
SysML-Sec Attack Graphs: Compact
Representations for Complex Attacks

Ludovic Apvrille and Yves Roudier

1 ludovic.apvrille@telecom-paristech.fr Institut Mines-Telecom, Telecom
ParisTech, CNRS LTCI, Sophia Antipolis, France

2 yves.roudier@eurecom.fr EURECOM, Sophia Antipolis, France

Abstract. We discuss in this paper the use of SysML-Sec attack graphs
as a graphical and semi-formal representation for complex attacks. We
illustrate this on a PC and mobile malware example. We furthermore pro-
vide examples of the expressivity of the operators used in such diagrams.
We finally formalize the attack traces described by these operators based
on timed automata.

1 Introduction

Modeling security threats in distributed systems, and even more so in embedded
system is a usual aspect of the work of security analysts. However, more than
often, the threat analysis simply relies on the knowledge of specific malware and
their variants, or on the exploitation of well-known vulnerabilities rather than
in finding new combinations of attacks.

Unfortunately, an increasing number of embedded systems have become com-
municating artifacts, feature new interactions with their immediate environment
or with backend systems, and are thus exposed to criminals. Many of these secu-
rity issues reflect either the exploitation of low-level vulnerabilities, which might
often be addressed with appropriate programming practices and specific compo-
nent tests, or design flaws due to an insufficient understanding of the mapping
of functional or security logical components to the hardware architecture.

We introduced in the SysML-Sec framework [2] a more systematic represen-
tation of attacks envisioned or known to be feasible on the system under design
and/or development. In the framework of the activities undertaken when follow-
ing a Model-Driven Engineering (MDE) approach, the attack modeling phase
is known as a very important driver for motivating the need for introducing
security countermeasures in a risk analysis, and also for selecting where those
security mechanisms better fit.

SysML-Sec extends SysML’s parametric diagram in order to depict attacks,
their composition, and to represent the assets target of these attacks in an attack
graph. We also discuss in this paper the use of attack graphs and their operators
and define their formal semantics based on timed automata (novel contribution).
We also introduce a more complete example of application of such an analysis
to model the Zeus/Zitmo mobile malware that were not published before

2 Attack Modeling

Threats and Attacks Threats and security vulnerabilities of the selected as-
sets should as much as possible describe the capabilities that an attacker should
meet or exceed and the origin of attacks (local, remote, through a specific inter-
face). The SysML-Sec environment supports the assessment of risks following the
approach described in more detail in the EVITA case study [13,8]. We also im-
plemented automated checks of the threat coverage by security objectives. Based
on the risk analysis, one should also identify and prioritize security objectives
that are mapped to a threat.

Attack Graphs Instead of using the traditional attack tree approach [14], we
suggest that threats can be better modeled with a more relational approach,
using slightly customized SysML Parametric Diagrams. Threats are modeled as
values embedded into blocks representing the target of the attacks, thus achiev-
ing a representation that visually emphasizes the assets. Attacks (<< attack >>
stereotype) can be linked together with a few primitive operators. Those opera-
tors are either logical operators like AND, OR, and XOR, or temporal causality
operators like SEQUENCE, BEFORE, or AFTER. We consider the latter
constructs as especially helpful to describe the attacker’s operational point of
view in embedded systems, like for instance situations in which there is a maxi-
mum duration between two causally related attacks. For example, when attack-
ing a system with time-limited authentication tokens, the token must be first
retrieved, and then the use of this token must occur before its expiration.

Attack instances in different parametric diagrams can be linked together in
order to assess the impact of a specific vulnerability and the need to address
it at the risk assessment phase. An attack can also be tagged as a root attack,
meaning that this attack is at the top of a tree of attacks. In other words, such an
attack is not used to built up more complex attacks. Last but not least, attacks
can be linked to requirements, thus allowing an automated check of the coverage
of attacks by verifying whether each attack is linked to at least one security
requirement.

