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Abstract

Gaussian process (GP) models form a core part of probabilistic machine learning.
Considerable research effort has been made into attacking three issues with GP
models: how to compute efficiently when the number of data is large; how to ap-
proximate the posterior when the likelihood is not Gaussian and how to estimate
covariance function parameter posteriors. This paper simultaneously addresses
these, using a variational approximation to the posterior which is sparse in sup-
port of the function but otherwise free-form. The result is a Hybrid Monte-Carlo
sampling scheme which allows for a non-Gaussian approximation over the func-
tion values and covariance parameters simultaneously, with efficient computations
based on inducing-point sparse GPs. Code to replicate each experiment in this pa-
per is available at github.com/sparseMCMC.

1 Introduction

Gaussian process models are attractive for machine learning because of their flexible nonparametric
nature. By combining a GP prior with different likelihoods, a multitude of machine learning tasks
can be tackled in a probabilistic fashion [1]. There are three things to consider when using a GP
model: approximation of the posterior function (especially if the likelihood is non-Gaussian), com-
putation, storage and inversion of the covariance matrix, which scales poorly in the number of data;
and estimation (or marginalization) of the covariance function parameters. A multitude of approx-
imation schemes have been proposed for efficient computation when the number of data is large.
Early strategies were based on retaining a sub-set of the data [2]. Snelson and Ghahramani [3] in-
troduced an inducing point approach, where the model is augmented with additional variables, and
Titsias [4] used these ideas in a variational approach. Other authors have introduced approximations
based on the spectrum of the GP [5, 6], or which exploit specific structures within the covariance
matrix [7, 8], or by making unbiased stochastic estimates of key computations [9]. In this work, we
extend the variational inducing point framework, which we prefer for general applicability (no spe-
cific requirements are made of the data or covariance function), and because the variational inducing
point approach can be shown to minimize the KL divergence to the posterior process [10].

To approximate the posterior function and covariance parameters, Markov chain Monte-Carlo
(MCMC) approaches provide asymptotically exact approximations. Murray and Adams [11] and
Filippone et al. [12] examine schemes which iteratively sample the function values and covariance
parameters. Such sampling schemes require computation and inversion of the full covariance ma-
trix at each iteration, making them unsuitable for large problems. Computation may be reduced
somewhat by considering variational methods, approximating the posterior using some fixed fam-
ily of distributions [13, 14, 15, 16, 1, 17], though many covariance matrix inversions are generally
required. Recent works [18, 19, 20] have proposed inducing point schemes which can reduce the
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Table 1: Existing variational approaches

Reference p(y | f) Sparse Posterior Hyperparam.

Williams & Barber[21] [also 14, 17] probit/logit 7 Gaussian (assumed) point estimate
Titsias [4] Gaussian 3 Gaussian (optimal) point estimate
Chai [18] softmax 3 Gaussian (assumed) point estimate
Nguyen and Bonilla [1] any factorized 7 Mixture of Gaussians point estimate
Hensman et al. [20] probit 3 Gaussian (assumed) point estimate
This work any factorized 3 free-form free-form

computation required substantially, though the posterior is assumed Gaussian and the covariance
parameters are estimated by (approximate) maximum likelihood. Table 1 places our work in the
context of existing variational methods for GPs.

This paper presents a general inference scheme, with the only concession to approximation being
the variational inducing point assumption. Non-Gaussian posteriors are permitted through MCMC,
with the computational benefits of the inducing point framework. The scheme jointly samples the
inducing-point representation of the function with the covariance function parameters; with suffi-
cient inducing points our method approaches full Bayesian inference over GP values and the covari-
ance parameters. We show empirically that the number of required inducing points is substantially
smaller than the dataset size for several real problems.

