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Président du jury
Professeur Constantinos Papadias Athens Information Technology

Rapporteurs
Professeur Wolfgang Utschick Technische Universität München
Professeur Bruno Clerckx Imperial College London
Docteur Gaoning He Huawei France Research Center

Directeur de thèse
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Abstract

Massive MIMO is an emerging technique considered for use in future
mobile networks that might enable much higher throughput and energy effi-
ciency compared to traditional multiuser MIMO (MU-MIMO) systems. The
gain is achieved by adding a large number of inexpensive low-power antennas
at the base stations, instead of having small number of high-cost, high-power
antenna elements at the base stations, e.g., 8 antennas per base station in
currently standardized LTE-Advanced systems. In less than five years, mas-
sive MIMO has sparked tremendous research activities. It is considered to
be a potential key technology in future 5G standard. Despite its potential of
huge improvements, there are still plenty of open problems and challenges
which limit the potential of massive MIMO. Among them, this thesis focuses
on two of the challenges of massive MIMO systems, namely pilot interfer-
ence reduction in Time-Division Duplex (TDD) mode and Channel State
Information (CSI) feedback reduction in Frequency Division Duplex (FDD)
mode.

Channel estimation in massive MIMO networks, which is known to be
hampered by the pilot contamination effect, constitutes a bottleneck for
overall performance. We present novel approaches which tackle this problem
by enabling a low-rate coordination between cells during the channel estima-
tion phase itself. The coordination makes use of the additional second-order
statistical information about the user channels, which are shown to offer a
powerful way of discriminating across interfering users with even strongly
correlated pilot sequences. Importantly, we demonstrate analytically that
in the large-number-of-antennas regime, the pilot contamination effect is
made to vanish completely under certain condition on the channel covari-
ance. This condition is identified as a non-overlapping condition, which states
that when the support of multipath angle-of-arrival (AoA) of interference is
non-overlapping with the AoA support of desired channel, then for a base
station equipped with a uniform linear array (ULA), the pilot contamina-
tion can be made to vanish completely using a minimum mean square error
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Abstract

(MMSE) estimator. This phenomenon is mainly owing to the low-rankness
property of channel covariance, which is identified and proved theoretically
in this thesis. Furthermore, we show that such a low-rank property is not
inherently related to ULA. It can be generalized to non-uniform array, and
more surprisingly, to two dimensional distributed large scale arrays. In ad-
dition to pilot decontamination, we demonstrate that such a property has
other promising applications such as statistical interference filtering.

Although the proposed MMSE-based estimator leads to full pilot de-
contamination under the strict condition that the desired and interference
channel do not overlap in their AoA regions, in practice this condition is
unlikely to hold at all times, owing to the random user location and scatter-
ing effects. To this end, we propose novel robust channel estimation schemes
that combine the merits of MMSE estimator and the known amplitude based
projection method. Asymptotic analysis shows that the proposed methods
require weaker conditions compared to the known methods to achieve full
decontamination.

Finally, we tackle the CSI feedback problem for massive MIMO oper-
ating in FDD mode by novel cooperative feedback mechanisms. We exploit
synergies between massive MIMO systems and inter-user communications
based on Device-to-Device (D2D) communications. The exchange of local
CSI among users, enabled by D2D communications, allows to construct more
informative forms of feedback based on this shared knowledge. Two feedback
variants are highlighted : 1) cooperative CSI feedback, and 2) cooperative
precoder index feedback. For a given feedback overhead, the sum-rate per-
formance is assessed and the gains compared with a conventional massive
MIMO setup without D2D are shown.
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les angles d’arrivés à hauteur de 60 degrés, C = 500, SNR =
0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.11 Estimation performance vs. M, 7-cellules network, 1 utilisa-
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coopérative CSI feedback, feedback overhead : 4 bits par util-
isateur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Desired channel composed of Q = 2 clusters of multipath. . . 44

3.2 Closed-form rank model for the channel covariance vs. actual
rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 The distributed large-scale antenna setting with a one-ring
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Rank vs. r, M = 2000, λ = 0.15m, Rc = 500m. . . . . . . . . 49

4.1 Estimation MSE vs. number of BS antennas , 2-cell network,
fixed positions of two users, uniformly distributed AoAs with
θ∆ = 20 degrees, non-overlapping multipath. . . . . . . . . . . 62

4.2 Channel Estimation MSE vs. M , D = λ/2, 2-cell network,
angle spread 30 degrees, Φd ∩Φi = ∅, cell-edge SNR is 20dB.
We compare the standard LS to MMSE estimators, in inter-
ference and interference-free scenarios. . . . . . . . . . . . . . 65

4.3 Estimation MSE vs. number of BS antennas, uniformly dis-
tributed AoAs with θ∆ = 10 degrees, 2-cell network. . . . . . 71

4.4 Estimation MSE vs. number of BS antennas, Gaussian dis-
tributed AoAs with σ = 10 degrees, 2-cell network. . . . . . . 71

4.5 Estimation MSE vs. standard deviation of Gaussian dis-
tributed AoAs with M = 10, 7-cell network. . . . . . . . . . . 72

4.6 Per-cell rate vs. number of BS antennas, 2-cell network, Gaus-
sian distributed AoAs with σ = 10 degrees. . . . . . . . . . . 72

4.7 Per-cell rate vs. standard deviation of AoA (Gaussian distri-
bution) with M = 10, 7-cell network. . . . . . . . . . . . . . . 73

4.8 Estimation performance vs. distance between two users, M =
2000, r = 15m, single-cell network. . . . . . . . . . . . . . . . 74

4.9 Uplink sum-rate vs. distance between 2 users, M = 500,
r = 15m, cell-edge SNR 20dB, single-cell network. . . . . . . 75

4.10 Uplink per-cell rate vs. r, cell-edge SNR 20dB, 7-cell network,
each cell has M = 500 distributed antennas. . . . . . . . . . . 76

5.1 Estimation performance vs. M, 2-cell network, 1 user per
cell, path loss exponent γ = 0, partially overlapping angular
support, AoA spread 60 degrees, SNR = 0 dB. . . . . . . . . 97

x



TABLE DES FIGURES

5.2 Estimation performance vs. M, 7-cell network, one user per
cell, AoA spread 30 degrees, path loss exponent γ = 2, cell-
edge SNR = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Uplink per-cell rate vs. M, 7-cell network, one user per cell,
AoA spread 30 degrees, path loss exponent γ = 2, cell-edge
SNR = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Estimation performance vs. M, 7-cell network, 4 users per
cell, AoA spread 30 degrees, path loss exponent γ = 2, cell-
edge SNR = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Uplink per-cell rate vs. M, 7-cell network, 4 users per cell,
AoA spread 30 degrees, path loss exponent γ = 2, cell-edge
SNR = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 DL sum-rates with/without feedback cooperation, feedback
overhead: 16 bits per user. . . . . . . . . . . . . . . . . . . . . 112

6.2 DL sum-rates of cooperative precoder selection and non-cooperative
CSI feedback, feedback overhead: 4 bits per user. . . . . . . . 113

1 Illustration of a line of scatterers. . . . . . . . . . . . . . . . . 124

xi



TABLE DES FIGURES

xii



Liste des tableaux

4.1 Basic simulation parameters . . . . . . . . . . . . . . . . . . . 69

xiii



Acronyms

xiv



Acronyms

Here are the main acronyms used in this document. The meaning of an
acronym is also indicated when it is first used.

3GPP 3rd Generation Partnership Project
5G 5th Generation
AoA Angle of Arrival
AoD Angle of Departure
AWGN Additive White Gaussian Noise
BC Broadcast Channel
BS Base Station
C-RAN Cloud-enabled Radio Access Networks
CB Covariance-aided Bayesian estimation
CPA Coordinated Pilot Assignment
CDF Cumulative Density Function.
CLT Central Limit Theorem
CSI Channel State Information
CSIT Channel State Information at the Transmitter
CoMP Coordinated Multi Point
D2D Device-to-Device
DAS Distributed Antenna System
DFT Discrete Fourier Transform
EVD Eigenvalue Decomposition
DL Downlink.
FDD Frequency Division Duplexing
i.i.d. independent and identically distributed
JSDM Joint Spatial Division and Multiplexing
ML Maximum Likelihood
MRC Maximum Ratio Combining.
LSAS Large Scale Antenna Systems

xv



Acronyms

LOS Line Of Sight
LTE Long Term Evolution.
LS Least Squares
LSAS Large-Scale Antenna Systems
M2M Machine-to-Machine
MAP Maximum a Posteriori
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
MMSE Minimum Mean Square Error
MSE Mean Square Error
PC Pilot Contamination
PDF Probability Density Function
PSD Positive Semi-Definite
RobustICA Robust Independent Component Analysis
RRH Remote Radio Head
SIMO Single Input Multiple Output
SINR Signal to Noise and Interference Ratio
SIR Signal to Interference ratio
SNR Signal to Noise Ratio
SISO Single-Input Single-Output
s.t. such that
SVD Singular Value Decomposition.
TDD Time Division Duplex
UL Uplink
ULA Uniform Linear Array
ZF Zero-Forcing

xvi



Notations

Here are the main notations used in this document. The meaning of a
notation is also indicated when it is first used.

|x| Magnitude of the scalar x
IM M ×M identity matrix
XT Transpose of the matrix X
X∗ Conjugate of the matrix X
XH Conjugate transpose of the matrix X
X−1 Inverse of the matrix X
X† Moore-Penrose pseudoinverse of the matrix X
X(m,n) (m,n)-th entry of the matrix X
tr {X} Trace of the square matrix X
det {X} Determinant of the square matrix X
X⊗Y Kronecker product of the two matrices X and Y
vec(X) Vectorization of the matrix X
‖x‖2 `2 norm of the vector x
‖X‖2 Spectral norm of the matrix X
‖X‖F Frobenius norm of the matrix X
rank(X) Rank of the matrix X
E {·} Expectation
diag{x1, ...,xN} (Block) diagonal matrix with x1, ...,xN at the main diagonal

, Used for definition
a.s.−−→ Almost sure convergence
d−→ Convergence in distribution
λk {X} The k-th largest eigenvalue of the Hermitian matrix X
ek{A} The eigenvector of X corresponding to the eigenvalue λk {X}
CN (0,R) Zero-mean complex Gaussian distribution with covariance matrix

R
CK×C K × C complex matrix
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span{v1,v2, ...,vn} Span of linear vector space on the basis of v1,v2, ...,vn
dim{A} Dimension of a linear space A
null{R} Null space of the matrix R
dxe Smallest integer not less than x
bxc Largest integer not greater than x
J0 (x) Zero-order Bessel function of the first kind
Var(x) Variance of the random variable x(
n
k

)
Number of k-combinations from a given set of n elements

f(x) = o (g(x)) Represents the fact that lim
x→∞

f(x)/g(x) = 0

U(a, b) Continuous uniform distribution on the interval [a, b]
ess inff Essential minimum of f , i.e., the infimum of f up to within a set

of measure zero
ess supf Essential maximum of f , i.e., the supremum of f up to within a

set of measure zero
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Chapitre 1

Résumé [Français]

1.1 Abstract

Les systèmes d’antennes MIMO ayant un nombre élevé d’antennes, ap-
pelés “MIMO massifs”, devraient permettre un débit et une efficacité énergé-
tique beaucoup plus élevée par rapport aux systèmes MIMO traditionnels.
Leur utilisation est fortement envisagée pour les futurs réseaux 5G. Malgré
un fort potentiel, il y a encore de nombreux obstacles qui limitent le po-
tentiel des systèmes MIMO massifs. Cette thèse se concentre sur certains
de ces défis liés à l’acquisition de l’information de l’etat du canal (CSI) à
la fois dans le mode de multiplexage temportel (TDD) et dans le mode de
multiplexage fréquentiel (FDD).

Dans la phase d’estimation du canal en mode TDD, l’effet de contam-
ination des pilotes constitue la limitation principale pour la performance
globale. Nous présentons de nouvelles approches qui abordent ce problème en
exploitant les statistiques de second ordre des canaux d’utilisateur. Nous dé-
montrons analytiquement que dans la limite d’un grand nombre d‘antennes,
l’effet de contamination des pilotes disparâıt complètement sous une certaine
condition sur la matrice de covariance du canal. Cette condition stipule que
le support des trajets multiples d’angle d’arrivée (AoA) des interférences
doit être distinct du support des AoA du canal désiré. Cette condition est
étroitement liée à la propriété de rang faible de la matrice de covariance. En
outre, nous montrons qu’une telle propriété de faible rang n’est pas intrin-
sèquement liée à la géométrie du système d’antennes. Il peut être généralisé
à matrice non uniforme, et de façon plus surprenante, à une répartition
spatiale en deux dimensions.

Bien que l’estimateur de MMSE proposé conduise à la décontamination
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complète sous la condition de non-chevauchement dans le domaine angu-
laire, dans la pratique, il est peu probable que cette condition soit tout le
temps vérifiée, en raison de la distribution aléatoire des utilisateurs et des
effets de diffusion. En conséquence, nous proposons de nouveaux systèmes
robustes d’estimation de canal qui combinent les mérites de l’estimateur
MMSE et la méthode de projection basée sur l’amplitude connue. L’anal-
yse asymptotique lorsque le nombre d’antennes devient large, montre que
les méthodes proposées exigent des conditions plus faibles par rapport aux
méthodes connues pour réaliser une décontamination complète.

Enfin, nous abordons le problème de l’acquisition de l’information de
canal pour les systèmes MIMO massifs fonctionnant en mode FDD par de
nouveaux mécanismes de coopération entre utilisateurs qui sont activés par
communications d’appareil à appareil (D2D). L’échange de l’information de
canal entre les utilisateurs permet de d’exploiter cette connaissance partagée
pour transmettre plus efficacement au transmetteur l’information de canal.
L’impact de cette amélioration sur le débit total est évaluée et les gains vis-
à-vis d’une configuration MIMO massifs classique sans D2D sont présentées.

1.2 Introduction

Les travaux présentés dans cette thèse s’articulent autour de défis liés
à l’acquisition de l’information de canal en mode TDD et en mode FDD
dans le cadre de systèmes MIMO massif. Plus précisément, le chapitre 3
présente quelques propriétés utiles pour les canaux en MIMO massifs. Dans
les chapitres 4 et 5, nous abordons ensuite l’acquisition de l’information de
canal des systèmes TDD, notamment le problème de la contamination des
pilotes. Afin d’améliorer la qualité de l’estimation, de nouvelles méthodes
d’estimation du canal sont proposées en se basant sur des propriétés du canal
nouvellement identifiés dans le chapitre 3. Enfin, le chapitre 6 se concentre
sur l’acquisition de l’information de canal dans le cadre de systèmes MIMO
massif en mode FDD. Nous développons de nouvelles approches permettant
de réduire le cout de l’acquisition de l’information de canal dans des systèmes
FDD.

1.3 Propriétés des canaux en MIMO massifs

Une approche prometteuse pour faciliter l’acquisition de l’information
de canal réside dans l’exploitation des propriétes de ce canal. En effet, dans
les systèmes MIMO massif, certaines propriétés particulières du canal sans
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fil peuvent être exploitées afin d’améliorer l’estimation de canal et réduire
les interférences. Dans ce chapitre, nous mettons en évidence ces propriétés,
qui seront ensuite exploitées dans les chapitres suivants.

1.3.1 Modèle de réseau

Considérons un réseau de L celulles où chaque station de base est équipée
de M antennes. K utilisateurs ayant une seule antenne chacun sont servis
simultannément dans chaque cellule par leur propre station de base. L’es-
timation de canal des utilisateurs vers la station de base est obtenue à la
station de base par le biais de pilotes spécifiques permettant l’estimation
de ce canal et éventuellement, par le biais de données émis par les utilisa-
teurs. Le canal entre le k-ième utilisateur situé dans la l-ème cellule et la
j-ème station de base est noté par h

(j)
lk . Dans cette section, nous étudions les

propriétés particulières des canaux MIMO massifs. En particulier, nous met-
tons en évidence la faible dimension de la matrice de covariance du canal, ce
qui se montrera très utile pour les techniques d’atténuation d’interférences
proposées dans cette thèse.

1.3.2 Modèle de rang faible pour les antennes ULA

Modèle de canal

Dans cette section, les canaux sans fil de l’ULA largement déployée seront
étudiés. Le modèle classique [1] du canal à trajets multiples est adopté dans
cette thèse :

h
(j)
lk =

β
(j)
lk√
P

P∑
p=1

a(θ
(j)
lkp)e

iϕ
(j)
lkp , (1.1)

où P est le nombre de chemins i.i.d., eiϕ
(j)
lkp est la phase aléatoire i.i.d., et

a(θ) représente le vecteur de direction de la route en provenance de l’angle
d’arrivée θ :

a(θ) ,


1

e−j2π
D
λ

cos(θ)

...

e−j2π
(M−1)D

λ
cos(θ)

 , (1.2)
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où λ est la longueur d’onde du signal et D l’espacement d’antenne. β
(j)
lk est

le coefficient de perte de trajet

β
(j)
lk =

√
α

d
(j)
lk

γ , (1.3)

γ dénote l’exposant d’attenuation, d
(j)
lk est la distance géographique entre

l’utilisateur et la j-ième station de base et α est une constante.

Propriété de rang faible pour les antennes ULA

Considérons un certain utilisateurs servi avec un angle ayant le sup-
port Φ = [θmin, θmax], ce qui signifie la fonction de densité de probabilité
p(θ) de l’AoA pour ce canal d’utilisateur h satisfait p(θ) > 0 si θ ∈ Φ et
p(θ) = 0 si θ /∈ Φ. Nous pouvons alors montrer le résultat suivant.

Théorème 1. Le rang de la matrice de covariance de canal R satisfait :

rank(R)

M
6 d, quand M est suffisamment grand ,

où d est défini par

d ,
(
cos(θmin)− cos(θmax)

)D
λ
.

Théorème 1 montre que pour grand M , le noyau de la matrix de co-
variance, dénoté par null(R), est de dimension (1 − d)M , ce qui peut être
exploitée pour éliminer des interférences. Considérons maintenant un mod-
èle de multi-trajets plus générale lorsque les AoAs correspondant au canal
d’un utilisateur sont encore limitées, mais proviennent de plusieurs grappes
disjointes.

Q dénote le nombre de groupes et [θmin
q , θmax

q ] représente le support des
AoAs pour le q-ième groupement des chemins dans l’intervalle [0, π]. Ce scé-
nario de transmission est représenté schématiquement dans Le graphique3.1
pour Q = 2. Nous pouvons ensuite définir l’union des supports :

Φ , ∪Qq=1[θmin
q , θmax

q ], (1.4)

En conséquence, la densité de probabilité p(θ) des AoAs satisfait p(θ) > 0
sous la condition que θ ∈ Φ et p(θ) = 0 quand θ /∈ Φ. Nous pouvons ainsi
obtenir la généralisation du résultat précédent dans ce cadre plus général.
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Figure 1.1 – Support borné de trajets multiples AoA.

Target 
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min
1

max
1

min
2max

2

Multipath

Figure 1.2 – Canal composé de Q = 2 groupements de trajets multiples.
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Corollaire 1. Le rang de la matrice de covariance de canal R satisfait :

rank(R)

M
6 d, si M est suffisamment grand ,

où d est défini par

d , min(1,

Q∑
q=1

(
cos(θmin

q )− cos(θmax
q )

)D
λ

).

1.3.3 Modèle de rang faible pour les réseaux d’antennes aléa-
toires

Nous considérons maintenant un ensemble d’antennes situées au hasard
sur une ligne, et couvrant une ouverture totale de D mètres. Dans ce cas,
un chemin élémentaire avec un angle θ peut être représenté par le vecteur
de réponse tel que :

a(θ) ,


e−j2π

d1
λ

cos(θ)

...

e−j2π
dM
λ

cos(θ)

 , (1.5)

où la position de la m-ième antenne (1 ≤ m ≤M), dm, suit une distribution
uniforme, i.e., dm ∼ U(0,D).

1.3.4 Rang faible pour les réseaux aléatoires linéaires

Nous étudions ensuite le rang de la matrice de covariance de canal pour
un réseau d’antenne linéaire aléatoire. L’espacement d’antenne moyen est
alors dénoté par D , D/M . En supposant que l’ouverture du réseau d’an-
tenne D augmente linéairement avec M , i.e., D est constant, les résultats
sur la propriété de faible dimension sont montrés ci-dessous :

Proposition 1. Avec un support borné des AoAs Φ comme dans (3.4), le
rang de la matrice de covariance de canal R satisfait :

rank(R) ≤
Q∑
q=1

(
cos(θmin

q )− cos(θmax
q )

)MD

λ
+ o(M), (1.6)

Ce résultat ci-dessus montre que la propriété de rang faible dans les
systèmes MIMO massif n’est pas dépendante à la structure de Fourier des
vecteurs propres de la matrice de covariance. En outre, la borne supérieure
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ci-dessus est en fait très serré pour les grandes valeurs de M , comme en té-
moignent les résultats des simulations dans le graphique 3.2, où nous prenons
Q = 1, D = λ/2. L’étallement des AoA est de 40 degrés, et le modèle se réfère
à

f(M) ,
Q∑
q=1

(
cos(θmin

q )− cos(θmax
q )

)MD

λ
.

On peut observer que rank(R) est bien approximée par f(M).
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Rank of Covariance
Closed−form Model

Figure 1.3 – Rang de la covariance du canalde pour modèle en forme fermée
vs. rang actuel.

La Proposition 4 et le graphique 3.2 mettent en évidence l’additivité des
rangs lorsque plusieurs groupes disjoints d’utilisateurs co-existent dans des
systèmes MIMO massif, i.e., pour M → +∞.

1.3.5 Modèle de rang faible pour les systèmes DAS

Nous nous tournons maintenant vers les systèmes d’antennes distribuées.
On suppose que les M antennes de la station de base se situent uniformé-
ment et aléatoirement dans un réseau de taille fixe, servant des utilisateurs
équippés d’une seule antenne. Nous considérons une seule cellule en forme
de disque de rayon Rc. Nous adoptons le classique modèle circulaire [2,3] où
les utilisateurs sont entourées par un anneau de diffuseurs locaux (Voir Fig-
ure 1.4) situées à R mètres de l’utilisateur. Les positions des diffuseurs sont
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BS antennas

MS 1

MS 2

Ring of 
Scatterers

r

Scatterers

Multipath

Figure 1.4 – Configuration distribuée dans le cadre d’une diffusion avec
modèle circulaire.

considérés suivre une distribution uniforme sur l’anneau. De plus, chaque
chemin de propagation rebondit une fois sur le diffuseur avant d’atteindre
toutes les M destinations.

On considère ci-après un réseau (dense) dans laquelle la perte de trajet
est non négligeable.

Théorème 2. Le rang de la matrice de covariance de canal pour un système
d’antenne distribués satisfait :

rank(R) ≤ 4πr

λ
+ o(r). (1.7)

Le graphique3.4 montre le comportement du rang de la matrice de co-
variance par rapport au rayon de diffusion r. Nous pouvons voir que le rang
varie linéairement avec la pente 4π/λ. Toutefois, en raison du nombre limité
d’antennes, le rang finit par saturer vers M quand r ne cesse d’augmenter.

1.3.6 Propriété de covariance uniformement bornée

Nous édutions maintenans comment borner la norme spectrale de la ma-
trice de covariance du canal dans cadre d’un réseau d’antenne ULA. Cette
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Figure 1.5 – Rank vs. r, M = 2000, λ = 0.15m, Rc = 500m.

propriété sera utile dans l’analyse du chapitre 5.

Proposition 2. Denotons par Φ le support des AoA sd’un certain utilisateur
et par p(θ) la fonction de densité de probabilité de AoA de l’utilisateur. si
p(θ) est est uniformément bornée, i.e., p(θ) < +∞,∀θ ∈ Φ, et Φ se situe
dans un intervalle fermé qui ne comprend pas les directions parallèles par
rapport à la matrice, i.e., 0, π /∈ Φ, alors, la norme spectrale de covariance
de l’utilisateur R est uniformément bornée :

∀M, ‖R‖2 < +∞. (1.8)

1.3.7 Conclusions

Dans cette section, nous soulignons plusieurs propriétés fondamentales
des châınes des utilisateurs de MIMO massifs. Nous étudions les propriétés de
covariance de sous-espaces de signaux en basse dimension dans des topologies
générales de massifss array,y compris array uniforme linéaire, array linéaire
aléatoire, et array distribuée en 2D.Une autre propriété révélé est le bor-
nitude uniforme de la norme spectrale de covariance de canal pour ULA.
Ces propriétés seront utiles dans les sections suivantes pour réduire les in-
terférences et pour réduire la quantité de feedback CSI.
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1.4 Estimation de canal basée sur la covariance

Dans cette section, nous exploitons le rang faible de la matrice de covari-
ance afin de faciliter l’acquisition de l’information de canal dans les systèmes
MIMO massif, dans le cadre d’un fonctionnement en TDD. Nous proposons
une méthode d’estimation conduisant à une amélioration considérable de la
performance. En particulier, nous mettons en évidence que la connaissance
de la matrice de covariance peut conduire à une élimination complète des
effets de la contamination de pilote dans la limite d’un grand nombre d’an-
tennes à la station de base. Un algorithme permettant l’exploitation de ce
concepte dans des scénarios pratiques est ensuite présenté. L’idée principale
est d’utiliser la connaissance des matrices de covariance lors de l’affectation
des pilotes d’estimation du canal.

1.4.1 Apprentissage du canal pour la connection montante

Pour faciliter la compréhension, nous considérons dans le reste de la
section qu’un seul utilisateur par cellule est présent. La suite de pilotes
utilisée dans la l-ième cellule est dénotée par :

s` = [ s`1 sl2 · · · s`τ ]T . (1.9)

Les puissances allouées aux séquences de pilotes sont supposées égales de
telle sorte que |sl1|2+· · ·+|slτ |2 = τ, l = 1, 2, . . . , L. Sans perte de généralité,
nous supposons que la première cellule est la cellule cible de telle sorte que
nous puissions omettre l’exposant du canal. Le canal entre l’utilisateur de la
`-ième cellule et la station de base cible est donc dénoté par h`.

Lors de la transmission des pilotes, le signal M × τ reçu à la station de
base cible est donc

Y =
L∑
l=1

hls
T
l + N, (1.10)

où N ∈ CM×τ est le bruit blanc additif Gaussien, centré et de variance σ2
n.

1.4.2 Estimation bayésienne du canal

Par la suite, nous développons des estimateurs de canal se basant sur
les statistiques de second ordre des canaux. Deux estimateurs bayésiens de
canal peuvent ainsi être construits. Dans un premier temps, tous les canaux
sont estimés à la station de base cible (y compris les interférents). Dans le
second temps, seulement h1 est estimé.
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En représentation vectorielle, notre modèle (5.3) peut être représenté
comme

y = S̃h + n, (1.11)

où y = vec(Y), n = vec(N), and h ∈ CLM×1 est obtenu en écrivant suc-
céssivement les L canaux. La matrice des pilotes, dénotée par S̃, est ainsi
définie par

S̃ ,
[

s1 ⊗ IM · · · sL ⊗ IM
]
. (1.12)

Utilisant la méthode du maximum a posteriori (MAP), l’estimation bayési-
enne est donnée par :

ĥ = (σ2
nILM + RS̃H S̃)−1RS̃Hy. (1.13)

Il est remarquable que l’estimation bayésienne dans (4.13) cöıncide avec
l’erreur quadratique moyenne minimum (MMSE) lorsque le canal h suit la
distribution gaussienne complexe.