The attacks in multiple diagrams finally result in a directed graph whose
vertices can be either individual attacks (or leaf attacks), intermediate attacks
(resulting from the composition of multiple other attacks), or operators that
combine other attacks. We currently only consider acyclic graphs, but we are
currently considering an extension to cyclic graphs in order to model resource
usage (see the discussion in section 6). Last but not least, we do not claim
that these operators are always well adapted for modeling attack graphs, but at
least, attack graphs offers a richer semantics than the one of attack trees, thus
leading to more compact representations (in other words: less operators must be
used). Also, attacks graphs demonstrated their ability to model complex attack
scenarios, e.g. Zeus/Zitmo.

3 Example: modeling Zeus/Zitmo

The Mobile component of the ZeuS crimeware kit (also known as or Trojan-
Spy.*.Zitmo) was released in 2010 in order to intercept mobile Transaction Au-
thentication Numbers (mTAN codes) from mobile phones.

The PC/Windows component, Zeus, modifies the browser of Microsoft Win-
dows computers with a malicious plugin, so that any attempt to access an online
bank website redirects the request to a fake bank site provided by the attacker.
Additionaly, a keylogger spies username/password pairs to make it possible for
the attacker to log undetected into the real banking system of the user. Zitmo
also maliciously suggests the user to install a fake mobile bank application on
his/her mobile phone. Once done, the fake application spies received SMS mes-
sages so as to silently steal mTANs.

<<block>>
AttackerSystem

<<block>>
AttackedSystem<<attack>>

RetrieveUserLoginAndPassword

<<block>>
AttackerPC

<<attack>>
SendTANToServer

<<SEQUENCE>>

<<BEFORE>>
120

<<attack>>
PerformTokenBasedAuthentication

<<attack>>
LogOnBankAccount

<<root attack>>
IllegalBankAccountTransactionBasedOnToken

<<block>>
UserPC

<<attack>>
InstallKeyLogger

<<block>>
Windows_Win32

<<attack>>
InstallTrojan

<<attack>>
ExploitVulnerability

<<block>>
UserMobilePhone_Android

<<SEQUENCE>>

<<attack>>
UserInstallsFakeBankApplication

<<attack>>
RetrieveTransactionTAN

<<attack>>
SilentlyInterceptSMS

<<block>>
Browser

<<attack>>
RedirectHTTPRequestFromBankToFakeBank

<<attack>>
InstallMaliciousPlugin

<<attack>>
ExploitVunerability

<<attack>>
RequestUserToInstallMobileFakeBankApplication

<<XOR>>

<<AND>>

<<SEQUENCE>>

<<attack>>
ControlFakeHTTPBankURL

<<block>>
AttackerWebServer

<<attack>>
GenerateFakeBankWebsite

<<block>>
OtherSoftwareApplications

<<attack>>
ExploitVulnerability

1

2

1

1

21

2

2

Fig. 1: Zeus/Zitmo attack graph (model made with TTool)

The SysML-Sec attack graph of this trojan is given in Figure 1. It has been
made with TTool [1]. The system attacker is modeled with two main sub-blocks:

the attacker PC that is used to gather information on users credentials (user-
name, password, mTAN) and to perform illegal transactions using those creden-
tials, and a webserver used to host fake bank websites. The attacked system
consists in both the Windows PC of the targeted person, and his/her Android
mobile phone. The first exploit is performed on the Windows PC, either using
a Win32 exploit, or a browser exploit, or using other exploits in applications:
the attack graph model thus contains three sub-blocks in the "UserPC" block.
The XOR operator expresses that as soon as one exploit was performed on the
targeted PC, the trojan can be installed and no further exploit linked to the
XOR is useful. The trojan intercepts the username and password of the user,
and sends them back to the attacker system. In parallel, several attacks are
necessary in order to intercept requests to the bank system: the attacker must
settle a fake bank server. The attacker must also control the http request to the
bank system. He/She also has to install a malicious plugin in the browser of
the attacked PC. Once all this has been done (AND operator), the browser can
ask the user to install a fake Android application on his/her mobile phone (SE-
QUENCE operator in the bottom right part of the model). Once installed, the
fake application can silently monitor SMS (SEQUENCE operator in the "User-
MobilePhone_Android" block), and thus retrieve mTANs. When an mTAN has
been obtained, the attacker has 120 seconds to use it (BEFORE operator).