2 Stochastic process posteriors

The model is set up as follows. We are presented with some data inputs X = {xn}Nn=1 and responses
y = {yn}Nn=1. A latent function is assumed drawn from a GP with zero mean and covariance
function k(x,x′) with (hyper-) parameters θ. Consistency of the GP means that only those points
with data are considered: the latent vector f represents the values of the function at the observed
points f = {f(xn)}Nn=1, and has conditional distribution p(f |X,θ) = N (f |0,Kff ), where Kff

is a matrix composed of evaluating the covariance function at all pairs of points in X. The data
likelihood depends on the latent function values: p(y | f). To make a prediction for latent function
value test points f? = {f(x?)}x?∈X? , the posterior function values and parameters are integrated:

p(f? |y) =
∫ ∫

p(f? | f ,θ)p(f ,θ |y) dθ df . (1)

In order to make use of the computational savings offered by the variational inducing point frame-
work [4], we introduce additional input points to the function Z and collect the responses of the
function at that point into the vector u = {um = f(zm)}Mm=1. With some variational posterior
q(u,θ), new points are predicted similarly to the exact solution

q(f?) =

∫ ∫
p(f? |u,θ)q(u,θ) dθ du . (2)

This makes clear that the approximation is a stochastic process in the same fashion as the true pos-
terior: the length of the predictions vector f? is potentially unbounded, covering the whole domain.

To obtain a variational objective, first consider the support of u under the true posterior, and for
f under the approximation. In the above, these points are subsumed into the prediction vector f?:
from here we shall be more explicit, letting f be the points of the process at X, u be the points of
the process at Z and f? be a large vector containing all other points of interest1. All of the free
parameters of the model are then f?, f ,u,θ, and using a variational framework, we aim to minimize
the Kullback-Leibler divergence between the approximate and true posteriors:

K , KL[q(f?, f ,u,θ)||p(f?, f ,u,θ |y)] = −E
q(f?,f ,u,θ)

[
log

p(f? |u, f ,θ)p(u | f ,θ)p(f ,θ |y)
p(f? |u, f ,θ)p(f |u,θ)q(u,θ)

]
(3)

1The vector f? here is considered finite but large enough to contain any point of interest for prediction. The
infinite case follows Matthews et al. [10], is omitted here for brevity, and results in the same solution.
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where the conditional distributions for f? have been expanded to make clear that they are the same
under the true and approximate posteriors, and X,Z and X? have been omitted for clarity. Straight-
forward identities simplify the expression,

K = −Eq(f ,u,θ)

[
log

p(u | f ,θ)p(f |θ)p(θ)p(y | f)/p(y)
p(f |u,θ)q(u,θ)

]
= −Eq(f ,u,θ)

[
log

p(u |θ)p(θ)p(y | f)
q(u,θ)

]
+ log p(y) ,

(4)

resulting in the variational inducing-point objective investigated by Titsias [4], aside from the inclu-
sion of θ. This can be rearranged to give the following informative expression

K = KL

[
q(u,θ)||

p(u |θ)p(θ) exp{Ep(f |u,θ)[log p(y | f)]}
C

]
− logC + log p(y). (5)

Here C is an intractable constant which normalizes the distribution and is independent of q. Mini-
mizing the KL divergence on the right hand side reveals that the optimal variational distribution is

log q̂(u,θ) = Ep(f |u,θ) [log p(y | f)] + log p(u |θ) + log p(θ)− logC. (6)
For general likelihoods, since the optimal distribution does not take any particular form, we intend to
sample from it using MCMC, thus combining the benefits of variationally-sparse Gaussian processes
with a free-form posterior. Sampling is feasible using standard methods since log q̂ is computable
up to a constant, using O(NM2) computations. After completing this work, it was brought to our
attention that a similar suggestion had been made in [22], though the idea was dismissed because
“prediction in sparse GP models typically involves some additional approximations”. Our presenta-
tion of the approximation consisting of the entire stochastic process makes clear that no additional
approximations are required. To sample effectively, the following are proposed.

Whitening the prior Noting that the problem (6) appears similar to a standard GP for u, albeit
with an interesting ‘likelihood’, we make use of an ancillary augmentation u = Rv, with RR> =
Kuu, v ∼ N (0, I). This results in the optimal variational distribution

log q̂(v,θ) = Ep(f |u=Rv) [log p(y | f)] + log p(v) + log p(θ)− logC (7)

Previously [11, 12] this parameterization has been used with schemes which alternate between sam-
pling the latent function values (represented by v or u) and the parameters θ. Our scheme uses
HMC across v and θ jointly, whose effectiveness is examined throughout the experiment section.