Considerons le scénario pessimiste où une seule séquence de pilotes est
utilisée dans les L cellules et représentée par

s = [ s1 s2 · · · sτ ]T . (1.14)

Nous définissons ensuite la matrice d’apprentissage S̄ , s⊗ IM . Il s’ensuite
alors que S̄H S̄ = τIM . Le signal vectorisé d’apprentissage reçue à la station
de base cible peut donc être exprimé comme

y = S̄

L∑
l=1

hl + n. (1.15)

L’estimateur bayésien (équivalent à l’estimateur MMSE) pour le canal spé-
cifique h1 est ainsi représenté par :

ĥ1 = R1S̄
H

(
S̄

(
L∑
l=1

Rl

)
S̄H + σ2

nIτM

)−1

y (1.16)

= R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄Hy. (1.17)

Dans la section ci-dessous, nous examinons la dégradation causée par la
contamination de pilote sur la qualité de l’estimation.
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Analyse à grande échelle

Nous cherchons à analyser la performance des estimateurs ci-dessus dans
le régime d’un grand nombre d’antennes M . Afin d’obtenir des resultats
analytiques, notre analyse est basée sur l’hypothèse d’ULA.

Théorème 3. Supposons que l’angle arrivée θ des trajets multiples du canal
hj , j = 1, . . . , L, est distribué selon une densité arbitraire pj(θ) ayant un
support borné, i.e., pj(θ) = 0, θ /∈ [θmin

j , θmax
j ], pour θmin

j 6 θmax
j ∈ [0, π] .

Si les L − 1 intervalles [θmin
i , θmax

i ] , i = 2, . . . , L sont strictement distincts
du support de l’angle d’arrivé du canal direct 1 [θmin

1 , θmax
1 ], on a

lim
M→∞

ĥ1 = ĥno int
1 . (1.18)
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Figure 1.6 – Estimation MSE vs. nombre BS antennes , 2-cellule net-
work, deux utilisateurs en position fixée, AOA uniformément distribuées
avec θ∆ = 20 degrés, nans chevauchement trajets multiples.

1. Cette condition correspond simplement à un scénario pratique conduisant à des
sous-espaces de signaux distincts entre la matrice de covariance souhaitée et la matrice
de covariance des interférences. Cependant, des scénarios plus généraux pourraient être
utilisés.
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Les résultats présentés dans le Theorème 3 sont vérifiés numériquement
dans Le graphique4.1 dans le cas d’un réseau composé de deux cellules et
où les positions de deux utilisateurs sont fixées. Les angles d’arrivées du
canal direct sont uniformément distribuées avec une moyenne égale à 90
degrés et avec un étalement angulaire égale à 20 degrés, ce qui donne pas
de chevauchement entre les multi-trajets souhaités et celui de l’interférence.
Comme on le voit, l’erreur d’estimation de canal converge vers le cas sans
interférence, ce qui indique que la contamination des pilotes est éliminée
avec le nombre d’antennes en croissant.

Theorème 3 donne la condition suffisante pour atteindre la suppression
totale de l’interférence lorsque M est grand :

L
∪
l=2

span {Rl} ⊂ null {R1} (1.19)

où la condition ci-dessus nécessite que la matrice de covariance du canal
désiré aie un noyau non-vide et que les sous-espaces engendrés par les ma-
trices de covariance de toutes les interferences tombent dans ce noyau.

Le Theorème 3 est limité au cas où le support de l’angle d’arrivé du canal
direct est un unique interval. Nous allons donner ci-dessous les résultats
étendus dans des conditions moins restrictives.

Cas de plusieurs groupe d’angles d’arrivé

Nous considérons maintenant le modèle général de propagation par tra-
jets multiples lorsque les angles d’arrivé du canal d’un certain utilisateur
sont limitées, mais proviennent de plusieurs groupes disjoints, comme décrit
dans la Section 1.3.2. Soit Φd l’union des angles d’arrivés possibles du canal
direct et Φi l’union des angles d’arrivé de l’interférence. Nous avons le ré-
sultat suivant pour le cas d’un réseau d’antenne uniforme massif :

Corollaire 2. Soit D ≤ λ/2 and Φd ∩ Φi = ∅. L’estimation MMSE pour
(1.17) satisfait :

lim
M→∞

ĥ1 = ĥno int
1 . (1.20)

1.4.3 Affectation coordonnée des pilotes

Dans cette section, nous concevons un protocole de coordination perme-
ttant de distribuer les séquences de pilotes aux utilisateurs. Le rôle de la
coordination est d’optimiser l’utilisation des matrices de covariance dans le
but de satisfaire la condition de non chevauchement des supports des angles
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d’arrivé. Nous utilisons l’estimation de MMSE comme métrique de perfor-
mance afin de trouver le meilleur groupe d’utilisateur. Le principe de la
distribution des pilotes coordonnée consiste à exploiter la connaissance des
matrices de covariance.

Nous proposons une approche gloutonne/gourmande classique appelé
Affectation Coordonnée des Pilotes (CPA). La coordination peut être in-
terprétée comme suit : Pour minimiser l’erreur d’estimation, une station de
base tend à affecter un pilote donné à l’utilisateur dont la caractéristique
spatiale diffère fortement avec les utilisateurs interférents utilisant le même
pilote.

Deux types de distributions de l’angle d’arrivé sont considérées ici, un
non-borné (Gaussien) et un borné (uniforme) :

Distribution Gaussienne

Pour certain canal h
(j)
`k , les angles d’arrivé pour tous les trajets P sont

i.i.d. Gaussiennes de moyenne θ̄
(j)
`k et de variance σ2.

Notez que les distributions Gaussienne des angles d’arrivé ne peuvent
pas satifaire les conditions de non chevauchement des supports des angles
d’arrivé du Théorème 3, néanmoins l’utilisation de la méthode proposée dans
ce contexte donne également des gains substantiels lorsque σ2 diminue.

Distribution uniforme

Pour les canaux h
(j)
`k , les angles d’arrivé sont uniformément réparties sur

[θ̄
(j)
lk − θ∆, θ̄

(j)
lk + θ∆], où θ̄

(j)
`k est la moyenne des angles d’arrivé.

Dans ces figures, “LS” dénote l’estimation classique de canal en util-
isant la méthode des moindres carrés. “CB” dénote l’estimation Bayésienne
reposant sur la connaissance de la matrice de covariance (sans affectation
coordonnée des pilotes), et “CPA” est l’estimation Bayésienne basée sur Af-
fectation Pilote Coordonnée proposée dans cette thèse.

Dans le graphique 4.3 et le graphique 4.4, l’estimation MSE par rapport
au nombre d’antennes est illustrée. Quand les angles d’arrivés ont des dis-
tributions uniformes avec θ∆ = 10 degrés, comme dans Le graphique4.3, la
performance de l’estimateur CPA est améloirée si M varie de 2 à 10. Le
graphique4.4 est obtenue avec une distribution Gaussienne des angles d’ar-
rivé. Nous pouvons aussi observer un écart entre la CPA et l’estimateur
sans interference, en raison de la distribution Gaussienne qui ne verifie pas
la condition sur les bornes. Néanmoins, les gains sur l’estimateur classique
restent importants.
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Figure 1.7 – Estimation MSE vs. nombre de BS antennes, AOA uniformé-
ment distribuées avec θ∆ = 10 degrés, 2-cellules network.

0 5 10 15 20 25 30 35 40 45 50
−40

−35

−30

−25

−20

−15

−10

−5

Number of Antennas

E
st

im
at

io
n 

E
rr

or
 [d

B
]

 

 

LS Estimation

CB Estimation

CPA Estimation

LS − Interference Free

CB − Interference Free

Figure 1.8 – Estimation MSE vs. number of BS antennas, AOA distribués
gaussienne σ = 10 degrees, 2-cell network.
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Figure 1.9 – Taux par cellule vs. nombre de BS antennes, 2-cellules network,
AOA distribués gaussienne avec σ = 10 degrés.

Le graphique4.6 décrit le débit de la connection descendante pour une
cellule, obtenu par la stratégie de precodage adapté et comfirme les gains
obtenus lorsque l’estimation Bayésienne est utilisé en conjonction avec la
stratégie d’affectation coordonnée des pilotes (CPA) proposée et des gains
intermédiaires quand il est utilisé tout seul.

1.4.4 Conclusions

Cette partie propose une métode d’estimation du canal se basant sur
la connaissance de la matrice de covariance dans le contexte de systèmes
multi-cellulaires et d’antennes multiples dans le cas d’un régime limité par
les interférences. Nous développons des estimateurs Bayésiens et démontrons
analytiquement l’efficacité d’une telle approche pour les systèmes ayant un
grand nombre d’antennes, conduisant à une élimination complète des ef-
fets de la contamination de pilote dans le cas de matrices de covariance
satisfaisant une certaine condition de non-chevauchement des supports des
angles d’arrivé. Nous proposons une stratégie d’affectation coordonnée des
pilotes (CPA) qui aide à former des matrices de covariance verifiant la con-
dition nécessaire et mettons en évidence que des performances proches de
l’estimation sans interférence peuvent être atteintes.
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1.5 Décontamination basée sur la puissance et les
angles

Dans la section précédente, nous avons montré plusieurs techniques d’at-
ténuation des interférences se basant sur la connaissance statistique des
canaux des utilisateurs. Plus particulièrement, nous avons démontré que
dans le cas où le support des angles d’arrivé du canal direct ne se chevauche
pas avec le support des angles d’arrivés des utilisateurs interférents, une
méthode basée sur l’estimation MMSE atteint l’élimination totale des inter-
férences. Cependant, quand une telle condition de non-chevauchement n’est
pas satisfaite, une interférence résiduelle existe lors de l’estimation MMSE,
ce qui limite la performance des système MIMO massif. Dans cette section,
nous cherchons à résoudre ce type de problème en exploitant les statistiques
à court terme du canal.

1.5.1 Transmission de données

Soit un réseau multi-cellules multi-utilisateur ayant K utilisateurs par
cellule, et chacun desservi par sa propre station de base. Le canal multi-
utilisateur MIMO entre les K utilisateurs dans la cellule ` et la station de
base j est :

H
(j)
` ,

[
h

(j)
`1 h

(j)
`2 · · · h

(j)
`K

]
, (1.21)

et la matrice des pilote se composant de toutes les séquences de pilotes
utilisés par ces K utilisateurs est :

S ,
[
s1 s2 · · · sK

]T
. (1.22)

Pendant la phase d’apprentissage, le signal reçu à la station de base j est

Y(j) =
L∑
`=1

H
(j)
` S + N(j), (1.23)

où N(j) ∈ CM×τ est le spatialement et temporellement blanc bruit gaussien
additif (AWGN) avec moyenne nulle et variance élément par élément σ2

n.
Ensuite, pendant la phase de transmission de données de liaison mon-

tante, chaque utilisateur transmet C symboles de données. Le signal de don-
nées reçu à la station de base j est donné par :

W(j) =

L∑
`=1

H
(j)
` X` + Z(j), (1.24)
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où X` ∈ CK×C est la matrice de symboles émis par tous les utilisateurs
dans la `-ième cellule. Les symboles sont i.i.d. avec une moyenne nulle et
une variance unitaire. La matrice Z(j) ∈ CM×C a ses éléments i.i.d Gaussien
avec moyenne nulle et variance σ2

n.

1.5.2 Méthode basée sur la projection dans le domaine de
l’amplitude

Nous proposons ci-dessous de nouvelles méthodes d’estimation permet-
tant une estimation plus robust dans un scénario cellulaire réaliste.

Un seul utilisateur par cellule

Par soucis de clareté, nous considérons d’abord un scénario simple où
chaque cellule a un seul utilisateur, à savoir K = 1. Les utilisateurs dans des
cellules différentes partagent la même séquence de pilote s.

On introduit un filtre Ξj , qui est basé sur la connaissance des matrices
de covariance de canal d’une manière similaire à celle utilisée par le filtre
MMSE.

Ξj =

(
L∑
l=1

R
(j)
l + σ2

nIM

)−1

R
(j)
j . (1.25)

Le filtre spatial est appliqué au signal reçu à la station de base j comme

W̃j , ΞjW
(j). (1.26)

La méthode basée sur l’amplitude peut maintenant être appliqué sur les don-
nées reçues filtrées pour se débarrasser de l’interférence résiduelle. Prendre
le vecteur propre correspondant à la plus grande valeur propre de la matrice
W̃jW̃

H
j /C :

ũj1 = e1{
1

C
W̃jW̃

H
j }. (1.27)

Donc ũj1 peut être considérée comme une estimation de la direction du

vecteur Ξjh
(j)
j .

Nous annulons alors l’effet de la multiplication par la matrice Ξj en
utilisant

Ξj
′ , R

(j)†

j

(
L∑
l=1

R
(j)
l + σ2

nIM

)
, (1.28)
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et on obtient une estimation de la direction du vecteur de canal h
(j)
j comme

la suite :

uj1 =
Ξ′jũj1∥∥∥Ξ′jũj1∥∥∥

2

. (1.29)

Enfin, les ambigüıtés de phase et d’amplitude du canal peuvent être résolus
par la projection de l’estimation selon la méthode des moindres carrés sur
le sous-espace engendré par uj1 :

ĥ
(j)CA
j =

1

τ
uj1u

H
j1Y

(j)s∗, (1.30)

où “CA” désigne la projection dans le domaine d’amplitude en covariance.

L’algorithme est résumé ci-dessous :

Algorithm 1 Covariance-aided Amplitude based Projection

1: Prenez le premier vecteur propre de W̃jW̃
H
j /C comme dans (1.27), avec

W̃j étant le signal de données filtré.
2: Inverser l’effet du filtre spatial utilisant(1.29).
3: Résoudre les ambigüıtés de phase et d’amplitude par(1.30).

Les performances asymptotique de l’estimateur ci-dessus sont analysées
théoriquement. Afin de faciliter l’analyse, nous introduisons la condition
suivante :

Condition C1 : La norme spectrale de R
(j)
l est uniformément bornée :

∀M ∈ Z+ et∀l ∈ {1, . . . , L}, ∃ζ, s.t.
∥∥∥R(j)

l

∥∥∥
2
< ζ, (1.31)

où Z+ est l’ensemble des nombres entiers positifs, et ζ est une constante.

Performance asymptotique de l’estimateur CA

Soit

α
(j)
l , lim

M→∞

1

M
tr{ΞjR

(j)
l ΞH

j },∀l = 1, . . . , L. (1.32)

Théorème 4. Compte tenu de la condition C1, si l’inégalité suivante est
vraie :

α
(j)
j > α

(j)
l ,∀l 6= j, (1.33)
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Figure 1.10 – Estimation des performance versus M pour un réseau à deux-
cellules avec un utilisateur par cellule, un exposant d’atténuation γ = 0 et
un support angulaire recouvrant partiellement les angles d’arrivés à hauteur
de 60 degrés, C = 500, SNR = 0 dB.

alors, l’erreur d’estimation de (1.30) disparâıt :

lim
M,C→∞

∥∥∥ĥ(j)CA
j − h

(j)
j

∥∥∥2

2∥∥∥h(j)
j

∥∥∥2

2

= 0. (1.34)

De plus, la condition (1.33) du Theorème 4 peut alors être remplacé par∥∥∥Ξjh
(j)
j

∥∥∥
2
>
∥∥∥Ξjh

(j)
l

∥∥∥
2
, ∀l 6= j. (1.35)

Nous illustrons maintenant le Theorème 4 dans le graphique 5.1. Supposons
qu’on aie un réseau composé de deux cellules et que chaque cellule aie deux
utilisateurs. L’exposant d’attenuation est γ = 0, i.e., la puissance de l’inter-
férence de canal est la même que celle du canal direct. Les supports angu-
laires à trajets multiples de l’interférence et le canal désiré se superposent
donc à hauteur de 50 Dans cette courbe, “Pure amplitude” dénote la méth-
ode de projection basée seulement sur l’amplitude. “MMSE + amplitude”
représente l’estimateur à faible complexité proposé dans [4]. “Covariance-
aided amplitude” dénote la méthode de projection utilisant l’amplitude et
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Figure 1.11 – Estimation performance vs. M, 7-cellules network, 1 utilisa-
teurs par cellule, AoA réparties 60 degrés, exposant de perte de trajet γ = 2,
cellule-bord SNR = 0 dB.

la connaisance de la matrice de covariance (1.30). La courbe “MMSE - no
interference” montre l’erreur d’estimation de l’estimateur MMSE dans un
scénario sans interférence et sert ainsi de réference. Comme on peut le voir
sur la courbe 5.1, la méthode de projection utlisant l’amplitude et la covari-
ance surpasse la méthode d’estimation MMSE sans interférences.

Dans la courbe 5.2, nous considérons un réseau composé de 7 cellules,
avec un seul utilisateur par cellule. Les utilisateurs sont supposés être dis-
tribués de façon aléatoire et uniforme au sein de leurs propres cellules. La
propagation angulaire du canal d’utilisateur est de 30 degrés. L’exposant
d’attenuation est fixé à γ = 2. Il est possible d’observer comment la méth-
ode de projection exploitant à la fois la connaissance de l’amplitude et de la
matrice de covariance est plus performante que les autres méthodes.

Généralisation à plusieurs utilisateurs par cellule

Nous appliquons maintenant la méthode de projection basé sur l’ampli-
tude et la connaissance de la matrice de covariance dans le cas général, c’est
à dire lorsque K utilisateurs sont servis simultanément dans chaque cellule.

Nous considérons l’estimation du canal d’utilisateur h
(j)
jk dans la suite de

cette section.
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Pour simplifier les notations, nous introduisons la notation H
(j)
j\k pour

representer H
(j)
j après avoir enlevé sa k-ième colonne :

H
(j)
j\k ,

[
h

(j)
j1 · · · h

(j)
j(k−1) h

(j)
j(k+1) · · · h

(j)
jK

]
. (1.36)

L’estimation correspondant à (1.36), dénotée par Ĥ
(j)
j\k, est obtenue en élim-

inant la k-ième colonne de Ĥ
(j)
j , qui est une estimation selon la méthode des

moindre carrés de H
(j)
j .

Nous neutralisons tout d’abord l’interférence intra-cellulaire avec un fil-
tre dit de Zero-Forçage (ZF) et dénoté par Tjk en utilisant l’estimée Ĥ

(j)
j\k.

Ensuite, le filtre spatial Ξjk est appliquée. A l’issue de l’application de ces
2 filtres, le signal obtanu est :

W̃jk , ΞjkTjkW
(j), (1.37)

où

Tjk , IM − Ĥ
(j)
j\k(Ĥ

(j)H
j\k Ĥ

(j)
j\k)

−1Ĥ
(j)H
j\k , (1.38)

et

Ξjk ,

(
L∑
l=1

R
(j)
lk + σ2

nIM

)−1

R
(j)
jk . (1.39)

Hormis ces modifications, la méthode décrite dans le cas d’un seul utilisateur
peut être appliquée.

Soit le vecteur propre correspondant à la plus grande valeur propre de
la matrice W̃jkW̃

H
jk/C :

ũjk1 = e1{
1

C
W̃jkW̃

H
jk}. (1.40)

L’estimation de la direction de h
(j)
jk est obtenue par :

ujk1 =
Ξ′jkũjk1∥∥∥Ξ′jkũjk1

∥∥∥
2

, (1.41)

où

Ξ′jk , R
(j)†
jk

(
L∑
l=1

R
(j)
lk + σ2

nIM

)
. (1.42)
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Enfin, les ambigüıtés de phase et d’amplitude sont résolu durant la séquence

d’apprentissage pour obtenir l’estimation de h
(j)
jk :

ĥ
(j)CA
jk =

1

τ
ujk1u

H
jk1Y

(j)SH . (1.43)

Notez que dans cette méthode, nous construisons un filtre de type ZF Tjk en
se basant sur une estimation des moindres carréess. D’autres améliorations
peuvent être obtenus avec une estimation de plus grande qualité au prix
d’une complexité plus élevé.

1.5.3 Conclusions

Dans cette section, nous avons proposé plusieurs algorithmes robustes
d’estimation du canal en exploitant la diversité des trajets dans les domaines
d’angulaires et d’amplitude. La méthode de projection utilisant l’amplitude
et la covariance est robuste même dans le cas où le canal désiré et les canaux
d’interférence ont des angles d’arrivée ayant des supports se supperposant, et
ne sont pas séparables seulement en termes de puissance. L’analyse asymp-
totique montre les conditions dans lesquelles l’erreur d’estimation de canal
converge vers zéro.

1.6 Feedback coopératif pour le FDD

Dans la section précédente, nous avons abordé l’un des problèmes fonda-
mentaux de système MIMO massif : la contamination de pilote. Dans cette
section, nous traitons un autre défi - l’acquisition de l’information pour
les systèmes MIMO massifs dans le cas d’une transmission dans le mode
FDD. De manière à réduire la quantité d’information à transmettre dans
les système non-réciproques, nous proposons une methode exploitant une
coopération entre les utilisateurs. Plus précisemment, nous introduisons une
phase supplémentaire à la tranmsmission classique des informations de canal
durant laquelle les utilisateurs échangent entre eux l’information de canal
obtenue locallement. Cette information est ensuite transmisme coopérative-
ment afin de réduire la quantité d’information à transmettre.

1.6.1 Signal et modèles de canal pour FDD

Nous considérons une station de base MIMO massif desservant un groupe
de K utilisateurs ayant chacun une seule antenne. La station de base a M
antennes et fonctionne en mode FDD. Le canal de liaison descendante entre
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la station de base et l’utilisateur k est noté hHk ∈ C1×M . Le canal de liaison
descendante entier peut donc être représenté par

HH =

hH1
...

hHK


∈CK×M

. (1.44)

La transmission de liaison descendante est modélisée par :

y = HHBs + n, (1.45)

où y ∈ CK×1 est le signal reçu par tous les utilisateurs, s ∈ CK×1 représente
le vecteur de signaux Gaussiens i.i.d., et n représente le bruit blanc Gaussien,
centré, et une variance égale à σ2

n. B est la formation de faisceau de liaison
descendante ayant la puissance totale P .

Nous considérons un scénario dans lequel K utilisateurs sont situés à
proximité les uns des autres de telle sorte que leurs canaux présentent les
même caractistiques statistiques, i.e., ∀k,E{hkhHk } = R. Le rang de R est
supposé être égale à d. Soit la décomposition en valeur propres (EVD) de
R :

R = UΣUH (1.46)

En supposant que les valeurs propres de Σ sont triées par ordre décroissant,
les d premières colonnes de U sont extraites pour former une sous-matrice
U1 ∈ CM×d. Le vecteur de canal hk est donc dans l’espace engendré par U1,
c’est-à-dire ∀k,hk est une combinaison linéaire des colonnes de U1.

H =
[
h1 h2 · · · hk

]
= U1A, (1.47)

où A∈ Cd×K est défini comme :

A ,
[
a1 a2 · · · aK

]
=


a11 a12 · · · a1K

a21 a22 · · · a2K
...

... · · ·
...

ad1 ad2 · · · adK

 . (1.48)

1.6.2 Conception de l’acquisition de l’information de canal
sans D2D

La stratégie traditionnelle de feedback pour les système multi-utilisateurs
est de laisser chaque utilisateur quantifier son vecteur de canal de liaison de-
scendante puis envoyer l’information quantifiée à la station de base [5]. À

24



CHAPITRE 1. RÉSUMÉ [FRANÇAIS]

noter que dans la configuration MIMO massif, seulement une part de l’in-
formation de canal (notamment K coefficients par utilisateur) est nécessaire
pour atteindre l’orthogonalité entre les signaux de l’utilisateur.

En extrayant N lignes avec K ≤ N ≤ d de la matrice A, on peux obtenir
une matrice As∈ CN×K ; En prenant N colonnes correspondantes de U1,
on obtaient ainsi la matrice Us∈ CM×N . Nous pouvons alors reconstruire
partiellement la matrice de canal de la manière suivante :

H̃ , UsAs. (1.49)

Un filtre ZF utilisant cette information de canal peut alors être écrit comme

B =

√
P H̃†

||H̃†||F
. (1.50)

Il est décrit dans [6] comment former la matrice As en extrayant linéaire-
ment arbitrairement une sous-matrice de taille K × d de A. Si la station de
base connait obtient cette information de canal incomplète, elle garantit que
les utilisateurs ne reçoivent pas d’interférences après application du filtrage
ZF (1.50). Lorsque l’échange d’information de canal entre les utilisateurs
n’est pas possible, il est raisonnable de choisir les vecteurs propres des pre-
miers K lignes depuis U1 dans la mesure où ils représentent les K vecteurs
propres les plus forts en terme de statistiques.

1.6.3 Acquisistion coopérative de l’information de canal avec
D2D

Lorsque l’échange de l’information de canal est rendue possible entre les
utilisateurs, ceux-ci peuvent prendre une décision conjointe et déterminer
conjointement quel ensemble de vecteurs propres de U1, ou également quels
lignes extraire de A pour former la matrice As. Par exemple, nous pouvons
considérer le SNR à côté de l’utilisateur comme critère :

SNR =
P

||H̃†||2F
=

P

tr{(AH
s As)−1}

. (1.51)

Nous choisissons alors K parmi les d vecteurs propres de U1 pour que le
SNR soit maximisée.

G(2) = arg
N=K

min tr{(AH
s As)

−1}. (1.52)

L’optimalité de la décision de sélection des vecteurs propres est atteinte
par un algorithme de sélection décrémentielle qui est expliqué dans [7] [8].
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Nous commençons par considére le canal effectif A dans sa totalité. Sous la
condition que le SNR est minimum, les lignes de A sont retirés un par un,
jusqu’à il reste K lignes.

Lorsque la décision conjointe est prise, i.e., pour G(2), les utilisateurs
transmettent alors à la station de base la matrice As (quantifié) correspon-
dante, ainsi que les indices de G(2).

Trois régimes différents d’acquisition de l’information de canal sont éval-
ués et les performances des débits totaux sont donnés dans la Figure 6.1.
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Figure 1.12 – DL sum-rates with/without feedback cooperation, feedback
overhead : 16 bits per user, K = 3, M = 50.

Pour comparison, on suppose que la même quantité de bits de quan-
tification est disponible dans chacun des trois régimes. Chaque utilisateur
transmet alors 16 bits d’information à la station de base. La courbe“Quantize
full CSI, no D2D”désigne la performance lorsque la matrice de canal effective
A est transmie dans sa totalité. La courbe “Use strongest K eigen modes,
no D2D” indique la performance de chaque utilisateur pour K vecteurs pro-
pres dominants de R. La courbe “Cooperative feedback of CSI, D2D” fait
référence à la nouvelle méthode proposée. Les utilisateurs transmettent alors
les projections quantifiées et les indices des trois vecteurs propres qui sont
choisis. Les simulations numériques mettent clairement en évidence le gain
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de la méthode proposée.

1.6.4 Acquisition coopérative de l’indice du précodeur avec
D2D

Nous considérons maintenant une autre approche dans laquelle l’infor-
mation de canal n’est pas explicitement transmise mais l’indice du précodeur
à utiliser est transmis. L’échange de l’information de canal via D2D commu-
nications entre les utilisateurs permet à ceux-ci de choisir conjointement une
matrice de précodage. Après l’échange de cette information, les utilisateurs
sélectionnent conjointement la meilleure matrice de précodage selon un cer-
tain critère, et transmettent l’indice de la matrice de précodage sélectionnée.
Le critère de sélection peut varier en fonction de l’exigence de la complexité
du système. Un choix intuitive est la maximisation du débit total C.

Pour clarifier cette description, les principales étapes sont rappelées dans
la suite :

(1) Les utilisateurs envoient leur information de canal à un certain util-
isateur ”mâıtre”. Cet utilisateur mâıtre a maintenant la matrice effective de
canal A.