4 Semantics of attack graph constructs

The semantics of the attack traces are captured by a timed automaton which is
the result of the parallel and synchronized composition of the automata express-
ing the potential occurrences and re-occurrences of individual attacks together
with automata expressing the behavior of the operators that describe how these
attacks are composed. Without any loss of generality, we depict in the follow-
ing the automata generated by a binary combination of two attacks (but they
support more than two attacks).

Individual attacks, which would be the leaves of an attack tree, can be mod-
eled as depicted for attack1 in Figure 2. An attack can:

– Succeed (a1!). In that case, it can be performed again afterwards.
– Be stopped (stop_a1?). An attack is stopped when the system does not allow

the activation of such an attack after all related automata of the attack graph
are synchronized, e.g., an XOR operator forbids the execution of that attack.

4.1 Intermediate attacks

Intermediate attack nodes in the graph play an important role in the composi-
tion of attacks, and as such, interconnecting operators. Such a node corresponds
to the success of one or more attacks that precedes it in the directed attack
graph according to the semantics of the preceding operator. The semantics of
those nodes must more specifically support the backward propagation of stop

Fig. 2: Semantics of an individual attack

events within the graph. Thus, an intermediate attack (see Figure 3) first waits
for its activation operator (attack_OPERATOR), then, it can be executed
several times (attack_inter), or be stopped (stop_inter). Also, before its ac-
tivation operator is complete, it can be stopped ((stop_inter from the initial
state): in that latter case, only the completion of its operator can be performed
(attack_OPERATOR).

Finally, we assume that an oriented connection between attacks attack1 to
attack2 is a shortcut for attack1 to an OR node, and then from the OR node to
attack2.

Fig. 3: Semantics of an intermediate attack node

4.2 AND operator

The AND operator models the expectation that multiple attacks are required to
be executed in conjunction (possibly in a parallel fashion). Failing to achieve any
of the elementary attacks results in the overall failure of subsequent dependent
attacks. For instance, many malware rely on checks to make sure they are not
running in a virtualized honeypot: all those checks should succeed and thus can
be modelled as attacks under an AND.

Fig. 4: AND operator

The timed automaton formalizing the behavior of the operator is depicted
in Figure 4. It performs the synchronization of the automata of the underly-
ing attacks. The handling of an additional attack would result in an additional
transition at the second state of this timed automaton.

4.3 OR operator

The OR operator models a situation in which multiple attacks can be executed
to enable other composite attacks. The first successful attack will enable the
execution of new composite attacks farther in the attack graph. Also not all
attacks under the OR operator need to be performed before a composite attack
using the OR proceeds or even succeeds (see Figure 5).

This operator can for instance model redundant operations that an attacker
or a malware may perform for instance to extract some information.

Let’s take the example of an OR operator taken from the model of the Chuli
Android mobile malware [7]. Basically, Chuli infects mobile phones through spam
emails, and then sends to the remote attacker’s server private information con-
tained on the mobile phone. One interesting feature of this malware is its ability
to monitor whether it is running or not using callback services triggered by ex-
ternal events, e.g., ScreenOn and BatteryLevel events. As soon as one of this
event occurs in the system, Chuli can restart its main application, if necessary.
Thus, all those trigger events can be monitored in parallel. Said differently, one
among all events is enough for Chuli to perform the check. Also, once one event
has been used by Chuli, Chuli continues other events. All this corresponds to an
OR operator, see Figure 6.

Fig. 5: OR operator

<<attack>>
RestartMaliciousApplication

<<attack>>
MonitorMaliciousPackageIsRunning

<<OR>>

<<attack>>
MonitorDeviceWakeUp

<<attack>>
MonitorBatteryLevel

<<attack>>
MonitorTimeChange

<<attack>>
MonitorWallPaperChange

<<attack>>
MonitorApplicationInstallation

<<attack>>
MonitorScreenOn

<<attack>>
MonitorNetworkConnectionChange <<attack>>

MonitorFailureInDataConnection

Fig. 6: OR operator - Excerpt of the attack graph of Chuli

4.4 XOR operator

The XOR operator models alternative and exclusive independent attacks. Thus,
the behavior of interest expressed by this operator is the success of a single
attack. Said differently, any first successful attack among those referenced by the
operator is the one that will appear in the trace of the attack at the exclusion
of all others.