Quadrature The first term in (6) is the expected log-likelihood. In the case of factorization across
the data-function pairs, this results in N one-dimensional integrals. For Gaussian or Poisson likeli-
hood these integrals are tractable, otherwise they can be approximated by Gauss-Hermite quadrature.
Given the current sample v, the expectations are computed w.r.t. p(fn |v,θ) = N (µn, γn), with:

µ = A>v; γ = diag(Kff −A>A); A = R−1Kuf ; RR> = Kuu, (8)

where the kernel matrices Kuf ,Kuu are computed similarly to Kff , but over the pairs in
(X,Z), (Z,Z) respectively. From here, one can compute the expected likelihood and it is subse-
quently straightforward to compute derivatives in terms of Kuf , diag(Kff ) and R.

Reverse mode differentiation of Cholesky To compute derivatives with respect to θ and Z we use
reverse-mode differentiation (backpropagation) of the derivative through the Cholesky matrix de-
composition, transforming ∂ log q̂(v,θ)/∂R into ∂ log q̂(v,θ)/∂Kuu, and then ∂ log q̂(v,θ)/∂θ.
This is discussed by Smith [23], and results in a O(M3) operation; an efficient Cython implemen-
tation is provided in the supplement.

3 Treatment of inducing point positions & inference strategy

A natural question is, what strategy should be used to select the inducing points Z? In the original in-
ducing point formulation [3], the positions Z were treated as parameters to be optimized. One could
interpret them as parameters of the approximate prior covariance [24]. The variational formulation
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[4] treats them as parameters of the variational approximation, thus protecting from over-fitting as
they form part of the variational posterior. In this work, since we propose a Bayesian treatment of
the model, we question whether it is feasible to treat Z in a Bayesian fashion.

Since u and Z are auxiliary parameters, the form of their distribution does not affect the marginals of
the model. The term p(u |Z) has been defined by the consistency with the GP in order to preserve
the posterior-process interpretation above (i.e. u should be points on the GP), but we are free to
choose p(Z). Omitting dependence on θ for clarity, and choosing w.l.o.g. q(u,Z) = q(u |Z)q(Z),
the bound on the marginal likelihood, similarly to (4) is given by

L = Ep(f |u,Z)q(u |Z)q(Z)

[
log

p(y | f)p(u |Z)p(Z)
q(u |Z)q(Z)

]
. (9)

The bound can be maximized w.r.t p(Z) by noting that the term only appears inside a (negative) KL
divergence: −Eq(Z)[log q(Z)/p(Z)]. Substituting the optimal p(Z) = q(Z) reduces (9) to

L = Eq(Z)

[
Ep(f |u,Z)q(u |Z)

[
log

p(y | f)p(u |Z)
q(u |Z)

]]
, (10)

which can now be optimized w.r.t. q(Z). Since no entropy term appears for q(Z), the bound is
maximized when the distribution becomes a Dirac’s delta. In summary, since we are free to choose
a prior for Z which maximizes the amount of information captured by u, the optimal distribution
becomes p(Z) = q(Z) = δ(Z− Ẑ). This formally motivates optimizing the inducing points Z.

Derivatives for Z For completeness we also include the derivative of the free form objective with
respect to the inducing point positions. Substituting the optimal distribution q̂(u,θ) into (4) to give
K̂ and then differentiating we obtain

∂K̂
∂Z

= −∂ logC
∂Z

= −Eq̂(v,θ)

[
∂

∂Z
Ep(f |u=Rv) [log p(y | f)]

]
. (11)

Since we aim to draw samples from q̂(v,θ), evaluating this free form inducing point gradient using
samples seems plausible but challenging. Instead we use the following strategy.

