation could be applied with other kinds
of V2V metrics but it is all the more noticeable within RSSI-



based CP due to the considered log-normal path loss model,
thus making the closest search even more relevant. The overall
selection algorithms are summarized in Algorithm 2.

Algorithm 2 Sup-optimal closest search of S most informative
links among C most potential ones (iteration k, “ego” car i)

1: if |Ni,k−1:k| > C then
2: estimate d̂j→i,k = ‖x̂j,ki − x̂i,k‖ w.r.t. j ∈ Ni,k−1:k

3: sort the set
{
d̂j→i,k

}
j∈Ni,k−1:k

4: get C nearest neighbors from Ni,k−1:k to build Ci,k
5: else
6: Ci,k = Ni,k−1:k

7: end if
8: if |Ci,k| > S then
9: create the set PS (Ci,k) of all subsets of Ci,k of size S

10: for s = 1 to |PS (Ci,k) | do . subset index
11: let PS (Ci,k) [s] be the s-th subset in PS (Ci,k)
12: determine the bound on the MSE

MMSE (x̂i,k) [s] =

 tr
{(

Ĵi,k[s]
)−1

}
, if non-Bayes

tr
{(

JB
i,k[s]

)−1
}
, if Bayes

where Ĵi,k[s], JB
i,k[s] are with the set PS (Ci,k) [s]

13: end for
14: select the best subset s∗ = argmins

{
MMSE (x̂i,k) [s]

}
15: S∗i,k = PS (Ci,k) [s∗]
16: else
17: S∗i,k = Ci,k
18: end if

V. POSITIONING EVALUATION

A. Simulation Settings and Scenarios

In our MATLAB-based evaluation framework, we model
a 3-lane urban highway where 15 802.11p-connected cars
are driving (in the same direction) at the average speed of
110 km/h (i.e., ≈ 30 m/s). The random CAM generation time
between the instant at which CAM generation is triggered
(GPS position is sampled) and the instant at which the message
is delivered to the transport layer is uniformly drawn in the
interval [0, 50] ms (complying with [12]). Table I summarizes
the other important parameters used for our simulations.

TABLE I
OTHER IMPORTANT SIMULATION PARAMETERS.

Mobility model α Gauss-Markov mobility model
Memory level α 0.95
Sampling period ∆T 0.1 [s]
GPS/CAM rate 10 [Hz] (critical) [12]
CAM generation time U(0, 50) [ms] (complying with [12])
Path loss exponent np 1.9 (V2V in highways) [8]
Std. of shadowing σSh 2.5 [dB] (V2V in highways) [8]
Number of particles 500

In the first evaluation scenario (S1), we consider vehicles
traveling through an an urban canyon (see Fig. 3). GPS
estimates at each vehicle are affected by varying standard
deviations (SD) with large spatial correlation as depicted in

Fig. 3. Topology of the evaluated VANET and associated configurations for
S1 (urban canyon) and S2 (different classes of GPS receiver).

Fig. 3(a) whereas the V2V RSSI-based measurement quality
is assumed to remain unchanged. Four different positioning
schemes are then compared in terms of accuracy and service
continuity i.e., stand-alone filtered GPS, exhaustive CP, CRLB-
based selective CP, and BCRLB-based selective CP.

In the second evaluation scenario (S2), we consider a
heterogeneous configuration where vehicles have the same
visibility to satellites, but suffer from disperse and independent
GPS precision levels due to different receiver capabilities (e.g.,
high-class or basic receivers) as illustrated in Fig. 3(b).

These two scenarios are complementary and cumulative, as
S1 describes the degradation from GPS signals, whereas S2
considers the degradation from GPS receiver capabilities, both
being common in real conditions.

B. Results

1) Testing Scenario 1 (S1): Figure 4 shows the root mean
square error (RMSE) of the position estimates of all vehi-
cles as a function of time. Note that the 15 vehicles need
approximately 8 s to completely enter/leave the different
areas (due to its length of 60 × 4 = 240 m and speed
of about 30 m/s) causing some transitions in GPS precision
levels, as depicted on the same figure. As expected, the CP
outperforms the non-CP (i.e., stand-alone filtered GPS) in
terms of accuracy and service continuity (i.e., preventing the
error from flourishing in harsh/lost conditions). In favorable
GPS conditions, the gains yielded by CP over non-CP are
modest (relative drop in RMSE of about 9% by exhaustive
CP and no drop by selective approaches) whereas in harsh or
lost GPS environments, huge improvements in accuracy are
observed. In particular, in comparison with non-CP, a relative
fall in RMSE of 33% is experienced by exhaustive CP and of
about 21% by both selective schemes in harsh areas whereas
in GPS-denied periods, relative drops of 30% and of 21% are
reported respectively. The reason can be understood as follows:
in comparison with the GPS position, RSSI measurements to
virtual anchors can contribute to the positioning performance
but in a modest way due to the non-linear relationship between
received power and state (derived from the distance to the
known virtual anchor), the virtual anchors’ uncertainties and
GDOP, the extrapolated/approximate RSSI values at fusion
time, the RSSI shadowing dispersion, etc. In other words,
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Fig. 4. Localization RMSE (over vehicles) as a function of time when GPS
quality varies depending on the geographic area (S1).

when the accuracy of the filtered GPS remains high enough,
there is little room for improvement by fusing with DSRC and
vice versa, when GPS performance is degraded, the accuracy
gain through DSRC is more noticeable.

Quantitatively, both CRLB and BCRLB-based selective
fusion schemes are quasi equivalent, and suffer both from
a RMSE increase of 10%, 18%, and 14% in normal, harsh,
and lost GPS respectively in comparison with exhaustive CP
due to the information loss. Note that in our scenario, the
positioning error in harsh GPS conditions is superior than
that in lost GPS. This is not really contradictory since the
“harsh” zone is composed of 2 distinct areas (See again
Fig. 3) and the latter (i.e., that after the “lost” period) is more
severe due to errors accumulation during the “lost” interval
(i.e., reflecting the memory effect pointed out in [3]). From
the communication point of view, selective CP dramatically
reduces the number of required packets (more than 70% shown
in Fig. 5) considering an error increase of 14–18% in worst
cases and of 10% in normal cases. Last but not least, from
the processing and fusing points of view, the complexity of
the particle-based core engine is mainly related to the weights
update (See line 4 in Algorithm 1). Particularly, the complexity
scales as O (Np |Si,k|) where the number of particles Np can
be large (typically 500–5000). In our scenario, without link
selection, |Si,k| = 14, whereas with link selection |Si,k| ≤ 4.

In summary, link selection is critical to significantly reduce
the computational complexity as well as the network traffic
without losing significant accuracy. In this specific scenario,
the BCRLB (i.e. by design more adapted to heterogeneous
GPS conditions) can just match as expected the CRLB.

2) Testing Scenario 2 (S2): While matching the classic
CRLB in scenarios considering homogeneous neighboring
vehicles uncertainties (as in scenario S1), the BCRLB criterion
shows its efficiency when considering more realistic heteroge-
neous large dispersion of neighboring vehicles uncertainties.
Considering our illustrative example, one can classify vehicles
into four classes of dispersion: (i) full topology (i.e., cars fully
surrounded by neighbors) vs. partial topology (i.e., cars on
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Fig. 6. Localization RMSE (over the full trajectory) of different fusion
schemes at each vehicle (S2).

outside lanes); and (ii) clear GPS (i.e., cars whose nearest
neighbors have good GPS/estimates) vs. degraded GPS (i.e.,
cars whose closest neighbors have poor GPS/estimates), as
reported in Table II (the remaining are not classified due to
strong border effects).

TABLE II
CLASSIFICATION OF VEHICLES W.R.T THE UNCERTAINTY DISPERSION.

Criterion Full topology Partial topology
Clear GPS 5, 11 4, 6, 10, 12

Degraded GPS 8 7, 9

Fig. 6 shows the positioning performance in terms of
RMSE (over the full trajectory) for each vehicle whereas
Fig. 7 demonstrates the empirical cumulative distribution
functions (CDFs) for one representative vehicle of each class.
Both confirm that in 2 degraded classes when the nearest
neighbors experience poor GPS positions or estimates, the
classic CRLB criterion neglecting the anchor uncertainties fails
to capture the optimal set of neighbors (See the two top sub
plots in Fig. 7). In other words, the strong dependency of
RSSI measurements onto distances to the neighbors in the
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FIM tricks the CRLB to choose among a small subset of the
nearest candidates, regardless of their dispersion. As expected,
in the 2 clear classes when the nearest neighbors have good
GPS or estimates, the selections are likely to be very similar
leading to equivalent performance (See the two bottom sub
plots in Fig. 7).

In brief, the second scenario accounts for more realistic het-
erogeneous conditions (at a smaller scale), where the proposed
BCRLB solution would be definitely more helpful.

C. Preliminary Cooperative Application Impact

Although a larger application evaluation is left to future
work, we confront here the link selection performance with
tangible application needs. Considering the Highway Capacity
Manual (HCM) recommendation of a 2-second time between
two successive vehicle in free flow traffic, a typical cooperative
traffic safety application would need to have a clear position
awareness corresponding to at least the distance between
two successive vehicles. This translates to about 30 m and
60 m inter-distance considering a speed of 50 km/h in urban
and 100 km/h on highways respectively. In the worst case,
exhaustive CP yields an error of about 0.85 m (See Fig. 4).
Even while loosing 14–18% of accuracy through selective
fusion, one would still get relative longitudinal error of 1.6%
(resp. 3%) at 60 m (resp. 30 m)5, and a fully acceptable
increased error of 0.2% between an exhaustive and selective
fusion.

VI. CONCLUSION AND FUTURE WORK

This paper contributes to solve the selective fusion prob-
lem of cooperative vehicular localization where performing
exhaustive scheme is questionable due to heavy required com-
munication traffic and computational processing. Both classic
non-Bayesian and Bayesian CRLB criteria are thoroughly
investigated and incorporated in a computationally efficient
search algorithm to reach the subset of the most informative

5Lateral errors yet remain high regardless of the strategy.

neighbors so as to minimize the performance degradation
causing by information loss. These proposed are evaluated in
many realistic environments and in different network settings
using a generic fusion-based CP framework for vehicular
context. We have found that: (i) it is worthy of employing
selective fusion in vehicular CP owing to the aforementioned
benefits; (ii) the dispersion of “virtual” anchor uncertainties
should be monitored to prevent from having wrong cooperative
neighbors in some special but common situations. Future
works shall investigate the triggering conditions and criteria to
adaptively switch between different selective fusion schemes
(including exhaustive fusion), thus leading to more efficient
context-aware data fusion. More sophisticated propagation
channel assumptions may be incorporated in the studies as
well to capture real-world effects on both link selection and
positioning in practical environments and scenarios.
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