(2) L’utilisateur mâıtre recherche dans le dictionnaire l’indice du pré-
codage qui maximise le débit total :

(3) L’utisateur mâıtre transmet cet indice à la station de base.

(4) La station de base effectue un filtrage en utilisant la matrice du
dictionnaire désignée par l’indice reçu.

Les performances atteintes en utilisant cette méthodes sont illustrées
numériquement dans le graphique 6.2. Comme on peut le voir, la méthode
proposée apporte de significatifs gains de performance.

1.6.5 Conclusions

Dans cette section, nous proposons nue nouvelle méthode permettant
l’acquisition de l’information de canal lorsque les transmission s’effectuent
en mode FDD. Cette méthode répose sur l’échange d’information de canal
entre les utilisateurs de manière à optimiser la transmission vers la station de
base. Deux approches sont proposées pour l’optimisation de la transmission
vers la station de base après l’étape de partage de l’information. Dans la
première, l’information de canal est expicitement transmise alors que dans
la deuxième c’est l’indice du filtre à utiliser qui est transmis. Ces méthodes
aident à réduire le coût de l’acquisition de l’information de canal dans des
systèmes FDD MIMO massif.
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Figure 1.13 – DL Sum-taux de sélection coopérative de pré-codage et non-
coopérative CSI feedback, feedback overhead : 4 bits par utilisateur.
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Chapter 2

Introduction

Full reuse of the frequency across neighboring cells leads to severe inter-
ference, which in turn limits the quality of service offered to cellular users,
especially those located at the cell edge. As service providers seek some solu-
tions to restore performance in low-SINR cell locations, several approaches
aimed at mitigating inter-cell interference have emerged in the last few years.
Among these, the solutions which exploit the additional degrees of freedom
made available by the use of multiple antennas seem the most promising,
particularly so at the base station side where such arrays are more affordable.

In the cooperation approach, the so-called network MIMO (or CoMP
in the 3GPP terminology) schemes mimic the transmission over a virtual
MIMO array encompassing the spatially distributed base station antennas.
It goes at the expense of fast signaling links over the backhaul, a need for
tight synchronization, and seemingly multi-user detection schemes that are
computationally demanding in practice.

In an effort to solve this problem while limiting the requirements for
user data sharing over the backhaul network, coordinated beamforming ap-
proaches have been proposed in which 1) multiple-antenna processing is
exploited at each base station, and 2) the optimization of the beamforming
vectors at all cooperating base stations is performed jointly. Coordinated
beamforming does not require the exchange of user message information
(e.g., in network MIMO). Yet it still demands the exchange of channel state
information (CSI) across the transmitters on a fast time scale and low-
latency basis, making almost as challenging to implement in practice as the
above mentioned network MIMO schemes. Additionally, a major hurdle pre-
venting from realizing the full gains of MIMO multi-cell cooperation lies in
the cost of acquiring and sharing channel estimates using orthogonal training
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sequences over large clusters of cells [9].
Fortunately a path towards solving some of the essential practical prob-

lems related to beamforming-based interference avoidance was suggested
in [10]. In this work, it was pointed out that the need for exchanging Chan-
nel State Information at Transmitter (CSIT) between base stations could be
alleviated by simply increasing the number of antennas, M , at each transmit-
ter (so-called massive MIMO). The added cost of hardware is compensated
by the fact that simple distributed beamforming schemes that require little
inter-cell cooperation can efficiently mitigate interference [10–13]. This re-
sult is rooted in the law of large numbers, which predicts that, as the number
of antennas increases, the vector channel for a desired terminal will tend to
become more orthogonal to the vector channel of a randomly selected inter-
fering user. This makes it possible to reject interference at the base station
side by simply aligning the beamforming vector with the desired channel
(“Maximum Ratio Combining” or spatial matched filter), providing that lo-
cal channel information is known at the base station. Hence in theory, a
simple fully distributed per-cell beamforming scheme can offer performance
scaling (with M) similar to a more complex centralized optimization.

Despite its promising potential, there are several challenges and limiting
factors that restrain the performance of massive MIMO in practical system.
A brief review of the challenges (non-comprehensive) of massive MIMO is
given below.

– Pilot contamination problem. In reality, channel information is ac-
quired on the basis of finite-length pilot sequences, and crucially, in
the presence of inter-cell interference. Therefore, the pilot sequences
from neighboring cells would contaminate each other, giving rise to
the so-called pilot contamination (PC) problem [14], [15], [16]. It was
pointed out in [10] that pilot contamination constitutes a bottleneck
for performance.

– CSI acquisition in FDD mode. In FDD system, the channel reciprocity
does not hold. Thus CSIT has to be estimated and fed back to the
base station by user terminals. The required overhead of training and
feedback grows with the number of base station antennas. As a result,
the FDD deployment of massive MIMO is hampered by the practical
issue of large training and feedback overhead [17] [18].

– Reciprocity calibration. In TDD system, the wireless uplink and down-
link channels are in general reciprocal. However, when it comes to the
hardware of base station and user terminal, the channel reciprocity
may not hold anymore. This introduces an unknown amplitude scal-
ing and phase shift between the uplink and downlink channels. In order
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to have an accurate CSIT via uplink training, reciprocity calibration
is needed in practice [19].

– Hardware impairments. Some initial studies in [20] show that hardware
impairments give rise to channel estimation error and finite ceilings on
the channel estimation error and on the capacity. Another study in [21]
shows that phase noise causes the estimated channel outdated and thus
limits the length of data sequences and the number of scheduled users.

In this thesis, we look into the first two challenges and provide solutions
to these problems. More precisely, in chapter 3 we introduce some useful
properties of massive MIMO channels. In chapter 4 and chapter 5 we address
the CSI acquisition of TDD systems, particularly the pilot contamination
problem. In order to enhance the estimation quality, several novel chan-
nel estimation methods are proposed based on the newly identified channel
properties in chapter 3. In chapter 6 we consider the CSI acquisition of mas-
sive MIMO in FDD mode. We show novel approaches which help reduce the
CSI feedback overhead in FDD system.

2.1 Motivations

The realization of the high energy efficiency and throughput of massive
MIMO, especially in the downlink transmission, relies on the accurate knowl-
edge of the CSI. The system performance is very sensitive to the accuracy of
the channel information. Thus CSI acquisition is crucial, in both TDD and
FDD deployments. However, the acquisition of CSI is confronted by several
challenges in massive MIMO systems. This thesis is mainly motivated by
these challenges in both TDD and FDD duplexing schemes.

In practical wireless system, CSI is acquired based on training sequences
sent by user terminals. Due to limited time and frequency resources, non-
orthogonal pilot sequences are typically used by user terminals in neighbor-
ing cells, resulting in residual channel estimation error. This effect, called
pilot contamination [14], [16], has a detrimental impact on the actual achiev-
able spectral and energy efficiencies in real systems. In fact, the residual
error in channel estimation due to the unavoidable reuse of identical train-
ing sequences by user terminals in different cells was identified as a limiting
factor to cancel interference in massive MIMO networks. It has been shown
in [10], [15], [14], [16] that pilot contamination effects determine a quick
saturation of the interference rejection performance with the number of an-
tennas, thereby undermining the value of massive MIMO systems in cellular
networks. This problem will be addressed in chapter 4 and chapter 5 and
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efficient interference mitigation methods will be given.

In today’s cellular system, the large majority of currently deployed cel-
lular networks is operating in FDD mode. In this mode, the transmission on
uplink and downlink are in different frequency bands, thus, unlike in TDD
mode, channel reciprocity does not hold. The downlink channel information
is first obtained at user side via training signals, then fed back to the base
station. In massive MIMO systems with large number of BS antennas, this
feedback overhead in principle scales linearly with the number of BS anten-
nas, which renders the deployment of massive MIMO in FDD mode imprac-
tical. Thus, new feedback techniques have to be developed towards relieving
the feedback overhead before FDD mode is made more applicable in massive
MIMO systems. To this end, we propose in chapter 6 novel feedback schemes
which exploits the synergies between device-to-device communications and
massive MIMO. We demonstrate that with a fixed amount of feedback bits
available, our proposed methods have significant performance gains in terms
of sum-rate.

2.2 CSI Acquisition: Challenges and Avenues

The performance gains of massive MIMO largely rely on the channel in-
formation, which enables beamforming and interference canceling. In mas-
sive MIMO systems, CSI acquisition faces challenges in both TDD mode and
FDD mode, due to pilot contamination and training and feedback overhead
respectively. Before presenting our works, we briefly review the state-of-art
of the related research topics in this section.

2.2.1 CSI Acquisition in TDD Massive MIMO

Pilot contamination has fueled extensive research efforts in recent years.
This problem was first identified in [14] and analyzed in [22] [23] [16] for the
scenario with a large number of antennas at base station. It was pointed out
in [10] that this problem constitutes an important practical challenge for
massive MIMO. In [16], a multi-cell precoder optimization problem is for-
mulated in order to reduce interference. In [24] and [25] the authors studied
time-shifted pilots scheme in neighboring cells. A multi-cell joint precoding
method is proposed in [26], based on the assumptions that the data signals
for all users in all cells are available at each BS and that large-scale fad-
ing coefficients are known globally. In this case, multi-cell joint precoding is
performed.
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Some blind or semi-blind channel estimation methods are also proposed
[27–29] to reduce pilot contamination. These estimation schemes are based
on the assumption of asymptotic pairwise orthogonality between channel
vectors of different users. This assumption enables the identification of chan-
nel vectors based on the received data signal. In particular, [27] proposed
an eigenvalue decomposition (EVD)-based estimation scheme, which esti-
mated the channel subspace blindly from the received data signal. The re-
maining ambiguity is resolved using training sequences. An enhanced iter-
ative method is also proposed in [27] in order to improve the performance.
In [28,29], a blind pilot decontamination scheme is proposed. Analysis shows
that pilot contamination can be eliminated asymptotically if the signal of
interest is stronger than interference, a condition that may hold in a network
with power control and power-controlled handoff. In [30] [31], the authors im-
prove the EVD-based channel estimation with maximum a-posteriori (MAP)
criterion. A non-convex optimization problem is formulated and a local op-
timum can be achieved using gradient ascent method.

A pilot sequence hopping scheme is proposed in [32], which enables the
users to change the pilot sequences in each transmission time slot. By doing
so, a randomization of the pilot contamination can be achieved. Instead of
estimating the channels in each transmission time slot, the authors propose
to perform channel estimation once for several time slots. A Kalman filter is
developed in order to exploit this randomization effect, leading to pilot con-
tamination reduction. Another smart pilot reuse scheme is proposed in [33].
Inspired by fractional frequency reuse, the authors propose the idea of frac-
tional pilot reuse, where a fraction of the users which are close to their own
base stations reuse the same pilot pool in all the cells, while the other users
are assigned orthogonal pilots according to a reuse factor. In [34], the authors
propose a semi-blind estimation method which is similar to Robust Indepen-
dent Component Analysis (RobustICA) [35]. An optimization algorithm is
developed based on asynchronous pilot protocol.

Coordinated pilot allocation methods can be found in [36, 37]. The au-
thors of [37] formulate a combinatorial network utility maximization prob-
lem with respect to the pilot assignment strategy. Exhaustive searching and
low-complexity suboptimal solutions are given.

2.2.2 CSI Acquisition in FDD Massive MIMO

Some preliminary effort to address the problem of massive MIMO in FDD
deployment is [17]. In this paper, the authors propose joint spatial division
and multiplexing (JSDM) which exploits the property of the covariance ma-
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trices of channel vectors in order to reduce the dimension of instantaneous
CSI. A two-stage precoding strategy is proposed, with the prebeamforming
matrix depending on the second-order statistics of user channels only and an
instantaneous beamformer based on the reduced-dimensional instantaneous
CSI. This work identifies a low-rankness property of the channel covariance
matrix, independently of our work [36]. This property is utilized to reduce
training overhead and CSI feedback overhead, thus opening the way to the
feasibility of massive MIMO in FDD mode. A similar idea of two-stage pre-
coder is given in [38], where a subspace-tracking algorithm is formulated for
the computation of the statistical precoder.

In [39], a non-coherent trellis-coded CSI quantization method is pro-
posed, whose encoding complexity scales linearly with the number of BS
antennas, in contrast to traditional CSI quantization method where for a
fixed feedback rate per antenna, the size of the codebook for quantizing
the channel grows exponentially with the number of antennas. With such
efficient CSI quantization and feedback method, massive MIMO system op-
erating in FDD mode is made more feasible.

An antenna grouping based CSI feedback reduction method is proposed
in [40] [41]. The proposed algorithm maps multiple correlated antenna ele-
ments to a single representative value using pre-designed patterns. A header
is introduced in the feedback protocol in order to select a group pattern.
Then the reduced-dimensional channel vector is quantized and fed back to
the base station.

There are also numerous papers [42–49] discussing the training and/or
CSI overhead reduction methods using compressed sensing [50–54], based
on the (hidden) sparsity of massive MIMO channels in the domains of time,
frequency, and space.

2.2.3 Massive MIMO and D2D

Some initial concepts exploiting device-to-device communication was pro-
posed as early as [55] for the purpose of multihop relays in cellular networks.
Later, it is shown in that D2D can be exploited to increase the spectral
efficiency [56–59], as well as facilitate multicasting [60, 61], video dissemi-
nation [62–64], peer-to-peer communications [65], etc. Despite all these re-
search efforts on D2D, relatively few literatures investigate the benefits of
combining D2D technique with massive MIMO. Among them, [66] studies
the spectral efficiencies of cellular user and D2D user - which coexist in the
network - under both perfect CSI and imperfect CSI conditions. It is found
that under perfect CSI, the received SINRs of cellular users increase without
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limit, and that the effects of noise, fast fading, and the interference from the
other co-channel cellular users and D2D users vanish completely. On the
contrary, under more realistic CSI condition, i.e., with MMSE-based chan-
nel estimate, the received SINR is further degraded due to interference from
D2D users, in addition to pilot contamination. The works [67,68] investigate
the average sum-rate and energy efficiency of a network with underlaid D2D
communications. The authors show that underlaid D2D users and cellular
users can co-exist well without significant performance degradation when the
density of D2D users is small. This limitation is due to the co-channel inter-
ference between D2D users and cellular users, a similar conclusion of [66].

2.3 Contributions and Publications

This thesis mainly concerns the signal processing aspect of massive MIMO.
We address the problem of CSI acquisition in both TDD and FDD modes. In-
terference mitigation in channel estimation phase and CSI feedback overhead
reduction are the focus of this thesis. We propose novel schemes exploiting
the channel properties that are specific to massive MIMO. These properties
are modeled theoretically and verified by Monte Carlo experiments. The
performance gains of the new signal processing methods are confirmed by
simulations.

The contributions of this PhD thesis are listed below:

2.3.1 MMSE-based pilot decontamination

We reveal a fundamental property of massive MIMO channel – the
reduced-rankness of channel covariance matrix. We derive closed-form ex-
pression of the rank of the covariance matrix for uniform linear array (ULA).
The rank is a function of the angular support of multipath AoA. This is typ-
ically verified in realistic scenarios due to the limited angle spread followed
by incoming paths originating from street-level users [69]. This low-rankness
property is proved to be helpful in massive MIMO interference mitigation,
including pilot contamination reduction. Therefore we exploit the fact that
the desired user signals and interfering user signals are received at the base
station with (at least approximately) low-rank. We show that the perfor-
mance of the LMMSE channel estimator depends on the level of overlapping
between the desired signal subspace and the interference subspace. Impor-
tantly, we are the first to prove that pilot contamination can be eliminated
completely under certain condition on the AoA distributions. This condition
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is identified as the non-overlapping condition: if the AoA supports of interfer-
ence channels do not overlap with the AoA support of desired channel, then
pilot contamination vanishes asymptotically with the number of BS anten-
nas. Moreover, we propose a strategy for the assignment of pilot sequences.
This strategy helps assign carefully selected groups of users to identical pilot
sequences so as to minimize the channel estimation error. Performance close
to the interference-free channel estimation scenario is obtained for moderate
numbers of antennas and users.

These results were published in

– Haifan Yin, David Gesbert, Miltiades Filippou, and Yingzhuang Liu
“A coordinated approach to channel estimation in large-scale multiple-
antenna systems”, IEEE Journal on Selected Areas in Communica-
tions, special issue on large-scale antenna systems, Vol. 31, No. 2, pp.
264-273, Feb. 2013.

– Haifan Yin, David Gesbert, Miltiades Filippou, and Yingzhuang Liu
“Decontaminating pilots in massive MIMO systems”, International Con-
ference on Communications (ICC 2013), Jun. 9-13, 2013, Budapest,
Hungary.

2.3.2 Generalized low-rankness of channel covariance and its
applications

We consider a uniform linear massive array system yet with several clus-
ters of AoA supports from each user. In this case we establish a low-rank
model for the channel’s covariance that directly extends that of our pre-
vious work [36], where the rank is shown to be a function of the incom-
ing/departing angular spread of multipath. We prove that the reduce-rank
property of the channel covariance matrix revealed in [36] also holds in this
more general setting. We then show that a similar low-rank result holds for
a linear array with random placement of antenna elements. More surpris-
ingly, we show that the low-rankness property extends to two dimensional
distributed large scale arrays. In particular we build our analysis under the
classical one-ring model, which shows the dependence of the signal subspace’s
richness on the scattering radius around the user terminal. Closed-form ex-
pression of the upper bound of the channel covariance’s rank is given. The
applications of the low-rankness covariance property to channel estimation’s
denoising and low-complexity interference filtering are highlighted.

These results are published in

– Haifan Yin, David Gesbert, and Laura Cottatellucci “Dealing with in-
terference in distributed large-scale MIMO systems: A statistical ap-
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proach”, IEEE Journal of Selected Topics in Signal Processing, Vol. 8,
No. 5, Oct. 2014.

– Haifan Yin, David Gesbert, and Laura Cottatellucci “A statistical ap-
proach to interference reduction in distributed large-scale antenna sys-
tems”, International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP 2014), May, 2014, Florence, Italy.

2.3.3 Robust Angle/Power based Pilot Decontamination

In an another effort to cope with pilot contamination, we propose a fam-
ily of robust algorithms which provide significant improvement over known
methods. Specifically, our contributions are as follows: We propose a spa-
tial filter which helps bring down the power of interference while preserving
the signal of interest. With this spatial filter, we present a novel channel
estimation scheme called “covariance-aided amplitude based projection”. It
combines the merits of linear MMSE estimator and the amplitude based
projection method proposed in [28,29], yet can be shown to have significant
gains over these known schemes.

Then we give asymptotic analysis on this proposed method and provide
weaker condition compared to the previous methods where the estimation
error of the proposed method goes to zero asymptotically in the limit of
large number of antennas and data symbols.

In addition, as the uniformly boundedness of the largest eigenvalue of
channel covariance was reported to be useful in previous work (such as [70])
but not formally analyzed, we identify in the case of ULA a sufficient propa-
gation condition under which the uniformly bounded spectral norm of chan-
nel covariance is satisfied exactly.

Finally we propose two low-complexity alternatives of the first method.
An asymptotic performance characterization is also given.

These results are published in

– Haifan Yin, Laura Cottatellucci, David Gesbert, Ralf R. Müller, and
Gaoning He, “Robust pilot decontamination based on joint angle and
power domain discrimination”, accepted for publication in IEEE Trans-
actions on Signal Processing. Sept. 2015. [Online]. Available:
http://arxiv.org/abs/1509.06024

– Haifan Yin, Laura Cottatellucci, David Gesbert, Ralf R. Müller, and
Gaoning He, “Pilot decontamination using combined angular and am-
plitude based projections in massive MIMO systems”, IEEE 16th Work-
shop on Signal Processing Advances in Wireless Communications (SPAWC
2015), Jun. 28 - Jul. 1, 2015, Stockholm, Sweden. (invited).
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– Haifan Yin, Laura Cottatellucci, David Gesbert, Ralf R. Müller, and
Gaoning He, “Robust pilot decontamination: A joint angle and power
domain approach”, International Conference on Acoustics, Speech and
Signal Processing (ICASSP 2016), Mar. 20 - Mar. 25, 2016, Shanghai,
China.

2.3.4 Cooperative Feedback for FDD Massive MIMO

We address the problem of CSI acquisition for massive MIMO in FDD
deployments. In this setting, CSI is obtained by user terminal and then
fed back to the base station. Due to the large number of BS antennas,
CSI acquisition is in general challenging in FDD mode. To this end, we
propose a three-phase cooperative closed-loop feedback as an alternative to
the traditional per-user feedback loop, in order to reduce the amount of
feedback for FDD systems. This novel feedback mechanism is enabled by
device to device communications. Specifically, the UTs estimate the channel
parameters in the channel sounding phase, then exchange the acquired local
CSI in a cluster of users. After this the users perform a joint optimized design
of the feedback before transmitting it to the base station. Two methods
of the joint feedback are proposed. The first method performs an optimal
selection of the reduced effective subspace based on the shared CSI. The
second approach benefits from the knowledge of the shared CSI by selecting
the best precoder from a predefined codebook.

These results are published in the following paper:
– Haifan Yin, Laura Cottatellucci, and David Gesbert, “Enabling mas-

sive MIMO systems in the FDD mode thanks to D2D communica-
tions”, Asilomar Conference on Signals, Systems, and Computers (Asilo-
mar 2014), Nov. 2-5, 2014, Pacific Grove, CA, USA (invited),

and the following patent:
– Laura Cottatellucci, Haifan Yin, David Gesbert, Gaoning He, and

Georg M. Kreuz, “Closed-loop CSI feedback with co-operative feed-
back design for use in MIMO/MISO systems”, European Patent, PCT
application number: PCT/EP2014/073501, Oct. 31, 2014,
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Properties of Massive MIMO
Channels

A promising approach to improve CSI acquisition method lies in ex-
ploiting the specific features of the channel itself. In massive MIMO, some
particular properties of the wireless channel emerge, that can be exploited
towards improved channel estimation and interference mitigation. In this
chapter, we will review these specific properties of massive MIMO channels.

3.1 Network Model

We consider a network of L time-synchronized cells, with full spectrum
reuse. Each base station is equipped with M antennas. There are K single-
antenna users in each cell simultaneously served by their base station. In
order to ease the notation, we consider a narrow band system, e.g., one
carrier of orthogonal frequency-division multiplexing (OFDM) system. The
uplink channel estimation is obtained at the base station (BS) by uplink
training signal and possibly data signal sent by user terminals. When the
cellular network operates in TDD mode, due to channel reciprocity, this up-
link channel estimate can directly be utilized in the downlink precoding and
data transmission. Denote the M × 1 channel vector between the k-th user
located in the l-th cell and the j-th base station by h

(j)
lk . In this chapter,

we investigate the special properties of massive MIMO channels. In particu-
lar, we characterize the low-dimensional property of the channel covariance,
which will be shown very helpful in interference mitigation techniques in
chapter 4, 5, and 6.
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3.2 Low-Rank Model in ULA

3.2.1 Channel Model

In this section, we will study the wireless channels of the widely deployed
ULA. The following classical multipath channel model [1] is adopted in this
thesis:

h
(j)
lk =

β
(j)
lk√
P

P∑
p=1

a(θ
(j)
lkp)e

iϕ
(j)
lkp , (3.1)

where P is the arbitrary large number of i.i.d. paths, and eiϕ
(j)
lkp is the i.i.d.

random phase, which is independent over channel indices l, k, j, and path
index p. a(θ) is the steering (or phase response) vector by the array to a
path originating from the angle of arrival θ:

a(θ) ,


1

e−j2π
D
λ

cos(θ)

...

e−j2π
(M−1)D

λ
cos(θ)

 , (3.2)

where λ is the signal wavelength and D is the antenna spacing which is
assumed fixed. Note that we can limit θ to θ ∈ [0, π] because any θ ∈ [−π, 0)

can be replaced by −θ giving the same steering vector. β
(j)
lk is the path-loss

coefficient

β
(j)
lk =

√
α

d
(j)
lk

γ , (3.3)

in which γ is the path-loss exponent, d
(j)
lk is the geographical distance be-

tween the user and the j-th base station, and α is a constant.

3.2.2 Low-rankness property of ULA

Without loss of generality, we consider a certain user (either desired user
or interference user). The angle support of this user is Φ = [θmin, θmax],
which means the probability density function (PDF) p(θ) of the AoA of this
user channel h satisfies p(θ) > 0 if θ ∈ Φ and p(θ) = 0 if θ /∈ Φ. We have the
following claim on the rank of the covariance matrix R of this user:

Theorem 1. The rank of the channel covariance matrix R satisfies:

rank(R)

M
6 d, when M is sufficiently large ,
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where d is defined as

d ,
(
cos(θmin)− cos(θmax)

)D
λ
.

Proof: The proof relies on an intermediate lemma given below:

Lemma 1. Define α(x) , [ 1 e−jπx · · · e−jπ(M−1)x ]T and A , span{α(x), x ∈
[−1, 1]}. Given b1, b2 ∈ [−1, 1] and b1 < b2, define B , span{α(x), x ∈
[b1, b2]}, then

– dim{A} = M
– dim{B} ∼ (b2 − b1)M/2 when M grows large.

Proof: See Appendix .1.
Lemma 1 characterizes the number of dimensions a linear space has,

which is spanned by α(x), in which x plays the role of spatial frequency.
The rest of the proof of Theorem 1 is shown in Appendix .2.

Theorem 1 indicates that for large M , there exists a null space null(R) of
dimension (1−d)M , which can be exploited for the purpose of interference re-
jection. Interestingly, related low-rank properties of the covariance matrices
were independently derived in [17] for the purpose of reducing the overhead
of downlink channel estimation and CSI feedback in massive MIMO for FDD
systems.

Theorem 1 states the low-rankness property of a channel covariance when
the multipath AoAs span one continuous interval. A more general result is
now given. Consider a general multipath model when the AoAs correspond-
ing to a certain user’s channel are still bounded, but come from several dis-
joint clusters. Let Q denote the number of clusters. Let [θmin

q , θmax
q ] denote

the interval of AoAs for the q-th cluster of the paths in the [0, π] interval.
See an illustration in Fig. 3.1 for Q = 2. Define the total set of AoAs of the
channel of interest as

Φ , ∪Qq=1[θmin
q , θmax

q ], (3.4)

so that the PDF p(θ) of the AoA satisfies p(θ) > 0 if θ ∈ Φ and p(θ) = 0 if
θ /∈ Φ. we have the following corollary for this general setting:

Corollary 1. The rank of channel covariance matrix R satisfies:

rank(R)

M
6 d, when M is sufficiently large ,

where d is defined as

d , min(1,

Q∑
q=1

(
cos(θmin

q )− cos(θmax
q )

)D
λ

).
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1
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Multipath

Figure 3.1 – Desired channel composed of Q = 2 clusters of multipath.

Proof: The channel can be seen as the sum of elementary channels each of
which corresponds to one separate clusters. Then R can be decomposed into
a sum of covariances over these clusters. Since the clusters are separated,
the signal subspaces of the corresponding covariances are orthogonal and
therefore their dimensions add up. Then based on Theorem 1 and Lemma
1, the proof of Corollary 1 can be readily obtained.

The low-rankness property shown in Theorem 1 and Corollary 1 reveal a
fundamental feature of massive MIMO channel. This feature can be exploited
in application scenarios like spatial multiplexing [17], pilot contamination
reduction, and interference mitigation.