1. Fit a Gaussian approximation to the posterior. We follow [20] in fitting a Gaussian approxi-
mation to the posterior. The positions of the inducing points are initialized using k-means clustering
of the data. The values of the latent function are represented by a mean vector (initialized randomly)
and a lower-triangular matrix L forms the approximate posterior covariance as LL>. For large prob-
lems (such as the MNIST experiment), stochastic optimization using AdaDelta is used. Otherwise,
LBFGS is used. After a few hundred iterations with the inducing points positions fixed, they are
optimized in free-form alongside the variational parameters and covariance function parameters.
2. Initialize the model using the approximation. Having found a satisfactory approximation, the
HMC strategy takes the optimized inducing point positions from the Gaussian approximation. The
initial value of v is drawn from the Gaussian approximation, and the covariance parameters are ini-
tialized at the (approximate) MAP value.
3. Tuning HMC. The HMC algorithm has two free parameters to tune, the number of leapfrog
steps and the step-length. We follow a strategy inspired by Wang et al. [25], where the number of
leapfrog steps is drawn randomly from 1 to Lmax, and Bayesian optimization is used to maximize
the expected square jump distance (ESJD), penalized by

√
Lmax. Rather than allow an adaptive (but

convergent) scheme as [25], we run the optimization for 30 iterations of 30 samples each, and use
the best parameters for a long run of HMC.
4. Run tuned HMC to obtain predictions. Having tuned the HMC, it is run for several thousand
iterations to obtain a good approximation to q̂(v,θ). The samples are used to estimate the integral in
equation (2). The following section investigates the effectiveness of the proposed sampling scheme.

4 Experiments

4.1 Efficient sampling using Hamiltonian Monte Carlo

This section illustrates the effectiveness of Hamiltonian Monte Carlo in sampling from q̂(v,θ). As
already pointed out, the form assumed by the optimal variational distribution q̂(v,θ) in equation (6)
resembles the joint distribution in a GP model with a non-Gaussian likelihood.
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For a fixed θ, sampling v is relatively straightforward, and this can be done efficiently using HMC
[12, 26, 27] or Elliptical Slice Sampling [28]. A well tuned HMC has been reported to be extremely
efficient in sampling the latent variables, and this motivates our effort into trying to extend this
efficiency to the sampling of hyper-parameters as well. This is also particularly appealing due to the
convenience offered by the proposed representation of the model.

The problem of drawing samples from the posterior distribution over v,θ has been investigated in
detail in [11, 12]. In these works, it has been advocated to alternate between the sampling of v and
θ in a Gibbs sampling fashion and condition the sampling of θ on a suitably chosen transformation
of the latent variables. For each likelihood model, we compare efficiency and convergence speed of
the proposed HMC sampler with a Gibbs sampler where v is sampled using HMC and θ is sampled
using the Metropolis-Hastings algorithm. To make the comparison fair, we imposed the mass matrix
in HMC and the covariance in MH to be isotropic, and any parameters of the proposal were tuned
using Bayesian optimization. Unlike in the proposed HMC sampler, for the Gibbs sampler we did
not penalize the objective function of the Bayesian optimization for large numbers of leapfrog steps,
as in this case HMC proposals on the latent variables are computationally cheaper than those on
the hyper-parameters. We report efficiency in sampling from q̂(v,θ) using Effective Sample Size
(ESS) and Time Normalized (TN)-ESS. In the supplement we include convergence plots based on
the Potential Scale Reduction Factor (PSRF) computed based on ten parallel chains; in these each
chain is initialized from the VB solution and individually tuned using Bayesian optimization.

4.2 Binary Classification

We first use the image dataset [29] to investigate the benefits of the approach over a Gaussian ap-
proximation, and to investigate the effect of changing the number of inducing points, as well as
optimizing the inducing points under the Gaussian approximation. The data are 18 dimensional: we
investigated the effect of our approximation using both ARD (one lengthscale per dimension) and an
isotropic RBF kernel. The data were split randomly into 1000/1019 train/test sets; the log predictive
density over ten random splits is shown in Figure 1.

Following the strategy outlined above, we fitted a Gaussian approximation to the posterior, with Z
initialized with k-means. Figure 1 investigates the difference in performance when Z is optimized
using the Gaussian approximation, compared to just using k-means for Z. Whilst our strategy is not
guaranteed to find the global optimum, it is clear that it improves the performance.

