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ABSTRACT

Automatic context recognition enables mobile devices to adapt their
configuration to different environments and situations. This paper
investigates the use of acoustic cues as a means of recognising con-
text. The majority of existing approaches exploit Mel-scaled cep-
stral coefficients (MFCCs) developed for the analysis of speech sig-
nals. The hypothesis in this paper is that new features are needed
in order to capture complex acoustic structure. The paper intro-
duces the use of local binary pattern (LBP) analysis which isused to
complement MFCCs with acoustic texture information. The second
contribution relates to a bag-of-features extension whichclusters
LBPs into a small number of codewords. Both approaches outper-
form the current state of the art and the latter is particularly appeal-
ing for embedded applications in which computational efficiency is
paramount.

Index Terms— acoustic context recognition, spectrogram, lo-
cal binary pattern, codebook, textural features

1. INTRODUCTION

Context awareness aims to categorize the environment or situation
in which a mobile device is used. User demand for customiza-
tion and personalization is dependent on contextualization which
requires new recognition technology in order to understandthe con-
text and automatically adapt to it [1]. In this work the context relates
to the immediate environment, such as an office, in a bus or street.
An example application might be to activate bluetooth functionality
in order to connect a device to an audio and infotainment system
when the user is in their car.

Context awareness can be achieved by interpreting informa-
tion from multiple, heterogeneous sensors which provide estimates
of motion, position, gravity and acceleration, for example. From
this information it may be possible to determine whether a user is
moving, and at what speed. This paper concerns acoustic analy-
sis. Acoustic analysis is preferred to alternatives for twoprincipal
reasons: (i) almost all modern mobile devices are equipped with at
least one microphone; (ii) acoustic analysis can help to distinguish
between some contexts which might otherwise be indistinguishable,
i.e. bus and car contexts in which other sensors (e.g. motion) might
provide identical or similar information.

Almost all existing approaches to acoustic context recognition
(ACR) are based on traditional Mel-scaled frequency cepstral co-
efficients (MFCCs) designed predominantly for speech processing
applications such as speech or speaker recognition. Even so, re-
cent work [2] shows that MFCC features may not be sufficiently
discriminative for ACR; MFCCs capture only short term variation
with minimum dynamic information whereas auto-correlation in the
temporal domain can help to discriminate between differentcon-
texts. The work in [2] describes the capture of auto-correlation

through a similarity matrix which reflects the recurrence between
consecutive closely located frame sequences. Features areextracted
using recurrence quantification analysis (RQA) of the similarity ma-
trix. Nevertheless, RQA quantifies auto-correlation in theMFCC
features, rather than capturing the complex acoustic structure across
both time and frequency directly from the spectrogram. Moreover,
since it operates on MFCCs, RQA cannot capture non-consecutive
structure at the sub-band level; MFCCs reflect the full-bandspectral
envelope, whereas recurrent acoustic structure is generally observed
at the sub-band level.

With the goal of improving ACR performance, this paper re-
ports our recent work to characterise the distribution of acoustic
structure through textural features. The proposed method applies
an image processing technique to the spectrogram in order tocap-
ture ‘acoustic patterns’ which better reflect complex temporal struc-
ture at the sub-band level. To reduce computational and memory
requirements, the new features are optionally used to learna low-
footprint codebook of the most significant patterns. The codebook
provides a sparse representation of the acoustic structure. The re-
search hypotheses are that: (i) recurrent acoustic patterns can be
captured using local binary pattern (LBP) analysis [3] applied to the
spectrogram; (ii) the new LBP-based features provide complemen-
tary information to traditional MFCC features, and that (iii) LBP
can be applied as a ‘bag-of-features’ approach by creating acode-
book of recurrent patterns and by the represention of each sample as
combinations of these patterns. The paper validates these hypothe-
ses and reports results which compete with the current stateof the
art. The remainder of this paper is organised as follows. Section 2
describes prior work with a focus on that relating to the capture
of temporal recurrence and acoustic patterns. Section 3 presents
the new contribution. Section 4 describes the implementation and
assessment framework whereas Section 5 presents experimental re-
sults. Conclusions and directions for further work are presented in
Section 6.

2. PRIOR WORK

Various approaches to ACR have been reported in the context of the
public DCASE challenge literature [4] which illustrates the use of
different features and classifiers. Though they are generally fused
with different auxiliary features, the use of short-term cepstral co-
efficients is widespread, e.g. [5, 6, 7, 8]. While cepstral features
are popular and even if successful in general, they stem fromthe
analysis of speech signals and may thus be sub-optimal for ACR.