The semantics with OR is different because an XOR forbids the execution
of other attacks, apart form the first successful one. On the contrary, OR does
not impose any constraint on other attacks. For example, in a situation in which
attacks are tested in parallel - for example, a monitor waiting for several callbacks
informing about a success -, then the OR operator shall be used. In a situation
where only one of the attack is tested, one after the other, without imposing the
order of testing, then, the XOR operator shall be used.

More formally (see Figure 7), once one attacks has been successfully per-
formed (a1? or a2?), the attack that was not performed is deactivated (stop_a1!
or stop_a2!), and then the intermediate attack is executed (attack_XOR).

Fig. 7: XOR operator

4.5 SEQUENCE operator

The SEQUENCE operator models attacks which must be performed in a strict
order a1, a2, ...; an (see Figure 8). Failing to achieve one attack ai makes it im-
possible to subsequently execute attacks aj with j > i.

Fig. 8: Sequence operator

4.6 BEFORE operator

The BEFORE operators is based on a sequence of attacks with a maximum
duration between two consecutive attacks (see Figure 9). Just like for the SE-
QUENCE, failing to achieve one attacks makes it impossible to achieve subse-
quent attacks. Moreover, failing to achieve one attack within its given allowed
period of execution also makes it impossible to execute subsequent attacks.

This operator is particularly suited to model life-time limited tokens.

Fig. 9: Before operator

4.7 AFTER operator

The AFTER operators is based on a sequence of attacks with a minimum
duration between two consecutive attacks (see Figure 10). Just like for the SE-
QUENCE, failing to achieve one attacks makes it impossible to achieve sub-
sequent attacks. Moreover, if an attack is available for execution before the
minimum duration, the system will force it to execute only after the minimum
duration.

The AFTER operator is particularly interesting to model situations in which
an attack is useless before waiting for an access to be available, e.g., when brute-
forcing a password system with a minimum delay between two attempts.

Fig. 10: After operator

5 System validation

From a formal verification perspective, attack graphs can be formally analyzed
directly from TTool, in terms of reachability, liveness and "leads to" properties
on attacks.

– Reachability of an attack a. Means that there exists at least one possible
series of attacks a1, a2, ..., an, a (i.e., trace of attacks) that leads to a.

– Liveness of an attack a. Means that whatever the possible traces of attacks
in the system a1, a2, ...; an, ∃i/ai = a.

– Liveness of an attack b after another attack a was performed. Means that
whenever a trace of attacks contains a = ai : a1, a2, ...; an, ∃j > i/aj = b.
This property is commonly named "leads to" (this is the case in TTool) or
also "response".

From SysML-Sec models edited in TTool, a user can either simulate the
model, or perform formal proofs with UPPAAL [3]. The simulation engine inte-
grated in TTool allows usual commands (step-by-step execution, reaching next
breakpoint, etc.), and animates the attack graph while it is simulated. A se-
quence diagram representing the trace of performed attacks is displayed as well.
Formal proofs can also be performed with a press-button approach directly from
TTool (but UPPAAL needs to be installed): indeed, TTool automatically trans-
forms the attack graphs into a UPPAAL specification, feeds it into UPPAAL,
gets the results, and presents them in a friendly way. This model transformation
is instantaneous from a user’s perspective in all case studies we’ve made (linear
algorithm). The formal proof complexity obviously depends on the model con-
currency, e.g., the use of OR operators increases the concurrency, whereas the
use of SEQUENCE constraints traces.

Figure 11 displays the reachability and liveness dialog window of TTool
for the "root attack" ("IllegalBankAccountTransactionBasedOnToken") of the
Zitmo model (Figure 1). Both the reachability and liveness are satisfied.