The second part of Figure 1 shows the performance improvement of our sampling approach over the
Gaussian approximation. We drew 10,000 samples, discarding the first 1000: we see a consistent
improvement in performance once M is large enough. For small M , The Gaussian approximation
appears to work very well. The supplement contains a similar Figure for the case where a single
lengthscale is shared: there, the improvement of the MCMC method over the Gaussian approxi-
mation is smaller but consistent. We speculate that the larger gains for ARD are due to posterior
uncertainty in the lengthscales, which is poorly represented by a point in the Gaussian/MAP approx-
imation.

The ESS and TN-ESS are comparable between HMC and the Gibbs sampler. In particular, for 100
inducing points and the RBF covariance, ESS and TN-ESS for HMC are 11 and 1.0 · 10−3 and for
the Gibbs sampler are 53 and 5.1 · 10−3. For the ARD covariance, ESS and TN-ESS for HMC are
14 and 5.1 · 10−3 and for the Gibbs sampler are 1.6 and 1.5 · 10−4. Convergence, however, seems
to be faster for HMC, especially for the ARD covariance (see the supplement).

4.3 Log Gaussian Cox Processes

We apply our methods to Log Gaussian Cox processes [30]: doubly stochastic models where the
rate of an inhomogeneous Poisson process is given by a Gaussian process. The main difficulty for
inference lies in that the likelihood of the GP requires an integral over the domain, which is typically
intractable. For low dimensional problems, this integral can be approximated on a grid; assuming
that the GP is constant over the width of the grid leads to a factorizing Poisson likelihood for each
of the grid points. Whilst some recent approaches allow for a grid-free approach [19], these usually
require concessions in the model, such as an alternative link function, and do not approach full
Bayesian inference over the covariance function parameters.
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Figure 1: Performance of the method on the image dataset, with one lengthscale per dimension.
Left, box-plots show performance for varying numbers of inducing points and Z strategies. Optimiz-
ing Z using the Gaussian approximation offers significant improvement over the k-means strategy.
Right: improvement of the performance of the Gaussian approximation method, with the same in-
ducing points. The method offers consistent performance gains when the number of inducing points
is larger. The supplement contains a similar figure with only a single lengthscale.
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Figure 2: The posterior of the rates for the coal mining disaster data. Left: posterior rates using our
variational MCMC method and a Gaussian approximation. Data are shown as vertical bars. Right:
posterior samples for the covariance function parameters using MCMC. The Gaussian approxima-
tion estimated the parameters as (12.06, 0.55).

Coal mining disasters On the one-dimensional coal-mining disaster data. We held out 50% of
the data at random, and using a grid of 100 points with 30 evenly spaced inducing points Z, fitted
both a Gaussian approximation to the posterior process with an (approximate) MAP estimate for the
covariance function parameters (variance and lengthscale of an RBF kernel). With Gamma priors
on the covariance parameters we ran our sampling scheme using HMC, drawing 3000 samples.
The resulting posterior approximations are shown in Figure 2, alongside the true posterior using
a sampling scheme similar to ours (but without the inducing point approximation). The free-form
variational approximation matches the true posterior closely, whilst the Gaussian approximation
misses important detail. The approximate and true posteriors over covariance function parameters
are shown in the right hand part of Figure 2, there is minimal discrepancy in the distributions.

Over 10 random splits of the data, the average held-out log-likelihood was −1.229 for the Gaussian
approximation and −1.225 for the free-form MCMC variant; the average difference was 0.003, and
the MCMC variant was always better than the Gaussian approximation. We attribute this improved
performance to marginalization of the covariance function parameters.

Efficiency of HMC is greater than for the Gibbs sampler; ESS and TN-ESS for HMC are 6.7 and
3.1 · 10−2 and for the Gibbs sampler are 9.7 and 1.9 · 10−2. Also, chains converge within few
thousand iterations for both methods, although convergence for HMC is faster (see the supplement).
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Figure 3: Pine sapling data. From left to right: reported locations of pine saplings; posterior mean
intensity on a 32x32 grid using full MCMC; posterior mean intensity on a 32x32 grid (with sparsity
using 225 inducing points), posterior mean intensity on a 64x64 grid (using 225 inducing points).