3.3 Low-Rank Model in Random Linear Arrays

3.3.1 Channel Model

Tightly calibrated arrays with uniform spacing are hard to realize in
practice. An interesting question is whether the low-rankness results shown
in section 3.2.2 carry on to the setting of linear arrays with random antenna
placement. To study this case, we consider a set of antennas randomly lo-
cated over a line, and spanning a total aperture of D meters. We investigate
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the extended array and D is allowed to grow with M .

In this case, an elementary path coming from an angle θ can be repre-
sented via the corresponding array response vector as:

a(θ) ,


e−j2π

d1
λ

cos(θ)

...

e−j2π
dM
λ

cos(θ)

 , (3.5)

where the position of the m-th antenna 1 (1 ≤ m ≤ M), dm, follows a
uniform distribution, i.e., dm ∼ U(0,D).

3.3.2 Low-rankness Property of Random Linear Array

We now study the rank of channel covariance for a random linear array.
Define the average antenna spacing D , D/M . Assuming the aperture of
antenna array D is increasing linearly with M , i.e., D is constant, we now
have the extended results on the low-dimensional property:

Proposition 3. Define

α(x) ,
[
e−j2π

d1
λ
x, · · · , e−j2π

dM
λ
x
]T

B , span{α(x), x ∈ [b1, b2]}
C , span{α(x), x ∈ b},

where b1, b2 ∈ [−1, 1], b , ∪Qq=1[bmin
q , bmax

q ], and bmin
q , bmax

q are values such
that

−1 6 bmin
1 < bmax

1 < · · · < bmin
q < bmax

q < · · · < bmin
Q < bmax

Q 6 1

then we have

– dim{B} ≤ (b2 − b1)MD/λ+ o(M)
– dim{C} ≤

∑Q
q=1

(
bmax
q − bmin

q

)
MD/λ+ o(M)

Proof: See Appendix .4.

Proposition 3 indicates the dimensions spanned in massive MIMO regime
by elementary paths for (i) single cluster of AoA, and (ii) multiple disjoint
clusters of AoA, respectively. The following result now directly generalizes
Corollary 1 to random arrays.

1. Note that antenna ordering has no impact on our results.
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Proposition 4. With a bounded support of AoAs Φ as in (3.4), the rank of
channel covariance matrix R satisfies:

rank(R) ≤
Q∑
q=1

(
cos(θmin

q )− cos(θmax
q )

)MD

λ
+ o(M), (3.6)

Proof: We can readily obtain this result by replacing x with cos(θ) in
Proposition 3.

This result above suggests that the low-dimensional feature of signal sub-
spaces in massive MIMO is not critically linked to the Fourier structure of
the steering vectors. Furthermore, it should be noted that the above upper
bound is actually very tight for large M , as witnessed from the simulation
in Fig. 3.2, where we take Q = 1, D = λ/2 for example. The AoA spread is
40 degrees, and the closed form model refers to

f(M) ,
Q∑
q=1

(
cos(θmin

q )− cos(θmax
q )

)MD

λ
.

We can observe that rank(R) is well approximated by f(M).
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Closed−form Model

Figure 3.2 – Closed-form rank model for the channel covariance vs. actual
rank.

Proposition 4 and Fig. 3.2 suggest that a property of rank additivity
holds for multiple disjoint clusters of AoAs in the massive MIMO regime,
i.e., for M → +∞.
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3.4 Low-Rank Model in DAS

3.4.1 Channel Model

We now turn to another popular form of large scale antenna regime,
often referred to in the literature as distributed antenna systems. In such a
setting, a virtual base station is deployed having its M antennas scattered
throughout the cell. 2 We consider again the uplink in which joint combining
across all BS antennas is assumed possible. The M base station antennas
are assumed uniformly and randomly located in a fixed size network, serving
single-antenna users. M is allowed to grow large giving rise to a so-called
dense network. Our model assumes a disk-shaped cell of radius Rc, although
simulation and intuition confirm that the actual shape of the cell’s boundary
is irrelevant to the main result. In order to facilitate the analysis, we adopt
the one-ring model [2, 3] where users are surrounded by a ring of P local
scatterers (see Fig. 3.3) located r meters away from the user. The positions
of the scatterers are considered to follow a uniform distribution on the ring.
In the one-ring model, the propagation from user to base is assumed to
follow P paths (hereafter referred to as scattering paths), where each path
p bounces once on the p-th scatterer before reaching all M destinations. 3

Hence, the path length from user k to the m-th antenna via the p-th
path is r + dkpm, where dkpm is the distance between the p-th scatterer of
the k-th user and the m-th BS antenna. The path loss of the p-th scattering
path is modeled by:

βkpm =
α

(dkpm + r)γ
, (3.7)

where α is a constant that can be computed based on desired cell-edge SNR,
and γ is the path loss exponent. We scale the amplitude of each path by

√
P .

The channel between user k and all BS antennas is given by:

hk ,
1√
P

P∑
p=1

hkp, (3.8)

where hkp is the p-th scattering path vector channel between user k and all

2. For ease of exposition we temporarily consider a single cell setting in this section,
i.e., L = 1. However simulation is also done later in a multi-cell scenario.

3. Note that this model assumes the BS antennas are high enough above clutter so
that there is no local scattering around the BS antennas.
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base stations:

hkp ,


√
βkp1e

−j2π
dkp1+r

λ

...√
βkpMe

−j2π
dkpM+r

λ

 ejϕkp , (3.9)

where ejϕkp denotes the random common phase of that scattering path vector
due to possible random perturbations of the user location around the ring
center or the phase shift due to the reflection on the scatterer. ϕkp is assumed
i.i.d. and uniformly distributed between 0 to 2π.

BS antennas

MS 1

MS 2

Ring of 
Scatterers

r

Scatterers

Multipath

Figure 3.3 – The distributed large-scale antenna setting with a one-ring
model.

3.4.2 Low-rankness Property of DAS

We have shown in section 3.2.2 and 3.3.2 the low-dimension property
for co-located linear antenna array systems. In attacking this problem it is
important to distinguish the rank reduction effect due to path loss from the
intrinsic finite-rank behavior of the large antenna channel covariance in an
equal path loss regime. In fact, in an extended network (i.e. where some
base station antennas can be arbitrarily far from some users), the signal
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Figure 3.4 – Rank vs. r, M = 2000, λ = 0.15m, Rc = 500m.

of any given user will be received over only a limited number of antennas
in its vicinity, thereby effectively limiting the channel rank to the size of
this neighborhood. To circumvent this problem, we consider below a (dense)
network where the path loss terms are set artificially to be all equal (to
one) and study the finite-rankness under such conditions. In this model,
the channel covariance is defined as R , E{hhH} where the expectation is
taken over the random positions of the scatterers on the ring. Note that our
analysis indicates that a randomization over the user’s location inside the
scattering’s disk would produce an identical upper bound on the rank.

Theorem 2. The rank of the channel covariance matrix for a distributed
antenna system satisfies:

rank(R) ≤ 4πr

λ
+ o(r). (3.10)

Proof: See Appendix .5.

In reality we show below that the right hand side of (3.10) is a very close
approximation of the actual rank, which is defined as the number of eigen-
values of R which are greater than a prescribed threshold (in our simulations
it is taken to be 10e-5). Theorem 2 shows a linear dependency of the rank on
the size of the scattering ring. When r increases, the richer scattering envi-
ronment expands the dimension of signal space. Fig. 3.4 shows the behavior
of the covariance rank with respect to the scattering radius r. We can see
the rank scales linearly with the slope 4π/λ. However because of the finite
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number of antennas the rank will finally saturate towards M when r keeps
increasing.

3.5 Uniformly Boundedness of Channel Covariance
in ULA

Now we characterize the property of the uniformly boundedness of the
spectral norm of the channel covariance matrix in ULA. This property will
be shown useful in the analysis of chapter 5. In addition, many papers (such
as [70]) using random matrix method build the analysis on the assumption of
the uniformly bounded spectral norm of covariance matrix. Yet, the validity
of this assumption has not been proved before. In this section, we identify in
the case of ULA a sufficient propagation condition under which the uniformly
bounded spectral norm of channel covariance is satisfied exactly.

The spectral norm of R denotes its largest eigenvalue. As shown in sec-
tion 3.2.2, the rank of a channel covariance scales linearly with the number
of antennas, which gives us an intuition that the channel energy spreads
over a subspace whose dimension grows with M , and that the energy is not
concentrated on one or several eigenvectors of the channel covariance. This
intuition is proved in the following preposition:

Proposition 5. Let Φ be the AoA support of a certain user. Let p(θ) be
the probability density function of AoA of that user. If p(θ) is uniformly
bounded, i.e., p(θ) < +∞,∀θ ∈ Φ, and Φ lies in a closed interval that does
not include the parallel directions with respect to the array , i.e., 0, π /∈ Φ,
then, the spectral norm of the user’s covariance R is uniformly bounded:

∀M, ‖R‖2 < +∞. (3.11)

Proof: See Appendix .7.

Note that this result is hinted upon [17] by resorting to approximation of
R by a circulant matrix. Our Proposition 5 here gives a formal proof of the
previous approximated result.

3.6 Conclusions

In this chapter we point out several fundamental properties of massive
MIMO users’ channels. We investigate the low-dimensional properties of co-
variance signal subspaces in general topologies of massive arrays, including
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uniform linear array, random linear array, and 2D distributed array. An-
other revealed property is the uniformly boundedness of the spectral norm
of channel covariance for ULA. These properties will be shown helpful in
later chapters when dealing with interference and reducing the amount of
CSI feedback.
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Chapter 4

Covariance based Channel
Estimation

4.1 Introduction

As shown in chapter 3, the channel covariance matrix of massive MIMO
exhibits a useful low-rankness property. In this chapter, we exploit this prop-
erty towards improving CSI acquisition of massive MIMO in TDD deploy-
ments. This chapter focuses on the problem of channel estimation and inter-
ference reduction in the presence of multi-cell interference generated from
pilot contamination. We propose an estimation method which provides a
substantial improvement in performance. It relies on the exploitation of dor-
mant side-information lying in the second-order statistics of the user chan-
nels, both for desired and interfering users. In particular, we demonstrate
a powerful result indicating that the exploitation of covariance information
under certain subspace conditions on the covariance matrices can lead to a
complete removal of pilot contamination effects in the largeM limit. We then
turn to a practical algorithm design where this concept is exploited. The key
idea behind the new algorithm is the use of a covariance-aware pilot assign-
ment strategy within the channel estimation phase itself. While diversity-
based scheduling methods have been popularized for maximizing various
throughput-fairness performance criteria [71], [72], [73], [74], the potential
benefit of user-to-pilot assignment in the context of interference-prone chan-
nel estimation has received very little attention so far. Finally, as another
application of the previous identified low-rankness of the channel covariance
matrix in chapter 3, a simple subspace-based interference mitigation scheme
is put forward, which exploits the statistical information of the interference
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channels.

4.2 UL training

Consider the uplink training of a massive MIMO system. We assume the
pilots, of length τ , used by single-antenna users in the same cell are mutually
orthogonal. As a result, intra-cell interference is negligible in the channel
estimation phase. However, non-orthogonal (possibly identical) pilots are
reused from cell to cell, resulting in pilot contamination from L−1 interfering
cells. For ease of exposition, in this chapter we consider the case of single
user per cell, unless otherwise notified. The pilot sequence used in the l-th
cell is denoted by:

sl = [ sl1 sl2 · · · slτ ]T . (4.1)

The powers of pilot sequences are assumed equal such that |sl1|2 + · · · +
|slτ |2 = τ, l = 1, 2, . . . , L. Without loss of generality, we assume the first
cell is the target cell so that we can drop the BS index on the superscript
of channel vector. The channel vector between the l-th cell user and the
target base station is hl. Thus, h1 is the desired channel while hl, l > 1 are
interference channels. All channel vectors are assumed to be M × 1 complex
Gaussian, undergoing correlation due to the finite multipath angle spread
at the base station side [75]:

hl = R
1/2
l hWl, l = 1, 2, . . . , L, (4.2)

where hWl ∼ CN (0, IM ) is the spatially white M × 1 SIMO channel, and
CN (0, IM ) denotes zero-mean complex Gaussian distribution with covari-
ance matrix IM . In this chapter, we make the assumption that covariance
matrix Rl , E{hlhHl } can be obtained separately from the desired and in-
terference channels (see section 4.8 for how this could be done in practice).

During the pilot phase, the M × τ signal received at the target base
station is

Y =

L∑
l=1

hls
T
l + N, (4.3)

where N ∈ CM×τ is the spatially and temporally white additive Gaussian
noise (AWGN) with zero-mean and element-wise variance σ2

n.
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4.3 Pilot Contamination Problem

Conventional channel estimation relies on correlating the received signal
with the known pilot sequence (referred here as Least Squares (LS) estimate
for example). Hence, using the model in (5.3), an LS estimator for the desired
channel h1 is

ĥLS
1 = Ys1

∗(s1
T s1
∗)
−1
. (4.4)

The conventional estimator suffers from a lack of orthogonality between the
desired and interfering pilots, an effect known as pilot contamination [14],
[22], [23]. In particular, when the same pilot sequence is reused in all L cells,
i.e., s1 = · · · = sL = s, the estimator can be written as

ĥLS
1 = h1 +

L∑
l 6=1

hl + Ns∗/τ . (4.5)

As it appears in (4.5), the interfering channels leak directly into the desired
channel estimate. The estimation performance is then limited by the signal
to interfering ratio at the base station, which in turns limits the ability to
design an effective interference-avoiding beamforming solution.

4.4 Covariance-aided Channel Estimation

We hereby propose an improved channel estimator with the aim of re-
ducing the pilot contamination effect, and taking advantage of the multiple
antenna dimensions. We suggest to do so by exploiting side information
lying in the second order statistics of the channel vectors. The role of covari-
ance matrices is to capture structure information related to the distribution
(mainly mean and spread) of the multipath angles of arrival at the base sta-
tion. Due to the typically elevated position of the base station, rays impinge
on the antennas with a finite AoA spread and a user location-dependent
mean angle. Note that covariance-aided channel estimation itself is not a
novel idea, e.g., in [76]. In [77], the authors focus on optimal design of pilot
sequences and they exploit the covariance matrices of desired channels and
colored interference. The optimal training sequences were developed with
adaptation to the statistics of disturbance. In our work, however, the pilot
design is shown not having an impact on interference reduction, since fully
aligned pilots are transmitted. Instead, we focus on i) studying the limiting
behavior of covariance-based estimates in the presence of interference and
large-scale antenna arrays, and ii) how to shape covariance information for
the full benefit of channel estimation quality.
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4.4.1 Bayesian Estimation

In this section we develop channel estimators based on the second-order
statistics of the channels. Two Bayesian channel estimators can be formed.
In the first, all channels are estimated at the target base station (including
interfering ones). In the second, only h1 is estimated.

By vectorizing the received signal and noise, our model (5.3) can be
represented as

y = S̃h + n, (4.6)

where y = vec(Y), n = vec(N), and h ∈ CLM×1 is obtained by stacking all
L channels into a vector. The pilot matrix S̃ is defined as

S̃ ,
[

s1 ⊗ IM · · · sL ⊗ IM
]
. (4.7)

Applying Bayes’ rule, the conditional distribution of the channels h given
the received training signal y is

p(h|y) =
p(h)p(y|h)

p(y)
. (4.8)

We use the multivariate Gaussian probability density function (PDF) of the
random vector h and assume its rows h1, · · · ,hL are mutually independent,
giving the joint PDF:

p(h) =

exp

(
−

L∑
l=1

hHl R−1
l hl

)
πLM (det R1 · · · det RL)M

. (4.9)

Note that we derive this Bayesian estimator under the standard condition
of covariance matrix invertibility, although we show later this hypothesis
is actually challenged by reality in the large-number-of-antennas regime.
Fortunately, our final expressions for channel estimators completely skip the
covariance inversion.

Using (5.5), we may obtain:

p(y|h) =
exp

(
−(y − S̃h)

H
(y − S̃h)/σ2

n

)
(πσ2

n)Mτ
. (4.10)

Combining the equations (4.9) and (4.10), the expression of (4.8) can be
rewritten as

p(h|y) =
exp (−l(h))

AB
, (4.11)
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where A , p(y)(πσ2
n)Mτ , B , πLM (det R)M = πLM (det R1 · · · det RL)M ,

and
l(h) , hHR̄h + (y − S̃h)H(y − S̃h)/σ2

n, (4.12)

in which R , diag(R1, · · · ,RL), R̄ , R−1.
Using the maximum a posteriori (MAP) decision rule, the Bayesian es-

timator yields the most probable value given the observation y [78]:

ĥ = arg max
h∈CLM×1

p(h|y)

= arg min
h∈CLM×1

l(h)

= (σ2
nILM + RS̃H S̃)−1RS̃Hy. (4.13)

Interestingly, the Bayesian estimate as shown in (4.13) coincides with
the minimum mean square error (MMSE) estimate, which has the form

ĥMMSE = RS̃H(S̃RS̃H + σ2
nIτM )−1y. (4.14)

(4.13) and (4.14) are equivalent thanks to the matrix inversion identity
(I + AB)−1A = A(I + BA)−1.

4.4.2 Channel Estimation with Full Pilot Reuse

Previously we have given expressions whereby interfering channels are es-
timated simultaneously with the desired channel. This could be of use in de-
signing zero-forcing type receivers. Even though it is clear that Zero-Forcing
(ZF) type (or other sophisticated) receivers would give better performance
at finite M (see [15] for an analysis of this problem), in this chapter, however,
we focus on simple matched filters, since such filters are made more relevant
by the users of massive MIMO. Matched filters require the knowledge of
the desired channel only, so that interference channels can be considered as
nuisance parameters. For this case, the single user channel estimation shown
below can be used. For ease of exposition, the worst case situation with a
unique pilot sequence reused in all L cells is considered:

s = [ s1 s2 · · · sτ ]T . (4.15)

Similar to (5.6), we define a training matrix S̄ , s⊗ IM . Note that S̄H S̄ =
τIM . Then the vectorized received training signal at the target base station
can be expressed as

y = S̄

L∑
l=1

hl + n. (4.16)
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Since the Bayesian estimator and the MMSE estimator are identical, we
omit the derivation and simply give the expression of this estimator for the
desired channel h1 only:

ĥ1 = R1S̄
H

(
S̄

(
L∑
l=1

Rl

)
S̄H + σ2

nIτM

)−1

y (4.17)

= R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄Hy. (4.18)

Note that the MMSE channel estimation in the presence of identical pilots
is also undertaken in other works such as [15].

In the section below, we examine the degradation caused by the pilot
contamination on the estimation performance. In particular, we point out
the role played by the use of covariance matrices in dramatically reducing the
pilot contamination effects under certain conditions on the rank structure.

We are interested in the mean squared error (MSE) of the proposed
estimators, which can be defined as: M , E{‖ĥ− h‖22}, or for the single

user channel estimate M1 , E{‖ĥ1 − h1‖22}.
The estimation MSE of (4.13) is

M = tr

R

(
ILM +

S̃H S̃

σ2
n

R

)−1
 . (4.19)

Specifically, when identical pilots are used in all cells, the MSEs are

M = tr

{
R

(
ILM +

τJLL ⊗ IM
σ2
n

R

)−1
}
, (4.20)

M1 = tr

R1 −R2
1

(
σ2
n

τ
IM +

L∑
l=1

Rl

)−1
 , (4.21)

where JLL is an L × L unit matrix consisting of all 1s. The derivations to
obtain M and M1 use standard methods and the details are omitted here
due to lack of space. However, similar methods can be found in [79]. Of
course, it is clear from (4.20) and (4.21) that the MSE is not dependent on
the specific design of the pilot sequence, but on the power of it.
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We can readily obtain the channel estimate of (4.18) in an interference-
free scenario, by setting interference terms to zero:

ĥno int
1 = R1

(
σ2
nIM + τR1

)−1
S̄H(S̄h1 + n), (4.22)

where the superscript no int refers to the ”no interference case”, and the
corresponding MSE:

Mno int
1 = tr

{
R1

(
IM +

τ

σ2
n

R1

)−1
}
. (4.23)

4.4.3 Large-scale Analysis

We seek to analyze the performance for the above estimators in the
regime of large number of antennas M . For tractability, our analysis is based
on the assumption of uniform linear array (ULA) with supercritical antenna
spacing (i.e., less than or equal to half wavelength).

Below, we momentarily assume that the selected users exhibit multipath
AoAs that do not overlap with the AoAs for the desired user, i.e., the AoA
spread and user locations are such that multipath for the desired user are
confined to a region of space where interfering paths are very unlikely to
exist. Although the asymptotic analysis below makes use of this condition, it
will be shown in Section 4.5 how such a structure can be shaped implicitly by
the coordinated pilot assignment. Finally, simulations reveal in Section 6.6
the robustness with respect to an overlap between AoA regions of desired and
interference channels (for instance in the case of Gaussian AoA distribution).

The main result of this chapter is as follows:

Theorem 3. Assume the multipath angle of arrival θ yielding channel hj , j =
1, . . . , L, in (6.21), is distributed according to an arbitrary density pj(θ) with
bounded support, i.e., pj(θ) = 0 for θ /∈ [θmin

j , θmax
j ] for some fixed θmin

j 6
θmax
j ∈ [0, π] . If the L − 1 intervals [θmin

i , θmax
i ] , i = 2, . . . , L are strictly

non-overlapping with the desired channel’s AoA interval 1 [θmin
1 , θmax

1 ], we
have

lim
M→∞

ĥ1 = ĥno int
1 . (4.24)

1. This condition is just one example of practical scenario leading to non-overlapping
signal subspaces between the desired and the interference covariances, however, more gen-
eral multipath scenarios could be used.
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Proof: Proof: From the channel model (6.21), we get

Ri =
δ2
i

P

P∑
p=1

E{a(θip)a(θip)
H} = δ2

i E{a(θi)a(θi)
H},

where θi has the PDF pi(θ) for all i = 1, . . . , L. The proof of Theorem 3 relies
on three intermediate results, namely Lemma 1, Theorem 1, and Lemma 2 as
given blow. The essential ingredient is to exhibit an asymptotic (at large M)
orthogonal vector basis for Ri constructed from steering vectors at regularly
sampled spatial frequencies.

Lemma 2. The null space null(Ri) includes a certain set of unit-norm
vectors:

null(Ri) ⊃ span

{
a(Φ)√
M
, ∀Φ /∈ [θmin

i , θmax
i ]

}
, as M →∞.

Proof: See Appendix .6.
This lemma indicates that multipath components with AoA outside the

AoA region for a given user will tend to fall in the null space of its covariance
matrix in the large-number-of-antennas case.

We now return to the proof of Theorem 3. Ri can be decomposed into

Ri = UiΣiU
H
i , (4.25)

where Ui is the signal eigenvector matrix of size M×mi, in which mi ≤ diM .
Σi is an eigenvalue matrix of size mi ×mi. Due to Lemma 2 and the fact
that densities pi(θ) and p1(θ) have non-overlapping supports, we have

UH
i U1 = 0,∀i 6= 1, as M →∞. (4.26)

Combining the channel estimate (4.18) and the channel model (4.16), we
obtain

ĥ1 = R1

(
σ2
nIM + τ

L∑
l=1

Rl

)−1

S̄H

(
S̄

L∑
i=1

hi + n

)
.

According to (4.26), matrices R1 and
L∑
l=2

Rl span orthogonal subspaces in

the large M limit. Therefore we place ourselves in the asymptotic regime for

M , when τ
L∑
l=2

Rl can be eigen-decomposed according to

τ

L∑
l=2

Rl = WΣWH , (4.27)
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where W is the eigenvector matrix such that WHW = I and span {W} is
included in the orthogonal complement of span {U1}. Now denote V the uni-
tary matrix corresponding to the orthogonal complement of both span {W}
and span {U1}, so that the M ×M identity matrix can now be decomposed
into:

IM = U1U
H
1 + WWH + VVH . (4.28)

Thus, for large M ,

ĥ1 ∼ U1Σ1U
H
1

(
σ2
nU1U

H
1 + σ2

nVVH + σ2
nWWH

+τU1Σ1U
H
1 + WΣWH

)−1

(
τ

L∑
i=1

hi + S̄Hn

)
.

Due to asymptotic orthogonality between U1, W and V,

ĥ1 ∼ U1Σ1(σ2Im1 + τΣ1)−1UH
1 (τ

L∑
i=1

hi + S̄Hn)

∼ U1Σ1(σ2Im1 + τΣ1)−1τ(UH
1 h1 +

L∑
i=2

UH
1 hi +

S̄Hn1

τ
).

However, since hi ⊂ span
{
a(θ), ∀θ ∈ [θmin

i , θmax
i ]

}
, we have from Lemma 2

that
‖UH

1 hi‖2
‖UH

1 h1‖2
→ 0, for i 6= 1 when M →∞. Therefore

lim
M→∞

ĥ1 = τU1Σ1

(
σ2
nIm1 + τΣ1

)−1
(

UH
1 h1 +

S̄Hn

τ

)
,

which is identical to ĥno int
1 if we apply the EVD decomposition (4.25) for

R1 in (4.22). This proves Theorem 3.
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Figure 4.1 – Estimation MSE vs. number of BS antennas , 2-cell network,
fixed positions of two users, uniformly distributed AoAs with θ∆ = 20 de-
grees, non-overlapping multipath.

We validate Theorem 3 in Fig. 4.1 with a 2-cell network, where the two
users’ positions are fixed. AoAs of desired channels are uniformly distributed
with a mean of 90 degrees, and the angle spreads of all channels are 20
degrees, yielding no overlap between desired and interfering multipaths. As
can be seen, the channel estimation error converges to interference-free case,
indicating that the pilot contamination is quickly eliminated with growing
number of antennas. More details of simulation parameters can be found in
section 4.7.1.

Theorem 3 reveals the following sufficient condition for achieving total
interference suppression in the large M regime:

L
∪
l=2

span {Rl} ⊂ null {R1} (4.29)

where the above condition requires the target channel covariance to exhibit
a non-empty null space (aka low-dimensional subspace) and for all other
interference covariances’ signal subspaces to fall within this null space. In
practice, the inclusion condition in (4.29) can be realized by a user grouping
algorithm (an example will be presented in 4.5), as long as the rank of each
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covariance is small enough in relation to M . However Theorem 3 is limited
to the case of single AoA support interval and tightly calibrated antenna
array. We will give below extended results under less restrictive condition.

Multiple Clusters of AoA Support

We now consider the general multipath model when the AoAs of a cer-
tain user’s channel are bounded, but come from several disjoint clusters, as
described in Section 3.2.2. Denote by Φd as the union of possible AoAs of
desired channel and by Φi the union of all possible interference AoAs. We
have the following result for the massive uniform array:

Corollary 2. if D ≤ λ/2 and Φd ∩ Φi = ∅, then the MMSE estimate of
(4.18) satisfies:

lim
M→∞

ĥ1 = ĥno int
1 . (4.30)

Proof: It can be shown from Lemma 2 that , condition (4.29) will be ful-
filled as long as interfering AoAs do not overlap with any of the clusters for
the desired channel, in which case if we analyze the received signal using
eigen-value decomposition, we can find the interference disappears asymp-
totically because of its orthogonality with the signal space of desired channel
covariance. (4.30) is obtained in the same way as in 4.4.3. As a result we
omit the detailed proof here.

Rank Additivity Condition

In the following proposition we extend the results of Corollary 2 to the
weaker assumption of rank additivity for the covariance matrices of the
desired and interference channels.

Proposition 6. Let Rd be the covariance matrix of desired channel and
Ri be the covariance of the sum of all interference channels. If Rd and Ri

satisfy the following rank additivity property

rank(Rd + Ri) = rank(Rd) + rank(Ri),

then in the high SNR regime, the linear MMSE estimate of the desired chan-
nel is error free, or, in other words, its error covariance matrix Ce vanishes.