A study in [9] shows that humans utilise a priori knowledge
of discrete acoustic events as cues to recognise context (i.e. en-
gine sounds are more likely in car or bus contexts than in an of-
fice). Some successful approaches to ACR have accordingly ex-
plored the automatic detection of acoustic events, for instance using
histograms of event-occurrences [10]. In a similar vein, the work
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Figure 1: An illustration of LBP extraction using a spectrogram
block. The centre the block is used to obtain the other valuesby
interpolation. Starting from the upper-left, the LBP is obtained upon
the binary comparison (Eq. 1) of outer values to the centre value.
The LBP configuration iscircular, with 8 neighbours and the radius
equal to 2.

in [11] reports the use of a frame-based classifier which combines
both short and long term features computed over 45ms and over1.5s
respectively. In another example reported in [12], sound events are
learned through an unsupervised algorithm and used to characterize
context.

Alternative approaches which capture recurrent acoustic pat-
terns have also proven effective. One example involves audio mo-
tif discovery, which uses bio-informatics techniques which find re-
current patterns in genetic sequences. The work in [13] reports an
approach which transforms an audio stream into a sequence ofdis-
crete states, each of them representing a specific audio pattern. A
related approach to music genre classification which uses textural
features is reported in [14]. Temporal recurrence, motif discov-
ery and acoustic events share the notion of acoustic patternanalysis
and lend support to the benefit of capturing longer-term information
than is captured with conventional cepstral features.

3. LOCAL BINARY PATTERN CODEBOOKS

This paper reports the application to ACR of local binary pattern
(LBP) analysis, a well known approach to feature extractionfor au-
tomatic face recognition [15]. LBP is an efficient texture operator
which labels the pixels of an image (here an audio spectrogram) by
comparing their value to those of neighbouring pixels and byrepre-
senting the result as a binary number. The general idea is illustrated
in Fig. 1. The analysis of acoustic signals using LBP analysis has
been reported previously [16] and is applied by treating thespec-
trogram as a visual representation of the acoustic signal, thereby
resulting in [17].

The use of LBP for acoustic analysis and feature extraction is
motivated by its suitability to texture and structure representation.
LBPs are usually used to create histograms which capture recurrent
structure. For ACR they provide more discriminative features which
reflect the acoustic texture. The following describes the extraction
of raw LBP features, henceforth referred to as LBP-Raw features,
and an extension to abag-of-features approach referred to as LBP-
Codebook.

3.1. System overview

The new approaches are composed of four stages, as illustrated in
Fig. 2:

Figure 2: An illustration of the entire system, as explainedin
Section 3.1: (1.) LBP histogram generation for each sub-band;
(2.) Codebook creation, through clustering;(3.) Histograms in (1.)
are mapped to the codebook. This is repeated for each histogram
extracted from each block;(4.) SVM training and testing by using
the histogram of acoustic patterns.

1. LBP is applied to the spectrogram representation of the full
acoustic signal by comparing the magnitude of each time-
frequency ‘bin’ to those of its immediate neighbours. The
set of raw LBPs are used to generate an LBP-Raw histogram
which reflects the occurrence of each LBP across the full
signal.

2. Histograms are generated for each signal in a large dataset
and then clustered to group together the most similar his-
tograms. Resulting clusters are then used to form a code-
book.

3. The codebook can be used to map a histogram onto the sin-
gle, nearestword as determined according to a cosine simi-
larity metric. This process results in LBP-Codeword features
of reduced dimension (and thus better suited to embedded
applications) which are less redundant and less noisy.

4. ACR is performed using a support vector machine (SVM)
classifier, applied either to LBP-Raw (1.) or LBP-Codebook
(3.) features.

3.2. Local binary patterns

Various modifications to the spectrogram are generally necessary
prior to LBP extraction, e.g. spectrum pre-processing techniques
reported in [18]. Each bin in the spectrogram reflects the amount
of energy present in proximity to specific time and frequencybins.
This work shows that analysis of the linear-power spectrogram gives
better results than the log-power spectrogram. In particular, bin val-
ues are scaled to values in the range 0-255 in order to mimic the
application of LBP analysis in image processing:

LBPP,R =

P−1
∑

i=0

f(gi − c)2P , f(x) =

{

1, x ≥ c
0, x < c

(1)

where gi is the value of thei-th neighbour,c is the centre of
the block and whereP is the number of values or pixel count.
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Figure 3: An illustration of codebook generation via k-means clus-
tering.