Pine saplings The advantages of the proposed approximation are prominent as the number of grid
points become higher, an effect emphasized with increasing dimension of the domain. We fitted a
similar model to the above to the pine sapling data [30].

We compared the sampling solution obtained using 225 inducing points on a 32 x 32 grid to the
gold standard full MCMC run with the same prior and grid size. Figure 3 shows that the agreement
between the variational sampling and full sampling is very close. However the variational method
was considerably faster. Using a single core on a desktop computer required 3.4 seconds to obtain
1 effective sample for a well tuned variational method whereas it took 554 seconds for well tuned
full MCMC. This effect becomes even larger as we increase the resolution of the grid to 64 x 64,
which gives a better approximation to the underlying smooth function as can be seen in figure 3. It
took 4.7 seconds to obtain one effective sample for the variational method, but now gold standard
MCMC comparison was computationally extremely challenging to run for even a single HMC step.
This is because it requires linear algebra operations using O(N3) flops with N = 4096.

4.4 Multi-class Classification

To do multi-class classification with Gaussian processes, one latent function is defined for each of
the classes. The functions are defined a-priori independent, but covary a posteriori because of the
likelihood. Chai [18] studies a sparse variational approximation to the softmax multi-class likelihood
restricted to a Gaussian approximation. Here, following [31, 32, 33], we use a robust-max likelihood.
Given a vector fn containing K latent functions evaluated at the point xn, the probability that the
label takes the integer value yn is 1 − ε if yn = argmax fn and ε/K − 1 otherwise. As Girolami
and Rogers [31] discuss, the ‘soft’ probit-like behaviour is recovered by adding a diagonal ‘nugget’
to the covariance function. In this work, ε was fixed to 0.001, though it would also be possible to
treat this as a parameter for inference. The expected log-likelihood is Ep(fn |v,θ)[log p(yn | fn)] =
p log(ε)+(1−p) log(ε/(K−1)), where p is the probability that the labelled function is largest, which
is computable using one-dimensional quadrature. An efficient Cython implementation is contained
in the supplement.

Toy example To investigate the proposed posterior approximation for the multivariate classifica-
tion case, we turn to the toy data shown in Figure 4. We drew 750 data points from three Gaussian
distributions. The synthetic data was chosen to include non-linear decision boundaries and ambigu-
ous decision areas. Figure 4 shows that there are differences between the variational and sampling
solutions, with the sampling solution being more conservative in general (the contours of 95% con-
fidence are smaller). As one would expect at the decision boundary there are strong correlations
between the functions which could not be captured by the Gaussian approximation we are using.
Note the movement of inducing points away from k-means and towards the decision boundaries.

Efficiency of HMC and the Gibbs sampler is comparable. In the RBF case, ESS and TN-ESS for
HMC are 1.9 and 3.8 · 10−4 and for the Gibbs sampler are 2.5 and 3.6 · 10−4. In the ARD case, ESS
and TN-ESS for HMC are 1.2 and 2.8 · 10−3 and for the Gibbs sampler are 5.1 and 6.8 · 10−4. For
both cases, the Gibbs sampler struggles to reach convergence even though the average acceptance
rates are similar to those recommended for the two samplers individually.

MNIST The MNIST dataset is a well studied benchmark with a defined training/test split. We used
500 inducing points, initialized from the training data using k-means. A Gaussian approximation
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Figure 4: A toy multiclass problem. Left: the Gaussian approximation, colored points show the
simulated data, lines show posterior probability contours at 0.3, 0.95, 0.99. Inducing points positions
shows as black points. Middle: the free form solution with 10,000 posterior samples. The free-form
solution is more conservative (the contours are smaller). Right: posterior samples for v at the same
position but across different latent functions. The posterior exhibits strong correlations and edges.

Figure 5: Left: three k-means centers used to initialize the inducing point positions. Center: the
positions of the same inducing points after optimization. Right: difference.

was optimized using minibatch-based optimization over the means and variances of q(u), as well
as the inducing points and covariance function parameters. The accuracy on the held-out data was
98.04%, significantly improving on previous approaches to classify these digits using GP models.