A "leads to" property can be evaluated if two attacks have been selected.
For instance, in the Zitmo model (Figure 1), we can select the two attacks
a1 = "RedirectHttpRequestFromBankToFakeBank" and a2 = "IllegalBankAc-
countransactionBasedOnToken" (see Figure 12): The "leads to" property holds
for a1 a2 but not for a2 a1.

TTool also allows to enable/disable attacks of attacks trees, so as to under-
stand what is the importance/impact of an attack on the system. For example,
if we disable the attack "SilentlyInterceptSMS", then, the root attack is not
reachable anymore.

6 Combining operators and attacks

This section discusses ways to handle complex attack relations relying on the
relations between attacks described in section 4.

Fig. 11: Reachability and liveness of the main attack (TTool dialog window)

Fig. 12: "Leads to" property proved from TTool

<<block>>
UserMobilePhone_Android

<<SEQUENCE>>

<<attack>>
UserInstallsFakeBankApplication

<<attack>>
RetrieveTransactionTAN

<<attack>>
SilentlyInterceptSMS

disabled

21

Fig. 13.a: Disabled attack
Fig. 13.b: The root attack is not reach-
able anymore

Fig. 13: An attack has been disabled in the Zitmo attack graph (Figure a.).
Because of the disabled attack, the root attack cannot be performed anymore
(Figure b.)

6.1 Prioritizing attacks under a XOR

The XOR operator imposes no priority on the execution of the possible attacks.
However, such an order may be achieved by combining an XOR with all the
acceptable orderings of individual attacks, as can be described using the SEQ
operator. Such a composite operator can be implemented based on the operators
described above but requires generating all possible interleavings. To simplify the
specification, we suggest the definition of a macro operator, SXOR. Such a macro
operator could be integrated in the TTool environment. In the longer term, if
such operators would prove useful, they may be standardized as a library shared
by all SysML-Sec designers.

6.2 Compatibility between temporal constraints

The joint use of AFTER and BEFORE can lead to situations where attacks
are not reachable, because of the timing values of these operators. For example,
in Figure 14, the root attack is not reachable because an attack is required to
be performed before 10 units of time. But the AFTER operator forbids that
situation. Modifying the temporal value in AFTER and BEFORE can make the
root attack reachable, for example, by using the same temporal value. TTool
can already analyze such situations, i.e., it can identify non reachable attacks
because of non compatible timing constraints.

<<AFTER>>
15

<<attack>>
attack01

<<attack>>
attack02

<<BEFORE>>
10

<<attack>>
final

<<attack>>
attack03

1

1 2

2

Fig. 14: The "final" attack cannot be performed because the two temporal con-
straints are not compatible

6.3 Cycles and reachability

Cycles can be obtained in attack graphs by linking an attack generated from
an operator to operators that were already handled previously in the trace of
attacks.

<<attack>>
attack01

<<root attack>>
rootattack1

<<AND>>

<<attack>>
intermediate1

<<OR>>

<<root attack>>
rootattack2

<<attack>>
intermediate2

Fig. 15: Cycles. rootattack2 is reachable, but not rootattack1

For example, if we consider Figure 15, rootattack2 is reachable because the
cycle occurs on a OR operator. If the same cycle is performed on the AND
operator, then, the latter can never be executed, and so, rootattack1 is not
reachable.

Currently, such a situation is not supported by TTool, and by our seman-
tics. A finer control over the use of cycles in general will require defining how
many executions of the same operator can be allowed, for instance by adding an
execution counter on each operator. Similarly, as long as they have not been ex-
plicitly stopped, attacks can be performed an infinite number of times: counters
should also be added to these constructs. This work should be especially useful
in the face of the modeling of denial of service attacks, which require not only a

qualitative, but a quantitative assessment of the attacker’s capabilities. We plan
to develop these techniques as part of our future work.