Proof: In the case of absence of white Gaussian noise, i.e., σ2
n = 0, and rank

deficient signal and interference covariance matrices, the error covariance
matrix of linear MMSE estimator [79] can be generalized as

Ce = Rd −Rd(Rd + Ri)
†Rd (4.31)
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where (·)† denotes the Moore-Penrose generalized inverse of the matrix ar-
gument. Let us denote by Rx = UxΣxU

H
x , with x ∈ {d, e}, Ux unitary

matrix, and Σx diagonal matrix, the eigenvalue decomposition of the Her-
mitian matrix Rx. Then, R†x = UxΣ

†
xUH

x , where the elements i, j of the
matrix Σ†x are given by

Σ†x,ij =

{
Σ−1
x,ii, if i = j and Σx,ii 6= 0;

0, otherwise.

Additionally, Ũx denotes the column space of Rx and Σ̃x the corresponding
nonzero eigenvalues such that Rx = ŨxΣ̃xŨ

H
x . Then, under the assumption

of rank additivity of the covariance matrices Rd and Ri, the theorem on the
Moore-Penrose generalized inverse for sum of matrices in [80] yields

(Rd + Ri)
† = (I− S†)R†d(I−T†) + S†R†iT

†, (4.32)

where S = ŨiŨ
H
i (I− ŨdŨ

H
d ) and T = (I− ŨdŨ

H
d )ŨiŨ

H
i .

Let us observe that

T†Rd = 0 and RdS
† = 0. (4.33)

We focus on the first equality. The proof of the second equation follows along
the same line. By appealing to the mixed type reverse order laws of the r×s
matrix A and the s× t matrix B in [81]

(AB)† = BH(AHABBH)†AH ,

T† can be rewritten as

T† = ŨiŨ
H
i

[
(I− ŨdŨ

H
d )ŨiŨ

H
i

]†
(I− ŨdŨ

H
d )

= ŨiŨ
H
i T†(I− ŨdŨ

H
d ).

The first equality is obtained utilizing the fact that the matrices ŨiŨ
H
i and

(I− ŨdŨ
H
d ) are orthogonal projectors and thus idempotent. Then,

T†Rd = ŨiŨ
H
i T†(I− ŨdŨ

H
d )ŨdΣ̃dŨ

H
d = 0.

Finally, substituting (4.32) into (4.31) and accounting for orthogonality in
(4.33)

Ce = Rd −Rd

[
(I− S†)R†d(I−T†) + S†R†iT

†
]

Rd

= Rd −RdR
†
dRd = 0.

In the last equality we use one of the fundamental relations defining the
Moore-Penrose generalized inverse.

64



CHAPTER 4. COVARIANCE BASED CHANNEL ESTIMATION

According to Proposition 4, the rank additivity condition is in general
satisfied even for random linear array when the AoA support of desired
channel and that of interference channels span disjoint region of spaces,
i.e., Φd ∩ Φi = ∅. This property can be exploited in pilot decontamination
or interference rejection. As an example, we show in Fig. 4.2 the channel
estimation performance for random linear array setting. In this figure, we
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Figure 4.2 – Channel Estimation MSE vs. M , D = λ/2, 2-cell network,
angle spread 30 degrees, Φd ∩ Φi = ∅, cell-edge SNR is 20dB. We compare
the standard LS to MMSE estimators, in interference and interference-free
scenarios.

consider a 2-cell network. Each cell has one single-antenna user who uses
identical pilot sequence. The mean squared error of uplink channel estima-
tion is shown. The simulation suggests that the MMSE channel estimator is
able to rid itself from pilot contamination effects as the number of antennas
is (even moderately) large, which verifies Proposition 6.

4.5 Coordinated Pilot Assignment

We have seen from above that the performance of the covariance-aided
channel estimation is particularly sensitive to the degree with which the
signal subspaces of covariance matrices for the desired and the interference
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channels overlap with each other. In the ideal case where the desired and the
interference covariances span distinct subspaces, we have demonstrated that
the pilot contamination effect tends to vanish in the large-antenna-array
case. In this section, we make use of this property by designing a suitable
coordination protocol for assigning pilot sequences to users in the L cells.
The role of the coordination is to optimize the use of covariance matrices in
an effort to try and satisfy the non-overlapping AoA constraint of Theorem 1.
We assume that in all L cells, the considered pilot sequence will be assigned
to one (out of K) user in each of the L cells. Let G , {1, . . . ,K}, then
Kl ∈ G denotes the index of the user in the l-th cell who is assigned the pilot
sequence s. The set of selected users is denoted by U in what follows.

We use the estimation MSE (4.21) as a performance metric to be min-
imized in order to find the best user set. (4.20) is an alternative if we take
the estimates of interfering channels into consideration. For a given user set
U , we define a network utility function

F(U) ,
|U|∑
j=1

Mj(U)

tr
{

R
(j)
j (U)

} , (4.34)

where |U| is the cardinal number of the set U .Mj(U) is the estimation MSE
for the desired channel at the j-th base station, with a notation readily
extended from M1 in (4.21), where this time cell j is the target cell when

computing Mj . R
(j)
j (U) is the covariance matrix of the desired channel at

the j-th cell.
The principle of the coordinated pilot assignment consists in exploit-

ing covariance information at all cells (a total of KL2 covariance matrices)
in order to minimize the sum MSE metric. Hence, L users are assigned
an identical pilot sequence when the corresponding L2 covariance matri-
ces exhibit the most orthogonal signal subspaces. Note that the MSE-based
criterion (4.34) implicitly exploits the property of subspace orthogonality,
e.g., at high SNRs, the proposed MSE-based criterion will be minimized by
choices of users with covariance matrices showing maximum signal subspace
orthogonality, thereby implicitly satisfying the conditions behind Theorem
3. In view of minimizing the search complexity, a classical greedy approach
is proposed:

1) Initialize U = ∅
2) For l = 1, . . . , L do:
Kl = arg min

k∈G
F(U ∪ {k})

U ← U ∪ {Kl}
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End

The coordination can be interpreted as follows: To minimize the estima-
tion error, a base station tends to assign a given pilot to the user whose spa-
tial feature has most differences with the interfering users assigned the same
pilot. Clearly, the performance will improve with the number of users, as it
becomes more likely to find users with discriminable second-order statistics.

4.6 Interference filtering via subspace projection

In this section, we propose a simple beamforming strategy building on the
low-dimensionality of the signal subspace, which does not require an accurate
channel estimation. Consider a network where K ′ users share the same pilot
sequence s. These users can either be in different cells or in the same cell
(e.g., in a distributed antenna system without cell boundary). Assume the
first user is the target user and all other K ′ − 1 users are interference users.
Denote the sum of interference covariances as RI = R2 + R3 + · · · + RK′ .
The eigenvalue decomposition of RI is RI = UΣUH , where Σ is a M ×M
diagonal matrix with the eigenvalues of RI on its main diagonal. Suppose
the eigenvalues are in descending order and the first m eigenvalues are non-
negligible while the others can be neglected. We construct the spatial filter
at the BS side for user 1 as:

W1 =
[
um+1 um+2 . . . uM

]H
, (4.35)

where um is the m-th column of U. We can assume approximately that:

W1hk ≈ 0,∀k 6= 1,

W1Y ≈W1h1s
T + W1N, (4.36)

where N ∈ CM×τ is the spatially and temporally white additive Gaussian
noise, Y ∈ CM×τ is the received training signal, and s ∈ Cτ×1 is the shared
pilot sequence. Define the effective channel h1 , W1h1. Note that h1 has a
reduced size, which is (M −m)× 1. An LS estimate of h1 is:

ĥ1 = W1Ys∗(sT s∗)
−1
, (4.37)

The key idea is that ĥ1 is coarse if considered as a channel estimate, yet it can
be used as a modified MRC beamformer as it lies in a subspace orthogonal
to the interference and is also aligned with the signal subspace of h1. During
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uplink data transmission phase:

y = h1s
T
1 +

K′∑
k=2

hks
T
k + n, (4.38)

where s1, s2, · · · , sK ∈ Cτu×1 are the transmitted signal sequence. y,n ∈
CM×τu are the received signal and noise respectively. The subspace-based

MRC beamformer is ĥ
H

1 W1:

ĥ
H

1 W1y = ĥ
H

1 h1s
T
1 + ĥ

H

1 W1

K′∑
k=2

hks
T
k︸ ︷︷ ︸+ĥ

H

1 W1n. (4.39)

≈ 0

In case there is no null space for RI , e.g., the number of users K ′ is large or
the interference users have rich scattering environments, the subspace-based
method can still avoid the strong eigen modes of interference and therefore
reject a good amount of interference.

Note that the subspace projection method has a certain similarity with
[28] which also uses eigen-value decomposition in order to perform blind
channel estimation. However there are two main differences: 1) They address
only the case of classical massive arrays, not distributed antenna arrays; 2)
They use the received power levels domain to separate desired channel and
interfering channels. In our approach, the discrimination against interference
is related to the phases with which the interference and desired signals arrive
at the array. In fact, the two techniques could in principle be combined.

4.7 Numerical Results

In this section we evaluate the performance of our proposed channel esti-
mation and interference filtering schemes in simulations. In the first part of
this section, we consider traditional cellular network where BS is equipped
with co-located antenna array. The second part contains the numerical re-
sults for a distributed antenna system.

Two performance metrics are used to evaluate the proposed schemes.
The first one is a normalized channel estimation error

MSEjk , 10log10


∥∥∥ĥ(j)

jk − h
(j)
jk

∥∥∥2

2∥∥∥h(j)
jk

∥∥∥2

2

 , (4.40)
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where h
(j)
jk and ĥ

(j)
jk are the (desired) channel of user k at cell j and its

estimate respectively. In the simulation we average the channel estimation
MSE over all users in order to obtain the MSE curve.

The second performance metric is the per-cell rate of the uplink/downlink
obtained assuming MRC beamformer based on the channel estimates. We
define the per-cell rate as follows:

C ,

L∑
j=1

K∑
k=1

log2 (1 + SINRjk)

L
,

where SINRjk is the signal-to-noise-plus-interference ratio (SINR) of the
k-th scheduled user in the j-th cell.

4.7.1 Co-located Antenna Array

In order to preserve fairness between users and avoid having high-SNR
users being systematically assigned the considered pilot, we consider a sym-
metric multicell network where the users are all distributed on the cell edge
and have the same distance from their base stations. In practice, users with
greater average SNR levels (but equal across cells) can be assigned together
on a separate pilot pool. We adopt the model of a cluster of synchronized
and hexagonally shaped cells. Some basic simulation parameters are given
in Table 4.1. We keep these parameters in the following simulations, unless
otherwise stated.

Table 4.1 – Basic simulation parameters

Cell radius 1 km

Cell edge SNR 20 dB

Number of users per-cell 10

Distance from a user to its BS 800 m

Path loss exponent 3

Carrier frequency 2 GHz

Antenna spacing λ/2

Number of paths 50

Pilot length 10

Two types of AoA distributions are considered here, a non-bounded one
(Gaussian) and a bounded one (uniform):
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Gaussian distribution

For a certain channel vector h
(j)
lk , the AoAs of all P paths are i.i.d.

Gaussian random variables with mean θ̄
(j)
lk and standard deviation σ. Here

we suppose all the desired channels and interference channels have the same
standard deviation of AoA. Note that Gaussian AoA distributions cannot
fulfill the conditions of non-overlapping AoA support domains in Theorem
3, nevertheless the use of the proposed method in this context also gives
substantial gains as σ2 decreases.

Uniform distribution

For the channel h
(j)
lk , the AoAs are uniformly distributed over [θ̄

(j)
lk −

θ∆, θ̄
(j)
lk + θ∆], where θ̄

(j)
lk is the mean AoA.

Note that in this section, we suppose the number of users simultaneously
served by each base station is one. In reality, however, a base station can
serve more than one users when these users have mutually orthogonal pilot
sequences.

Numerical results of the proposed channel estimation scheme are now
shown. In the figures, “LS” stands for conventional LS channel estimation.
“CB” denotes the Covariance-aided Bayesian estimation (without coordi-
nated pilot assignment), and“CPA”is the proposed Coordinated Pilot Assignment-
based Bayesian estimation.

In Fig. 4.3 and Fig. 4.4, the estimation MSEs versus the BS number of
antennas are illustrated. When the AoAs have uniform distributions with
θ∆ = 10 degrees, as shown in Fig. 4.3, the performance of CPA estimator
improves quickly with M from 2 to 10. In the 2-cell network, CPA has the
ability of avoiding the overlap between AoAs for the desired and interference
channels. For comparison, Fig. 4.4 is obtained with Gaussian AoA distribu-
tion. We can observe a gap remains between the CPA and the interference-
free one, due to the non-boundedness of the Gaussian PDF. Nevertheless,
the gains over the classical estimator remain substantial.

We then examine the impact of standard deviation σ of Gaussian AoAs
on the estimation. Fig. 4.5 shows that the estimation error is a monotonically
increasing function of σ. In contrast, an angle spread tending toward zero
will cause the channel direction to collapse into a deterministic quantity,
yielding large gains for covariance-based channel estimation.

Figs. 4.6 depicts the downlink per-cell rate achieved by the MRC beam-
forming strategy and suggests large gains when the Bayesian estimation is
used in conjunction with the proposed coordinated pilot assignment strategy
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Figure 4.3 – Estimation MSE vs. number of BS antennas, uniformly dis-
tributed AoAs with θ∆ = 10 degrees, 2-cell network.
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Figure 4.4 – Estimation MSE vs. number of BS antennas, Gaussian dis-
tributed AoAs with σ = 10 degrees, 2-cell network.
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Figure 4.5 – Estimation MSE vs. standard deviation of Gaussian distributed
AoAs with M = 10, 7-cell network.
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Figure 4.6 – Per-cell rate vs. number of BS antennas, 2-cell network, Gaus-
sian distributed AoAs with σ = 10 degrees.
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Figure 4.7 – Per-cell rate vs. standard deviation of AoA (Gaussian distribu-
tion) with M = 10, 7-cell network.

and intermediate gains when it is used alone. Obviously the rate performance
almost saturates with M in the classical LS case (due to pilot contamination)
while it increases quickly with M for the proposed estimators, indicating the
full benefits of massive MIMO systems are exploited.

Finally, we show the per-cell rate performance with a small number of
antennas (M = 10) in the setting of unbounded Gaussian distributed AoAs
4.7. As can be seen, even in traditional MIMO system with small number
of BS antennas, our proposed channel estimation scheme has significant
performance gains.

4.7.2 Distributed Antenna Array

We now consider the channel estimation quality in a distributed antenna
system based random network with radius Rc = 500 meters. The path loss
exponent γ = 2.5. The scattering radius is r = 15 meters. P = 50 scatterers
are randomly distributed in the scattering ring, which is centered at the
user.

In Fig. 4.8, we assume the target user is located at the origin while
an interfering user (they share the same pilot sequence) is moving over
the horizontal axis at increasing distances from user 1. As we can observe,
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when the MMSE estimator (4.18) is used, the channel estimation error is
a monotonous decreasing function of the distance between the desired user
and the interference user. One may also notice the constant performance gap
between LS and MMSE estimator in interference-free scenario, which indi-
cates that covariance information is still helpful even in a highly distributed
antenna system. As shown in the blue curve on the top, an LS estimator
is unable to separate the desired channel and the interference channel. In
contrast, an MMSE estimator has much better performance as its MSE
is decreasing almost linearly with inter-user spacing, hence confirming our
claims.
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Figure 4.8 – Estimation performance vs. distance between two users, M =
2000, r = 15m, single-cell network.

We then examine the performance of four MRC beamformers in terms
of uplink sum-rate in a single-cell setting (Fig. 4.9) and per-cell rate in a
multi-cell setting (Fig. 4.10).

In Fig. 4.9, we show the performance of subspace-based MRC beam-
forming in a single-cell network where two users share the same pilot. The
total number of distributed antennas is 500. In the figure “LS + MRC”
denotes the sum-rate performance of MRC beamforming using the LS chan-
nel estimate, while the curve “MMSE + MRC” is the performance of MRC
beamforming using the MMSE estimate (4.18). “MMSE + MMSE” denotes
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Figure 4.9 – Uplink sum-rate vs. distance between 2 users, M = 500, r =
15m, cell-edge SNR 20dB, single-cell network.

the performance curve of MMSE beamforming using MMSE channel esti-
mate when channel covariances (including the interference covariances) are
assumed known during both channel estimation and signal detection. The
simulation shows the simple subspace-based method has a very good per-
formance. Due to pilot contamination, the MRC beamformer using MMSE
channel estimate is not as good as subspace-based method. The reason is
that R1 and R2 generally have overlapping signal subspaces here. We may
also notice that the subspace-based MRC beamformer has some slight per-
formance gains over the MMSE beamformer.

Fig. 4.10 depicts the uplink per-cell rate achieved by the above-mentioned
MRC beamformers as a function of scattering radius r. In the simulation we
have 7 hexagonal cells with one center cell and 6 surrounding cells. Each cell
has one user. All the users share the same pilot sequence. The per-cell rate
is defined as the sum-rate (6.19) divided by the number of cells. As can be
seen, the subspace-based beamforming shows performance gains over other
traditional MRC methods especially when the radius of scattering ring is
smaller. It also shows more robustness than MMSE beamformer when the
radius of the scattering ring is larger.
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Figure 4.10 – Uplink per-cell rate vs. r, cell-edge SNR 20dB, 7-cell network,
each cell has M = 500 distributed antennas.

4.8 Discussions

In this chapter, we assumed the individual covariance matrices can be
estimated separately. This could be done in practice by exploiting resource
blocks where the desired user and interference users are known to be as-
signed at different times. In future networks, one may imagine a specific
training design for learning second-order statistics. Since covariance infor-
mation varies much slower than fast fading, such training may not consume
a substantial amount of resources.

4.9 Conclusions

This chapter proposes a covariance-aided channel estimation framework
in the context of interference-limited multi-cell multiple antenna systems.
We develop Bayesian estimators and demonstrate analytically the efficiency
of such an approach for large-scale antenna systems, leading to a complete
removal of pilot contamination effects in the case covariance matrices sat-
isfy a certain non-overlapping condition on their dominant subspaces. We
propose a coordinated pilot assignment strategy that helps shape covariance
matrices toward satisfying the needed condition and show channel estima-
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tion performance close to interference-free scenarios.
We also put forward a modified MRC beamformer relaying on chan-

nel covariance’s low-rankness property. Simulation in a distributed antenna
system shows that such a low-complexity method approaches and even out-
performs the MMSE beamformer which has higher complexity.
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Chapter 5

Joint Angle/Power based
Decontamination

5.1 Introduction

In chapter 4 we have shown several interference mitigation techniques
based on the long-term statistics of user channels. Asymptotic performance
analysis indicates that interference can in principle be discriminated on the
basis of the distributions of multipath AoAs. In particular, we demonstrated
that in the case when the AoA support of the desired user does not overlap
with the AoA supports of the interference users, an MMSE-based method
achieves full interference elimination. However, when such a non-overlapping
condition is not satisfied, interference persists in MMSE estimation, which
limits the ultimate performance of massive MIMO. In this chapter, we seek
to solve the remaining interference by exploiting the short-term statistics of
channel information.

Two key features of massive MIMO channels that have been previously
reported are of particular interest here: 1) channels of different users tend to
be pairwise orthogonal when the number of antennas increases, thus leading
to a specific subspace structure for the received data vectors that depend
on these channels [28] and 2) the channel covariance matrix exhibits a low-
rankness property whenever the multipath impinging on the MIMO array
spans a finite angular spread [17,36,82]. The blind signal subspace estimation
in [28] capitalizes on the first property. The second property has been utilized
in [6,17,36,82,83] assuming the complete knowledge of the long-term channel
covariance matrices. While the exploitation of the two properties individually
has given rise to a set of distinct original decontamination approaches, in
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this work we will exploit these two key features in a combined manner. Doing
so we can propose a novel approach towards mitigating pilot contamination
that exhibits much higher levels of robustness.

More specifically, in [28, 29], the pairwise channel orthogonality prop-
erty allows to blindly estimate the user-of-interest channel subspace and
discriminate between user-of-interest signals and interference based on the
channel powers. In practice, decontamination occurs via a projection driven
by the channel amplitudes. This approach works well within the constraint
that the interference channel is received with a power level sufficiently lower
than that of the desired channel, a condition which is hard to guarantee for
some edge-of-cell terminals.

In a way completely different from [28,29], another approach based on a
MMSE estimator is adopted in [36] to estimate the channel of interest via
projection of the received signals onto the user-of-interest subspace. This
subspace, identified by a channel covariance matrix (a long-term one, as op-
posed to the instantaneous signal correlation matrix of [28,29]), is related to
the angular spread of the signal of interest [36] and enables to annihilate the
interference from users with non-overlapping domains of multipath angles-
of-arrival (AoA). Interestingly, this latter approach makes no assumption
on received signal amplitudes and can also discriminate against interfering
users that are received with similar or even higher powers. Yet, the approach
fails to decontaminate pilots when propagation scattering creates large angle
spread, causing spatial overlapping among desired and interference channels.

In this chapter, we point out that the strengths of these two previ-
ously unrelated estimation methods are strongly complementary, offering
a unique opportunity for developing robust massive MIMO channel estima-
tion schemes. Thus, we aim to properly merge the two projections in comple-
mentary domains while keeping the individual benefits. In fact, we propose
a family of algorithms striking various performance/complexity trade-offs.

We start by presenting a first scheme named “covariance-aided ampli-
tude based projection” that effectively combines projections in the angular
and amplitude domains and exhibits robustness to interference power/angles
overlapping conditions. We present an asymptotic analysis which reveals the
conditions under which the channel estimation error due to pilot contami-
nation and noise can be made to vanish. An intuitive physical interpretation
of this condition for a ULA is given in the form of the residual interference
channel energy contained in the multipath components that overlap in an-
gle with those of the desired channel. Although the physical explanation is
given for the ULA example, the general principle apply to other antenna
placement topologies.
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The obtained condition for decontamination is in general less restric-
tive than the condition required by previous MMSE and the amplitude
projection-based methods taken separately to achieve complete removal of
pilot contamination.

Following this, we then propose two low-complexity alternative schemes
called “subspace and amplitude based projection” and “MMSE + amplitude
based projection” respectively. Such schemes achieve different complexity-
performance trade-off at moderate number of antennas. Specifically, the
“subspace and amplitude based projection” can be shown to reach asymp-
totic (in the number of antennas) decontamination result under the same
channel topology conditions as the first scheme.

5.2 UL Training/Data Transmission

Consider a multi-user multi-cell network with K users in each cell served
by their own BS. Recall from chapter 3 the multi-user MIMO channel be-
tween all K users in cell l and BS j:

H
(j)
l ,

[
h

(j)
l1 h

(j)
l2 · · · h

(j)
lK

]
, (5.1)

and the pilot matrix consists of all pilot sequences used by these K users:

S ,
[
s1 s2 · · · sK

]T
. (5.2)

During the training phase, the received signal at the base station j is

Y(j) =
L∑
l=1

H
(j)
l S + N(j), (5.3)

where N(j) ∈ CM×τ is the spatially and temporally white additive Gaussian
noise (AWGN) with zero-mean and element-wise variance σ2

n. Then, during
the uplink data transmission phase, each user transmits C data symbols.
The received data signal at base station j is given by:

W(j) =

L∑
l=1

H
(j)
l Xl + Z(j), (5.4)

where Xl ∈ CK×C is the matrix of transmitted symbols of all users in the l-
th cell. The symbols are i.i.d. with zero-mean and unit average element-wise
variance. Z(j) ∈ CM×C is the AWGN noise with zero-mean and element-
wise variance σ2

n. Note that the block fading channel is constant during the
transmission for the τ pilot symbols and the C data symbols.
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5.3 A review of LMMSE estimation

We briefly recall the MMSE channel estimator in a multi-cell single-user
per cell setting. Without loss of generality, we assume cell j is the target

cell, and h
(j)
j ∈ CM×1 is the desired channel, while h

(j)
l ∈ CM×1, ∀l 6= j are

the interference channels. We rewrite (5.3) in a vectorized form,

y(j) = S

L∑
l=1

h
(j)
l + n(j), (5.5)

where y(j) = vec(Y(j)), n(j) = vec(N(j)). A pilot sequence s is shared by all
users. The pilot matrix S is given by

S , s⊗ IM . (5.6)

We define the channel covariance matrices

R
(j)
l , E{h(j)

l h
(j)H
l } ∈ CM×M , l = 1, . . . , L. (5.7)

A linear MMSE estimator for h
(j)
j is given by

ĥ
(j)MMSE
j = R

(j)
j

(
τ(

L∑
l=1

R
(j)
l ) + σ2

nIM

)−1

S
H

y(j). (5.8)

5.3.1 Asymptotic performance of MMSE

As shown in chapter 4, for a base station equipped with a ULA, the above
MMSE estimator can fully eliminate the effects of interfering channels when
M → ∞, under a specific “non overlap” condition on the distributions of
multipath AoAs for the desired and interference channels. This condition
is formalized as follows: Assume the user in cell j is our target (desired
user). Denote the angular support of the desired channel as Φd, (i.e., the

probability density function (PDF) pd(θ) of the AoA of desired channel h
(j)
j

satisfies pd(θ) > 0 if θ ∈ Φd and pd(θ) = 0 if θ /∈ Φd) and similarly the

union of the angular supports of all interference channels h
(j)
l (l 6= j) as

Φi. If Φd ∩ Φi = ∅, then, as M → ∞, (5.8) converges to an interference-
free estimate. In practice the “non overlap” condition is hard to guarantee
and the finite-M performance of the MMSE scheme will depend on angular
spreading and user location, although the latter can be shaped via the use
of so-called coordinated pilot assignment [36].
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5.4 A review of power domain discrimination

Interestingly, angle is not the only domain where interference can be
discriminated upon, as revealed from a completely different approach to
pilot decontamination [28,29]. In that approach the empirical instantaneous
covariance matrix built from the received data (5.4) is exploited, in contrast
with the use of long-term covariance matrices in (5.8). Assume cell j is our
target cell and each cell has K users. The eigenvalue decomposition (EVD)
of W(j)W(j)H/C is written as

1

C
W(j)W(j)H = U(j)Λ(j)U(j)H , (5.9)

where U(j) ∈ CM×M = [u
(j)
1 |u

(j)
2 | · · · |u

(j)
M ] is a unitary matrix and Λ(j) =

diag{λ(j)
1 , · · · , λ(j)

M } with its diagonal entries sorted in a non-increasing order.
By extracting the first K columns of U(j), i.e., the eigenvectors correspond-
ing to the strongest K eigenvalues, we obtain an orthogonal basis

E(j) ,
[
u

(j)
1 u

(j)
2 · · · u

(j)
K

]
∈ CM×K . (5.10)

The basic idea in [28, 29] is to use the orthogonal basis E(j) as an estimate

for the span of H
(j)
j , which includes all desired user channels in cell j. Then,

by projecting the received signal onto the subspace spanned by E(j), most
of the signal of interest is preserved. In contrast, the interference signal is
canceled out thanks to the asymptotic property that the user channels are
pairwise orthogonal as the number of antennas tends to infinity. Thus after

the above mentioned projection, the estimate of the multi-user channel H
(j)
j

is given by:

Ĥ
(j)AM
j =

1

τ
E(j)E(j)HY(j)SH . (5.11)

Note here that interference and desired channel directions are discriminated
on the basis of channel amplitudes and not AoA, hence the estimate is
labeled “AM” for “Amplitude”. As a way to guarantee an asymptotic sepa-
ration between the signal of interest and the interference in terms of power,
it has been suggested to introduce power control in the network [28,29].