R is the radius of the neighbourhood: the coordinates ofgi are
Rcos(2πi/P ),Rsin(2πi/P ). We choose to useP = 8 andR = 2
in these experiments.

As highlighted in [19], LBP analysis is sensitive to rapid fluc-
tuations, namely transitions in the LBP’s code from 1 to 0 andvice-
versa, which degrade performance. To remove such noise, while
simultaneously reducing the dimension of the histogram, the work
in [3] considered only LBPs for which the number of transitions
between 0s and 1s is less than or equal to 2. This subset of LBPs
represents the set of 58 so-called uniform patterns. The remaining
non-uniform patterns are often grouped together and considered as
a single, distinct pattern. In our current work the transition along
the time (on the horizontal axis) and the frequencies (on thevertical
axis) are considered in the same way of image processing. Never-
theless, we agree that transitions across time and frequencies should
be treated differently. As future research, the shapes and the space
of LBP patterns will be investigated more in details (see Sec. 6).

Uniform patterns typically represent textual elements, such as
edges, corners or uniform areas. Noisy, non-uniform patterns are
not useful for classification and are simply discarded in thework
reported here, resulting in2-transitions uniform histograms. Such
an approach has been shown previously to perform well also for the
design of a voice activity detector [20].

3.3. Codebook creation

In order to reduce computation and memory requirements, code-
books can be used to reduce the dimension of the resulting feature
vectors (and also context models). The principal idea is to extract
automatically, via unsupervised k-means clustering, the most rep-
resentative patterns for each context. The cosine distanceis well
suited as a distance metric for histogram features [21].

This method is based on the well-knownbag-of-features (BoF)
technique popular in image retrieval tasks [22]. The spectrogram of
each test sample is represented in terms of the most relevantcode-
book patterns, as determined according to the same cosine similarity
metric.

3.4. SVM classification

ACR is performed using a standard SVM classifier which projects
raw data into an higher-dimensional space in which contextsmay
be linearly separable. This is achieved according to the hyperplane
which maximises the margin between classes, thereby minimising
classification errors [23].

4. EXPERIMENTS

This section describes the two datasets used for evaluationtogether
with protocols, implementation specifics and metrics.

Context Total time

Bus 8h56m
Car 3h40m
Office 13h10m
Subway 10h18m
Street 9h45m

Table 1: Duration of recordings for each context in the NXP Softare
dataset.

4.1. Datasets

The proposed approach was tested on two different databases, es-
sentially due to the modest size of the first, but standard database
which does not afford sufficient statistical significance inexhaus-
tive evaluations.

• DCASE: a public, standard dataset used in the past for compet-
itive evaluations and nowadays for the comparison of different
methods and algorithms [4]. It is composed of 100 stereo files
of 30s duration, each withfs = 44.1kHz. Only the first chan-
nel was used for all experiments reported here.

• NXP Software: a larger, but non-standard dataset containing
45 hours of recordings (see Table 1) with a sampling frequency
of 16kHz, collected with multiple mobile devices. Recordings
are manually annotated (context-labelled) before both theau-
dio and the label are stored in a centralized system in the cloud.
The dataset is representative of the real problem: it reflects
context ambiguity at the user-level and is collected in multi-
ple locations and with different acquisition configurations (i.e.
microphones).

4.2. Protocols and metrics

For each dataset, a 5-fold partition was used to separate training and
testing data. The codebook is learned on the training set. Except for
LBP-Codebook (see later), all features are extracted from 8s of au-
dio. The classifier is trained with the same 8s sub-clip features and
then a majority voting is used to produce context decisions every
30s. Partitioning is performed at the file level, not the sub-clip level,
to avoid overlap between sub-clips of the same file. The evaluation
metric is context recognition accuracy, namely the percentage of
trials for which the context is correctly recognised. All results are
averaged across the 5-fold partitions.

4.3. Implementation

Baseline features are extracted from 8s audio sub-clips every 10ms
using a frame length of 20ms and a bank of 40 Mel-scaled fil-
ters up to 900Hz, thereby resulting in 13 MFCCs for each frame.
The mean and variance are then determined so that each sub-clip is
parametrised with a single feature vector of 26 dimensions.RQA
features are extracted according to the method reported in [2]. They
capture recurrence in the baseline MFCC features over a period of
400ms but are averaged over the same 8-second sub-clip instead
of 30s. Recurrent analysis needs longer time-window, whilein real-
time scenario the prediction has to be done within smaller sub-clips.
This is the reason why the performances on DCASE have a drop
from 71% to 62%.
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LBP-Raw features are extracted from the acoustic signal af-
ter down-sampling to 16kHz. This is done in order to equalise
the sampling frequencies of the two datasets. LBPs are extracted
from the spectrogram which is first split into 3 sub-bands (900Hz,
2kHz, 8kHz), with the aim of distinguish between similar patterns
but coming from different sub-bands of the spectrum.