7 Related Work and Perspectives

The formalism of attack trees brought to light by [14] has long been used to
describe threats to applications and systems, and attacks to implement those
threats. In that respect, attack trees are closely related to fault trees in depend-
able computing. Attack trees follow a goal-oriented approach that matches the
objectives of an attacker and roughly describes an attack trace. However they
capture a unique trace, and make it hard capturing complex attack scenarios
built upon sub-attacks. They also fail at capturing the architectural components
involved in a given attack with regards to the assets under attack, even though
this often constitutes an important information for the trustfulness one can put
into a component. In our case, location of attacks are given by their mapping
onto architectural components.

Multiple variants of attack trees have been developed: they introduced opera-
tors with increasingly advanced semantics, e.g., [10], yet that have not addressed
the above-mentioned issues. Our work tries to address these concerns based on
the structure of our attack graphs rather than based only on the operators them-
selves. Among other benefits, this structure simplifies the reuse of sub-attacks
without any duplication.

Attack graphs have been proposed and formalized even before attack trees
received a widespread audience, like for instance privilege graphs [5], and more
recently in order to automatically generate them from other formalisms [15].
[5] particular emphasized the quantitative aspect of the security assessment of
threats. A Markovian model was used to determine the privileged edges in an
attack graph. Our work also aims to introduce quantitative assessments while
still retaining the hierarchical modeling that made the success of attack trees, and
which is also connected with the system architecture in SysML-Sec in contrast
with the “maze” graph described by the authors of [5].

Extensions were suggested to complement the static attack tree represen-
tations with more dynamic models. For instance, Petri net based approaches
[6,12] were proposed in order to describe the triggering of different phases of
an attack within an attack tree. [11] also suggested the use of Markovian pro-
cesses (BDMP) to describe relationships between different attacks organized in a
tree-like fashion but whose triggering could be independent from that structure.
More recently, [16] relies on attack trees to complement the static analysis and
dynamic analysis of Android malware: Nodes are enriched with e.g., permissions
and capabilities ("P": Possible to realize; "I": impossible to realize). Other for-
malisms than attack trees have been introduced in order to capture attacks, but
they are generally targeting security mechanisms first. We can mention modeling
environments such as UMLSec [9], and tools for the proof of security properties
in security protocols [4].

In a way, all these models also describe attack graphs with edges corre-
sponding to different relationships. However, the approach described in this
paper mostly focuses on expressing multiple attack traces. It aims at under-
standing whether a system is vulnerable and thus help deciding which security
counter-measures might be most important through attack reachability and live-
ness analyses. Indeed, TTool facilitates the activation/deactivation of attacks in
the graph, thus allowing to analyze the reachability and liveness of attacks in
different situations. Combined with the location of attacks, this helps determin-
ing which and where attacks should be addressed first. We also believe that the
modeling of our phases is more straightforward than the approaches we just out-
lined, because it is more rich w.r.t. attack trees, and more prone to the modular
expression of threats due to the asset-centric distribution of attacks.

8 Conclusion and Future Work

From our experience, partitioning is a very important element when modeling
attacks in order to understand both the assets at risk, their potential vulner-
abilities, as well as the capabilities of the attacker. Thus, SysML-Sec proposes
to use iterations between security requirements, attack graphs and partitioning
models. Attack graphs adopt a block-centric perspective with reuse in mind. We
especially think that this will allow for the composition of the threat modeling
performed by security analysts about components over-the-shelf (COTS) with
system specific analyses.

A few extensions of our work have already been discussed in section 6. We
plan to further extend SysML-Sec expressivity as follows: our declarative ap-
proach should be especially useful in order to incorporate knowledge from other
threat modeling approaches. In that respect, our proposal explicitly maps at-
tacks to the architecture, and makes it possible to introduce an abstract model
of the attacker within the SysML parametric diagram for threat modeling. We
essentially plan to extend our approach towards more quantitative assessments
of threats, and also to integrate together attack graphs and risk assessment, e.g.,
using risk values on edges between attacks and operators.