For binary classification, Hensman et al. [20] reported that their Gaussian approximation resulted in
movement of the inducing point positions toward the decision boundary. The same effect appears
in the multivariate case, as shown in Figure 5, which shows three of the 500 inducing points used
in the MNIST problem. The three examples were initialized close to the many six digits, and after
optimization have moved close to other digits (five and four). The last example still appears to be
a six, but has moved to a more ‘unusual’ six shape, supporting the function at another extremity.
Similar effects are observed for all inducing-point digits. Having optimized the inducing point
positions with the approximate q(v), and estimate for θ, we used these optimal inducing points to
draw samples from v and θ. This did not result in an increase in accuracy, but did improve the
log-density on the test set from -0.068 to -0.064. Evaluating the gradients for the sampler took
approximately 0.4 seconds on a desktop machine, and we were easily able to draw 1000 samples.
This dataset size has generally be viewed as challenging in the GP community and consequently
there are not many published results to compare with. One recent work [34] reports a 94.05%
accuracy using variational inference and a GP latent variable model.

5 Discussion

We have presented an inference scheme for general GP models. The scheme significantly reduces
the computational cost whilst approaching exact Bayesian inference, making minimal assumptions
about the form of the posterior. The improvements in accuracy in comparison with the Gaussian
approximation of previous works has been demonstrated, as has the quality of the approximation
to the hyper-parameter distribution. Our MCMC scheme was shown to be effective for several
likelihoods, and we note that the automatic tuning of the sampling parameters worked well over
hundreds of experiments. This paper shows that MCMC methods are feasible for inference in large
GP problems, addressing the unfair sterotype of ‘slow’ MCMC.
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Supplementary material for:

MCMC for Variationally Sparse GPs

5.1 Coal data

Figure 6 replicates Figure 1, but with a single lengthscale shared across each input.
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Figure 6: Performance of the method on the image dataset, with a single lengthscale.

5.2 Convergence plots

Convergence of the samplers on the Image dataset is reported in fig. 7 and shows the evolution of
the PSRF for the twenty slowest parameters for HMC and the Gibbs sampler in the case of RBF and
ARD covariances. The figure shows that HMC consistently converges faster than the Gibbs sampler
for both covariances, even when the ESS of the slowest variable is comparable.

Fig. 7 shows the convergence analysis on the coal dataset. In this case, HMC converges faster than
the Gibbs sampler and efficiency is comparable.

Convergence of the samplers on the toy multi-class dataset is reported in fig. 9. HMC converges
much faster than the Gibbs sampler even though efficiency measured through ESS is comparable.
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Figure 7: Image dataset - Evolution of the PSRF of the twenty least efficient parameter traces for
HMC (blue) and the Gibbs sampler (red). Left panel: RBF case - minimum ESS and TN-ESS for
HMC are 11 and 1.0 · 10−3 and for the Gibbs sampler are 53 and 5.1 · 10−3. Right panel: ARD case
- minimum ESS and TN-ESS for HMC are 14 and 5.1 · 10−3 and for the Gibbs sampler are 1.6 and
1.5 · 10−4.
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Figure 8: Coal dataset - Evolution of the PSRF of the twenty least efficient parameter traces for
HMC (blue) and the Gibbs sampler (red). Minimum ESS and TN-ESS for HMC are 6.7 and 3.1 ·
10−2 and for the Gibbs sampler are 9.7 and 1.9 · 10−2.
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Figure 9: Multiclass dataset - Evolution of the PSRF of the twenty least efficient parameter traces
for HMC (blue) and the Gibbs sampler (red). Left panel: RBF case - minimum ESS and TN-ESS
for HMC are 1.9 and 3.8 · 10−4 and for the Gibbs sampler are 2.5 and 3.6 · 10−4. Right panel: ARD
case - minimum ESS and TN-ESS for HMC are 1.2 and 2.8 · 10−3 and for the Gibbs sampler are
5.1 and 6.8 · 10−4.
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5.3 Pine saplings
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Figure 10: A larger version of Figure 3. Top right: gold standard MCMC 32x32 grid. Bottom left:
Variational MCMC 32x32 grid. Bottom right: Variational MCMC 64x64 grid, with 225 inducing
points in the non-exact case.
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