Histograms are extracted separately for each sub-band and con-
catenated to form a single feature vector. The resulting histogram is
normalized by dividing each bin value by the total block count.

LBP-Codebook features stem from LBP analysis applied to
smaller 1-second sub-clips. Clustering is applied to obtain 30 clus-
ters for the DCASE dataset and 100 for the larger NXP Software
dataset. Through other experiments, these were found to be optimal
given the two, different dataset sizes. LBP-Codebook features ex-
tracted from each sub-clip are aggregated over 30s to obtaina single
BoF histogram per audio sample.

The SVM classifier is implemented with the well known Lib-
SVM tool-kit, more details of which can be found in [24]. All exper-
iments were performed with a radial basis function kernel and with
C andγ parameters optimised through a grid search. A multi-class
SVM (for multiple contexts) is learned with all pair-wise combi-
nations. SVM scores are z-score normalised, as derived fromthe
training set and applied to the test set.

5. RESULTS

Reported here are experimental results for both databases and multi-
ple feature configurations involving MFCC, RQA, LBP-Raw, LBP-
Codebook features and their combinations. MFCC and RQA fea-
tures form two baselines.

5.1. DCASE dataset

Results for the DCASE dataset are illustrated in Fig. 4(a). With
recognition accuracies in the order of 60%, they show that MFCC
and LBP-Raw features are the best performing single featuresets.
While RQA features on their own perform less well, they are com-
plementary to MFCCs; performance improves with fusion. Better
performance is observed when MFCCs are combined with LBP-
Raw features. The combination of MFCCs, RQA and LBP-Raw
features improves performance further to 70%. While as a single
feature set, LBP-Codebook features give worse performancethan
LBP-Raw, they are the most complementary to MFCCs; when com-
bined, recognition accuracy increases to almost 75%.

5.2. NXP Software dataset

Results for the NXP Software dataset are illustrated in Fig.4(b).
Similar performance trends are observed; MFCC and LBP-Raw fea-
tures are the best performing single feature sets while RQA and
LBP-Codebook features perform less well. RQA, LBP-Raw and
LBP-Codebook are still complementary to MFCCs: RQA brings
an improvement of 6%, while LBP-Raw and LBP-Codebook de-
liver improvements in the order of 6% and 3% respectively. Further
analysis confirms that these improvements are statistically signif-
icant. With a baseline performance of 80%, performance for the
NXP Software dataset follows the trend as seen in DCASE: the best
feature combinations (bars 6 and 8 in Fig. 4(b)) both involveLBP
features. Even if LBP-Codebook features give worse resultsthan
LBP-Raw, the former are computationally more efficient.
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Figure 4: Recognition accuracy averaged over 5-fold partitions for
(a) DCASE and (b) NXP Software datasets, obtained with differ-
ent configurations of MFCC, RQA and LBP features. Two groups
of results illustrate performance for single features (left) and fused
features (right).

6. CONCLUSIONS

This paper proposes new, promising approaches to feature extrac-
tion for acoustic context recognition. Local binary patterns (LBPs)
aim to capture the distribution of audio structure and are comple-
mentary to conventional Mel-scaled cepstra. Their combination
completes that with recurrent quantification analysis and betters the
current state of the art, adding further weight to the benefitof cap-
turing textural features and complex acoustic structure. In addition,
a bag-of-features approach is shown to reduce feature dimension-
ality while still improving on baseline performance. With reduced
computational complexity, the codebook approach is perhaps better
suited to embedded applications. Further work should investigate
different LBP shapes, in particular rectangular instead ofcircular
block configurations, in order to optimise the time-frequency reso-
lution. In the second instance, the codebook could be trained us-
ing a larger pool of readily available data in order to recognise dis-
tinct acoustic events rather than abstract time-frequencypatterns.
This approach may facilitate the learning of codebooks for distinct
events, e.g. car horns, or an engine) which may be beneficial,es-
pecially if these events are learned in a discriminative framework
tailored to the context recognition task.
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