5.4.1 Generalized amplitude projection

As shown in [28, 29], the above method works well when the desired
channels and interference channels are separable in power domain, i.e., the
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instantaneous powers of any desired channels are higher than that of any
interference channels. In practice however, this assumption is not always
guaranteed. For a finite number of antennas, the short-term fading realiza-
tion can cause the interference subspace to spill over the desired one. An
enhanced version can somewhat mitigate this problem by considering a gen-
eralized amplitude based projection. This consists in selecting a possibly
larger number (κ(j)) of dominant eigenvectors to form E(j), where κ(j) is

the number of eigenvalues in Λ(j) that are greater than µλ
(j)
K . µ is a design

parameter that satisfies 0 ≤ µ < 1. See section 5.7 for details on the choice
of µ.

5.5 Covariance-aided amplitude based projection

Note that both previous methods, while being able to tackle pilot con-
tamination in quite different ways, perform well only in some restricted
user/channel topologies. For a ULA base station, the MMSE method leads
to interference free channel estimates under the strict requirement that the
desired and interference channel do not overlap in their AoA regions. While
the amplitude based projection requires that no interference channel power
exceeds that of a desired channel to achieve a similar result. Unfortunately,
due to the random user location and scattering effects, it is quite unlikely
to achieve these conditions at all times. As a result, by combining the useful
properties of both the MMSE and the amplitude projection method, we pro-
pose below novel estimation methods that will lead to enhanced robustness
in a realistic cellular scenario.

5.5.1 Single user per cell

For ease of exposition we first consider a simplified scenario where intra-
cell interference is ignored by assuming that each cell has only one user, i.e.,
K = 1. The users in different cells share the same pilot sequence s. Then
with proper modifications we will generalize this method to the setting of
multiple users per cell in section 5.5.3.

The objective is to combine long-term statistics which include spatial dis-
tribution information together with short-term empirical covariance which
contains instantaneous amplitude and direction channel information. Hence,
a spatial distribution filter can be associated to an instantaneous projection
operator to help discriminate against any interference terms whose spatial
directions live in a subspace orthogonal to that of the desired channel. The

84



CHAPTER 5. JOINT ANGLE/POWER BASED DECONTAMINATION

intuition is that such a spatial filter may bring the residual interference
to a level that is acceptable to the instantaneous projection-based channel
estimator.

In order to carry out the above intuition, we introduce a long-term sta-
tistical filter Ξj , which is based on channel covariance matrices in a way
similar to that used by the MMSE filter in (5.8).

Ξj =

(
L∑
l=1

R
(j)
l + σ2

nIM

)−1

R
(j)
j . (5.12)

Note that the linear filter Ξj allows to discriminate against the inter-
ference in angular domain by projecting away from multipath AoAs that
are occupied by interference. Note also that the choice of spatial filter Ξj

is justified from the fact that the full information of desired channel h
(j)
j is

preserved, as h
(j)
j lies in the signal space of R

(j)
j . In fact, the desired channel

is recoverable using another linear transformation Ξj
′:

Ξj
′ , R

(j)†

j

(
L∑
l=1

R
(j)
l + σ2

nIM

)
, (5.13)

as can be seen from the following equality

Ξ′jΞjh
(j)
j = R

(j)†
j R

(j)
j h

(j)
j = VjV

H
j h

(j)
j = h

(j)
j , (5.14)

where the columns of Vj are the eigenvectors of R
(j)
j corresponding to non-

zero eigenvalues.

The spatial filter is applied to the received data signal at base station j
as

W̃j , ΞjW
(j). (5.15)

The amplitude-based method as shown in section 5.4 can now be applied
on the filtered received data to get rid of the residual interference. Take the
eigenvector corresponding to the largest eigenvalue of the matrix W̃jW̃

H
j /C:

ũj1 = e1{
1

C
W̃jW̃

H
j }. (5.16)

Hence ũj1 can be considered as an estimate of the direction of the vector

Ξjh
(j)
j .
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We then cancel the effect of the pre-multiplicative matrix Ξj using Ξ′j
in (5.13), and we obtain an estimate of the direction of the channel vector

h
(j)
j as follows:

uj1 =
Ξ′jũj1∥∥∥Ξ′jũj1∥∥∥

2

. (5.17)

Finally, the phase and amplitude ambiguities of the desire channel can
be resolved by projecting the LS estimate onto the subspace spanned by uj1:

ĥ
(j)CA
j =

1

τ
uj1u

H
j1Y

(j)s∗, (5.18)

where the superscript “CA” denotes the covariance-aided amplitude domain
projection.

The algorithm is summarized below:

Algorithm 2 Covariance-aided Amplitude based Projection

1: Take the first eigenvector of W̃jW̃
H
j /C as in (5.16), with W̃j being the

filtered data signal.
2: Reverse the effect of the spatial filter using (5.17).
3: Resolve the phase and amplitude ambiguities by (5.18).

The complexity of this proposed estimation scheme is briefly evaluated.

We note that the computation of the matrix inversions in (5.12) has a
complexity order of O(M2.37). However, these computations are performed
in a preamble phase and their cost is negligible under the underlying as-
sumption of channel stationarity implicitly made in this article. In practical
systems, the matrix inversion in (5.12) is performed when the channel statis-
tics are updated. Since the channel statistics are typically updated in a time
scale much larger than the channel coherence time, i.e., the time scale for
the applicability of Algorithm 2, then their computational cost is negligible.
Therefore, we can focus on the complexity of Algorithm 2 only.

In step 1, the spatial filtering of the data signals in (5.15) and the com-

putation of the covariance matrix W̃jW̃
H
j is performed along with the com-

putation of the dominant eigenvector of an M × M matrix as in (5.16).
The former computation has a complexity order O(CM2) while, by apply-
ing the classical power method, the computation of the dominant vector has
a complexity order O(M2). Both step 2 and step 3 require multiplications of
matrices by M -dimensional vectors and thus both have a complexity order
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O(M2). Then, the global complexity of the algorithm is dominated by the
complexity of step 1, which is O(CM2).

The ability for the above estimator to combine the advantages of the
previously known angle and amplitude projection based estimators is now
analyzed theoretically. In particular we are interested in the conditions under
which full pilot decontamination can be achieved asymptotically in the limit
of the number of antennas M and data symbols C. In order to facilitate the
analysis, we introduce the following condition:

Condition C1 : The spectral norm of R
(j)
l is uniformly bounded:

∀M ∈ Z+ and ∀l ∈ {1, . . . , L}, ∃ζ, s.t.
∥∥∥R(j)

l

∥∥∥
2
< ζ, (5.19)

where Z+ is the set of positive integers, and ζ is a constant.
Condition C1 can be interpreted as describing all the scenarios in which

the channel energy is spread over a subspace whose dimension grows with M .
Note that the same assumption can be found in some other papers, e.g., [70].
The corresponding physical condition for a ULA has been analyzed in section
3.5.

As another interpretation of the condition, it is worth noting that when
this condition is not satisfied, there is no guarantee that the asymptotic
pairwise orthogonality of different users’ channels holds. In other words, the

quantity h
(j)H
j h

(j)
l /M, l 6= j may not converge to zero, which is an adverse

condition for all massive MIMO methods. However our proposed methods
still have significant performance gains under this adverse circumstance.
Moreover, C1 is a sufficient condition and we believe it can be weakened.

5.5.2 Asymptotic performance of the proposed CA estimator

We now look into the performance analysis of the proposed estimation
scheme. Let us define

α
(j)
l , lim

M→∞

1

M
tr{ΞjR

(j)
l ΞH

j },∀l = 1, . . . , L. (5.20)

Theorem 4. Given condition C1, if the following inequality holds true:

α
(j)
j > α

(j)
l ,∀l 6= j, (5.21)

then, the estimation error of (5.18) vanishes:

lim
M,C→∞

∥∥∥ĥ(j)CA
j − h

(j)
j

∥∥∥2

2∥∥∥h(j)
j

∥∥∥2

2

= 0. (5.22)
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Proof: For the sake of notational convenience, in this proof we assume
the user in cell j is the target user and thus drop the superscript (j). The

desired channel is denoted by hj = h
(j)
j and the interference channels are

hl = h
(j)
l , l 6= j. Since hl, l = 1, . . . , L, is considered as M × 1 complex

Gaussian with the spatial correlation matrices Rl = E{hlhHl }, the channels
can be factorized as [75]

hl = R
1/2
l hWl, l = 1, . . . , L, (5.23)

where hWl ∼ CN (0, IM ), is i.i.d. M × 1 vector with unit variance. We
build the proof of Theorem 4 on the general correlation model (6.6). The
proof consists in three parts, corresponding to the three steps in Algorithm
2 respectively. More specifically, Lemma 3 (and the intermediate results
towards Lemma 3) is the first part of the proof. It shows that ũj1 aligns
asymptotically with the direction of the filtered channel vector hj = Ξjhj .
The second part of the proof is provided in Lemma 8, which proves that after
canceling the effect of the spatial filter using Ξ′j , we obtain the direction
of the true channel hj in uj1. The final part of the proof shows that by
projecting the LS estimate onto the subspace of uj1, we resolve the phase
and amplitude of the true channel.

Lemma 3. Given condition C1, if α
(j)
j > α

(j)
l , ∀l 6= j, then there exists a

unique 0 ≤ φ < 2π, such that

lim
M,C→∞

∥∥∥∥∥ hj∥∥hj∥∥2

− ũj1e
jφ

∥∥∥∥∥
2

= 0. (5.24)

where hl , Ξjhl, l = 1, . . . , L.

Proof: The proof of Lemma 3 relies on several intermediate results, namely
Lemma 4 - Lemma 7.

Lemma 4. Under condition C1, the spectral norm of ΞjΞ
H
j satisfies:

lim
M→∞

1

M

∥∥ΞjΞ
H
j

∥∥
2

= 0. (5.25)

Proof: See Appendix .8.
Lemma 4 indicates that the spectral norm of the covariance of the noise (after
multiplying Ξj) is bounded and does not scale with M . This conclusion will
be exploited when we prove in Lemma 7 that the impact of noise on the
dominant eigenvector/eigenvalue vanishes.
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Lemma 5. [84] Let AM be a deterministic M ×M complex matrix with
uniformly bounded spectral radius for all M . Let q = 1√

(M)
[q1, · · · , qM ]T

where qi,∀i = 1, · · · ,M is i.i.d. complex random variable with zero mean,
unit variance, and finite eighth moment. Let r be a similar vector indepen-
dent of q. Then as M →∞,

qHAMq
a.s.−−→ 1

M
tr{AM}, (5.26)

and

qHAMr
a.s.−−→0, (5.27)

where
a.s.−−→ denotes almost sure convergence.

Note that in this chapter, the condition on the finite eighth moment
always holds, as when we apply Lemma 5, the components of the vector of
interest are i.i.d. complex Gaussian variables. It is well known that a complex
Gaussian variable with zero mean, unit variance has finite eighth moment.

Lemma 6. Given condition C1,

lim
M→∞

1

M
hHj hl = 0,∀l 6= j (5.28)

lim
M→∞

1

M
hHl hl

a.s.
= αl, l = 1, . . . , L. (5.29)

Proof: See Appendix .9.

Lemma 7. When condition C1 is satisfied,

lim
M,C→∞

∥∥∥∥∥W̃jW̃
H
j

MC

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

∥∥∥∥∥
2

= 0, (5.30)

Proof: See Appendix .10.

Lemma 7 proves that as M,C → ∞, αj is an asymptotic eigenvalue of the

random matrix W̃jW̃
H
j /MC, with its corresponding eigenvector converging

to hj/
∥∥hj∥∥2

up to a random phase.

We now return to the proof of Lemma 3. Since αj > αl,∀l 6= j, one may
readily obtain from Lemma 7 and (5.28):

lim
M,C→∞

λ1

{
W̃jW̃

H
j

MC

}
= αj , (5.31)
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and that there exists a unique 0 ≤ φ < 2π, such that

lim
M,C→∞

∥∥∥∥∥ hj∥∥hj∥∥2

− e1

{
W̃jW̃

H
j

MC

}
ejφ

∥∥∥∥∥
2

= 0, (5.32)

which completes the proof of Lemma 3.

Now we show the second part of the proof of Theorem 4. Note that in
this part we make the implicit assumption that the spectral norm of Ξ′j

satisfies
∥∥∥Ξ′j∥∥∥

2
< +∞. A sufficient (but not necessary) condition of such an

assumption is that the spectral norm of R†j is finite.

Lemma 8. Given (5.24), we have

lim
M,C→∞

∥∥∥∥ hj
‖hj‖2

− ūj1e
jφ

∥∥∥∥
2

= 0. (5.33)

Proof: See Appendix .11.

The final part of the proof of Theorem 4 can be found in Appendix .12,
which corresponds to step 3 of Algorithm 2. The proof shows that projecting
the LS estimate onto the subspace of ūj1 will lead to noise-free estimate
asymptotically as M,C →∞. This concludes the proof of Theorem 4.

Interestingly, condition (5.21) in Theorem 4 can be replaced with∥∥∥Ξjh
(j)
j

∥∥∥
2
>
∥∥∥Ξjh

(j)
l

∥∥∥
2
, ∀l 6= j, (5.34)

which indicates that under suitable conditions on the spectral norm of chan-
nel covariance, after multiplying the filter Ξj , if the power of the desired
channel is higher than that of interference channel, then, pilot contamina-
tion disappears asymptotically, along with noise.

Note that we have so far no assumption on antenna placement in the
analysis, other than the requirement for uniformly boundedness of the spec-
tral norm of channel covariance. In the sequel we look into a specific model
of ULA as an example and seek to further understand the physical meaning
of the proposed method.

We still assume h
(j)
j is the channel of interest. Denote its angular support

as Φd. Decompose the interference channel h
(j)
l ,∀l 6= j, as follows:

h
(j)
l = h

(j)
li + h

(j)
lo , (5.35)
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where

h
(j)
li =

β
(j)
l√
P

∑
θ∈Φd

a(θ)eiϕθ (5.36)

h
(j)
lo =

β
(j)
l√
P

∑
θ/∈Φd

a(θ)eiϕθ , (5.37)

which means h
(j)
li is the residual multipath component of the interference

channel within the AoA region Φd of the desired channel, while h
(j)
lo is the

multipath component which is outside Φd.

Theorem 5. For a ULA base station, under condition C1, if the residual
multipath component of the interference channel satisfies:

∀l 6= j,
∥∥∥Ξjh

(j)
li

∥∥∥
2
<
∥∥∥Ξjh

(j)
j

∥∥∥
2
, (5.38)

then, the estimation error of the estimator (5.18) vanishes:

lim
M,C→∞

∥∥∥ĥ(j)CA
j − h

(j)
j

∥∥∥2

2∥∥∥h(j)
j

∥∥∥2

2

= 0. (5.39)

Proof: See Appendix .13.
Theorem 5 further confirms the fact that for a base station equipped with
ULA, only the interference multipath components that overlap with those
of the desired channel affect the performance of our pilot decontamination
method. In other words, the spatial filter Ξj removes the energy located in
all interference multipath originating from directions that do not overlap
with those of the desired channel. It is then sufficient for the energy of the
residual interference components to be below that of the desired channel to
allow for a full decontamination.

5.5.3 Generalization to multiple users per cell

Now we generalize the covariance-aided amplitude based projection into
multi-user setting where K users are served simultaneously in each cell. We

consider the estimation of user channel h
(j)
jk in the reminder of this section.

Define a matrix H
(j)
j\k as a sub-matrix of H

(j)
j after removing its k-th

column:
H

(j)
j\k ,

[
h

(j)
j1 · · · h

(j)
j(k−1) h

(j)
j(k+1) · · · h

(j)
jK

]
. (5.40)
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A corresponding estimate of (5.40), denoted by Ĥ
(j)
j\k, is obtained by remov-

ing the k-th column of Ĥ
(j)
j , which can be an LS estimate, MMSE estimate,

or other linear/non-linear estimate of H
(j)
j . For demonstration purpose only,

in this thesis we use the simplest LS estimate, which already shows very
good performance.

In order to adapt the method in section 5.5.1 to multi-user scenario,
we propose to first neutralize the intra-cell interference with a Zero-Forcing

(ZF) filter Tjk based on the LS estimate Ĥ
(j)
j\k, and then apply the spatial

filter Ξjk. After these two filters, the data signal is now:

W̃jk , ΞjkTjkW
(j), (5.41)

where
Tjk , IM − Ĥ

(j)
j\k(Ĥ

(j)H
j\k Ĥ

(j)
j\k)

−1Ĥ
(j)H
j\k , (5.42)

and

Ξjk ,

(
L∑
l=1

R
(j)
lk + σ2

nIM

)−1

R
(j)
jk . (5.43)

The rest of this method proceeds as in the single user setting. Take the
dominant eigenvector of W̃jkW̃

H
jk/C:

ũjk1 = e1{
1

C
W̃jkW̃

H
jk}. (5.44)

The estimate of the direction of h
(j)
jk is obtained by:

ujk1 =
Ξ′jkũjk1∥∥∥Ξ′jkũjk1

∥∥∥
2

, (5.45)

where

Ξ′jk , R
(j)†
jk

(
L∑
l=1

R
(j)
lk + σ2

nIM

)
. (5.46)

Finally the phase and amplitude ambiguities are resolved by the training

sequence, and we have the estimate of h
(j)
jk :

ĥ
(j)CA
jk =

1

τ
ujk1u

H
jk1Y

(j)SH . (5.47)

Note that in this method, we build the ZF type filter Tjk based on a rough LS
estimate. Further improvements can be attained with higher quality estimate
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at the cost of higher complexity. As a simple example, we can reduce the

effect of noise on the estimate Ĥ
(j)
j\k by first applying EVD of W(j)W(j)H/C,

then removing the subspace where the noise lies, and finally performing LS
estimation. These extensions are out of the scope of this thesis.

5.6 Low-complexity alternatives

In this section, we propose two alternatives of the method shown in
section 5.5, aiming at lower computational complexity at the cost of mild
performance loss.

5.6.1 Subspace and amplitude based projection

The low-rankness of channel covariance implies that the uplink received
desired signal lives in a reduced subspace. By projecting the received data

signal W(j) onto the signal space of R
(j)
jk , we are able to preserve the signal

from user k in cell j while remove the interference and noise that live in its
complementary subspace. In the following, we show a subspace-based signal
space projection method that relies on the covariance of desired channel
only. For ease of exposition, we simplify the system setup to single user per
cell. Let the user in cell j be the target user. The EVD of the covariance of
the desired channel is

R
(j)
j = Vj ΣjV

H
j , (5.48)

where the diagonal entries of Σj contains the non-negligible eigenvalues of

R
(j)
j . Then we project the received data signal onto the signal space of R

(j)
j ,

or the column space of Vj :

Wj , VjV
H
j W(j). (5.49)

The rest of this method follows the same idea as the covariance-aided ampli-
tude based projection scheme. Taking the eigenvector corresponding to the

largest eigenvalue of WjW
H
j /C:

uj1 = e1

{
1

C
WjW

H
j

}
, (5.50)

the channel estimate of h
(j)
j is given by

ĥ
(j)SA
j =

1

τ
uj1u

H
j1Y

(j)s∗, (5.51)
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where the superscript“SA”stands for“subspace and amplitude based projec-
tion”. Note that this method does not require the covariance of interference
channels or variance of noise. It explicitly relies on the assumption that the
desired covariance matrix has a low-dimensional signal subspace, with some
degradations expected when this condition is not realized in practice. In

fact, if R
(j)
j has full rank, this method degrades to pure amplitude based

projection.
Note that this “SA” estimator has lower complexity than the “CA” esti-

mator (5.18) in the sense that 1) “SA” estimator does not require the sta-
tistical knowledge of the interference channels or the variance of the noise,
and 2) “SA” estimator skips step 2 in Algorithm 2.

The physical condition under which full decontamination is achieved with
this method is shown below in the case of a ULA. We denote the angular

support of desired channel h
(j)
j by Φd and the multipath components of the

interference channel h
(j)
l falling in Φd as h

(j)
li .

Theorem 6. For a ULA base station, if the power of interference channel
that falls into the angular support Φd satisfies

∀l 6= j,
∥∥∥h(j)

li

∥∥∥
2
<
∥∥∥h(j)

j

∥∥∥
2
, (5.52)

and the channel covariance satisfies

∀M ∈ Z+, ∀l 6= j,

∥∥∥∥R(j) 1
2

j VjV
H
j R

(j) 1
2

l

∥∥∥∥
2

< +∞, (5.53)

then, the estimation error of the estimator (5.51) vanishes:

lim
M,C→∞

∥∥∥ĥ(j)SA
j − h

(j)
j

∥∥∥2

2∥∥∥h(j)
j

∥∥∥2

2

= 0. (5.54)

Proof: Due to lack of space, we skip the complete proof and only give
two key steps below. By applying the asymptotic orthogonality between two
steering vectors which are associated with different AoAs ( Lemma 3 in [36]),
we may readily obtain:

lim
M→∞

1√
M

VjV
H
j h

(j)
j =

1√
M

h
(j)
j (5.55)

lim
M→∞

1√
M

VjV
H
j h

(j)
l =

1√
M

h
(j)
li , ∀l 6= j, (5.56)
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which means the multipath components of interference that fall outside Φd

disappear asymptotically after the projection by VjV
H
j . Then, equation

(5.53) ensures that

lim
M→∞

1

M
h

(j)H
j h

(j)
l = 0, l 6= j, (5.57)

where

h
(j)
l , VjV

H
j h

(j)
l , l = 1, . . . , L. (5.58)

Note that in Theorem 6 condition (5.53) is less restrictive than the uniformly
boundedness of the spectral norm of the channel covariance. In the special
case of zero angular spread, the rank of channel covariance becomes one.
Denote the deterministic AoA from the user in cell l to base station j as

θ
(j)
l . We can easily see that the channel estimation error of (5.51) vanishes

completely as M,C →∞ as long as

∀l 6= j, θ
(j)
l 6= θ

(j)
j , (5.59)

which occurs with probability one.
When channel covariance is not available, we can still benefit from the

subspace projection method by approximating Vj with a subset of discrete
Fourier transform (DFT) basis as shown in [85]. This DFT basis can be
chosen based on a small number of channel observations. The generalization
to multi-user case can be done by introducing the ZF filter (5.42) as in
section 5.5.3. Due to lack of space, we skip the details.

5.6.2 MMSE + amplitude based projection

Another alternative is to directly project the MMSE estimate onto the
subspace of E(j) obtained by EVD of W(j)W(j)H/C as in section 5.4. The

estimator for the multi-user channel H
(j)
j is given by:

Ĥ
(j)MA
j = E

(j)
E

(j)H
R

(j)
j

(
τ(

L∑
l=1

R
(j)
l ) + σ2

nIKM

)−1

S
H

y(j), (5.60)

where

E
(j)

, IK ⊗E(j), (5.61)
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S , ST ⊗ IM =
[

s1 ⊗ IM · · · sK ⊗ IM
]
, (5.62)

and
R

(j)
l = diag{R(j)

l1 , ...,R
(j)
lK}, l = 1, . . . , L. (5.63)

The superscript “MA” denotes MMSE + amplitude based projection. It is
worth noting that both the amplitude-based projection and angular-based
projection require large number of antennas to achieve complete decontami-
nation. In contrast, the MMSE estimator is efficient with very small number
of antennas. As M grows, MMSE estimator starts to reduce interference
earlier than the previously proposed methods, as will be shown by simula-
tions in section 5.7. However, unlike the previously proposed schemes, this
“MA”estimator cannot achieve complete decontamination when the interfer-
ence channel is overlapping with desired channel in both angular and power
domains.

5.7 Numerical Results

This section contains numerical results of our different channel estima-
tion schemes compared with prior methods. In the simulation, we have mul-
tiple hexagonally shaped adjacent cells in the network. The radius of each
cell is 1000 meters. Each base station has M antennas, which forms a ULA,
with half wavelength antenna spacing. The length of pilot sequence is τ = 10.

Two performance metrics are considered. The first is the normalized
channel estimation error

ε ,
1

KL

L∑
j=1

K∑
k=1


∥∥∥ĥ(j)

jk − h
(j)
jk

∥∥∥2

2∥∥∥h(j)
jk

∥∥∥2

2

 . (5.64)

The estimation errors in the plots are obtained in Monte Carlo simulations
and finally displayed in dB scale.

The second metric is the uplink per-cell rate when MRC receiver (based
on the obtained channel estimate) is used at base station side.

In all simulations presented in this section, we assume that the channel
covariance matrix is estimated using 1000 exact channel realizations. The
multipath angle of arrival of any channel (including the interference channel)
follows a uniform distribution centered at the direction corresponding to
line-of-sight (LoS). The number of multipath is P = 50. According to the
coherence time model in [86], for a mobile user moving at a vehicular speed
of 70 km/h in an environment of 2.6 GHz carrier frequency and 5µs high
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Figure 5.1 – Estimation performance vs. M, 2-cell network, 1 user per cell,
path loss exponent γ = 0, partially overlapping angular support, AoA spread
60 degrees, SNR = 0 dB.

delay spread (corresponding to an excess distance of 1.5 km), the channel
can be assumed coherent over 500 transmitted symbols. Thus we will let
C = 500 in simulations, although larger coherence time can be expected in
practice for a user with lower mobility.

Note that in all simulations, the amplitude-based projection and MMSE
+ amplitude based projection follow the enhanced eigenvector selection
strategy shown in section 5.4.1 with the design parameter µ = 0.2.

We first illustrate Theorem 4 in Fig. 5.1. Suppose we have a two-cell
network, with each cell having one user. In order to make the interference
overlapping in power domain with the desired signal, we set the path loss
exponent γ = 0. The power of the interference channel has equal probability
to be higher or lower than the power of the desired channel. The user in
each cell is deliberately put in a symmetrical position such that the multi-
path angular supports of the interference and the desired channel are half
overlapping with each other.

In the figure, “LS estimation” and “Pure MMSE” denote the system per-
formances when an LS estimator and an MMSE estimator (5.8) are used re-
spectively. “Pure amplitude” denotes the case when we apply the generalized
amplitude based projection method only. “MMSE + amplitude” represents
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Figure 5.2 – Estimation performance vs. M, 7-cell network, one user per cell,
AoA spread 30 degrees, path loss exponent γ = 2, cell-edge SNR = 0 dB.

the proposed estimator (5.60). “Covariance-aided amplitude” denotes the
proposed covariance-aided amplitude based projection method (5.18). The
curve “MMSE - no interference” shows the estimation error of an MMSE
estimator in an interference-free scenario. As can be seen from Fig. 5.1, due
to the overlapping interference in both angle and power domains, the per-
formance of all estimators saturate quickly with the number of antennas,
except the proposed covariance-aided amplitude based projection method,
which eventually outperforms interference-free MMSE estimation. 1

In Fig. 5.2 and Fig. 5.3, we show the performance of estimation error
and the corresponding uplink per-cell rate for a 7-cell network, with single
user per cell. The users are assumed to be distributed randomly and uni-
formly within their own cells excluding a central disc with radius 100 meters.
The angular spread of the user channel (including interference channel) is
30 degrees. The path loss exponent is now γ = 2. As we may observe, the
traditional LS estimator suffers from severe pilot contamination. The pure
amplitude based method and the pure MMSE method alleviate the pilot

1. The reason is that the performance of the interference-free MMSE estimation has a
non-vanishing lower bound due to white Gaussian noise. On the contrary, our proposed
covariance-aided amplitude based projection method eliminates the effects of noise and
interference asymptotically.
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Figure 5.3 – Uplink per-cell rate vs. M, 7-cell network, one user per cell,
AoA spread 30 degrees, path loss exponent γ = 2, cell-edge SNR = 0 dB.

interference, yet saturate with the number of antennas. These saturation
effects come from the overlapping of the interference and the desired chan-
nels in power and angular domains respectively. The “MMSE + amplitude”
approach outperforms these two known methods as it discriminates against
interference in both amplitude and angular domains. However this scheme
cannot cope with the case of overlapping in both domains. Owing to its
robustness, the covariance-aided amplitude projection method outperforms
the rest in terms of both estimation error and uplink per-cell rate.