References

1. Apvrille, L.: TTool website. In: http://ttool.telecom-paristech.fr/ (2013)
2. Apvrille, L., Roudier, Y.: SysML-sec: A sysML environment for the design and

development of secure embedded systems. In: APCOSEC 2013, Asia-Pacific Coun-
cil on Systems Engineering, September 8-11, 2013, Yokohama, Japan. Yokohama,
JAPAN (09 2013), http://www.eurecom.fr/publication/4186

3. Bengtsson, J., Yi., W.: Timed automata: Semantics, algorithms and tools. In: Lec-
ture Notes on Concurrency and Petri Nets. pp. 87–124. W. Reisig and G. Rozenberg
(eds.), LNCS 3098, Springer-Verlag (2004)

4. Blanchet, B.: Automatic Verification of Correspondences for Security Protocols.
Journal of Computer Security 17(4), 363–434 (Jul 2009)

http://www.eurecom.fr/publication/4186

5. Dacier, M., Deswarte, Y., Kaâniche, M.: Information systems security. pp. 177–186.
Chapman & Hall, Ltd., London, UK, UK (1996), http://dl.acm.org/citation.
cfm?id=265514.265530

6. Dalton, G., Mills, R., Colombi, J., Raines, R.: Analyzing attack trees using gener-
alized stochastic petri nets. In: Information Assurance Workshop, 2006 IEEE. pp.
116–123 (June 2006)

7. Fortinet: The Android/Chuli.A!tr.spy virus. In:
http://www.fortiguard.com/encyclopedia/virus/#id=4805535 (March 2013)

8. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Security
Requirements for Automotive On-Board Networks. In: ITST 2009, Lille, France

9. Jürjens, J.: Umlsec: Extending uml for secure systems development. In: Jézéquel,
J.M., Hussmann, H., Cook, S. (eds.) UML 2002- The Unified Modeling Language,
Lecture Notes in Computer Science, vol. 2460, pp. 412–425. Springer Berlin Hei-
delberg (2002), http://dx.doi.org/10.1007/3-540-45800-X_32

10. Khand, P.: System level security modeling using attack trees. In: Computer, Con-
trol and Communication, 2009. IC4 2009. 2nd International Conference on. pp. 1–6
(Feb 2009)

11. Piètre-Cambacédès, L., Bouissou, M.: Beyond attack trees: Dynamic security mod-
eling with boolean logic driven markov processes (bdmp). In: Dependable Com-
puting Conference (EDCC), 2010 European. pp. 199–208 (April 2010)

12. Pudar, S., Manimaran, G., Liu, C.C.: Penet: A practical method and tool for inte-
grated modeling of security attacks and countermeasures. Computers & Security
28(8), 754 – 771 (2009), http://www.sciencedirect.com/science/article/pii/
S0167404809000522

13. Ruddle, A., et al: Security Requirements for Automotive On-board Networks Based
on Dark-side Scenarios. Tech. Rep. Deliverable D2.3, EVITA Project (2009)

14. Schneier, B.: Attack Trees: Modeling Security Threats (Dec 1999)
15. Vigo, R., Nielson, F., Nielson, H.: Automated generation of attack trees. In: Com-

puter Security Foundations Symposium (CSF), 2014 IEEE 27th. pp. 337–350 (July
2014)

16. Zhao, S., Li, X., Xu, G., Zhang, L., Feng, Z.: Attack tree based android malware
detection with hybrid analysis. In: Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014 IEEE 13th International Conference on. pp.
380–387 (Sept 2014)

http://dl.acm.org/citation.cfm?id=265514.265530
http://dl.acm.org/citation.cfm?id=265514.265530
http://dx.doi.org/10.1007/3-540-45800-X_32
http://www.sciencedirect.com/science/article/pii/S0167404809000522
http://www.sciencedirect.com/science/article/pii/S0167404809000522

	SysML-Sec Attack Graphs: Compact Representations for Complex Attacks
	Introduction
	Attack Modeling
	Threats and Attacks
	Attack Graphs

	Example: modeling Zeus/Zitmo
	Semantics of attack graph constructs
	Intermediate attacks
	AND operator
	OR operator
	XOR operator
	SEQUENCE operator
	BEFORE operator
	AFTER operator

	System validation
	Combining operators and attacks
	Prioritizing attacks under a XOR
	Compatibility between temporal constraints
	Cycles and reachability

	Related Work and Perspectives
	Conclusion and Future Work