We now turn our attention to multi-cell multi-user scenario. Fig. 5.4 and
Fig. 5.5 show the channel estimation performance and the corresponding up-
link per-cell rate for a 7-cell network with each cell having 4 users. In these
two figures, we add the curve of subspace and amplitude based projection,
which is denoted in the figures as“Subspace + amplitude”. The other param-
eters remain unchanged compared with those in Fig. 5.2 and Fig. 5.3. We can
notice that in Fig. 5.4 the covariance-aided amplitude projection method has
some performance loss with respect to the low-complexity MMSE + ampli-
tude method and the MMSE method when the number of antennas is small.
It is due to the following two facts: 1) when M is small, it is well known
that MMSE works well, but not the amplitude based methods, and 2) with
small M , the asymptotical orthogonality of channels of different users is
not fully exhibited, and consequently a small amount of signal of interest

99



CHAPTER 5. JOINT ANGLE/POWER BASED DECONTAMINATION

0 50 100 150 200 250 300 350 400 450 500
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Number of Antennas

E
st

im
at

io
n 

E
rr

or
 [d

B
]

 

 
LS estimation
Pure MMSE
Pure amplitude
MMSE + amplitude
Subspace + amplitude
Covariance−aided amplitude

Figure 5.4 – Estimation performance vs. M, 7-cell network, 4 users per cell,
AoA spread 30 degrees, path loss exponent γ = 2, cell-edge SNR = 0 dB.

0 100 200 300 400 500
0

5

10

15

20

25

30

Number of Antennas

P
er

−
ce

ll 
R

at
e 

[b
ps

]

 

 

LS estimation
Pure MMSE
Pure amplitude
MMSE + amplitude
Subspace + amplitude
Covariance−aided amplitude

Figure 5.5 – Uplink per-cell rate vs. M, 7-cell network, 4 users per cell, AoA
spread 30 degrees, path loss exponent γ = 2, cell-edge SNR = 0 dB.
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is removed by the ZF filter Tkj , along with intra-cell interference. However
it is not disturbing in the sense that 1) as the number of antennas grows,
the covariance-aided amplitude projection method quickly outperforms the
other methods; and 2) The per-cell rate of this proposed method is still good
even with moderate number of antennas, e.g., M > 25. It is also interesting
to note that the low-complexity alternative scheme, subspace and ampli-
tude based projection method, has some minor performance loss, yet keeps
approximately the same slope as the covariance-aided amplitude projection.

5.8 Conclusions

In this chapter we proposed a series of robust channel estimation algo-
rithms exploiting path diversity in both angle and amplitude domains. The
first method called “covariance-aided amplitude based projection” is robust
even when the desired channel and the interference channels overlap in multi-
path AoA and are not separable just in terms of power. Two low-complexity
alternative schemes were proposed, namely “subspace and amplitude based
projection” and “MMSE + amplitude based projection”. Asymptotic analy-
sis shows the condition under which the channel estimation error converges
to zero.
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Chapter 6

Cooperative Feedback
Design in FDD

In previous chapters, we have addressed one of the fundamental problems
of massive MIMO - pilot contamination in TDD deployment. In this chapter,
we deal with another challenge - CSI acquisition for massive MIMO in FDD
setting. In particular, we propose CSI feedback reduction methods based
on novel approaches of feedback design in FDD massive MIMO systems.
We exploit the synergies between massive MIMO systems and inter-user
communications based on D2D. The exchange of local CSI among users, en-
abled by D2D communications, makes available global CSI at the terminals.
Thus, we can construct more informative forms of feedback based on this
shared knowledge. Two feedback variants are highlighted: 1) cooperative CSI
feedback, and 2) cooperative precoder index feedback. For a given feedback
overhead, the sum-rate performance is assessed and the gains compared with
a conventional massive MIMO setup without D2D are shown.

6.1 Introduction

Very large antenna array or massive MIMO networks have impressive
potentials to combat interference [10, 13, 87] based on simple beamform-
ing techniques without requiring complex inter-cell coordination approaches.
The challenge of this kind of systems concerns the CSI acquisition at the
access point, which is crucial for downlink transmission. In [10], Marzetta
limited the applicability of massive MIMO networks to TDD mode. By ap-
pealing to the reciprocity principle, TDD mode enables the acquisition of
the CSI for downlink by channel estimation in the uplink via an open-loop
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feedback scheme that avoids costly feedback. Although the reuse of the same
set of pilot sequences in adjacent cells, usually referred to as pilot contam-
ination, seems to have severe detrimental effects on the spectral [10] and
power efficiency [88] of the massive MIMO networks compared with ideal
CSI knowledge. Nevertheless the promised gains are still of several orders
of magnitude [88] and fueled intensive research activities on massive MIMO
networks in TDD mode.

In setups where channel reciprocity does not hold such as massive MIMO
systems in FDD mode, closed-loop feedback is required which consists of a
preliminary phase that we refer to as channel sounding, where the access
point transmits training sequences for channel estimation or local CSI ac-
quisition at each user terminal. In a second phase, shortly after CSI feedback,
each UT retransmits its local CSI such that the global CSI is available at
the access point. Using traditional closed-loop approaches, both the length of
training sequences and the necessary feedback for large antenna arrays can
become prohibitive. Very recently, building on the reduced rankness of UT
channel covariance matrices in massive MIMO systems [17,36,82], promising
schemes for FDD mode have been proposed in [17,83,89–91]. In [17,83,89],
the authors refer to the subspace actually spanned by the UT channel as
the effective channel and they cluster UTs with almost completely over-
lapping effective channels. A pre-beamforming designed using only second-
order channel statistics and projecting signals of each cluster onto the ef-
fective channel enables a drastic reduction of the training sequence length.
Further reductions are also possible by restricting the projection to reduced-
dimension effective channel. Then, a reduced amount of feedback is required
to design the precoder on this latter subspace. In [90,91], the authors exploit
the hidden joint sparsity of the channel for clusters of UTs to reduce both
training and feedback by applying compressed sensing techniques.

In [83], a drastic reduction of the required CSI is obtained in the ideal
case as the access point is equipped with a large - theoretically infinite -
uniform linear antenna array and each cluster consists of UTs located on a
ray with origin at the access point. In those ideal conditions the selection
of a reduced effective channel with negligible performance loss is strongly
simplified and the required training length and CSI is drastically reduced.

The low-rankness of UT channel covariance matrices for more general
antenna array settings has been studied in [36, 82]: under more realistic
conditions, with UTs of a cluster randomly located in a given sector and
arbitrary topology of large antenna array, the dimensions of the effective
channel might be still too large.

In order to reduce the amount of feedback in non-reciprocal setups, we
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propose a three-phase cooperative closed-loop feedback as an alternative to
the traditional per-user feedback loop. The new scheme exploits a novel syn-
ergy between multiuser networks with access points equipped with multiple
antenna arrays and D2D communications. More specifically, we introduce
an intermediate phase in the classical closed-loop feedback: once estimated
the channel parameters in the channel sounding phase, the UTs in a cluster
exchange the acquired local CSI such that the global CSI is available to a
master receiver in the case of centralized processing or to all the receivers in
the case of distributed processing. The availability of the global CSI enables
a joint optimized design of the feedback. We propose two methods to design
the feedback under a constraint on the total amount of bits available for the
feedback. The first method performs an optimal selection of the reduced ef-
fective subspace based on instantaneous knowledge of the global CSI. Then,
the coefficients of the reduced effective subspace are quantized and retrans-
mitted. The second approach benefits from the knowledge of the global CSI
by selecting the best precoder from a predefined codebook. In both cases we
adopt as optimality criterion the maximization of the sum-rate. In the first
approach a zero-forcing precoder is implemented at the access point. Both
schemes show clear performance improvements compared with the reference
massive MIMO system without D2D.

6.2 Signal and Channel Models for FDD

We consider a massive MIMO base station servingK single-antenna users
in the cell. The base station has M antennas and operates in FDD mode.
The downlink channel between the base station and the k-th user is denoted
by hHk ∈ C1×M . The full downlink channel can therefore be represented by

HH =

hH1
...

hHK


∈CK×M

. (6.1)

The downlink transmission is modeled by:

y = HHBs + n, (6.2)

where y ∈ CK×1 is the received signal at all users, s ∈ CK×1 denotes the
vector of i.i.d. Gaussian signals with zero-mean and unit-variance, and n
represents the spatially and temporally additive white Gaussian noise with
zero-mean and element-wise variance σ2

n. B is the downlink beamformer
which has the total power P .
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We investigate a scenario where a group of K users are located close to
each other so they can be assumed to share similar spatial statistics of chan-
nels. Hence we assume the channel covariances of these users are identical,
i.e., ∀k,E{hkhHk } = R. Due to limited angle spread followed by incoming
paths originating from high-level base station, the channel covariance R typ-
ically exhibits low-rank property [36] [83] [82]. We denote the rank of R as
d. Applying eigen value decomposition (EVD) to R:

R = UΣUH (6.3)

Without loss of generality, we assume the eigenvalues in Σ are in descending
order, so that the first d eigenvalues are non-negligible while the others can
be neglected. We extract the first d columns of U in order to form a sub-
matrix U1 ∈ CM×d. The columns in U1 are ranked in descending order
according to their average powers (or their corresponding eigenvalues). Now
the channel vector hk is in the column space of U1, e.g., ∀k,hk is a linear
combination of the columns of U1. We may write:

H =
[
h1 h2 · · · hk

]
= U1A, (6.4)

where A∈ Cd×K is defined as:

A ,
[
a1 a2 · · · aK

]
=


a11 a12 · · · a1K

a21 a22 · · · a2K
...

... · · ·
...

ad1 ad2 · · · adK

 . (6.5)

The channel vector hk, 1 ≤ k ≤ K, is assumed to be M × 1 complex
Gaussian, undergoing correlation due to the finite multipath angle spread
at the base station side [75]:

hk = R1/2hWk = UΣ1/2UHhWk, k = 1, 2, . . . ,K, (6.6)

where hWk ∼ CN (0, IM ) is the spatially white M × 1 SIMO channel, IM
is the M ×M identity matrix, and CN (0, IM ) denotes zero-mean complex
Gaussian distribution with covariance matrix IM . From (6.6) and (6.5) we
may readily obtain the distribution of ak as:

ak ∼ CN (0,Σ1), 1 ≤ k ≤ K, (6.7)

where Σ1 is a diagonal matrix with the d greatest eigenvalues of R on its
diagonal in decending order.
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6.3 Feedback Design without D2D

A traditional feedback strategy for multiuser system is to let each user
quantize its downlink channel vector and then send the quantized informa-
tion back to the base station [5]. In the subsequent precoding stage the user
signals cannot be made perfectly orthogonal to each other because of the
quantization errors [92]. Note, in massive MIMO regime only partial channel
information (namely K coefficients per user) is needed to achieve orthogo-
nality between user signals. This gives a first step towards increasing the
CSI quality with given amount of feedback overhead. This is highlighted by
simple Proposition 7 below.

By extractingN (K ≤ N ≤ d) rows from A, we form a matrix As∈ CN×K ;
and by extracting the corresponding N columns of U1, we form a matrix
Us∈ CM×N . We can partially reconstruct the channel matrix as follows:

H̃ , UsAs. (6.8)

A zero-forcing (ZF) beamformer based on the incomplete CSI can be written
as:

B =

√
P H̃†

||H̃†||F
, (6.9)

where || · ||F denotes the Frobenius norm, and H̃† is the Moore-Penrose
pseudoinverse:

H̃† = H̃H(H̃H̃H)−1.

Proposition 7. The ZF beamformer (6.9) is able to eliminate inter-user
interference completely.

Proof: We may rewrite H̃† as follows:

H̃† = UsAs(A
H
s As)

−1. (6.10)

The channel model is now

y = AHUHUsAs(A
H
s As)

−1

√
P

||H̃†||F
s + n. (6.11)

Since the following equation holds:

AHUHUs = AH
s , (6.12)
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the received signal vector is

y =

√
P

||H̃†||F
s + n. (6.13)

Hence interference is nulled, proving Proposition 7.

Proposition 7 indicates that we may form an As by extracting any linearly
independent K out of d rows of A. If the base station knows this incomplete
CSI, it will ensure the users receive zero interference after downlink beam-
forming (6.9). When CSI exchange between users is not possible, a typical
choice of eigenvectors is the first K rows in U1, as they are the strongest K
eigen modes in statistical point of view. Denote the index of the i-th chosen
eigenvector as ei, and define the set of chosen indices as G , {e1, · · · , eN}
so that ∀i, 1 ≤ ei ≤ d, and that ∀i 6= j, ei 6= ej . When CSI exchange between
users is not allowed, the users select the following set of rows from A:

G(1) = {1, · · · ,K}, (6.14)

which is known by the base station by default. The users will only send back
a quantized version of As, i.e., the first K rows of A.

6.4 Cooperative Feedback of CSI with D2D

Once CSI exchange is allowed between users, the users can make a joint
decision of which set of eigenvectors in U1 to choose, or equivalently which
set of rows of A to extract in order to form As. As a simple example, we
may consider the signal-to-noise ratio (SNR) at user side as a criterion:

SNR =
P

||H̃†||2F
=

P

tr{(AH
s As)−1}

. (6.15)

We choose K out of d eigenvectors from U1 so that the SNR is maximized.

G(2) = arg
N=K

min tr{(AH
s As)

−1}. (6.16)

The optimality of the eigenvector selection decision is achieved by exhaus-
tive search. This problem is loosely reminiscent of the TX antenna selec-
tion in conventional MIMO systems. The number of possible candidates
is
(
d
K

)
, which scales exponentially with K. Despite its optimality, the ex-

haustive method has a high computational complexity, which necessitates
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low-complexity selection algorithms. Gorokhov et al. proposed a decremen-
tal selection algorithm in [7] [8] for the purpose of antenna selection. In his
approach, the rows of the channel matrix are removed one by one, while
minimizing the capacity degradation. This approach can be adapted to the
selection of eigenvectors. We start with the full effective channel A. Under
the condition that the SNR reduction is minimum, the rows of A are removed
one by one, until we have K rows left. The searching space is reduced from(
d
K

)
down to an order of d2.

After the joint decision is made, i.e., G(2) is obtained, the users will send
back the corresponding As (quantized), as well as the indices in G(2) to the
base station.

6.5 Cooperative Feedback of Precoder Index with
D2D

We now consider another cooperative feedback design approach based
on precoder feedback. Local CSI exchange via D2D communications enables
users to jointly choose a precoding matrix, which makes the multi-user sys-
tem analogous to a point-to-point MIMO system. Some classical precoder
selection schemes [93, 94] can directly apply. A precoder codebook is com-
posed of a finite set of precoding matrices predetermined a priori. Such a
codebook is used to approximate the precoder, e.g., the normalized Moore-
Penrose pseudoinverse of A for a ZF type precoder. The codewords can be
generated according to the distribution of A, which is given in (6.7). The
codebook design and optimization are non-trivial and out of the scope of this
thesis. Nevertheless a simple random codebook generation method is given
in Section 6.6.2. After local CSI exchange, the users jointly select the best
precoding matrix according a certain criterion and feed back the index of
the selected precoding matrix. The selection criterion may vary depending
on the complexity requirement of the system. However an intuitive choice is
the downlink sum-rate. Assume the codebook X is known at both the base
station and the master UT. Any codeword X ∈ X is of the size d×K. The
codewords are normalized such that ∀X ∈ X , ||X||F =

√
P . If X is chosen,

the downlink precoding matrix is U1X. Since the users know the instan-
taneous channel, they are able to compute the downlink sum-rate when a
certain precoder X is selected. We define H , AHX. The downlink data
model is now

y = Hs + n. (6.17)
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The rate of user k is:

rk , log2

1 +
|Hk,k|2

σ2
n +

∑
l 6=k
|Hk,l|2

 , (6.18)

where Hk,l stands for the (k, l)-th element of H. The downlink sum-rate is
defined as

C ,
K∑
k=1

rk. (6.19)

A description of the algorithm is as follows:
(1) The slave UTs send their measured downlink CSI to the master UT.

The master UT now has the effective channel matrix A.
(2) The master UT searches the codebook and finds the index of the

precoder that maximizes the sum-rate:

i = arg
Xi∈X

max{C}. (6.20)

(3) The master UT feeds back the index i to the base station.
(4) The base station performs downlink beamforming (6.17) using the

selected precoder.

6.6 Numerical Results

This section contains numerical evaluations of different feedback mecha-
nisms. First we introduce our physical channel model. We assume the base
station antennas form a uniform linear array (ULA). It is worthwhile to note
that the proposed methods of this thesis and their results also hold for some
other different settings of antenna placement, e.g., the random linear ar-
ray, two dimensional uniform array, or even the two-dimensional distributed
array [82]. For ease of exposition we take a ULA for example. The down-
link channel between the base station and the k-th user is obtained by the
following model [1]:

hHk =
√
βk

Q∑
q=1

(a(θkq))
H ejϕkq , (6.21)

where Q is the number of i.i.d. paths, βk denotes the path loss for channel
hk, and it is dependent on the prescribed average SNR at cell edge. ejϕkp
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is the i.i.d. random phase, which is independent over channel index k and
path index q. a(θ) is the signature (or phase response) vector by the array
to a path originating from the angle θ, as shown in [2]

a(θ) ,


1

e−j2π
D
λ

cos(θ)

...

e−j2π
(M−1)D

λ
cos(θ)

 , (6.22)

where D is the antenna spacing at the base station and λ is the signal
wavelength.

In simulations of this chapter, we assume the users share the same scat-
tering environment, giving rise to identical channel covariance matrix for all
users. In other words, θkq has an i.i.d. distribution, and ∀k, βk = β. This is
the worst case scenario due to the resemblance of the channel of all users.

We consider a cluster of 3 single-antenna UTs being served by a base
station equipped with 50 antennas. The cell radius is 1000 meters and the
users are located 800 meters away from the base station. The angle of de-
parture (AoD) of any user channel follows a uniform distribution from 80
degrees to 100 degrees, i.e., ∀k, ∀q, θkq ∼ U(80, 100). Due to limited angle
spread (20 degrees), the rank of the channel covariance R is around d = 15
(see [36]). Since channel covariance is assumed known by the users, we con-
sider only the reduced-dimension subspace (effective subspace), where the
50× 1 channel vector can be effectively represented by a linear combination
of 15 eigenvectors of the channel covariance.

When CSI exchange is not allowed between users, the traditional ap-
proach is that each user quantizes its own channel and sends back the quan-
tized CSI to the base station. Then the base station designs a precoder based
on the quantized CSI. We introduce this method as a reference system.

6.6.1 Cooperative CSI Feedback

Three different CSI feedback regimes are evaluated and the sum-rate
performances are given in Fig. 6.1. For the sake of fairness, we assume the
same amount of quantization bits is available in the three regimes. Each user
will send back 16 bits of information to the base station. The curve“Quantize
full CSI, no D2D” denotes the sum-rate performance of the conventional
method when the full effective channel matrix A is quantized and sent back
to base station. In this approach each user quantizes its effective channel
vector, i.e., its corresponding column in A, into 16 bits. Upon the reception of
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Figure 6.1 – DL sum-rates with/without feedback cooperation, feedback
overhead: 16 bits per user.

users’ feedback, the base station constructs the effective channel matrix and
performs ZF precoding based on it. The curve“Use strongest K eigen modes,
no D2D” shows the performance of each user using K dominant eigenvectors
of R, as described in the reference system (6.14). The curve “Cooperative
feedback of CSI, D2D”refers to the proposed feedback regime where the users
exchange CSI and search using the decremental selection method for the best
3 eigen modes. The users need to feed back the quantized projections and
the indices of the three eigenvectors that are chosen. We omit the result of
exhaustive search due to the fact that it has higher complexity yet negligible
performance improvement compared with the low-complexity decremental
method. Despite the fact that the D2D method has fewer quantization bits
available, which results from the requirements of feeding back the indices,
we still observe a clear performance gain of the D2D method.

6.6.2 Cooperative Precoder Index Feedback

In the following we will evaluate the performance of precoder index feed-
back method. We keep the simulation settings the same as in section 6.6.1
except that the amount of feedback overhead is now 4 bits per user. We still
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work on the effective subspace. The curve “Quantize full CSI, no D2D” and
“Use strongest K eigen modes, no D2D” in Fig. 6.2 denote the same non-
cooperative methods as shown in section 6.6.1. We omit the performance of
cooperative CSI feedback here due to the lack of available quantization bits,
as the representation of the indices of the chosen eigen modes alone requires
log2

(
d
K

)
≈ 9 bits.
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Figure 6.2 – DL sum-rates of cooperative precoder selection and non-
cooperative CSI feedback, feedback overhead: 4 bits per user.

Once D2D is enabled, the users can compute the system performance,
i.e., the sum-rates, when different precoders in the codebook are used, and fi-
nally pick the best precoder. Note that in simulation, we generate a random
codebook as follows: 1) generate a fixed number of realizations of A ac-
cording to its distribution (6.7); 2) compute the normalized Moore-Penrose
pseudoinverse of A for each realization. For the sake of fairness, the cooper-
ative precoder index feedback scheme, marked with “Cooperative feedback
of precoder index, D2D”, also has totally 12 bits of feedback overhead avail-
able. We can observe significant gain of this method over the traditional
ones when D2D is not possible.

Finally, we would like to remark that the cooperative precoder index
feedback approach has higher complexity due to exhaustive search. However
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it has better performance than cooperative CSI feedback, especially when
the feedback overhead is small.

6.7 Conclusions

In this chapter we propose a new cooperative feedback framework for
FDD massive MIMO whereby devices rely on local CSI exchange so as to
compute a suitable feedback signal. We show two approaches for feedback
design, cooperative CSI feedback and cooperative precoder index feedback.
These methods help reduce feedback overhead for FDD massive MIMO sys-
tems for a given sum-rate performance target, compared with the conven-
tional non-cooperative feedback design.
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Chapter 7

Conclusion

This thesis addresses the challenges of CSI acquisition of massive MIMO
in both TDD mode and FDD mode.

The first part of this thesis concerns mainly the channel estimation in
TDD mode. We tackle the pilot contamination problem, which was believed
to constitute a bottleneck of the performance of massive MIMO systems.
We show that under certain non-overlapping condition on the multipath
AoA distribution for a ULA base station, pilot contamination effect can be
made to vanish completely using an MMSE channel estimator. This non-
overlapping condition ensures that the interference falls into the null space
of the covariance matrix of desired channel asymptotically. This is mainly
due to the low-rankness property of channel covariance matrix, which is iden-
tified and proved in this thesis. Furthermore, we show that such a low-rank
property is not limited to ULA. It can be generalized to non-uniform array,
and even to two-dimensional distributed large scale arrays. We then propose
coordinated pilot assignment method based on the second-order statistics of
user channels. This method is proved to be powerful in discriminating across
interfering users with even identical pilot sequences.

Although the above-mentioned MMSE-based estimation schemes can
lead to pilot contamination elimination under the strict non-overlapping
condition, in reality however, due to the randomness of users’ locations, this
condition is unlikely to hold at all times. Thus, we propose a series of robust
channel estimation schemes that exploit both the long-term statistical infor-
mation of the channels and the short-term instantaneous amplitudes of the
channels. Asymptotic analysis and simulation show that the proposed meth-
ods require milder conditions to achieve full pilot decontamination compared
to known methods.
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In the second part of this thesis, we consider the CSI acquisition of
massive MIMO in FDD mode. Novel cooperative feedback mechanisms are
proposed based on D2D communications, aiming at reducing the amount of
CSI feedback. In these schemes, the users are allowed to exchange CSI with
each other so as to jointly design the feedback. We show that for a given
amount of feedback overhead, the new methods have significant sum-rate
performance gain over the traditional schemes without D2D.
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.1 Proof of Lemma 1:

Proof:
Define the series

xi , −1 +
2(i− 1)

M
, i = 1, . . . ,M,

and

µi ,
α(xi)√
M

.

Then we have µi ⊂ A,∀i = 1, . . . ,M and

µHk µi =
1− e−j2π(i−k)

M(1− e−
j2π(i−k)

M )
= 0, k 6= i.

Thus {µi |i = 1, . . . ,M } forms an orthogonal basis of A, and therefore

dim{A} = M.

Define

B̃ ,

{
µi

∣∣∣∣i ∈ Z ∩
[
bM(b1 + 1)

2
+ 1c+ 1, dM(b2 + 1)

2
+ 1e − 1

]}
,

where dxe and bxc are rounded-above and rounded-below operators respec-
tively. Then B̃ is part of an orthogonal basis of the space B, which indicates
dim{B} > |B̃|. By counting vectors in B̃, we have that

dim{B} > dM(b2 + 1)

2
+ 1e − bM(b1 + 1)

2
+ 1c − 1

= dM(b2 + 1)

2
e − bM(b1 + 1)

2
c − 1. (1)

Now we define

C̃ ,

{
µi

∣∣∣∣i ∈ Z and i ∈
[
1, bM(b1 + 1)

2
+ 1c

]
∪
[
dM(b2 + 1)

2
+ 1e,M

]}
.

Then C̃ is part of an orthogonal basis of A. Furthermore,

|C̃| = bM(b1 + 1)

2
+ 1c+M − dM(b2 + 1)

2
+ 1e+ 1

= M − dM(b2 + 1)

2
e+ bM(b1 + 1)

2
c+ 1.
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Consider the equivalent form of B

B =

{∫ b2

b1

f(x)α(x)dx

∣∣∣∣∀|f(x)| <∞, x ∈ [b1, b2]

}
.

Take any vector µi ∈ C̃, we have

µHi

∫ b2

b1

f(x)α(x)dx =
1√
M

∫ b2

b1

f(x)α(xi)
Hα(x)dx

=
1√
M

∫ b2

b1

f(x)
1− e−jπM(x−xi)

1− e−jπ(x−xi)
dx.

Since µi ∈ C̃, we can observe xi /∈ [b1, b2], thus

lim
M→∞

µHi

∫ b2

b1

f(x)α(x)dx = 0.

Therefore C̃ ⊂ B⊥ when M →∞. Hence we have

dim{B⊥} = M − dim{B} > |C̃|

⇒dim{B} 6 dM(b2 + 1)

2
e − bM(b1 + 1)

2
c − 1. (2)

Combining (1) and (2), we can easily obtain

dim{B} ∼ dM(b2 + 1)

2
e − bM(b1 + 1)

2
c − 1

∼ M(b2 − b1)

2
+ o(M),

and Lemma 1 is proved.

.2 Proof of Theorem 1:

Proof: We define

b(x) , a

(
cos−1(x

λ

D
)

)
, x ∈ [−D

λ
,
D

λ
]. (3)

It is clear from Lemma 1 that b(x) = α(2x). Hence, for any interval [xmin, xmax]
in [−1

2 ,
1
2 ],

dim
{

span
{
b(x),∀x ∈ [xmin, xmax]

}}
∼ (xmax − xmin)M when M is large. (4)
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Additionally, we have

span {R} = span

{∫ π

0
a(θ)a(θ)Hp(θ)dθ

}
,

Thus, due to the bounded support of p(θ), we can obtain

span {R} = span

{∫ θmax

θmin

a(θ)a(θ)Hp(θ)dθ

}
= span

{∫ θmax

θmin

b(
D

λ
cos(θ))bH(

D

λ
cos(θ))p(θ)dθ

}
.

Then, by interpreting the integral as a (continuous) sum, we have

span {R} ⊂ span

{
b(x),∀x ∈ [

D

λ
cos(θmax),

D

λ
cos(θmin)]

}
.

From (4), we obtain

rank(R) ≤
(
cos(θmin)− cos(θmax)

) D
λ
M,

for large M , and Theorem 1 is proved.

.3 Proof of Proposition 5:

Proof: Denote the associated path loss as β. The covariance R is a Toeplitz
matrix, with its mn-th entry given by

R(m,n) = β

∫ π

0
p(θ)ej2π

D
λ

(n−m) cos(θ)dθ (5)

= β

∫ 1

−1
p (arccos(x)) ej2π

D
λ

(n−m)x 1√
1− x2

dx

=
βλ

2πD

∫ 2πD
λ

− 2πD
λ

p
(
arccos( λx

2πD )
)√

1−
(
λx

2πD

)2 ej(n−m)xdx,

=
1

2π

∫ 2πD
λ

− 2πD
λ

f(x)ej(n−m)xdx, (6)

where

f(x) ,
βλ

D

p
(
arccos( λx

2πD )
)√

1−
(
λx

2πD

)2 . (7)
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Since 0, π /∈ Φ, or in other words, p(0) = p(π) = 0, and that p(θ) <∞,∀θ ∈
Φ, it follows that f(x) is uniformly bounded:

f(x) < +∞,−2πD

λ
≤ x ≤ 2πD

λ
. (8)

Thus, the Toeplitz matrix R is related to the real integrable and uniformly
bounded generating function f(x), with its entries being Fourier coefficients
of f(x). We now resort to the known result on the spectrum of the n × n
Toeplitz matrices Tn(f) defined by the generating function f(x). Denote by
ess inf and ess sup the essential minimum and the essential maximum of f ,
i.e., the infimum and the supremum of f up to within a set of measure zero.
Let mf , ess inff and Mf , ess supf .

Theorem 7. [95] If λ
(n)
0 ≤ λ

(n)
1 ≤ · · · ≤ λ

(n−1)
n−1 are the eigenvalues of

Tn(f), then, the spectrum of Tn(f) is contained in (mf ,Mf ); moreover

lim
n→∞

λ
(n)
0 = mf and lim

n→∞
λ

(n−1)
n−1 = Mf .

By invoking Theorem 8, we obtain that lim
M→∞

‖R‖2 = Mf < ∞. In

addition, for any finite M , the inequality ‖R‖2 <∞ always holds true. This
concludes the proof.

.4 Proof of Proposition 3:

Proof: We first consider an N -antenna ULA with aperture D and antenna
spacing D = D/(N − 1). Define

α̃(x) ,
[
0, e−j2π

D
λ
x, · · · , e−j2π

D(N−1)
λ

x
]T

=

[
0, e
−j2π D

λ(N−1)
x
, · · · , e−j2π

D(N−1)
λ(N−1)

x
]T
.

Now we define Ã , span{α̃(x), x ∈ [b1, b2]}. Recall from section 3.2.2 the
following result:

If β(x) , [ 1 e−jπx · · · e−jπ(N−1)x ]T . Given b1, b2 ∈ [−1, 1] and b1 <

b2, define A , span{β(x), x ∈ [b1, b2]}, when N is large,

dim{A} =
(b2 − b1)N

2
+ o(

(b2 − b1)N

2
). (9)
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The above conclusion can directly apply: when N is large,

dim{Ã} =
ND

(N − 1)λ
(b2 − b1) + o

(
ND

(N − 1)λ
(b2 − b1)

)
=
DN

λ
(b2 − b1) + o

(
DN

λ
(b2 − b1)

)
=
MD

λ
(b2 − b1) + o

(
MD

λ
(b2 − b1)

)
=
MD

λ
(b2 − b1) + o(M).

We can observe that dim{Ã} has no dependency on N . Imagine for any
finite aperture D, we let N →∞ so that D → 0. In this case, all elements of
α(x) can be seen as M (finite) random samples in the vector α̃(x). Hence

dim{B} ≤ dim{Ã} =
MD

λ
(b2 − b1) + o(M).

Now consider the space C. We define Cq , span{α(x), x ∈ [bmin
q , bmax

q ]}. An
upper bound of its dimension can be obtained by considering the extreme
case when all Q spaces are mutually orthogonal so that their dimensions can
add up:

dim{C} ≤
Q∑
q=1

dim{Cq} =

Q∑
q=1

MD

λ
(bmax
q − bmin

q ) + o(M).

Thus, Proposition 3 is proven.

.5 Proof of Theorem 2:

Proof:
For ease of exposition we omit the user index k. Imagine a special case

when the scatterers are located in a line which has the length L̃, as shown
in Fig. 1. Assume the antennas are far away so that the scatterers are in
the same planar wavefront region. We denote the right end of the scattering
line as the reference point. The m-th antenna is located d̃m meters away
from the reference point, at the angle θm. The p-th scatter is l̃(p) meters
away from the reference point. l̃(p) follows a uniform distribution, i.e., l̃(p) ∼
U(0, L̃). The phase shift between the scatterer p and the reference point is
2πl̃(p) cos(θm)/λ, 1 ≤ m ≤M .
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Figure 1 – Illustration of a line of scatterers.

Define a diagonal phase matrix

Ξ , diag{e−j2π
d̃1+r
λ , ..., e−j2π

d̃M+r

λ }.

The p-th scattering path vector channel is now given by:

hp ,


e−j2π

dp1+r

λ

...

e−j2π
dpM+r

λ

 ejϕp = ejϕpΞ


e−j2π

l̃(p) cos(θ1)
λ

...

e−j2π
l̃(p) cos(θM )

λ



If we define h̃p , [e−j2π
l̃(p) cos(θ1)

λ , · · · , e−j2π
l̃(p) cos(θM )

λ ]T , we may see that h̃p
and hp are unitarily equivalent, since ejϕpΞ forms a unitary matrix. If we
vary l̃(p), we can obtain two linear spaces spanned by hp and/or h̃p. The
dimensions of the two spaces are equal. Therefore in the following we will
find the dimension spanned by h̃p instead of hp. Assume N is a large integer,

we define xn , −1 + 2(n−1)
N , n = 1, ..., N , the set X , {xn}, as well as the

vector

µp ,


e−j2π

l̃(p)x1
λ

e−j2π
l̃(p)x2
λ

...

e−j2π
l̃(p)xN
λ

 = ej2πl̃(p)


e−j2π

l̃(p)(0)
λ

e−j2π
l̃(p)( 2

N
)

λ

...

e−j2π
l̃(p)(

2(N−1)
N

)

λ

 .
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Since l̃(p) ∼ U(0, L̃), we reuse the result shown in (9):

dim{span{µp, l̃(p) ∈ [0, L̃]}}

=
4L̃

Nλ

N

2
+ o

(
4L̃

Nλ

N

2

)

=
2L̃

λ
+ o(L̃).

Note that the above result holds when N is arbitrarily large. We again
observe that when N → ∞, any cos(θm) will fall into the set X , which
indicates

dim{span{h̃p, l̃(p) ∈ [0, L̃]}} ≤ 2L̃

λ
+ o(L̃). (10)

Recall that the covariance matrix R = E{ 1
P

P∑
p=1

P∑
q=1

hph
H
q }. Because of the

random and independent phases ϕp and ϕq,

∀p 6= q,E{hphHq } = 0.

R = E{ 1

P

P∑
p=1

hph
H
p } = E{hphHp }.

We can see that the number of scatterers has no impact on the rank of
channel covariance matrix. Hence according to (10), the rank of R is upper
bounded by

rank(R) ≤ 2L̃

λ
+ o(L̃).

Returning to the one-ring model, we can interpret the ring as the sum of
lines, with the total length 2πr. An extreme case is when all of the channels
corresponding to different pieces of the ring span orthogonal spaces, i.e., the
rank of the covariance matrix is the sum of the spatial dimensions corre-
sponding to every pieces of the ring. This is the case when the covariance
rank is maximized. Therefore the rank is upper bounded by:

rank(R) ≤ 4πr

λ
+ o(r).

Thus Theorem 2 is proven.
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.6 Proof of Lemma 2:

Proof: Take an angle Φ /∈ [θmin
i , θmax

i ] and define

u ,
a(Φ)√
M
.

Then we have

uHRiu =
1

M
a(Φ)HRia(Φ)

=
1

M
aH(Φ)E

{
a(θ)aH(θ)

}
a(Φ)

=
1

M
E
{∣∣aH(Φ)a(θ)

∣∣2}
=

1

M
E


∣∣∣∣∣
M−1∑
m=0

e2πj(m−1)D
λ

(cos(Φ)−cos(θ))

∣∣∣∣∣
2


=

∫ θmax
i

θmin
i

1

M

∣∣∣∣∣
M−1∑
m=0

e2πj(m−1)D
λ

(cos(Φ)−cos(θ))

∣∣∣∣∣
2

pi(θ)dθ.

According to the well-known result on the sum of geometric series, we can
easily obtain

lim
M→∞

1

M

∣∣∣∣∣
M−1∑
m=0

e2πj(m−1)D
λ

(cos(Φ)−cos(θ))

∣∣∣∣∣
2

= 0,

since Φ 6= θ,∀θ ∈ [θmin
i , θmax

i ]. Thus

lim
M→∞

uHRiu = 0,

which proves Lemma 2.
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.7 Proof of Proposition 5:

Proof: Denote the associated path loss as β. The covariance R is a Toeplitz
matrix, with its mn-th entry given by

R(m,n) = β

∫ π

0
p(θ)ej2π

D
λ

(n−m) cos(θ)dθ (11)

= β

∫ 1

−1
p (arccos(x)) ej2π

D
λ

(n−m)x 1√
1− x2

dx

=
βλ

2πD

∫ 2πD
λ

− 2πD
λ

p
(
arccos( λx

2πD )
)√

1−
(
λx

2πD

)2 ej(n−m)xdx,

=
1

2π

∫ 2πD
λ

− 2πD
λ

f(x)ej(n−m)xdx, (12)

where

f(x) ,
βλ

D

p
(
arccos( λx

2πD )
)√

1−
(
λx

2πD

)2 . (13)

Since 0, π /∈ Φ, or in other words, p(0) = p(π) = 0, and that p(θ) <∞, ∀θ ∈
Φ, it follows that f(x) is uniformly bounded:

f(x) < +∞,−2πD

λ
≤ x ≤ 2πD

λ
. (14)

Thus, the Toeplitz matrix R is related to the real integrable and uniformly
bounded generating function f(x), with its entries being Fourier coefficients
of f(x). We now resort to the known result on the spectrum of the n × n
Toeplitz matrices Tn(f) defined by the generating function f(x). Denote by
ess inf and ess sup the essential minimum and the essential maximum of f ,
i.e., the infimum and the supremum of f up to within a set of measure zero.
Let mf , ess inff and Mf , ess supf .

Theorem 8. [95] If λ
(n)
0 ≤ λ

(n)
1 ≤ · · · ≤ λ

(n−1)
n−1 are the eigenvalues of

Tn(f), then, the spectrum of Tn(f) is contained in (mf ,Mf ); moreover

lim
n→∞

λ
(n)
0 = mf and lim

n→∞
λ

(n−1)
n−1 = Mf .

By invoking Theorem 8, we obtain that lim
M→∞

‖R‖2 = Mf < ∞. In

addition, for any finite M , the inequality ‖R‖2 <∞ always holds true. This
concludes the proof.
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.8 Proof of Lemma 4:

Proof: Since Rj and
(∑L

l=1 Rl + σ2
nIM

)−1
are both positive semi-definite

(PSD) Hermitian matrices, we can directly apply the inequalities of [96] on
the eigenvalues of the product of two PSD Hermitian matrices:

‖Ξj‖2 ≤

∥∥∥∥∥∥
(

L∑
l=1

Rl + σ2
nIM

)−1
∥∥∥∥∥∥

2

‖Rj‖2 <
ζ

σ2
n

. (15)

It is straightforward to show that

∥∥ΞjΞ
H
j

∥∥
2

= ‖Ξj‖22 <
ζ2

σ4
n

, (16)

which indicates that the spectral norm of ΞjΞ
H
j is also uniformly bounded.

This proves Lemma 4.

.9 Proof of Lemma 6:

Proof: Using the spatial correlation model (6.6), we may write

1

M
hHj hl =

1

M
hHWjR

1
2
j ΞH

j ΞjR
1
2
l hWl. (17)

By an abuse of notation, we now use the operator λ1{·} to represent the
largest singular value of a matrix. Appealing to the singular value inequalities

in [97], we can show that the maximum singular value of R
1
2
j ΞH

j ΞjR
1
2
l yields:

λ1{R
1
2
j ΞH

j ΞjR
1
2
l } ≤ λ1{R

1
2
j }λ1{ΞH

j ΞjR
1
2
l } (18)

< ζ
1
2λ1{ΞH

j Ξj}λ1{R
1
2
l } (19)

<
ζ3

σ4
n

, (20)

which means the spectral radius of the complex matrix R
1
2
j ΞH

j ΞjR
1
2
l is uni-

formly bounded for any M . Thus, according to Lemma 5, 1
MhHj hl,∀l 6= j,

converges almost surely to zero. Thus (5.28) holds true. In a similar way, we
can prove (5.29). This concludes the proof of Lemma 6.
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.10 Proof of Lemma 7:

Proof: Define

Γ , lim
C→∞

(
1

C
W̃jW̃

H
j

)
(21)

= hjh
H
j +

∑
l 6=j

hlh
H
l + σ2

nΞjΞ
H
j . (22)

In this proof, we first consider the noise free scenario and let

Γnf = hjh
H
j +

∑
l 6=j

hlh
H
l , (23)

where the subscript “nf” denotes noise free. We can then write

lim
M→∞

∥∥∥∥∥Γnf

M

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

∥∥∥∥∥
2

2

(24)

= lim
M→∞

(
Γnf

M

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

)H(
Γnf

M

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

)

= lim
M→∞

1

M2

∥∥hj∥∥2

2
− lim
M→∞

2αj
M

∥∥hj∥∥2

2
+ α2

j

= α2
j − 2α2

j + α2
j

= 0,

Which proves that when M → ∞, an eigenvalue of the random matrix
Γnf/M converges to αj , with its corresponding eigenvector converging to
hj/
∥∥hj∥∥2

up to a random phase.

Then we consider the Hermitian matrix σ2
nΞjΞ

H
j as a perturbation on

Γnf/M . Due to the Bauer-Fike Theorem [98] on the perturbation of eigenval-
ues of Hermitian matrices, together with Lemma 4, we have for 1 ≤ i ≤ L:

lim
M→∞

∣∣∣∣λi{ Γ

M

}
− λi

{
Γnf

M

}∣∣∣∣ (25)

≤ lim
M→∞

σ2
n

M

∥∥ΞjΞ
H
j

∥∥
2

(26)

= 0. (27)

The above result shows that the impact of the perturbation on the eigenval-
ues of Γnf/M vanishes as M →∞. In other words, αj is again an asymptotic
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eigenvalue of Γ/M . Now we verify that despite the perturbation, the eigen-
vector of Γ/M corresponding to the asymptotic eigenvalue αj also converges
to hj/

∥∥hj∥∥2
up to a random phase. To prove this, it is sufficient to show

that

lim
M→∞

∥∥∥∥∥ Γ

M

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

∥∥∥∥∥
2

(28)

≤ lim
M→∞

∥∥∥∥∥Γnf

M

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

∥∥∥∥∥
2

+

∥∥∥∥∥σ2
nΞjΞ

H
j

M

hj∥∥hj∥∥2

∥∥∥∥∥
2

(a)
= 0,

where (a) is due to the definition of the spectral norm:

lim
M→∞

∥∥∥∥∥σ2
nΞjΞ

H
j

M

hj∥∥hj∥∥2

∥∥∥∥∥
2

= 0. (29)

It follows that

lim
M,C→∞

∥∥∥∥∥W̃jW̃
H
j

MC

hj∥∥hj∥∥2

− αj
hj∥∥hj∥∥2

∥∥∥∥∥
2

= 0, (30)

which concludes the proof of Lemma 7.

.11 Proof of Lemma 8:

Proof: We can derive:

lim
M,C→∞

∥∥∥∥∥∥ Ξ′jhj∥∥∥Ξ′jhj∥∥∥
2

−
Ξ′jũj1e

jφ∥∥∥Ξ′jũj1∥∥∥
2

∥∥∥∥∥∥
2

2

(31)

= lim
M,C→∞

 Ξ′jhj∥∥∥Ξ′jhj∥∥∥
2

−
Ξ′jũj1e

jφ∥∥∥Ξ′jũj1∥∥∥
2

H

·

 Ξ′jhj∥∥∥Ξ′jhj∥∥∥
2

−
Ξ′jũj1e

jφ∥∥∥Ξ′jũj1∥∥∥
2


= 2− lim

M,C→∞

 hHj Ξ′j
HΞ′jũj1e

jφ∥∥∥Ξ′jhj∥∥∥
2

∥∥∥Ξ′jũj1∥∥∥
2

+
e−jφũHj1Ξ

′
j
HΞ′jhj∥∥∥Ξ′jhj∥∥∥

2

∥∥∥Ξ′jũj1∥∥∥
2
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We treat the following quantity separately:

lim
M,C→∞

hHj Ξ′j
HΞ′jũj1e

jφ∥∥∥Ξ′jhj∥∥∥
2

∥∥∥Ξ′jũj1∥∥∥
2

(32)

= lim
M,C→∞

hHj Ξ′j
HΞ′j

(
hj

‖hj‖2
+ ũj1e

jφ − hj

‖hj‖2

)
∥∥∥Ξ′jhj∥∥∥

2

∥∥∥Ξ′jũj1∥∥∥
2

= lim
M,C→∞

∥∥∥∥Ξ′j hj

‖hj‖2

∥∥∥∥
2∥∥∥Ξ′jũj1∥∥∥

2

= lim
M,C→∞

∥∥∥∥Ξ′j ( hj

‖hj‖2
− ũj1e

jφ + ũj1e
jφ

)∥∥∥∥
2∥∥∥Ξ′jũj1∥∥∥

2

≤ lim
M,C→∞

∥∥∥∥Ξ′j( hj

‖hj‖2
− ũj1e

jφ)

∥∥∥∥
2∥∥∥Ξ′jũj1∥∥∥

2

+ lim
M,C→∞

∥∥∥Ξ′jũj1ejφ∥∥∥
2∥∥∥Ξ′jũj1∥∥∥

2

= 1 (33)

In a similar way, we can prove that

lim
M,C→∞

∥∥∥Ξ′jũj1∥∥∥
2∥∥∥∥Ξ′j hj

‖hj‖2

∥∥∥∥
2

≤ 1. (34)

Combining (33) and (34), we obtain:

lim
M,C→∞

hHj Ξ′j
HΞ′jũj1e

jφ∥∥∥Ξ′jhj∥∥∥
2

∥∥∥Ξ′jũj1∥∥∥
2

= 1. (35)

With analogous derivation, we can prove

lim
M,C→∞

e−jφũHj1Ξ
′
j
HΞ′jhj∥∥∥Ξ′jhj∥∥∥

2

∥∥∥Ξ′jũj1∥∥∥
2

= 1. (36)
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Applying (35) and (36) to (31) gives:

lim
M,C→∞

∥∥∥∥∥∥ Ξ′jhj∥∥∥Ξ′jhj∥∥∥
2

−
Ξ′jũj1e

jφ∥∥∥Ξ′jũj1∥∥∥
2

∥∥∥∥∥∥
2

2

= 0. (37)

The following equality holds:

Ξ′jhj = Ξ′jΞjhj = R†jRjhj = hj , (38)

proving that

lim
M,C→∞

∥∥∥∥ hj
‖hj‖2

− ūj1e
jφ

∥∥∥∥
2

= 0, (39)

which completes the proof of Lemma 8.

.12 Proof of Theorem 4:

Proof: From (5.33) we readily obtain

lim
M,C→∞

hHj ūj1

‖hj‖2
= 1. (40)

Recall from the uplink training (5.3), we have

ĥCA
j =

1

τ
ūj1ū

H
j1

hjs
T +

∑
l 6=j

hls
T + N

 s∗, (41)
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and hence

lim
M,C→∞

∥∥∥ĥCA
j − hj

∥∥∥2

2

‖hj‖22
(42)

= lim
M,C→∞

(ĥCA
j − hj)

H(ĥCA
j − hj)

‖hj‖22

= lim
M,C→∞

1

‖hj‖22

∑
l 6=j

hlūj1ū
H
j1

∑
l 6=j

hl +
∑
l 6=j

hlūj1ū
H
j1N

s∗

τ

+
sT

τ
NH ūj1ū

H
j1

∑
l 6=j

hl +
sT

τ
NH ūj1ū

H
j1N

s∗

τ

− hHj ūj1ū
H
j1hj + hHj hj

)
= lim

M,C→∞

1

‖hj‖22

(
hHj hj − hHj ūj1ū

H
j1hj

)
. (43)

Equation (40) ensures that

lim
M,C→∞

1

‖hj‖22
hHj ūj1ū

H
j1hj =

1

‖hj‖22
hHj hj = 1, (44)

which concludes the proof.

.13 Proof of Theorem 5:

Proof: This proof follows similar steps towards Theorem 4. Thus we give
a sketch of the proof only. Define

Γ , lim
C→∞

(
1

C
W̃jW̃

H
j

)
(45)

= h
(j)
j h

(j)H
j +

∑
l 6=j

h
(j)
l h

(j)H
l + σ2

nΞjΞ
H
j , (46)

where h
(j)
l , Ξjh

(j)
l , l = 1, . . . , L. Due to the asymptotic orthogonality

between steering vectors in disjoint angular support, i.e., Lemma 3 in [36],

we can easily show that in large antenna limit, h
(j)
lo falls into the null space

of R
(j)
j . Thus

lim
M→∞

1

M
h

(j)
l h

(j)H
l = lim

M→∞

1

M
h

(j)
li h

(j)H
li . (47)
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Then we have

lim
M→∞

Γ

M
=

1

M

h
(j)
j h

(j)H
j +

∑
l 6=j

h
(j)
li h

(j)H
li + σ2

nΞjΞ
H
j

 .

Under condition C1, it is easy to show that

lim
M→∞

∥∥∥∥∥∥ Γ

M

h
(j)
j∥∥∥h(j)
j

∥∥∥
2

−
h

(j)H

j h
(j)
j

M

h
(j)
j∥∥∥h(j)
j

∥∥∥
2

∥∥∥∥∥∥
2

= 0. (48)

Given the following condition

∀l 6= j,
∥∥∥Ξjh

(j)
li

∥∥∥
2
<
∥∥∥Ξjh

(j)
j

∥∥∥
2
, (49)

it is clear that the dominant eigenvector of Γ/M converges to h
(j)
j /
∥∥∥h(j)

j

∥∥∥
2

(up to a random phase), with its corresponding eigenvalue converging to

h
(j)H

j h
(j)
j /M . Then, using the same technique in the proof of Lemma 8, we

obtain:

lim
M,C→∞

h
(j)H

j ūj1∥∥∥h(j)
j

∥∥∥
2

= 1. (50)

Finally, we readily obtain (5.39) by analogous derivations in Appendix .12.
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[95] U. Grenander and G. Szegö, Toeplitz forms and their applications. 2nd
ed. Chelsea, New York, 1984.

[96] A. W. Marshall, I. Olkin, and B. Arnold, Inequalities: theory of ma-
jorization and its applications. Springer Science & Business Media,
2010.

[97] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge
University Press, 1991.

[98] F. L. Bauer and C. T. Fike, “Norms and exclusion theorems,” Nu-
merische Mathematik, vol. 2, no. 1, pp. 137–141, 1960.

143


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notations
	Résumé [Français]
	Abstract
	Introduction
	Propriétés des canaux en MIMO massifs
	Modèle de réseau
	Modèle de rang faible pour les antennes ULA
	Modèle de rang faible pour les réseaux d'antennes aléatoires
	Rang faible pour les réseaux aléatoires linéaires
	Modèle de rang faible pour les systèmes DAS
	Propriété de covariance uniformement bornée
	Conclusions

	Estimation de canal basée sur la covariance
	Apprentissage du canal pour la connection montante
	Estimation bayésienne du canal
	Affectation coordonnée des pilotes
	Conclusions

	Décontamination basée sur la puissance et les angles
	Transmission de données
	Méthode basée sur la projection dans le domaine de l'amplitude
	Conclusions

	Feedback coopératif pour le FDD
	Signal et modèles de canal pour FDD
	Conception de l'acquisition de l'information de canal sans D2D
	Acquisistion coopérative de l'information de canal avec D2D
	Acquisition coopérative de l'indice du précodeur avec D2D
	Conclusions

	Publications
	Conférences
	Journaux
	Brevets


	Introduction
	Motivations
	CSI Acquisition: Challenges and Avenues
	CSI Acquisition in TDD Massive MIMO
	CSI Acquisition in FDD Massive MIMO
	Massive MIMO and D2D

	Contributions and Publications
	MMSE-based pilot decontamination
	Generalized low-rankness of channel covariance and its applications
	Robust Angle/Power based Pilot Decontamination
	Cooperative Feedback for FDD Massive MIMO


	Properties of Massive MIMO Channels
	Network Model
	Low-Rank Model in ULA
	Channel Model
	Low-rankness property of ULA

	Low-Rank Model in Random Linear Arrays
	Channel Model
	Low-rankness Property of Random Linear Array

	Low-Rank Model in DAS
	Channel Model
	Low-rankness Property of DAS

	Uniformly Boundedness of Channel Covariance in ULA
	Conclusions

	Covariance based Channel Estimation
	Introduction
	UL training
	Pilot Contamination Problem
	Covariance-aided Channel Estimation
	Bayesian Estimation
	Channel Estimation with Full Pilot Reuse
	Large-scale Analysis

	Coordinated Pilot Assignment
	Interference filtering via subspace projection
	Numerical Results
	Co-located Antenna Array
	Distributed Antenna Array

	Discussions
	Conclusions

	Joint Angle/Power based Decontamination
	Introduction
	UL Training/Data Transmission
	A review of LMMSE estimation
	Asymptotic performance of MMSE

	A review of power domain discrimination
	Generalized amplitude projection

	Covariance-aided amplitude based projection
	Single user per cell
	Asymptotic performance of the proposed CA estimator
	Generalization to multiple users per cell

	Low-complexity alternatives
	Subspace and amplitude based projection
	MMSE + amplitude based projection

	Numerical Results
	Conclusions

	Cooperative Feedback Design in FDD
	Introduction
	Signal and Channel Models for FDD
	Feedback Design without D2D
	Cooperative Feedback of CSI with D2D
	Cooperative Feedback of Precoder Index with D2D
	Numerical Results
	Cooperative CSI Feedback
	Cooperative Precoder Index Feedback

	Conclusions

	Conclusion
	Appendices
	Proof of Lemma 1:
	Proof of Theorem 1:
	Proof of Proposition 5:
	Proof of Proposition 3:
	Proof of Theorem 2:
	Proof of Lemma 2:
	Proof of Proposition 5:
	Proof of Lemma 4:
	Proof of Lemma 6:
	Proof of Lemma 7:
	Proof of Lemma 8:
	Proof of Theorem 4:
	Proof of Theorem 5:




