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Abstract

The progress in hardware and communication technology enables data analyzers to compute with

accuracy aggregate information, owing to the wide availability of data. The personal sensitive

information that is binded with individual data, renders users reluctant in publishing it. The

seemingly paradoxical requirement of preserving individual confidentiality while at the same time

granting partial access to an aggregate value over the data, has been addressed with Privacy

Preserving Data Collection and Analysis protocols. However, in order to achieve individual

privacy and efficiency, current cryptographic solutions assume honest-but-curious third parties

or fully trusted key-dealers to distribute keys, thus restricting the security model and hindering

its deployment in a dynamic environment.

In this dissertation, we design and analyze new Privacy Preserving Data Collection and

Analysis protocols to strengthen the existing security model and to propose new features. We

first propose a solution to the problem of privacy preserving clustering by exploiting the inherent

properties of a specific similarity detection algorithm. Then, we design a solution that allows

an energy supplier to learn more sophisticated statistics, such as the time interval of maximum

energy consumption, without violating individuals’ privacy. Afterwards, we address the problem

of data aggregation in a dynamic environment by relaxing existing trust assumptions. Finally, we

strengthen the security requirements of existing protocols by considering the case of a malicious

Aggregator who will try to provide bogus or biased results. Our protocols are analyzed under

the provably secure framework and their practicality is shown with prototype implementations.
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Résumé

Les progrès matériels et technologiques en terme de communication permettent aux analystes de

données de calculer avec précision des données agrégées en raison du grand volume de données

disponibles. Les informations personnelles sensibles, liées aux données individuelles, rendent les

utilisateurs réticents à publier ces données. La contradiction entre le besoin de respect de la vie

privée individuelle d’une part, et celui de donner un accès partiel à une description synthétique

des données d’autre part à été résolue avec des protocoles de collecte et d’analyse des données

respectueux de la vie privée. Cependant afin de garantir à la fois efficacité et respect de la vie

privée, les solutions cryptographiques actuelles supposent l’existence d’un tiers parti honnête

mais curieux ou d’une entité distribuant les clés en qui l’on puisse avoir une confiance totale,

limitant ainsi le modèle de sécurité de ces solutions et entravant leur déploiement dans un

environnement dynamique.

Dans cette thèse, nous concevons et analysons plusieurs nouveaux protocoles de collecte et

d?analyse des données respectueux de la vie privée en vue de renforcer le modèle de sécurité

existant et de proposer de nouvelles fonctionnalités. Nous proposons une première solution au

problème de la catégorisation respectueuse de la vie privée en exploitant les propriétés inhérentes

d’un algorithme spécifique de détection de similarité. Puis, nous concevons une solution qui per-

met à un fournisseur d’énergie d’apprendre des statistiques plus sophistiquées, comme l’intervalle

de temps de la consommation d’énergie maximale sans violer la vie privée individuelle. Ensuite,

nous abordons le problème de l’agrégation de données dans un environnement dynamique en



Résumé

relaxant les hypothèses de confiance existantes. Enfin, nous renforçons les exigences de sécurité

des protocoles existants avec un agrégateur malveillants qui tentera de fournir des résultats faux.

Nous montrons la faisabilité de nos solutions avec des implémentations de prototype. La sécurité

de chacun de protocoles est analysée dans le cadre de la sécurité prouvée.
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Introduction
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.4 Goals and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Introduction

The motivation of this dissertation stems from our engagement with a project on Usage Control

[3], which started as a side problem and progressively took us to the core topic of this dissertation.

Namely, protocols for Usage Control aim to control how data is used during its entire lifetime,

since regular access control systems cannot assure privacy for usage of data. An adversary in an

access control scheme may copy and store deleted data, duplicate it, or malevolently use it in an

unauthorized way. An essential component of a Usage Control enforcement scheme turns out to

be a similarity detection function, which is employed to detect malicious data usage by untrusted

parties. Our investigation on a specific category of data analysis operations such as similarity

detection for security purposes, spurred our interest in a broader category of protocols in which

functions other than similarity are evaluated by untrusted parties for different purposes.
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Similarly, as with the Usage Control problem, there is a conflicting requirement between se-

curity and utility, in this type of protocols. An untrusted third party aims to learn some useful

statistical information over a census of data, that represents a population of users. Untrusted

parties collect data from individuals during the collection phase. After collecting all data, Ag-

gregators, which are not authorized to have access to individual data, will try to analyze it to

derive an aggregate value. Individual data contains personal sensitive information and users

providing it seek to protect their privacy. Through the analysis of the data collected from users,

useful statistical information can be computed in cleartext that will help Aggregators in decision

making. As such, the problem becomes challenging when individual inputs to the function are

obfuscated, so as to assure confidentiality. Different solutions address the problem hereafter

called Privacy Preserving Data Collection and Analysis (PPDCA), using two classes of tech-

niques. The first class relies on adding noise to data samples to assure privacy. The added noise

allows the Aggregator to compute a statistical function over data with some error. On another

variant of solutions that is based on cryptography, through non-conventional encryption and

key-management techniques, the untrusted Aggregator learns the result of a statistical function

without any noise. In spite of the advances made by such cryptographic solutions towards pri-

vacy and efficiency, the underlying security model does not involve a fully malicious Aggregator,

or assumes the existence of a fully trusted key dealer who distributes keys to each party of the

protocol. This dissertation focuses on cryptographic techniques for PPDCA protocols with a

stronger threat model, while relaxing the existing trust assumptions, in order to better suit real

world deployment. Before presenting the challenges and the goals that we tackle, we present

use-case scenarios that motivate us.

1.2 Scenarios

In this section we provide some evidence through real world scenarios for the broad range of

applications of Privacy Preserving Data Collection and Analysis protocols.

The confluence of powerful servers, ubiquitous computing devices and smart computing, al-

lows the collection of massive amount of data from end users. The availability of large volume
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of information on the other hand, allows for aggregate operations as a powerful tool to infer sta-

tistical information about the underlying population, that improves the social welfare: consider

a healthcare scenario whereby patients in a hospital receive personal information about their

health status in an electronic form. This information constitutes their health history and it is

considered personal information. Medical scientists on the other hand, seek to operate on data

in order to derive statistical information such as sophisticated predictive models for predisposi-

tion to diseases (cancer, heart attack, genetic anomalies) or for offsprings’ likelihood to diseases

through genomic data. The medical data that are produced by a population of patients are

collected by the medical scientists who behave as Aggregators. A possible misuse of patients’

private data may have negative results in patients’ life: the elicitation of medical data to an

insurance company will negatively dominate the decision of the latter as to whether or not a

patient will become a potential client. The core problem of the healthcare scenario between

the medical data producers (users) and the medical scientists, who may act maliciously, is to

assure the confidentiality of individual data, while allowing medical scientists to perform some

operations on them.

In another context, thanks to the plummeting cost of hardware devices, smart meters are

widely deployed in homes in order to report energy consumption in a smart grid environment.

As the energy consumption monitored by smart meters may reveal sensitive information about

the home, such as the number of people, the appliances and personal activities, users are not

eager to disclose their energy consumption patterns. On the other end of the smart grid system,

energy suppliers viewed as data consumers, collect and analyze energy consumption samples

from smart meters in order to achieve various types of optimization. From the analysis of these

samples, they are able to precisely forecast the electricity demand in order to allocate energy in

advance according to the needs of an entire population. A typical privacy versus utility trade-off

thus arises between the two ends of the smart grid system. The challenge in the smart metering

scenario is to preserve individual data privacy while allowing untrusted parties access to some

aggregate information over the meterings.
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1.3 Privacy Preserving Data Collection and Analysis

In the aforementioned scenarios an untrusted party collects data from multiple users. Users want

to protect their data confidentiality and they are reluctant to reveal their personal information.

On the other hand, the untrusted party seeks to derive in cleartext a function over the entire data,

without learning individual inputs. During a collection phase, an Aggregator collects obfuscated

data. Later, during the analysis phase, the Aggregator performs some operations on data that

allow it to reveal in cleartext some useful statistical information over the collected information.

The conflicting requirement of preserving individual privacy on data and allowing access on

aggregate information, renders the design of PPDCA protocols challenging. Let us now see

some possible solutions to the problem. Homomorphic encryption allows operations on encrypted

data but does not solve the problem of deriving a cleartext aggregate value. In a standard setting

based on homomorphic encryption, the untrusted Aggregator would need the secret decryption

key in order to decrypt the encrypted aggregate result, which would compromise individual

privacy of users. Following a different direction, the problem could be mitigated with Multi-

Party Computation (MPC) protocols. However, MPC implies a large communication overhead

because users must exchange many secret messages for the computation of a function over the

data. The functional encryption paradigm [31] can be used to design PPDCA protocols, but

in case of multiple inputs–modeling multiple users owing personal data–the proposed functional

encryption schemes would be prohibitively complex and costly [76].

We turn to more customized approaches that specifically deal with the PPDCA problem.

Noise-based solutions consist of adding some noise to each data value before sending it to the

Aggregator. The noise prevents the Aggregator from compromising individual privacy, but it

is appropriately designed such that some statistics over all data inputs can be inferred. The

second approach uses cryptographic protocols with a restricted set of operations an Aggregator

can perform over the entire data. The customized PPDCA protocols proposed in the literature

can be classified as follows:

4



CHAPTER 1. INTRODUCTION

• Noise-based protocols

– Ad-Hoc techniques [5, 7, 19, 20, 95, 108, 120, 139]. In the ad-hoc approach, data is

obfuscated by users with noise, such that a function over the cleartext data can be

estimated by an untrusted party, while the adversary is confused by the noise data

samples, thus achieving user privacy. Privacy is expressed with different means such as

the distance between the noisy data distribution and the cleartext data distribution,

or it is modeled in terms of the entropy of the noisy data distribution.

Ad-hoc techniques lack a comprehensive notion of privacy. Furthermore, a comparison

of ad-doc techniques in terms of the privacy they provide does not seem feasible, since

each one uses a different privacy model. Solutions that adhere to the differential privacy

framework address this lack of a formal privacy definition.

– Differential privacy [4,15,22,42–44,55,56,59,60,62,64,71,116,118,124,132]. Within

the differential privacy approach, there is a rigorous privacy definition that is fulfilled

by adding appropriate noise either by each user separately or by a trusted party,

in a centralized fashion. Differential privacy assures that an adversary who learns

a function over two sets of data values that differ at most by one value cannot tell

with which data set it communicates. Alternatively, differential privacy prevents

the adversary from determining the existence or absence of an individual data value

through a statistical function.

Noise-based techniques are inappropriate in scenarios where precision of the final data

analysis operation is of crucial importance: charging users based on noisy measurements

would never be acceptable by end users be it for the benefit of individual privacy. Cryp-

tographic protocols cope with this limitation by achieving precision in the computation of

the statistical information by the Aggregator.

• Cryptographic Protocols [4, 15, 21, 42, 45, 52, 63, 82, 87, 92, 104, 124, 132]. Privacy Pre-

serving Data Collection and Analysis protocols have been modeled within a rigorous cryp-

tographic framework. Conventional privacy and security definitions have been changed
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in order to follow the new privacy and security requirements for Privacy Preserving Data

Collection and Analysis protocols. Namely, security definitions based on indistinguishabil-

ity aim to capture an adversarial behavior, which an adversary seeks to retrieve individual

data inputs from the ciphertexts and the result of a function over the plaintext data. In

order to assure confidentiality of inputs, cryptographic protocols often use a fully trusted

key dealer, which distributes secret keys to the users and to the Aggregator.

In order to avoid noise at the final computation of the aggregate value, in current crypto-

graphic solutions for PPDCA protocols, data is encrypted appropriately, such that an Aggrega-

tor cannot learn any information from the encrypted samples, except for some aggregate result

over users’ data. The cryptographic solutions assume an honest-but-curious threat model with

a fully trusted key dealer, which distributes keys to users and to the Aggregator. The amount of

trust that is placed in a single party during the protocol may not be realistic for real world sce-

narios in which parties are mistrustful. Furthermore, in a resource constraint environment such

as the smart metering scenario, extra features such as accommodating a dynamic population of

users during the protocol execution and achieving resiliency to failures, affect the efficiency of

the protocol.

1.4 Goals and outline

Although the most suitable approach for the PPDCA problem seems to be the one using

cryptographic protocols, existing solutions still suffer from several limitations. First, existing

protocols only support a basic set of aggregate functions: their extension thereof seems to be a

very suitable research challenge. Moreover, existing cryptographic protocols for PPDCA suffer

from unrealistic key management requirements due to their reliance on a fully trusted key dealer

and the need for updating the key material for the entire user population. Existing users of the

scheme are also affected in case of faults because users which already participate in the protocol,

need to receive new keys. In case of low-resource devices such as smart meters, it is of great

importance to support dynamic groups and resiliency to failures with low communication cost,

due to the resource constraints of the devices. Finally, the cryptographic protocols follow the

6



CHAPTER 1. INTRODUCTION

honest-but-curious threat model, in which the Aggregator is semi-trusted to follow the protocol’s

rules. We conclude that it is important to introduce a stronger security model taking into account

more powerful adversaries seeking to deviate from the protocol rules, to maliciously tamper with

the global results. The objectives of this dissertation can be summarized in a few points:

1. Provide new functions an Aggregator can perform on data for secure data collection and

analysis that are not available from the existing cryptographic protocols. We stress that

the extended functions should come with an ideal payoff for privacy without compromising

it to a large extent–i.e: Learning aggregate statistics over the entire population of users

is doable and acceptable, but learning how each user of the population behaves violates

individual privacy.

2. Design a suitable cryptographic protocol for a dynamic population of users with resiliency

to faults. We emphasize that the support of dynamicity and fault-tolerance should not

jeopardize individual privacy.

3. Formalize novel security definitions that specifically strengthen existing privacy definitions

with respect to Aggregator obliviousness. We lower the amount of trust that should be

placed on any single entity. Moreover, we propose an integrated security definition that

guarantees both privacy and verification on computations.

The structure of this dissertation is organized as follows:

• In Chapter 2, we provide cryptographic material that will help the reader interpret the

technical material of this dissertation: The Chapter starts with some historical break-

throughs and continues with a comprehensive analysis of security definitions. Next, we

highlight the cryptographic primitives that are employed along this dissertation and we

explain the method of reasoning for security in the provable security framework.

• In Chapter 3, we present a detailed analysis of the state-the-of-art. We start our analysis

with relevant noise-based techniques for Privacy Preserving Data Collection and Analysis.

Then, we introduce a thorough analysis of cryptographic protocols, which are classified
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based on the threat model that they adhere to. Finally, we proceed into a taxonomy of

current cryptographic protocols and we identify their shortcomings.

• In Chapter 4, we present our protocol for privacy preserving clustering. The underly-

ing idea is based on a novel transformation of multidimensional vectors that represent

data with bi-vectors. Privacy is preserved with individual randomness properly chosen,

such that clustering on data can be performed by an untrusted party without violating

individual privacy.

• In Chapter 5, we discuss our solution for enhanced functionality in a smart-grid environ-

ment. Namely, an untrusted data Aggregator which can be an energy supplier in a real

world application is interested in learning continuous periods of high energy consumption

of a home. The underlying idea is a randomization of a delta encoding function that takes

as input the differences of energy consumption. The delta encodings along with an order

preserving encryption scheme allows the untrusted data Aggregator to exclude undesired

data from its analysis.

• In Chapter 6, we propose a privacy preserving protocol for sum computation. In con-

trast with previous work that is based on the trustworthiness of a key dealer to guarantee

individual privacy, our solution relaxes this requirement. We also formulate the new pri-

vacy requirements with a stronger privacy model. Our protocol is suitable for a dynamic

population of users. In this scenario, users can spontaneously join or leave the protocol

without any coordination. Existing users are not affected with extra computational and

communication overhead since there is no need for a new key distribution phase. Finally,

we provide benchmark results for our prototype implementation on PCs, single board

computers (cubieboard [2]) and mobile devices.

• In Chapter 7, we formalize security properties for aggregation protocols that entail a dual

security guarantee. The protocol assures verification of the correctness of computations

performed by an untrusted Aggregator and individual privacy against a malicious party.

We also implemented our protocol and we present our benchmark results. Our solution
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achieves constant time verification and is provably secure under a new assumption whose

security evidence is proved in the generic group model.

• Finally in Chapter 8, we conclude with the results of this dissertation and we discuss future

research avenues.
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In this section we provide the necessary background in order to enable the reader to interpret

the cryptographic machinery that is employed in this dissertation. We first give a historical

overview of cryptography. We also present the hardness assumptions that the security of our

protocols is based on. Finally, we discuss the provable security framework and we present the

cryptographic primitives used in our protocols.

2.1 Brief history

The word cryptography stems from the Greek world κρυπτός (kryptos) which means hidden and

γραφείν (graphein) which depicts the notion of writing. It is the first descendant of the more

general term of cryptology (λογία (logy) means study). The other descendant is cryptanalysis.

Cryptography aims to write secret codes which are decoded only with the employment of a secret

key. Even if the history has encountered the first notion of secret communication back in 2000

BC, cryptography has become a science only in the last decades.

Historians have observed some unusual notation to the egyptian hieroglyphics used to dec-

orate the tombs of kings [49, Chapter 2]. They deliberately used some cryptic symbols, which

were not part of the existing alphabet, in order to make the stone more royal. But it is not clear

yet if the main purpose of these cryptic symbols was to hide the underlying message or to act

as an eye-catcher to decoy people to decipher it.

The first official use of cipher was observed in 500 BC. Ancient Greeks in order to hide

messages they implemented a transposition cipher with a skytale [98], which is a wooden cylinder.

The sender wraps a strip of parchment wound or leather around it and the message is written

across the strip. Then, the sender unwraps the strip and random alphabet symbols were written

to random positions of the strip. In order to decipher, the receiver wraps again the strip in

a same diameter cylinder that acts as the secret key. During this period, Polybious invented

the first substitution cipher, known as Polybious square whereby letters grouped in a square

were substituted with a sequence of numbers. Some centuries later, at 58 BC, the ceasar cipher,
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which took its name from the senator Gaius Julius Caesar, is based on Polybious idea, and swifts

alphabet letters based on a fixed pattern.

Al-Kindi, an Arab mathematician and philosopher made a tremendous progress in ciphers.

After identifying the weakness of single alphabet substitution ciphers due to frequency analysis

he realized the need for polyalphabet ciphers. The vigenère cipher was first described by Giovan

Battista Bellaso but the name has been wrong misattributed to Blaise de Vigenére due to a

stronger description of Bellaso’s cipher. Namely, vigenère cipher encrypts by applying different

alphabets to each letter of the plaintext.

In the 20th century the employment of electro-mechanical rotor machines were securing

the communication from host to host. The most well known is Enigma that has been used

by Nazi and was broken by Allies forces in Bletchley Park. Enigma is a polyalphabet stream

cipher whereby at each key pressing the three rotors change the circuit connections between

the keyboard and the lampboard, thus enabling a different cipher letter for the same plaintext

letter; resulting in ≈ 1.76 · 1015 different keys. James H. Ellis captured the idea of public

key encryption in 1969 [136], however it did not become known since he was committed to

the Government Communication Headquarters (GCHQ). In 1973 Clifford Cocks first realized a

public key encryption scheme based on the difficulty of factoring large prime numbers but it was

never published, since for the same reasons with Ellis, his work was classified information for

GCHQ. The work was kept secret until 1997 [136]. Public key encryption became widely known

by Diffie and Hellman in 1975 from the publication of their research results. Rivest, Shamir and

Adleman in 1976 rediscovered the RSA algorithm, since Cocks’ work was not published [1].

2.2 Provable security

2.2.1 Computational security

Computational security definitions bound the adversary to be successful only if it runs in any

reasonable time, where reasonable is polynomial on input of the key size. In the seminal work

by Goldwasser and Micali [78], the authors introduced the notion of semantic security which
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is employed to describe computational security. Informally, semantic security guarantees that

whatever function f(x) a polynomial bounded adversary can infer for the plaintext x by having

access to some auxiliary information I(k), where k is the size of the ciphertext, it can be deduced

by another adversary who has not access to the ciphertext. Semantic security models the adver-

saries as polynomial time algorithms and analyzes the success probabilities with asymptotics.

The latter allows to analyze the growth of complexity of the adversary with respect to the size

of the key and the auxiliary information.

Definition 1. (Semantic Security [74, Chap 5]) An encryption scheme Gen,Enc,Dec is semanti-

cally secure if for every function f : {0, 1}k → {0, 1}∗, I : {0, 1}k :→ {0, 1}∗ for every polynomial

time adversary A:

Pr[A(Enc(k, x), I(k)) = f(x)]− Pr[A(I(k)) = f(x)] =
1

2
+ ε

for a negligible function ε.

The above definition has an equivalent version [74, Chap 5] in terms of indistinguishability

of two ciphertexts:

Definition 2. (Message indistinguishability) An encryption scheme Gen,Enc,Dec is message

indistinguishable if for any two messages x1, x2 and any polynomially bounded adversary A:

Pr[A(Enc(k, x1)) = 1]− Pr[A(Enc(k, x2)) = 1] =
1

2
+ ε

for a negligible function ε. The unduly revolutionary idea that paved the way to treat

cryptography not in an ad-hoc framework where experience and intuition play a significant role

in solutions but in a general scientific domain, with rigorous mathematical formulations is due

to Goldwasser and Micali [77, 78] in the 1980s. The idea designates that in order to prove the

security of a protocol, it suffices to construct an efficient polynomial time algorithm that reduces

the security of the new protocol to an alleged hard problem. That is, as long as the underlying

problem is intractable the scheme is secure. From another perspective it means that once there

is a probabilistic polynomial time (PPT) algorithm A that is able to break the protocol that it
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is analyzed, then there is an efficient PPT algorithm B that can break the underlying alleged

hard problem. The latter connotes a contradiction so the initial proposition of the security of

the scheme holds.

As already mentioned by Bellare [16] the term provably secure is misleading. The existence

of reductionist security proofs does not imply a rigorous proof that the scheme is secure in a real

world depiction. In contrast, it provides evidence for the security of the scheme as long as an

assumption for the hardness of a well known problem holds. In order to clarify things hereafter

whenever it is said that a protocol is provably secure, it means that there is a reductionist proof

from the hardness assumption of the protocol to an alleged hard problem.

2.2.2 Proof roadmap

The technique of providing a reductionist security proof is the following:

• Protocol description: In the first phase formal definitions about the functionality of the

protocol are provided. More specifically the engaged parties are presented as algorithms.

Information about the characteristics of the algorithms are also mentioned: deterministic,

probabilistic, interactive, non-interactive. At this phase no details about the initialization

of the protocol are provided.

• Security definition: The security definitions entail rigorous mathematical formulations

about what security guarantees the protocol should provide. The definition comes in terms

of a polynomial bounded adversary and a quantitative definition of probabilities that depict

the chances that the adversary can mount a reasonable attack to the protocol.

• Threat model: In the threat model the capabilities of the adversary are clarified. That is,

how the polynomial algorithm of the adversary is upper bounded in terms of computational

power (polynomially), how the adversary is going to attack the scheme (adaptive, non-

adaptive) and what the adversary is allowed to know. In general, the less restrictions to

the adversarial model the stronger security guarantee is assured. Adversary’s interactions

with the protocol can be presented in the form of a game, which is played between the
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adversary and a simulator that simulates the execution of the protocol. In a nutshell, there

is a learning phase in the game where the adversary learns auxiliary information about

the protocol and a challenge phase that follows. During the challenge phase a challenge is

submitted to the adversary by the simulator and the former succeeds in the game if it can

provide a correct answer to the challenge with non-negligible probability.

• Protocol realization: During the protocol realization the tools that realize the protocol

description are presented. Moreover parameters are analyzed in order to meet security

definitions and efficient functionalities.

• Reductionist proof : A reductionist proof from the protocol to a hard problem is de-

scribed: The steps for the construction of an algorithm B are presented. More specifically

B employs as a subroutine an adversary A against the proposed scheme, in order the for-

mer to break a believed hard problem. The proof should be as tight as possible in order

to be meaningful. That is, if A’s running time is polynomially bounded by t with success

probability e, then B running time and success probability should be as close as possible

to t, e respectively.

2.2.3 Game-hopping technique

Within the game-based framework after the definition of a game G, then the advantage Adv of

the adversary is modeled as the probability of an event S to occur. This is the target probability,

which should be negligible when the adversary has to compute something (e.g: forge a signature)

or it should be negligible between her choices when she has to distinguish between two events

(indistinguishability security of encryption). It is quite common both for technical reasons and

for clarity and simplification in order to avoid flaws, the proof to follow the game-hop technique

[54, 135]. The original game is defined in G0 and then a sequence of games G1, G2, G3, . . . , Gn

are further presented. As previously mentioned, this happens in order to make the proof more

readable and easy to analyze but also because there are difficulties in proving the negligibility of

the target probability. The goal of the designer is to show that the advantage of the adversary

in each game is negligible close to its predecessor: Pr[Si] = Pr[Si + 1], i ∈ [0, n] and that Pr[Sn]
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equals the target probability.

2.2.4 Random oracle

So far we demonstrated the roadmap for provable security and the techniques that are employed

towards it. When the reductionist proof is possible without making any further assumptions

then the protocol is provably secure in the standard-model. However this is not always possible.

In the vast majority of existing protocols a source of randomness is mandatory. But it is hard to

instantiate a truly random function. A random function can be viewed as a hard-coded lookup

table. On the left side of the lookup table there is the input to the function that consists of all

bit-strings of the universe and on the right side there is the random output, different for each

input. This construction is totally impractical in terms of storage and of retrieval of the random

output for a specific bit string. The problem is mitigated with the random oracle [17], which

is viewed as an extra party in the protocol. Everybody can query the oracle. At the beginning

of the protocol the oracle’s state is empty. Then, each time a party is querying the oracle with

a bit string, the oracle checks if that has been queried before with the same input. If yes, it

returns the same random output string. If no, it returns a new random output string and it

stores the new pair of input-output to its state. The assumption that is made in the proofs in

the random oracle is that they pretend the existence of a function that outputs truly random

bit strings like in an ideal scenario.

The random oracle model allowed for the construction of security proofs that were infeasible

in the standard model. However, when it comes to the real-world model the random oracle is

substituted with a hash function which is not truly random. Researchers have come up with

several scenarios [33], whereby the implementation of a protocol using real hash functions suffer

from severe security flaws despite the security proof in the random oracle model. Moreover

the random oracle model does not depict all types of adversaries. Attackers that have physical

access to the machine that implements a cryptographic protocol can mount different types of side

channel attacks in order to learn the secret key: a) by observing the running time of secret key

conditional loop [100], b) by observing the power analysis of a device [101], c) by capturing the
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acoustic signal that is generated by the vibrations of electronic components of a computer [70],

or d) by having access to the memory of a PC and applying a cold-boot-attack [83]. So the

question to answer is: why are we still applying the idea of the random oracle model for security

proofs? The reason is because a security proof in the random oracle model is better than no

security proof at all. Moreover, when the adversary does not focus on attacking the real world

pseudorandom function then the random oracle provides security guarantees for generic attacks

of the scheme. Last but not least, during the instantiation of the random oracle with a specific

pseudorandom function, if there are weaknesses for this specific function then we can simply

substitute it with another one, without changing the protocol overall.

2.2.5 Generic group model

It may not always be possible to rely the security of a cryptographic protocol on well known

problems. As such, the reductionist proof should be made on a new problem. In order to provide

security evidence of the new problem Shoup introduced the generic group model [134]. This is

a theoretical framework, whereby the hardness of the new assumption is analyzed [11, 26, 137].

According to the generic group model, an adversary has access to elements of the underlying

mathematical group in which the problem is assumed to be hard, through a black box. The

black box acts as a simulator which uses a random encoding function in order to reply for

encodings of elements the adversary asks for. Moreover the simulator associates with each

random encoding a polynomial which is not forwarded to the adversary. The simulator also

simulates the mathematical operations of the underlying group and any other information the

adversary is allowed to have access to. Finally, the adversary outputs a solution to the problem

which is translated into an equation of the corresponding polynomials. The probability to

successfully evaluate a polynomial of degree d to 0 with a random variable assignment from a

group of order p, bounds the probability of an adversary to break the assumption according to

the Schwartz-Zippel lemma:

Lemma 1. Let p(x1, · · · , xn) be a polynomial of total degree d. Assume that p is not identically

zero. Let S ⊆ F be any finite set. Then, if we pick y1, · · · , yn independently and uniformly from
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S,

Pr[(p(y1, · · · , yn) = 0] ≤ d

|S|

2.3 Mathematical background

In this section we review mathematical structures that are used in this thesis and we highlight

the mathematical problems that the security of the proposed protocols is based on. We start our

review with a black-box definition of what a bilinear pairing is without presenting the underlying

mathematical and algorithmic subtleties.

2.3.1 Bilinear pairings

Miller and Koblitz [99, 114] proposed the neat idea to use groups that come from algebraic

geometry such as elliptic curve groups since no sub-exponential algorithm is known for the

discrete logarithm problem in elliptic curve groups. The reason of the broad usefulness come

from the existence of efficient algorithms for mathematical operations under these groups and

from the fact, that security scales much nicer with the security parameters. Elliptic curves with

a richer structure can be used to instantiate a bilinear pairing. Two examples of pairings over

elliptic curves are the Weil and Tate [67] pairings. An elliptic curve is defined over a cubic

equation y2 = x3 + ax+ b.

Let G1,G2,GT be three cyclic groups of order p. A bilinear pairing from G1 ×G2 to GT is

a map e:

e(G1,G2)→ GT

satisfying the following properties:

1. bilinearity : e(ga1 , g
b
2) = e(g1, g2)ab, for g1, g2 ∈ G1 ×G2 and a, b ∈ Zp

2. Computability : there exists an efficient algorithm that computes e(g1, g2) ∀g1, g2 ∈ G1×G2

3. Non-degeneracy : e(g1, g2) generates GT . That is, if g1, g2 are generators of G1 and G2

respectively, then e(g1, g2) generates GT .
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We say that a bilinear pairing for cryptographic protocols is admissible if the aforementioned

three properties are satisfied. Bilinear pairings can be categorized in the following three types

with respect to supported functionalities and the underlying group structure:

• Type I: In type I pairings G1 = G2.

• Type II: In type II pairings G1 6= G2 and there is an efficient computable map φ : G2 →

G1.

• Type III: In type III pairings G1 6= G2 and there are not efficient computable maps

φ1 : G2 → G1 or φ2 : G1 → G2.

Supersingular curves are employed for Type I symmetric pairings and are less efficient than

curves for asymmetric pairings [68, 122]. MNT [117] or BN [14] non-supersingular curves are

used to realize Type II and Type III asymmetric bilinear pairings. Cryptographic pairings are

used for different type of protocols: three-party key exchange, identity based encryption, group

signatures, homomorphic signatures, aggregate signatures [27–30,91].

Before presenting the hardness assumption we define the notion of a negligible function f :

Definition 3. A function f : Z → R is negligible if for all c > 0 there exists λ0 > 0 such that

for all λ > λ0 : f(λ) ≤ 1
λc

2.3.2 Algorithmic complexity

An algorithm is a finite set of steps used to solve a computational problem that takes as input

variable length of data and outputs the result. The term deterministic algorithm refers to

algorithms that on equivalent inputs they output equivalent results following exactly the same

algorithmic path of steps. A probabilistic algorithm receives as input, a randomness r from a

source of randomness r
$←R as “random coins” and its output-algorithmic path is not equivalent

even on equivalent data inputs.

The running time of an algorithm reflects its efficiency. It is defined as the number of steps

the algorithm has to execute in order to terminate. As a step we consider the cardinality of

the set that includes the mathematical operation as multiplications, exponentiations, additions,
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subtractions and divisions used by the algorithm . Even if this is not extremely precise as it does

not entail the machine instructions that are used to implement the mathematical operations of

the data inputs, it is meaningful and provides a rigorous approach in order to compare protocols

and primitives. An algorithm is said to be efficient if its running time is polynomial on the size

of inputs.

2.3.3 Hardness assumptions

Definition 4. (Discrete Logarithm (DL) Problem) Let G be a cyclic group of prime order p

with generator g. The DL problem is defined as follows: given h ∈ G compute x ∈ Zp such that

gx = h. We say that x is the discrete logarithm of h to the base g : x = logg(h). The advantage

AdvDL
A of an algorithm A in solving DL is defined as:

AdvDL
A = Pr[x← A(h, g) : x = logg(h)]

Definition 5. (Discrete Logarithm (DL) Assumption) Let G(λ) be a DL problem generator

that outputs h on input of the security parameter λ. We say that DL assumption holds if the

advantage AdvDL
A of a probabilistic polynomially-time algorithm A is a negligible function ε(λ)

on input of the security parameter λ.

Definition 6. (Computational Diffie-Hellman(CDH) Problem) Let G be a cyclic group of prime

order p and g a generator of G. The CDH problem is: Given U = (g, gx, gy) for uniformly

random elements x, y ∈ Zp, compute gxy. The advantage AdvCDH
A of an algorithm A in solving

CDH is defined as:

AdvCDH
A = Pr[gxy ← A(U)]

Definition 7. (Computational Diffie-Hellman(CDH) Assumption) Let G(λ) be a CDH problem

generator that outputs U on input of the security parameter λ. We say that CDH assumption

holds if the advantage AdvCDH
A of a probabilistic polynomially-time algorithm A is a negligible

function ε(λ) on input of the security parameter λ.

Definition 8. (Decisional Diffie-Hellman(DDH) Problem) Let G be a cyclic group of prime
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order p and g a generator of G. The DDH problem is: Given U = (g, gx, gy, gz) for uniformly

random elements x, y, z ∈ Zp, decide whether z = xy. Define the probability distribution X

that samples elements from Z = (g, gx, gy, gxy) and the probability distribution Y that samples

elements from U = (g, gx, gy, gz). The advantage AdvDDH
A of an algorithm A in solving DDH

is defined as:

AdvDDH
A = |Pr[A(X) = 1]− Pr[A(Y ) = 1]|

Definition 9. (Decisional Diffie-Hellman(DDH) Assumption) Let G(λ) be a DDH problem

generator that outputs U on input of the security parameter λ. We say that DDH assumption

holds if the advantage AdvDDH
A of a probabilistic polynomially-time algorithm A is a negligible

function ε(λ) on input of the security parameter λ.

Definition 10. (Quadratic Residuosity (QR) Problem) Let N = pq be a product of two large

primes. Define the probability distribution X over elements drawn from Q̂RN , the group of

quadratic non residues in Z∗N and define the probability distribution Y with elements drawn from

QRN , the group of quadratic residues in Z∗N . The QR problem is to computationally distinguish

between probability distributions X and Y . The advantage AdvQR
A of an algorithm A in solving

QR is defined as:

AdvQR
A = |Pr[A(X) = 1]− Pr[A(Y ) = 1]|

Definition 11. (Quadratic Residuosity (QR) Assumption) Let G(λ) be a QR problem generator

that outputs X,Y on input of the security parameter λ. We say that QR assumption holds if

the advantage AdvQR
A of a probabilistic polynomially-time algorithm A is a negligible function

ε(λ) on input of the security parameter λ.

Definition 12. (Decisional Composite Residuosity (DCR) Problem) Let N = pq be a product

of two large primes. Define the probability distribution X over elements drawn from random

elements in the set of Z∗N2 and define the probability distribution Y with elements drawn from

〈xN mod N2, x ∈ Z∗N2〉. The DCR problem is to computationally distinguish between probability

distributions X and Y . The advantage AdvDCR
A of an algorithm A in solving DCR is defined
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as:

AdvDCR
A = |Pr[A(X) = 1]− Pr[A(Y ) = 1]|

Definition 13. (Decisional Composite Residuosity (DCR) Assumption) Let G(λ) be a DCR

problem generator that outputs X,Y on input of the security parameter λ. We say that DCR

assumption holds if the advantage AdvDCR
A of a probabilistic polynomially-time algorithm A is

a negligible function ε(λ) on input of the security parameter λ.

Definition 14. (Bilinear Computational Diffie-Hellman (BCDH) Problem) Let e(G1×G2)→

GT be a bilinear pairing, g1 a generator of G1 and g2 a generator of G2 and p the order of G1,G2

and GT . The BCDH problem is defined as follows:

Given U = (g1, g
x
1 , g

y
1 , g

z
1) ∈ G1 and V = (g2, g

x
2 , g

y
2) ∈ G2 for random x, y, z ∈ Zp compute

W = e(g1, g2)xyz. The advantage AdvBCDH
A of an algorithm A in solving BCDH is defined as:

AdvBCDH
A = Pr[W ← A(U, V )]

Definition 15. (Bilinear Computational Diffie-Hellman (BCDH) Assumption) Let G(λ) be a

BCDH problem generator that outputs U and V on input of the security parameter. We say

that BCDH assumption holds if the advantage AdvBCDH
A of a probabilistic polynomially-time

algorithm A is a negligible function ε(λ) on input of the security parameter λ.

2.4 Cryptographic primitives

In this section, we introduce the cryptographic primitives that are used throughout this disser-

tation.

2.4.1 Pseudorandom generators (PRG)

As Kolmogorov conceptually defined it, a k bit string is random if a polynomial time algorithm

cannot reproduce it in less that k steps. However the difficulty of finding real random bit

sequences for the keys has shifted the interest to the existence of pseudorandom generators

(PRG). Informally, a pseudorandom generator G is a deterministic polynomial time algorithm
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that takes as inputs a seed of length l and outputs a bit string of length L where L >> l, whose

output is computationally indistinguishable from a uniform distribution.

We now give the definition of computational indistinguishability for two distribution en-

sembles, which are modeled as sequences of random variables X = {Xn}n ∈ N, Y {Yn}n ∈

N. Before going into the formal definition we expand the notation Pr[A(Xn) = 1] =

∑
Pr[A(x) = 1] Pr[Xn = x] which is used for the definition.

Definition 16. For any polynomial time algorithm A two distribution ensembles X = {Xn}n ∈

N, Y = {Yn}n ∈ N are computationally indistinguishable if:

Pr[A(Xn) = 1]− Pr[A(Yn) = 1] = ε

where e is negligible function on n.

Definition 17. A pseudorandom generator G is a function G: {0, 1}l → {0, 1}L, whose outputs

are computational indistinguishable from uniform bit strings of the same length L.

2.4.2 Pseudorandom functions (PRF)

Let the family of all functions in the universe from a domain X to a range Y to be Func[X,Y ].

A truly random function f
$← Func[X,Y ] is chosen randomly from the set of Func. The set

of all these functions is |Y ||X| (gigantic number). It is true that for any random function f

with range size L chosen randomly from Func[X,Y ], Pr[f(x) = y] = 2−L. The randomness is

not parametrized neither by the size of X and Y nor by the size of the domain. We define a

pseudorandom function fk : X → Y as a function from the set of all functions from X to Y as

soon as a particular key k is fixed.

Definition 18. Let Func={F : X → Y } be a function family for all functions F that map

elements from the domain X to the range R. Then a PRF = {fk : X ′ → Y ′} ⊆ Func for

k
$←K, where K is the key space.

The security of a PRF is modeled with a game which is known as real or random security

game [75]. Intuitively, an adversary A is given access to an oracle that on input x from a domain
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X, flips a coin b
$←{0, 1} and if b = 0 then it outputs y = f(x), for f ∈ Func[X,Y ], otherwise

it outputs y = fk(x). A issues queries to the oracle polynomially many times on input of the

security parameter λ. Finally A outputs a guess b′ for the bit b.

The advantage of a probabilistic polynomial time algorithm A in the PRF game is

AdvPRFA = Pr[b
$←{0, 1}; b′ ← A(y) : b′ = b]

Definition 19. A PRF is computationally secure if all probabilistic polynomially time algorithms

A have advantage in the PRF game: 1
2 +ε(λ), for a negligible function ε on the security parameter

λ.

2.4.3 Pseudorandom permutations (PRP)

A permutation is a bijective function where the domain and the range are equal. Similarly with

the random functions, let Perm[X] to be the set of all permutations for the domain X. Then a

pseudorandom permutation (PRP ) is a randomly chosen permutation from the set Perm[X],

keyed under a secret key k. Similarly with a PRF, the security of a PRP is described with a

game in which a polynomially bounded adversary A tries to distinguish permutations between

the family of all permutations from the pseudorandom ones. An oracle receives an input value

x ∈ X from the adversary A. It flips a random coin b
$←{0, 1}. If b = 0 then it chooses a

random permutation Π from the set of all permutations Perm[X] and returns to A, y = Π(x),

otherwise if b = 1 the oracle chooses a random k
$←K from the keyspace K, sets a pseudorandom

permutation Πk and forwards to A, y = Πk(x). A submits queries to the oracle polynomially

many times on input of the security parameter λ.

The advantage of a probabilistic polynomial time algorithm A in the PRP game is

AdvPRPA = Pr[b
$←{0, 1}; b′ ← A(y) : b′ = b]

Definition 20. A PRP is computationally secure if all probabilistic polynomially time algorithms

A have advantage in the PRP game: 1
2 +ε(λ), for a negligible function ε on the security parameter
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λ.

2.4.4 Hash functions

A hash function H is a keyed function that maps elements of arbitrary length from a domain

X to a finite range Y of length l. The number l is the hash length of H. In practice the hash

function is not keyed (this implies that the adversary knows how to evaluate the function, or

it has access to an oracle that evaluates H on behalf of the adversary without publishing the

secret key) and its formal security definitions have been introduced in [126]. The three desired

properties of a cryptographically secure hash function are the followings:

First-preimage resistance A hash function H is first-preimage resistant if it is polynomial

time computable on input of an element x ∈ X but there is no polynomial time algorithm that

can correctly guess x by given only y = H(x). More formally we define the advantage of an

adversary AFPR that tries to break first-preimage resistance as:

AdvHkAFPR = Pr[k
$←K ; x

$←X ; y ← Hk(x) ; x′ ← A(k, y) : Hk(x
′) = y]

Definition 21. A hash function H : X → Y is first-preimage resistant if the advantage of an

adversary AdvHkAFPR is negligible.

Second-preimage resistance A hash function H is second-preimage resistant if an adversary

that learns x1 and y1 = H(x1) cannot find x2 6= x1 such that y = H(x1) = H(x2). The

advantage of an adversary A that seeks to break the second-preimage property is:

AdvHkASPR = Pr[k
$←K ; x

$←X ; y ← Hk(x) ; x′ ← A(k, x, y) : (x 6= x′) ∧ (H(x) = H(x′))]

Definition 22. A hash function H : X → Y is second-preimage resistant if the advantage of

an adversary AdvHkASPR is negligible.

Collision resistance The collision resistance property assures that any polynomially bounded

adversary cannot find any x1 6= x2 such that y = H(x1) = H(x2). More formally the advantage
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of an adversary ACR against the collision resistance property is defined as:

AdvHkACR = Pr[k
$←K ; (x, x′)← A(k) : (x 6= x′) ∧ (H(x) = H(x′))]

Definition 23. A hash function H : X → Y is collision resistant if the advantage of an

adversary AdvHkACR is negligible.

2.4.5 Digital signatures

A signature scheme Σ = (KeyGen,Sign,Ver), which is used to provide message integrity and

sender’s authenticity, consists of a message spaceM, a signature space S, and three algorithms:

• KeyGen(1λ) : It takes as input the security parameter 1λ and outputs the secret signature

key sk and the public verification key vk.

• Sign(sk,m) : It takes as input a message m ∈ M, the signature key sk and outputs the

signature σm.

• Verify(vk, σm) : It takes as input a candidate signature σm and the public verification key

vk and it outputs 1 if σm is a valid signature of m or ⊥ otherwise.

A signature scheme Σ is correct if for all λ ∈ N, all (sk, vk)← KeyGen(1λ), all m ∈M and

all signatures σm ← Sign(sk,m) then it is always true that Verify(vk, σm) = 1.

The existential unforgeability against adaptive chosen message attacks security property of

a signature scheme is defined through a game with the following phases:

• Setup : Adversary A receives the public verification key vk and the security parameter

1λ from the challenger which runs the KeyGen(1λ) algorithm of the signature scheme Σ.

The challenger also keeps secret the signature secret key sk.

• Learning : During the learning phase A submits signature queries m to the the challenger

which responds to A with the signature σm after running the Sign(sk,m) algorithm.

• Challenge : A outputs a pair m,σm.
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A is said to win the aforementioned game if Verify(vk, σm) = 1 and m has not been queried

during the Learning phase.

Definition 24. A signature scheme guarantees existential unforgeability against adaptive chosen

message attacks if the advantage AdvSign−Forge
A in the above game of a probabilistic polynomially-

time algorithm A is a negligible function ε(λ) on input of the security parameter λ.

For a detailed analysis of the various threat models for digital signature schemes the reader

can refer to [125].

2.4.6 Message Authentication Codes

A message authentication code (MAC) scheme is a cryptographic primitive that provides integrity

and sender’s authenticity, as digital signatures, but in a symmetric setting. It consists of a

message space M, a MAC space S, a secret key space K and the following algorithms:

• KeyGen(1λ) : It takes as input the security parameter 1λ and outputs the secret MAC

key mk.

• Mac(mk,m) : It takes as input a message m ∈ M, the MAC key mk ∈ K and outputs a

tag tm ∈ S.

• Verify(mk, tm) : It takes as input a candidate tag tm, the secret MAC key mk, and a

message m. It outputs 1 if tm = Mac(mk,m) or ⊥ otherwise.

A MAC scheme is correct if for all λ ∈ N, all (mk) ← KeyGen(1λ), all m ∈ M and all tags

tm ←Mac(mk,m) then it is always true that Verify(mk, tm) = 1.

The security of a MAC scheme is defined through the following game, which conceptually

guarantees that an adversary A, which has access to the security parameter λ and the tag

algorithm Mac(mk,m), to forge a valid tag t′m, such that Verify(mk, t′m) = 1 and m′ has not

been given as input to the Mac(mk,m) algorithm:

• Setup : Adversary A receives the security parameter 1λ from the challenger which runs

the KeyGen(1λ) algorithm of the MAC. The challenger also keeps secret the secret key

mk.
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• Learning : During the learning phase A submits tag queries m to the the challenger which

responds to A with the tag tm after running the Mac(mk,m) algorithm.

• Challenge : A outputs a pair m, tm.

A is said to win the aforementioned game if Verify(mk, tm) = 1 and m has not been queried

during the Learning phase.

Definition 25. A MAC scheme guarantees existential unforgeability against adaptive chosen

message attacks if the advantage AdvMAC−Forge
A in the above game of a probabilistic polynomially-

time algorithm A is a negligible function ε(λ) on input of the security parameter λ.

The above definition does not take into account replay attacks, which can be mitigated with

a time-stamp or a counter. Verification algorithms that are time dependent are vulnerable to

timing attacks as long as an adversary has access to a verification oracle which publishes the

results of the Verify(mk, tm) algorithm. As such, the Verify(mk, tm) algorithm implementation

should run in constant time.

2.5 Summary

In this Chapter we reviewed the basic building blocks that will make the manuscript intelligible.

We started with a brief history on cryptography. Next, we proceeded into a primer on the proof

technique by analyzing the core steps of a reductionist proof. We also investigated the different

types of proofs with respect to the assumptions and finally we presented the cryptographic

primitives that are employed in this dissertation.
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3.1 Introduction

Privacy Preserving Data Collection and Analysis protocols (PPDCA) exist in the literature

with a wide variety of security and functional definitions. In this chapter we survey current

related work on PPDCA protocols. We start our analysis with results pertaining to noise-

based techniques which we further classify into two categories: ad-hoc based solutions with no
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formal privacy definition, and differential privacy-based solutions with rigorous formalizations.

Afterwards, we investigate cryptographic solutions which we categorize them with an assessment

based on the threat model that each protocol adheres to. After presenting a taxonomy based

on the different characteristics of the cryptographic protocols, we highlight the shortcomings of

the current PPDCA protocols and we conclude the chapter in section 3.6.

3.2 Noise-based solutions

3.2.1 Ad-hoc

We start with noise-based techniques, in which data is protected with non-cryptographic solu-

tions. Basically n users obfuscate their data, that are forwarded to an untrusted third party

called Aggregator. The latter during an analysis phase learns a statistical function f over users’

data. Ad-hoc based noise solutions aim to address the problem with a lack of a precise privacy

definition. Each noise-based approach tunes the privacy definition with respect to the function-

ality f that has to be computed by the Aggregator. In general, the ad-hoc approach consists of

a special combination of sensitive data with noise during the collection phase in order to allow

an untrusted Aggregator A to perform certain computations on the data [19, 20, 139], without

compromising users’ privacy.

First Aggrawal et al. [7] proposed to add noise ri to each data value xi, thus the user returns

yi = xi + ri as its own obfuscated value. The Aggregator is interested in learning
∑n

i=1 xi.

The problem boils down to the estimation of the accumulative distribution X+ knowing the

accumulative distribution R+ of all ri and each individual distribution Yi of each perturbed

value yi = xi + ri. The proposed solution estimates X+ by applying the Bayes theorem on the

underlying distributions. Moreover the authors in [7] suggested to quantify privacy with respect

to the confidence c an adversary has that a data value belongs to a specific range:

Definition 26. Given a confidence interval c% an adversary has for the possible data range

of a single value xi to be in [a − b], then the scheme guarantees |a− b| privacy level with c%

confidence.
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However, as identified by Aggrawal et al. [5] this definition is not rigorous since it does

not take into account the underlying probability distributions of the original data values and

the perturbed data. The above observation led to a different privacy definition that includes

the underlying probability distributions through the differential entropy of a random variable.

Before examining the contributions as presented in [5] we are giving definitions of the entropy

that are used to quantify privacy by the authors.

Definition 27. The differential entropy of a random variable X with domain Ω and PDF = f(X)

is defined as:

H(X) = −
∫

Ω
f(x) log2(f(x)) dx

.

Definition 28. The conditional differential entropy of a random variable X, conditioned on a

random variable Y, with domain Ω and joint PDF = f(X,Y ), conditional PDF = f(X|Y ) is

defined as:

H(X|Y ) = −
∫

Ω
f(x, y) log2(f(x|y)) dxdy

.

The authors first proposed a privacy metric inherent to the random variable X : 2H(X)

and they also inserted the knowledge of the aggregate value in order to quantify privacy with

all the known information by an adversary. The proposed privacy metric 2H(X|Y ) entails the

conditional entropy of a random variable X by knowing another random variable Y = X + R.

They also came up with another approach to reconstruct the cumulative distribution X+ from

Y+ within an expectation maximization framework. The heuristic is that after applying the

expectation maximization algorithm on the perturbed data distribution the result will converge

to the original data distribution.

The additive noise mechanism for individual privacy has been shown to leak the original

data. More precisely in [95] the authors analyzed the additive noise mechanism by modeling

it with random matrices. Afterwards they applied signal filtering techniques and they manage

to separate the perturbed data from the noisy elements, by applying random matrices theory
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on the perturbed data. A transformation based on random projections for evaluating euclidean

distance and inner product computations is presented in [108]. Namely the authors by exploring

the following lemma they manage to randomize both row-wise and column-wise matrices with a

random projection mechanism π in order to maintain data utility for inner product computations:

Lemma 2. (Johnson-Lindenstrauss [90]) Given 0 < e < 1, let Q ⊆ Rd be a set of n points.

Then, there exists a map π : Rd → Rk, where k > 8ln(n)/e2, such that ∀x, y ∈ Q:

(1− e)‖x− y‖2 ≤
∥∥π(x)− π(y)

∥∥2 ≤ (1 + e)‖x− y‖2

Intuitively the lemma demonstrates that by projecting a vector from a d-dimensional space

to a lower random k-dimensional space the pairwise distance of two vectors is preserved within

a small factor.

Oliveira and Zäıane [120] examined geometrical transformation on vectors to preserve the

cosine similarity of two vectors for clustering data. The underlay observation is that by randomly

scaling two vectors v1 and v2 or by rotating them with a common angle φ during the collection

phase the cosine similarity is preserved for the analysis phase since it quantifies the angle of the

two original vectors. A hybrid approach that combines rotation, scaling and vector translation

is also presented. Privacy is measured as the variance of the difference between the original data

X and the transformed data Y : VAR(X − Y ).

The ad-hoc approach of noise perturbation techniques lacks a generic privacy definition.

Namely, all the aforementioned solutions introduce their own privacy quantification techniques

without describing a possible adversarial behavior. As such the noise-based solutions previously

described cannot be compared due to the absence of a common formal privacy model. This lack

laid the ground for differential privacy based solutions with generic formal privacy definitions.

3.2.2 Differential privacy

The idea of differential privacy has its roots in the seminal work of Tore Dalenius [51]. In

essence Dalenius paved the way to the cryptographic security definition of semantic security [78].

Informally he underpinned the following: nothing can be revealed for individual data inputs xi
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to an adversary which has access to a function f , that cannot be learnt without access to f .

This observation has led to the ad omnia definition of differential privacy. Within the

differential privacy framework, users hold personal sensitive data and a Curator stores the data.

The goal of the Curator, which is trusted [60, 84, 140], is to output the result of a statistical

function f , which takes as input users’ data, obfuscated with some noise, such that an adversary

cannot learn individual data inputs. The aforementioned security model has been augmented

with a stronger security model in which there is a semi-honest Curator, which is not trusted

[4,15,42,71,124,132] and users distributively introduce noise to their data before sending them

to the Curator. Differential privacy solutions are also categorized with respect to the interaction

model: when the untrusted party is allowed to interact with the Curator, which holds the

data, in order the latter to issue statistical noisy information for the entire population of users,

then solutions which follow this model are named as interactive [22, 60, 62]. In the case of

non-interaction between the Curator and the untrusted party, the Curator publishes the noisy

statistical information once and goes off-line [43, 44, 64]. Before delving into solutions that

adhere to differential privacy, we give the background needed for the context that is presented

afterwards.

3.2.2.1 Differential Privacy Background

Definition 29. A statistical database SD is a collection of data points xi modeled as a multi-set

of rows Rm = ({x1,j}mj=1, {x2,j}mj=1{x3,j}mj=1 · · · , {xn,j}mj=1) each of size m.

Informally, a statistical database is a data structure in which the values are perceived to

represent a sample over a population. The database is held by the Curator which is publishing

useful statistics for the underlying population as a whole.

Definition 30. Two statistical databases SD, SD′ are considered as neighboring if

|(SD − SD′) ∪ (SD′ − SD)| = 1

Intuitively two statistical databases are neighboring if one database SD can be obtained by
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SD′, by adding or removing one row.

A Curator is replying to query requests. A query Q is a function f that takes as input all

the rows of a database SD and outputs a single value. The query might be the average of all

values of the database based on a predicate: Average age of patients with HIV, or the sum value

of all users’ inputs: Total consumption of house tenants in a specific geographical area.

Definition 31. The L1 sensitivity of f is:

∆(f) = max
∥∥f(SD)− f(SD′)

∥∥

for all neighboring SD, SD’.

The sensitivity of a function defines a lower bound on how much noise should be added to

individual data points such that revealing the value of f does not compromise the confidentiality

of individual data points. From another point of view it explains how much an individual data

input can change the result of f .

Definition 32. Given a random variable X, we say that X follows the Laplace distribution if

its probability density function L(x, µ, b) = 1
2be
− |x−µ|

b , where µ, b are the location and the scale

parameters, respectively.

After giving the definitions that will help the reader clearly interpret differential privacy

solutions we categorize existing solutions with respect to the amount of trust that should be

handled by the Curator.

3.2.2.2 Trusted Curator

In the trusted Curator model the Curator randomizes the database with a randomized algorithm

M that injects some noise to each query response. An Aggregator issues queries to the entire

database to learn some statistical function f over SD. The goal of the Curator is to generate

F = M(f(SD)) ∈ T such that the knowledge of F does not violate individual privacy and

simultaneously the noise added by M is as small as possible. Hence, an Aggregator which

acts as an adversary cannot infer from F the absence or the presence of an individual row in
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the database. We now proceed into the formal definitions of differential privacy as presented

in [56,60]:

Definition 33. A randomized algorithm M : SD → T guarantees ε-differential privacy if for

any neighboring statistical databases SD and SD’:

Pr[M(SD) ∈ T] 6 eε Pr[M(SD′) ∈ T]

The parameter of ε is publicly defined. Differential privacy mechanism in the trusted Curator

model, guarantees that an adversary by learning the result of a statistical function F ≈ f over a

randomized databaseM(SD) does not compromise the individual privacy of the participants in

the underlying sample population that constitutes SD. In another context differential privacy

assures that by injecting appropriate noise, the result of F (M(SD)) is not affected with the

addition or deletion of a row.

The privacy mechanisms that first addressed differential privacy, relied on the Laplace noise

[58,60] technique. Briefly, the Curator which holds individual data values {xi}ni=1 in a database

SD, computes f(SD) and perturbs the result of f with noise sampled from Laplace distribution.

The scale of the noise is calibrated to the sensitivity of f . The following theorem formalizes the

solution:

Theorem 1. Let Q be a query and f = Q(SD) the response results. A randomized algorithmM

preserves ε-differential privacy if it adds independent noise sampled from a zero-mean Laplace

distribution with scale parameter b = ∆(Q)
ε at each dimension i of the response transcript F[i] =

f [i] + L(∆(Q)
ε ).

The proof can be found in [60]. The noise added from the Laplace distribution introduces an

error at the computation of f which is measured by the standard deviation σ in the difference

of the transcripts: errorlap = σ|f − F| = σ|L(∆(Q)
ε )| =

√
2∆(Q)

ε . When the sensitivity of the

query ∆(Q) is large or the ε parameter is small, this yields a more flatten curve of L(∆(Q)
ε ) with

increased noise. The noise mechanism is also independent of the distribution of the values of the

database. Solutions in which the Curator is not trusted to perform the computation of f over
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plaintext data belong to the semi-honest Curator model and are described in what follows.

3.2.2.3 Semi-honest Curator

Ács et al. [4] presented a solution for distributive noise computation without any trusted Curator.

In this model users independently add noise to their data before transmitting them to the

Curator. However, simply adding noise from the Laplace distribution adds considerable noise

to the final aggregation. In [4] the noise is chosen following the Gamma distribution based on

the observation that a Laplace random variable can be simulated as a difference of two other

independent identical random variables drawn from a Gamma distribution. Predominantly, the

staple of the solution is the divisibility property of the Gamma and the Laplace distributions

[130]:

Lemma 3. Let X be a random variable that follows the zero-mean Laplace distribution with prob-

ability density function at x = L(x, µ, b) = 1
2be
− |x|

b . Define two random variables G1 and G2 that

follow the Gamma distribution with probability density function at x = G(n, λ) =
1
λ

1
n

Γ( 1
n

)
x

1
n
−1e−

x
λ .

Then X can be simulated as X =
∑n

i=1 (G1 ∼ G(n, λ)−G2 ∼ G(n, λ)), for a scale parameter λ

and shape n ≥ 1, where
∑n

i=1 (G1 ∼ G(n, λ)) = G( 1∑n
i=1

1
n

, λ).

Rastogi and Nath [124] presented a different technique with distributive noise in case of a

semi-honest Curator. Users first transform its n-dimensional data to k << n dimensions with the

Discrete Fourier Transformation (DFT). Then they apply noise in the transformed data, that

is sampled from 4 Gaussian random variables to simulate a Laplace random variable according

to following proposition:

Proposition 1. Let Z be a random variable drawn from a Laplace distribution L(0, b) and Yi

for i ∈ {1, 2, 3, 4} be four Gaussian random variables. Then Z = Y 2
1 +Y 2

2 −Y 2
3 −Y 2

4 is a random

variable following a L(λ2/2) Laplace distribution.

As such, the original answer query is compressed and accurately approximated with the k

coefficients of the DFT. This results in a small error in the final response without violating

differential privacy.
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Goryczka et al. [79] observed the inefficiency of the aforementioned solutions due to the

multiple random variables that have to be generated in order to simulate a variable from a

Laplace distribution. Namely, two Gamma random variables are needed in [4] and four Gaussian

random variables in [124]. Thus, they proposed a solution for distributive noise in which each

user has to generate a random variable from a Laplace distribution combined with a common

Beta random variable. The common random variable has to be distributed to all nodes, thus

affecting the robustness of the scheme.

The randomization mechanism with noise sampled from a Laplace distribution proportionally

calibrated to the query sensitivity is not always a solution [131]. In scenarios where the output

of Q is non-numerical then Laplace noise is useless. In this context, McSherry and Talwar

[113] proposed a solution for differential privacy in auctions. Differently than with the Laplace

mechanism, in which the sensitivity of a function dictates the minimum amount of induced noise,

in their model there is a utility function u(SD, y) with respect to the database SD and the output

y of the query y. The solution proposes to use noise sampled from exponential distribution,

proportional to exp((u(SD, y) ε
∆(u)), where the sensitivity ∆(u) is measured with respect to the

utility function of two neighboring statistical databases SD, SD′. Tailored solutions for specific

scenarios such as streaming data have been also been studied under the differential privacy

model in the literature [25,34,40,41,57,61,65,96,97,115]. In [133] the authors came up with the

neat idea to combine ad-hoc based privacy definitions with differential privacy, after discerning

a gap in the latter and the leaked knowledge an adversary obtains after learning statistics over

a database, which is not entailed in differential privacy definitions.

Solutions that preserve differential privacy introduce an error in the result of f . That error

in specific applications in which precision in the computation of f is of crucial importance, may

be unacceptable. Consider the use case of a billing protocol in which users are reluctant to reveal

their real power consumption. On the other hand users will never engage in a protocol that will

allow an energy supplier to apply a charging policy based on a noisy aggregate result. As such,

noise-based techniques are not always suitable for specific PPDCA protocols. In the remainder

of this Chapter we present customized cryptographic solutions for PPDCA protocols in which
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each user encrypts its individual data value, such that an aggregate function over the plaintext

data can be computed from the ciphertexts.

3.3 Cryptographic protocols

In order to tackle accurate and precise data analysis with individual privacy, different solu-

tions that blend cryptographic primitives have been proposed in the literature. Cryptographic

PPDCA protocols (cf. figure 3.1) involve n users {Ui}ni=1 which hold personal sensitive data

xi. On the other hand an Aggregator A seeks to infer in cleartext a function f , which takes as

input n values from the plaintext space and outputs the result. Users are reluctant to reveal

their individual data and as such they encrypt it with an encryption algorithm E. A holds a

secret key skA that allows to reveal nothing but F . F takes as input the encrypted data and the

secret key skA. In a collection phase users send their data E(xi) to A. After collecting all data

{E(xi)}ni=1, A proceeds in the data analysis phase, in which it learns F ({E(xi)}ni=1) = f .

{U}ni=1

F (skA,E({Di}ni=1))

E(ski, {Di}ni=1)
A

Figure 3.1: Overview of cryptographic techniques for PPDCA protocols.

The goal in the end of the protocol is two-fold: a) Users’ privacy is not compromised–i.e:

An adversary cannot learn anything by observing messages that are exchanged in between users

and the Aggregator A and b) an untrusted Aggregator A performs oblivious computations over

{E(xi)}ni=1 such that it learns F ({E(xi)}ni=1) = f and nothing else. In the majority of the current

cryptographic solutions the privacy requirements are expressed within a game-based definition.

The adversary A is a honest-but-curious party which submits two data sets to a challenger such

that when they are given to f as inputs the result is equivalent. The challenger chooses uniformly

and at random one of the data set, it encrypts it and it gives the result to A. Following the

indistinguishability based security definition of encryption, A wins the Aggregator obliviousness
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game if it correctly guesses with non-negligible probability which data set has been encrypted

by the challenger.

First we target protocols that guarantee individual privacy in the presence of a trusted

Aggregator. We then present solutions with a honest-but-curious Aggregator. The honest-but-

curious Aggregator model is further classified in solutions with a fully trusted key dealer, which

is responsible to distribute keys to users and to the Aggregator, and in techniques which avoid

the use of a fully trusted key dealer.

3.3.1 Trusted Aggregator

Önen et al. [121] transformed a symmetric encryption algorithm to an additively homomorphic

one in order to allow a tree based aggregation of sensor values. Under this model sensor nodes

correspond to the nodes of a tree T and the sink node is the root of T . The nodes share keys

with the parent nodes and the sink. For data value x, secret key k and node i, data is encrypted

as Encrypt(x, k) = x+ fk(ctr+ i) for a semantically secure pseudorandom permutation fk keyed

by k.

Castelluccia et al. [35] designed a scheme for privacy preserving aggregation for wireless

devices. In this scenario a sink-node receives data from all the wireless devices and it computes

a function over the encrypted data. Their solution entails a transformation of a symmetric

key algorithm to a homomorphic function. Briefly, all nodes and the sink share a secret key

k and encrypt their data as follows: ci = Enc(xi, k) = xi + k mod M . All wireless sensor

nodes are organized in a tree based construction and the root of the tree is a sink node which

receives encrypted data from the child nodes. Upon receiving all nodes’ ciphertexts the sink

node decrypts the sum Dec =
∑n

i=1 ci −
∑n

i=1 k =
∑n

i=1 xi mod M .

The trusted Aggregator threat model tackles only for privacy against external adversaries.

However in a real-world scenario the Aggregator itself is untrusted, since it is curious to learn

individual values. In what follows we analyze current PPDCA protocols, which assume a

Honest-but-curious Aggregator.
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3.3.2 Honest-but-curious Aggregator

Towards a stronger security model, various protocols strengthen the threat model with a honest-

but-curious Aggregator which tries to violate individuals’ privacy. Solutions that tackle pri-

vacy in the presence of honest-but-curious Aggregators are further classified with respect to the

amount of trust that is put to a key dealer, which is responsible to distribute keys.

3.3.2.1 Trusted key dealer

In [132] the authors proposed a protocol for privacy in aggregation of data by an untrusted

Aggregator. They were the first to put forth formal security definition of Aggregator oblivi-

ousness (AO). According to the Aggregator obliviousness (AO) definition, n users contribute

with encrypted data and the only allowed leakage in the protocol is the evaluation of a function

f =
∑n

i=1 xi on the ciphertexts such that: f(x1, . . . , xn) = F (c1, . . . , cn) where xi corresponds

to plaintext values and ci belongs to the ciphertext space. Each user encrypts x̂i = xi + ri

as ci,t = gx̂i,tH(t)ski ∈ G for a collision resistant hash function H : Z → G, time interval t,

secret key ski ∈ Zp and a random generator g for the cyclic group G of prime order p for which

Decisional Diffie-Hellman is hard. The noise ri is chosen from a geometrical distribution in order

to achieve differential privacy on the final result. Secret keys are chosen by a fully trusted key

dealer which also transmits to the untrusted Aggregator sk0 = −∑n
i=1 ski. Aggregator computes

the discrete logarithm:
∑
x̂i = log

∏
ci,t·H(t)sk0

g and learns the result with the aid of a fully trusted

key dealer.

In a similar direction Bilogrevic et al. [21] aggregate data in order to compute in a privacy

preserving manner second order statistics: an Aggregator monetizes data with respect to the

distance from real random data. Due to the adaptation of the same aggregation mechanism

as in [132] this solution lends inefficient data analysis due to computation of discrete logarithm

for aggregation and weak security model since there is a trusted key deal in the protocol. The

distance metric that is used in order to rank the data is the Jensen-Shannon (JS) inequality [105].

Similarly as in [132] users receive secret keys by a trusted dealer and they further randomize

data with Geometrical distribution in order to assure differential privacy. Users choose noise
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ri from a geometrical distribution as in [132] and encrypt both xi + ri and x2
i + ri in order to

compute the mean and the variance that is needed for the JS inequality distance metric.

Benhamouda et al. [18] build upon the DDH based scheme of [132], in order to provide a

tighter reductionist proof. Moreover, their scheme takes advantage of the small ciphertext size

that DDH-based schemes enjoy. The core idea is to base their security on smooth projective hash

functions (SPHF) with key-homomorphism. SPHF define two hash functions. The one takes as

input a secret key hk and a value x form a domain X , and outputs the hash h1. The second

takes as input a public key hp, a value x ∈ L and a witness w that x ∈ L and outputs the hash

h2. The construction assures h1(hk, x) = h2(hp, x, w). Similarly as in [132] users encrypt the

time series data xi,t in a ciphertext ci,t = gxi,t · Hash(ski, H(t)), where Hash is a SPHF and H

is a hash function. The Aggregator decrypts by using its secret key skA =
∑n

i=1 mathsfsk :

∑
xi,t = log

∏
ci,t·Hash(skA,H(t))

g .

Joye and Libert [92] tackled the inefficient aggregate approach of [132] due to the computation

of a logarithm, with an encryption scheme which is based on Paillier [123] cryptosystem. The

neat idea that allows the Aggregator to decrypt and to learn the sum is the following: Discrete

logarithms in the subgroup of {(1+N)x mod N2}, with x ∈ ZN , for an RSA composite number N

can be computed fast by expanding the term (1+N)x mod N2 as (1+xN) thanks to the binomial

theorem. During the protocol execution a trusted dealer distributes keys ski to each user and a

decryption key sk0 = −∑n
i=1 ski to the untrusted Aggregator. For each time interval t user i

encrypts data value xi,t as ci,t = (1 + xi,tN)H(t)ski mod N2. Finally the untrusted Aggregator

decrypts and learns the sum
∑
xi with the use of the secret key sk0, without computing any

discrete log. Despite the significant improvements with respect to computation overhead of the

Aggregator, the protocol does not scale well for dynamic leaves and joins and also there is a

fully trusted key dealer.

T.-H. Hubert Chan et al. [42] targeted a protocol to address failures of users due to com-

munication errors or software/hardware failures (fault tolerance). The key building block in

their solution is a binary interval tree based model where each node computes the aggregation

of the descendant nodes. The leaf nodes include the data values of the users. The root node
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Aggregator

[1] [2] [3] [4] [5] [6] [7] [8]

[1,2] [3,4] [5,6] [7,8]

[1,4] [5,8]

[1,8]

Figure 3.2: The tree based construction by T.-H. Hubert Chan et al. [42]. In case of a failure
of node 3, Aggregator estimates the sum by summing the black nodes which are the disjoint set
that covers the remaining users.

is the untrusted Aggregator. As in [132] users encrypt their plaintext values with the additive

homomorphic scheme in [132]—after obfuscating it with random noise from a geometric distri-

bution Geom(a). Thus, due to the tree based construction each leaf belongs to different groups of

aggregations. Whenever user k due to faults does not participate in the protocol the Aggregator

can still evaluate the sum from the redundant aggregation information imposed at each level of

the tree by adjacent disjoint nodes, as can be depicted in figure 3.2. However there is an error

to the final result proportional to the size of failure nodes.

The authors in [104] addressed the increased error imposed by the scheme in [42] with another

approach. They invented a novel grouping technique of users known as interleaving grouping

(cf. Figure 3.3). In a basic scheme (cf. figure 3.3) a key dealer chooses n groups of secret key

pools S1, . . . ,Sn, whereby each pool contains c keys. Then, it chooses randomly a subset S ′ of q

secret keys and assigns them to the Aggregator. The remaining keys S ′′i are further divided in n

groups and each user is assigned with Si = (
⋃n
i=1 S ′′i )

⋃S ′ keys. For encryption at time interval

t each user first applies random Geometric noise ri to each data value xi and derives a secret key

ki =
∑

sj∈Si H(fsj (t))−
∑

s′′j ∈S′′i
H(fs′′j (t)) mod M , where M = 2dlogn∆

2 e, xi ∈ {0, . . . Delta}, f is

a pseudorandom function indexed by sj , f : {0, 1}λ → {0, 1}λ and H maps λ-bit elements to a

random value in [0, . . . ,M ]. User i then sends the encrypted value ci = (xi+ri+ki) mod M to the
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A
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G1
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Figure 3.3: Three interleaving groups G1,G2 and G3. Node B receives keys from groups G1,G2

and node E from groups G2,G3. Aggregator keeps group keys for the groups S ′′1 ,S ′′2 and S ′′3 .
Finally it can only get the sum of all nodes.

Aggregator. For decryption, the Aggregator computes the decryption key k0 =
∑

s′j∈S′i
H(fs′j (t))

for each group and reveals the sum
∑n

i=1 xi + ri =
∑n

i=1 (ci)− k0 mod M . Dynamic leaves and

joins are supported since only a small fraction of users is forced to receive new keys.

Jawurek [87] enhanced existing solutions by restricting the Aggregator to learn f over old

data values. This security property is referred as freshness. The protocol assures differential

privacy and Aggregator obliviousness with the help of a fully trusted key authority K which

sets up the parameters for Pailier public key cryptosystem [123] and remains on-line. Namely,

each user chooses randomness ri to encrypt each data value xi as ci = (1 +N)xirNi mod N2 for

sufficient large prime numbers p and q such as N = pq. The untrusted Aggregator multiplies

all the ciphertexts c =
∏n
i=1 ci transmits it to the key authority which decrypts the result

that reveals the sum of the underlying plaintexts. To guarantee freshness, users sign their

ciphertext, the encrypted randomness and the time that is coupled with each data value xi and

they forward it to the Aggregator. The Aggregator sends the signatures and the ciphertexts to

the key authority. The key authority first checks if the time interval of each query is the latest

one and further validates the signatures. If the two steps are successful then it decrypts the

computation and sends it to the untrusted Aggregator.

Rastogi et al. [124] proposed to blend homomorphic encryption with differential privacy.

Users receive by a trusted key dealer secret keys that follow a linear relationship: r =
∑n

i=1 ri.
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During encryption each user encrypts the data value xi with randomness ri by encrypting it

with Pailler cryptosystem: ci = Enc(xi + ri). Upon receiving all ciphertexts ci the Aggregator

sends c =
∏n
i=1 ci to each user for decryption. Due the distributed decryption process the

Aggregator learns
∑n

i=1 xi as the exact sum. This bidirectional communication channel is not

always possible and also increases the communication cost of the protocol.

Following the distributive noise addition mechanism, along with encryption, Äcs et al. [4]

proposed to simulate Laplace noise with Gamma variables ri (lemma 3). Each user chooses

independent noise and encrypts the noise along with the data value: x̂i = xi+ri. The encryption

algorithm that is employed is a additive homomorphic scheme [36] where each data is encrypted

as: Enc(x) = x + ki mod M , for x ∈ [0,M ] and ki ∈ [0,M ]. However in order to decrypt

the noisy sum the Aggregator has to know
∑n

i=1 ki, which imposes a trusted key dealer which

distributes secret keys to each user.

Chen et al. [45] presented a scheme based on a XOR based encryption scheme. Each user

employs a PRG in order to compute a key ri that is used to a XOR based stream cipher. The

randomness r is sent to one trusted party which does not collude with the Aggregator and

the ciphertext ci = xi ⊕ ri is forwarded to the Aggregator. Finally, the Aggregator receives

∑n
i=1 ri and computes f =

∑n
i=1 xi =

∑n
i=1 ci⊕

∑n
i=1 ri. The security of the scheme is based on

the non-collusion requirement between the server and the Aggregator and to the security of the

PRG. However an eavesdropper which acts as an external adversary can listen to the established

channels between users, the trusted third party and the Aggregator, and finally she can learn

individual inputs.

Günther et al. [82] designed a scheme for privacy preserving aggregations for participatory

sensing. In their model (see figure 3.4) a set of mobile sensors are first registered in a registration

authority, which plays the role of a fully trusted key dealer. Later on, users encrypt their data

values and send them to the service provider. Data is encrypted with an additive homomorphic

identity based encryption scheme [28]. An Aggregator submits a query for some users in order

to learn their sum and receives the corresponding ciphertexts. The solution guarantees report

unlinkability, which assures that an adversary cannot trace ciphertexts submitted by users, query
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MN MN MN MN MN

RA

SP

RegisterMN
RegisterQ

SubscribeQuery

ReportData

A

Figure 3.4: Mobile nodes (MN) first register to the registration authority (RA) in order to
obtain their secret key in the RegisterMN phase. Aggregator (A) also registers to RA to obtain
a valid querier registration id during the RegisterQ phase. Users then report their readings
encrypted with their secret key in the ReportData procedure. Finally whenever the querier
A wants to learn the aggregate result for specific ids, it issues a query and it receives back a
matching secret tag that allows him to decrypt the result.

privacy which hides the identifiers of users, node privacy which preserves the privacy of the data

value submitted by each user and recipient anonymity which hides the receiver of a ciphtertext.

However, in the adversarial model the Registration Authority acts as a fully trusted key dealer,

which should be online during the protocol execution, and at the decryption phase there is a

need to compute discrete logarithms, which restricts the plaintext space range to small values

(32-bit numbers).

In contrast with the aforementioned solutions, wherein a fully trusted key dealer distributes

keys to the users and to the untrusted Aggregator, such that the Aggregator learns a function f

over the plaintext data values, in what follows we analyze solutions in a stronger threat model,

whereby the protocol guarantees individual privacy without the assumption of a fully trusted

key dealer.

3.3.2.2 No Key Dealer

Erkin et al. [63] modified Paillier additively homomorphic encryption scheme [123] in a nifty

way in order to avoid distribution of keys by a trusted key dealer. Namely the encryption al-

gorithm proceeds as follows: Enc(x) = gxrR(i), where the randomness R(i) of each user i is
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the amount of randomness sent to all users subtracted by the randomness received by each

other user in the network; combined with the public parameter N of Pailler cryptosystem:

R(i) = N +
∑n

i=1,j 6=i r(i→j)−
∑n

i=1,j 6=i r(j→i). By this approach when the Aggregator aggregates

all the ciphertexts, the randomness is annihilated:
∏n
i=1 ci = g

∑n
i=1 xir

∑n
i=1 R(i) = g

∑n
i=1 xirN =

E(
∑n

i=1 xi). Finally, Aggregator decrypts and learns the sum without any further communica-

tion with the users with the decryption key of Paillier cryptosystem. However the assumption

for a static population of users in which each user has to communicate with all other users in

the system increases the communication costs.

Barthe et al. [15] proposed a solution which is not based on a trusted key dealer as well.

In their model the Aggregator is not a single participant but a coalition of servers. Between

the users and the Aggregators there is a service provider. Each user i establishes an ephemeral

Diffie-Hellman key ki,j ∈ G with each Aggregator j, where G is Diffie-Hellman group of prime

order q. At each time interval t ∈ T the service provider receives from the users blinded readings

ri,t = xi,t +
∑m

j=1H(t, ki,j) for a hash function H : (T ,G) → ZN , for N << q. The service

provider forwards to each Aggregator j an index w containing the users that must be included for

aggregation and subsequently Aggregator j adds random noise n(j) from a geometric distribution

Geom(a) to the ephemeral key H(t, ki,j). Aggregators finally transmit the noisy ephemeral keys

s = n(j) +H(t, mathsfki,j) to the service provider which learns the noisy sum by subtracting

from the sum of all blinded readings
∑
ri,t the noise s. The proposed solution induces high

communication costs due to the ephemeral keys that user of the system has to be establish with

each Aggregator.

Danezis et al. [52] proposed a protocol for non-linear computation over encrypted data. Their

solution is based on a secret sharing mechanism between the users and a set of authorities that

aim the Aggregator to learn a function over the encrypted data. Users share secret keys with all

the authorities. Their solution permits sum, multiplications and boolean function evaluations

(NOT, AND, NAND, OR, NOR, XOR). The payoff of this approach is an increased overhead with respect

to the communication cost of each user since it has to share secrets with all the authorities.
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3.3.3 Further related work

PPDCA protocols can be viewed as an instance of Multi Party Computations (MPC). MPC has

its foundation in the typical two party computation model, where two mutually distrustful parties

without revealing their inputs to each other want to perform a joint computation. Extended

for the multi-party environment where multiple clients contribute their secret inputs, theoretical

results show that any efficiently computed functionality f can be computed in a MPC setting. In

the current MPC scenarios the network is not homogeneous. That is, the parties that participate

in the protocol do not share the same computational resources, neither it is assumed for all parties

to be able to collude. Moreover there is a set of parties which do not contribute with inputs

to the computation of the function and are the only interested in learning the final result. The

theoretical foundations of heterogeneous MPC have been presented by Seny Kamara et al. [93].

However, the increased communication cost hinders their real world deployment. Moreover, in

case of an eavesdropper MPC non-heterogenous protocols require the data producers to encrypt

the data values with the public key of the Aggregator. That induces extra computational costs,

since the Aggregator has to decrypt each ciphertext received by each user.

The functional encryption [31] paradigm addresses the same goals as the PPDCA protocols:

Given a function f and an encryption of x the key holder of sk should learn the output of f(x)

and nothing else. However, when it comes to a multi-input function [76], then the current

constructions fall short of being practical due to their realization with impractical primitives as

indistinguishability obfuscation, which in turn is based on inefficient multi-linear maps.

3.4 Taxonomy

In order to achieve Aggregator obliviousness existing solutions use a fully trusted key dealer,

which distributes keys to the users and to the Aggregator, following a honest-but-curious Aggre-

gator model, whereby the Aggregator is trusted to follow the protocol’s rules. The shortcoming

of the fully trusted key dealer in terms of security is that the key dealer could at any time

decrypt individual encrypted values. Moreover there is an extra computational and communica-
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tion overhead in case users dynamically enter or leave the protocol due to the need of a new key

distribution phase. Furthermore, in a ubiquitous environment in which faults are very likely to

occur, protocols with a fully trusted key dealer fall short to provide fault tolerance. Techniques

that avoid the existence of a fully trusted key dealer often require extra rounds of communication

either between the users and the Aggregator, such that the later can partially decrypt the result

throughout secret-sharing mechanism, or between each user in the protocol in order to agree

on a secret encryption key. Solutions with no key dealer, impose an increased communication

cost and as such, they are not suitable for dynamicity and fault tolerance. Moreover in current

techniques, there is a restriction on the range of the possible values a user can encrypt in order

the Aggregator to efficiently aggregate the data and learn f . We proceed in a detailed taxonomy

(cf. table 3.1) according to various properties for the aforementioned cryptographic protocols:

• Collusion resistance (CR) assures the privacy of individual data inputs in case of collusions

between malicious user and honest-but-curious Aggregator.

• Communication Model can be User-User (UU) which dictates users to share information

between each other before sending their data values to the Aggregator, unidirectional (UD)

in which each user does not receive any information from the Aggregator in order the latter

to learn the function f , or bi-directional (UB) whereby the Aggregator after receiving all

ciphertexts is engaged with an extra round of communication with the users.

• Dynamicity refers to the property of a dynamic leave or join of a user without any key

re-distribution phase.

• Fault tolerance corresponds to a PPDCA protocol in which the Aggregator is able to an-

alyze data in presence of users’ failures due to communication errors or hardware/software

failures.

• Freshness is guaranteed when the Aggregator cannot correlate fresh and non-fresh data in

order to learn f . Freshness is correlated with the notion of time for time-series data.

• Aggregator Complexity refers to the computational cost of the Aggregator for the compu-

tation of F .
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3.5 Current deficiencies

After the taxonomy made in table 3.1 we are able to highlight the deficiencies of current work

that motivates the remainder this dissertation.

• In the analysis that we made we observed that the aggregate function f learnt by the

Aggregator is restricted to basic mathematical operations or binary computations over the

input data values. Thus, we turn our attention to functionalities beyond these in Chapters

4 and 5.

• We identified a lack in existing protocols to support dynamicity, collusion resistance, fault

tolerance and aggregation efficiency, in an unidirectional communication model at the same

time. This observation led us to design and analyze a protocol suitable for a dynamic pop-

ulation users, that supports collusions, is resilient to users’ failures, and provides aggregate

efficiency in an unidirectional communication model. The protocol is provable secure in

the random oracle model and is presented in Chapter 6.

• Moreover, a general observation with respect to the threat model is the fact that all

existing solutions but the protocol in [87] assume a honest-but-curious Aggregator, which

does not deviate from the protocol rules. Even though authors in [87] introduced the novel

property of freshness that does not allow a malicious Aggregator to aggregate old data

values, the solution requires a trusted party which can decrypt at any time user messages.

We incorporate in our model a malicious Aggregator in Chapter 7, that is able to learn

the sum over an entire population and constructs a proof that allows anyone to verify the

correctness of computations. Our protocol is provably secure in the random oracle model

under a new assumption that is analyzed in the generic group model.

3.6 Summary

In this Chapter, we presented the current state of the art for PPDCA protocols. We started

our analysis with ad-hoc protocols in the literature that add noise to each individual data value.
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We then discussed solutions, that are compliant with the differential privacy framework in which

noise is tuned appropriately such that an adversary cannot recognize the existence or absence

of a specific data value from the final result. However, noise-based techniques introduce an

error to the computation of f that may not be acceptable in applications that require precision

in the computation of the function f . Next, we surveyed customized cryptographic solutions,

categorized with respect to the amount of trust that needs to be placed in third parties. After

making a taxonomy of protocols we identified their deficiencies with respect to their weak threat

model and to unsupported functionalities. Therefore, in the next chapters we show solutions to

the explained shortcomings of current PPDCA protocols.
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4.1 Introduction

Untrusted third parties tend to leverage user information more and more to achieve better

content delivery. In particular recommendation systems collect data about users and their

interactions with their environment in order to deliver the most appropriate and personalized

content. The leveraged information, spanning users’ social relations and personal interests,

consists of highly sensitive data and hence raises the problem of privacy. A naive solution to the

aforementioned problem could be to encrypt data before analyzing them. This would not solve

the problem as operations after encryption are not be feasible. A more suitable solution could

be to encrypt data homomorphically thus statistical properties on data after encryption can be

computed. Even though this solution seems approachable, the current homomorphic encryption

schemes fall short of giving a solution for a global analysis system applied to some large scale

dataset.

One of the basic building blocks in the vast majority of data analysis scenarios is similarity

detection. By analyzing users’ dataset, a recommendation engine can discover similar profiles

and thus recommend to a newly arrived user some content that was already consumed by other

existing “similar users”. Online advertisers sought to increase their revenues by inspecting the

online behavior of users. That implies an outsourcing of personal sensitive information by online

retailers to the advertisers.

The aforementioned applications imply a privacy violation risk. Since the input to the data

analysis operations is personal sensitive private information and operations performed over them,

individual privacy may be not be protected. As such, users and companies either tend not to

submit their data for further analysis to untrusted parties or they give limited access to it due

to individual privacy violation risks [86,107,112,127]. Radical solutions include a restriction on

the available data analysis operations an Aggregator can perform from the analyzer perspective,

which degrades the accuracy on data analysis.

In this Chapter we present a privacy preserving protocol for similarity detection. Cosine sim-
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ilarity can recognize similar vectors based on the formed angle between the vectors. Our privacy

preserving mechanism first maps users’ data into vectors and then each user individually encrypts

its data, such that the geometrical representation of the vectorized data is being preserved. The

solution is provably secure under the security of pseudorandom generators. The accuracy of the

proposed solution is then evaluated with the study on users’ personality characteristics.

4.2 Related Work

Several techniques have been proposed in order to obfuscate data such that when users submit

their data to an Aggregator–which seeks to combine all data in order to infer useful statistics

over their the entire data–individual data privacy is being protected but specific data mining

algorithms can be applied on it. Privacy preserving data mining by adding noise on data has

been first proposed in [5, 8]. The solution has been proposed for privacy preserving decision

trees as a solution to derive association rules from databases. In [120] the authors proposed

geometrical transformation for data clustering. Transformation though, is data dependent and

does not scale for multidimensional data.

Data anonymization asks for unlinkability on data records and users. K-anonymity [128,138]

has been proposed as a solution to protect the release of data to an untrusted party such that

the personal private information for each data record cannot be distinguished from k−1 records.

Suppression and generalization are two techniques to achieve k-anonymity. By generalization [85]

specific attributes are generalized in order to protect user anonymity. With suppression [129]

specific data are not released.

In [106] cryptographic tools are used to protect user data privacy when the id3 tree is

constructed for association rules. The id3 tree is a widely known technique for data classification.

The categorical data of a set of records is being constructed by choosing the attributes that

contain the higher information gain. Information gain is expressed as conditional entropy and the

problem of id3 construction is approximated by finding the attributes for which the information

gain is maximized. The authors assume that data are split horizontally, thus the Aggregator in

order to compute the conditional entropy of two users, should separately and privately obtain
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the data from both. It turns out that information gain for an attribute between two users is

expressed as (u1 + u2) · log(u1 + u2). The problem has been addressed as a secure multi-party

computation of this expression for two users.

Privacy preserving data classification on horizontally partitioned data has been addressed

in [48, 94] as well. The solution is based on a privacy preserving protocol for sum computation

based on randomization and privacy preserving union set computation. Those two functionalities

can securely be used by an untrusted party to infer the global confidence of an attribute in order

to infer the association rules that will classify the data. In [119] privacy preserving clustering

on vertically partitioned data is addressed by submitting only the similarities on data and not

the real data. However, how the users compute the similarities while at the same time their

privacy is preserved, is not clearly addressed. Vaidya et al. [72] designed a protocol for secure

dot product computation without the use of a trusted party. However the communication cost

for computing all the dot products between users is high.

As opposed to previous solutions we propose a scheme that is data independent and assures

higher level of privacy. Previous solutions do not scale for multidimensional data [120] and also

there is no concrete security analysis with respect to the leakages of the protocol for example.

We did not tackle our similarity problem with respect to data anonymization as anonymization

protects the metadata and not the actual data. Moreover, data separation techniques in which

data are split in between different sites are not always a real world scenario in which each user

holds its data in its entire form.

4.3 Problem Statement

4.3.1 Similarity and privacy

We assume a set of n users. Each user Ui holds its personal sensitive private data Di. A honest

but curious Aggregator A seeks to group together similar users according to their data. We

consider each Di as a multidimensional vector of size m: Di = (d1, d2, d3, · · · , dm). After the

data collection, A is applying some operations F in order to learn the similarity degree f over any
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pair of data vectors, such that A can further form clusters. During the detection of similarities

in between data the privacy of users should not be compromised. As a consequence, we are

looking for an obfuscation mechanism φ : Rm → Rm such that for any two vectors x,y:

f(Di, Dj) = F (φ(Di), φ(Dj))

where φ will preserve the privacy of individual data and at the same time similarity detection

through cosine computation can be computed.

4.3.2 Cosine similarity

Cosine similarity is a widely used distance metric for numerical data. Cosine similarity [111]

depicts the geometrical similarity of two objects in an Euclidean space by measuring the angle

θ formed by their vector representation in n-dimensional Euclidean space. The dot product

< a · b > of two vectors a,b is < a · b >= ||a|| · ||b|| cos θ , where ||a|| =
√∑n

i=0 ai
2 is the norm

of vector a and ai denotes the ith coefficient of this vector. Thus,

cos θ =
< a · b >

||a|| · ||b||

and the more similar the data the closer the angle between their corresponding vectors is and

the closer to 1 their cosine. The cosine similarity is our similarity detection function f .

4.3.3 Correctness and Privacy

Definition 34. (Privacy Preserving Data Analysis(PPDA)) In a Privacy Preserving Data Anal-

ysis scheme a set of n users Ui are encrypting their data and afterwards the data are sent to the

Aggregator A for analysis. PPDA consists of the following algorithms:

Setup(1λ) It is a randomized that on input of the security parameter 1λ outputs the secret

keys k of the users.

Encrypt(sk,Di) → D̄i: It takes as input user data and secret encryption key and it outputs

its encryption.
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Analyze(D̄i, D̄j) → f(D̄i, D̄j): It takes as input two encrypted data vectors and it outputs

the result of a data analysis algorithm F (D̄i, D̄j), such that F (D̄i, D̄j) = f(Di, Dj), where f is

a similarity detection algorithm.

Definition 35. (Correctness) A PPDA scheme is correct if for all pairwise combinations of data

Di, Dj the Aggregator A executes Analyze(Encrypt(sk,Di)) and obtains F (D̄i, D̄j) = f(Di,Dj).

Intuitively, the privacy guarantee we require from a PPDA scheme is that given encrypted

vectors D̄i an adversary cannot learn any information about the plaintext Di although it may

learn the output of the function f . For the threat model we assume external adversaries, which do

not know the common θ angle. We formalize its security through a game between an Adversary

A and the oracles OPPDA
Encrypt,OPPDA

C as follows:

At the Learning phase A submits vectors D to the OPPDA
Encrypt oracle and the latter returns

the encryption of D with secret key sk.

During the Challenge phase:

• A submits one pair of bi-vectors V0 = (D0, D1), V1 = (D2, D3) to OPPDA
Encrypt, that have not

been asked during the learning phase.

• OPPDA
Encrypt selects uniformly at random a bit b and returns to A D̄i = Encrypt(sk, Db).

• A returns b′.

• if b′ = b then A wins the game.

Definition 36. A PPDA scheme is secure if for any adversaries A, the probability of correctly

guessing b is:

Pr[APPDA] ≤ 1

2
+ ε(λ)

, for a negligible function ε on input of the security parameter λ.
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4.4 Solution

4.4.1 Idea of Solution

The idea of the solution is to apply some transformations to original vectors which on the

one hand preserve the angle between any pair of them and on the other hand assure privacy.

Since rotation in a two dimensional space preserves angles, we apply this transformation to

two-dimension vectors named as sub-vectors which originate from the original data vector. Ad-

ditionally, these sub-vectors are further randomly scaled and thus obfuscated while still not

having an impact on the angle.

We observed security leakages when the encryption mechanism does not entail both random

scalings and rotations. If each user only selects random scaling as the encryption mechanism

then an adversary by obtaining a good guess for a coefficient of a user’s vector it can recover the

specific two dimensional vector by computing the inverse of the guessed element and multiplying

it by the encrypted coefficient.

On the other hand, thanks to rotations, the aforementioned problem is mitigated but the

following one appears when random vector rotations are used: if two users with secret vectors Di,

Dj respectively have the same value at the same position of their vectors then only by encrypting

with a rotation matrix Rθ of angle θ, the corresponding encrypted vectors would have the same

value at this position. This violates the security definition 36. Thus, in order for the cosine

similarity to be securely preserved after the encryption of the vectors, both random scaling and

rotations are applied. Hence, thanks to the rotation, the adversary cannot discover similarities

between one vector’s coordinates. The mapping of vectors into subvectors also decreases the

probability of discovering the original vector since the scaling factor differs from subvector to

subvector.

4.4.2 Preliminaries

Vector scaling

Vector scaling with a scaling factor s is defined by a multiplication operation between the
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vector v and the identity matrix S in which the main diagonal has been substituted with the

scale factor s.

v · S = v·



s 0

0 s




Vector Rotation Vector rotation with an angle θ is defined by a matrix multiplication between

the vector v and the rotation matrix Rθ: v ·R = v·




cos(θ) − sin(θ)

sin(θ) cos(θ)




4.4.3 Protocol description

We now describe the details of the protocol with respect to Definition 34.

• Encrypt(sk, Di) During the encryption phase each user Ui holds a vector Di =

(d1, d2, d3, . . . , dm) of size m. It generates subvectors of 2 dimensions d
(k,l)
i =



dk

dl


.

If m is odd then (m + 1)/2 are constructed, otherwise if m is even then we have m/2

subvectors. In general we have dm/2e subvectors. Afterwards each user chooses a random

scaling factor for each subvector and it scales each subvector d
(k,l)
i with the random scaling

factor si: S
j
i = sji · d

(k,l)
i , obtained with a pseudorandom generator PRG1(z1), that takes

as input a random looking seed z1. That is, if any of the coefficients of the subvector

d
(k,l)
i have been previously selected to form a vector then the old random scale factor si

must be used for d
(k,l)
i . Then the intermediate vector Si is further rotated with a rotation

matrix Rθ , where θ is the rotation angle: d̄k,li = Sji · Rθ = Sji ·




cos(θ) − sin(θ)

sin(θ) cos(θ)


. For

the computation of θ a pseudorandom generator is also used to generate the common to

all users angle θ = PRG2(z2), where z2 is a random looking seed.

Finally each user Ui sends D̄i = (d̄
(1,2)
i , d̄

(2,3)
i , · · · , d̄(k,l)

i ),∀k, l ∈ [0, · · · ,m] to the Aggrega-

tor A. Hereafter we will write dji to denote the jth subvector of user Ui and d̄ji for the jth

encrypted subvector of user Ui. As such, the encryption mechanism consists of random

scalings and rotations by an angle θ: Encrypt(sk, Di) = sji · d
k,l
i · Rθ, where sk = (sji ,Rθ).

• Analyze(D̄i, D̄j) The analyzer then performs computation F over the encrypted data in
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order to learn the similarity f of two data vectors: ∀Ui,Uj , i 6= j :

F (d̄i, d̄j) =





cos(d̄1,2
i , d̄1,2

j )

...

cos(d̄
dm/2e
i , d̄

dm/2e
j )

Aggregator computes the similarity between two vectors on the encrypted data, by applying

the cosine similarity algorithm on the encrypted data. As such, F = f and A learns the cosine

similarity between vectors of data.

4.4.4 Correctness

Theorem 2. The PPDA scheme presented above is correct.

Proof. It is known that cos(a, b) = <a·b>
‖a‖·‖b‖ = aT ·b

‖a‖·‖b‖ . For the proof of the theorem we need to

prove the following three lemmas:

Lemma 4. The transpose of an orthogonal matrix A, AT is equal to its inverse A−1

Proof. It is known that:

A ·A−1 = IA (4.1)

where IA it’s the identity matrix of A. Also we obtain:

A ·AT =



AT1,1 ·A1,1 · · · AT1,m ·A1,m

ATn,1 ·An,1 · · · ATn,m ·An,m


 =




1 · · · 0

...
...

...

0 · · · 1




= IA

From (1), (2) we have that for any orthogonal matrix A, AT = A−1

Lemma 5. The multiplication two vectors a, b with a rotation matrix R preserves its cosine

similarity.
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Proof. cos(Ra,Rb) = <Ra·Rb>
‖Ra‖·‖Rb‖ = (Ra)T ·Rb

‖Ra‖·‖Rb‖ = aTRT ·Rb
‖a‖·‖b‖ = aTR−1·Rb

‖Ra‖·‖Rb‖ = aT ·b
‖a‖·‖b‖ = cos(a, b) where

‖Ra‖=




cos(θ) − sin(θ)

sin(θ) cos(θ)






a1

a2


 = ‖a‖ and ‖Rb‖=




cos(θ) − sin(θ)

sin(θ) cos(θ)






b1

b2


 = ‖b‖

Lemma 6. The random scaling of two vectors a, b with different random scaling factors r1 and

r2 preserves its cosine similarity.

Proof. cos(r1a, r2b) = <r1a·r2b>
‖r1a‖·‖r2b‖ = (r1a)T ·r2b

r1‖a‖·r2‖b‖ = r1aT ·r2b
r1‖a‖·r2‖b‖ = aT ·b

‖a‖·‖b‖ = cos(a, b)

From lemma 4, 5 and 6 it is true that multiplication of a random vector and random scaling

is a correct Privacy Preserving and Data Analysis mechanism, since encryption preserves cosine

similarity: F = f . The proof of lemma 5 is based on lemma 4: the rotation matrix R is

orthogonal and as such R−1 = RT . Furthermore the rotation doesn’t change the vector norms.

4.5 Security

For the privacy analysis we will show how to correlate the success probabilities of an adversary,

which will try to distinguish encryptions with a one-time pad, which uses a PRG to generate

a pseudorandom bit-stream that is used as a key, from encryptions with a one-time pad that

chooses uniformly at random keys, with the success probabilities of an adversary A that tries

to break our scheme. A depicts external adversaries, which are not aware of any source of

randomness: neither the random scaling factor nor the common random angle θ.

Theorem 3. The PPDA scheme presented above is secure according to definition 36 if PRG1,2

are secure pseudorandom generators.

Proof. We show how to relate the success probabilities of an adversary B who tries to dis-

tinguish uniformly random strings from PRG outputs. We name the distinguishing proba-

bility of adversary B against the PRG AdvPRGB which is negligible function ε. When ad-

versary A of our scheme sends two vectors V0, V1 then when B receives them it flips a ran-

dom coin and if b = 0 it returns the encryption of V0,Encrypt(sk, V0) as in the described
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PPDA scheme, using pseudorandom generators PRG1, PRG2 to obtain the key sk, otherwise

when b = 1 it chooses sk uniformly at random and encrypts with the Encrypt algorithm V1.

When b = 0 the view of A is exactly as in the real experiment and succeeds with probability

AdvPPDAA . When b = 1 then A succeeds with probability 1/2: Advsk←R
A = 1/2. By definition

AdvPRGA = |AdvPPDAA − 1/2| ≤ ε =⇒ AdvPPDAA ≤ 1/2 + ε.

4.6 Evaluation

We also demonstrate the correctness of our protocol with an experimental evaluation procedure.

We obtained data from a personality experiment. We first cluster the data based on cosine

similarity, using hierarchical clustering. The same clustering algorithm is further applied over the

encryption of the same data using φ which as already described combines rotation and random

scaling. We proceed with an analysis of the data and next with the clustering algorithms that

we use.

4.6.1 Data Set

The dataset contains results from the Foursquare Personality Experiment1 which uses the mobile

social network Foursquare2, combined with a standard personality test to link between person-

ality (as defined by the five-factor model [73]) and the places that people visited. To the best of

our knowledge, this is the first time that it has been possible to correlate personality with place

on such a granular level.

When accessing the experiment, users sign in using their Foursquare account, allowing us

to access the list of venues which they have ’checked in’ to on the Foursquare service. We

access only this list, storing the venues that the user has been to and the number of times they

have visited each venue, but without accessing or storing the information about the individual

checkins - we do not store when each visit to the venue occurred, nor the order in which venues

were visited. Once users have accessed the system they then take a 44-item personality test [88,

1http://www.cs.cf.ac.uk/recognition/foursqexp
2http://www.foursquare.com
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89], revealing their five-factor personality scores. The five-factor model gives each person a

score between 1 and 5 for each of the five personality traits: Openness, Conscientiousness,

Extraversion, Agreeableness and Neuroticism. The users, who participated in the study were

a self-selecting group comprised of 173 people who both use Foursquare online location based

tagging system and are willing to take part in a personality-based experiment.

4.6.2 Clustering

Clustering algorithms seek to group similar objects together. Similarity is measured with a

distance metric which in our case is cosine similarity. Hierarchical clustering is a widely known

approach for clustering. It constructs a binary tree of clustering objects that successively are

merged under the same cluster with respect to the linkage metric. The linkage metric links

clusters and objects together. It acts as an intergroup similarity measure. Two most popular

linkage metrics are the complete metric which defines the maximum similarity between two

objects as a verification to whether or not one object would be merged under the same cluster

with another one and the single metric in which the minimum similarity is treated as the

intergroup similarity metric. At the first step of the algorithm each object belongs to each own

cluster. Then all the possible pairwise similarities between objects with respect to the defined

distance metric are defined. Afterwards the algorithm iteratively merge clusters with respect to

the linkage metric until there would be one cluster with the all the examined objects.

4.6.3 Results

We applied the hierarchical algorithm over the personality dataset with the complete linkage

metric and based on cosine similarity. The data consists of 173 different 5 dimensional vectors

describing users’ personality with respect to the 5 personality traits as previously described. We

did not include venue visits frequency since we believe that personality traits are considered

much more sensitive data compared to location information and that users would be more

interested in hiding such information. We consider similarity on 3 subvectors per user data: the

subvectors are constructed with the (1st, 2nd), (3rd, 4th) and (1st, 5th) coordinates of the original
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vector respectively. Any pairwise subvector could behave chosen such that the union of the set

of subvectors entails all the coefficients. The main similarity metric is computed as the average

of the similarities between subvectors. In order to protect their privacy, every user chooses a

random scaling factor per two dimensions. After the random scaling process users apply the

rotation operation to their partially obfuscated subvectors.

In figure 4.1 we plot the two dendograms of hierarchical clustering before and after the

encryption of data with our algorithm. The horizontal axis of the plot corresponds to cluster

indexes that are formed by the algorithm and the vertical axis to the linkage similarity based

on cosines. Clusters are connected with upside-down U-shaped lines. The clusters are exactly

the same due to the correctness of the algorithm as has been previously proved. All the cosines

between all the coefficients of 2 over 173 elements has been computed. That results into a set of

14878 distances. For the linkage function we chose the complete option. Thus, two clusters will

be merged together according to the maximum distance between their elements. Results shown

in figure 4.1 demonstrate the correctness of our protocol.

4.6.4 Discussion

In our experiments we used as a similarity metric an aggregate output of each three per user

similarities. This is the average of cosine similarities. Thus, during the clustering the similarity

between points depicts similarities between the averages. We could have demonstrated three

different scenarios during the clustering process one for each subvector in order to check the

correctness of our obfuscation mechanism but since this has been demonstrated once the other

experiments would not add extra knowledge. We also want to state that the aggregate function

should not always be used for every case. This would imply an inconsistency on correctness since

many inputs could evaluate the same average similarity. Suppose for instance that data consist

of user interests on m items and for each user n similarities per two dimensions are computed.

Then a single aggregate function on user n similarities might group together during clustering

dissimilar objects that average the same similarities but on different inputs.
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4.7 Summary

The interplay between data analysis and privacy is emerging rapidly. Researchers from machine

learning area have highlighted the merit of data analysis operations. However this exposure

of personal sensitive data, facilitates privacy violations. Adversaries by gaining access to per-

sonal information can learn the real identity of users and overcome data legal regulations and

restrictions. That postulates a mechanism that would shield individual data confidentiality.

In this chapter we presented a mechanism for privacy preserving clustering that is based on

geometrical transformation of objects. Data are encrypted appropriately such that operations

with respect to cosine similarity detection are compatible. We proceed into an analysis of the

security risks of each operation and we concluded that the most secure way is a combination of

random scalings and rotations. Without scaling and only with rotation, similarities on the same

position coordinates are possible to occur by external adversaries. This is mitigated by a random

scaling factor, which is different per user and per subvectors with no common coefficients. We

proceed into an experimental evaluation of a scheme in order to demonstrate its correctness.

Personality traits have been obtained by 173 users and identical clustering results have been

observed before and after the obfuscation proposed solution.
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5.1 Introduction

Smart meters are devices deployed in households to measure the energy consumption in specific

time intervals. They do not only measure electricity consumption but gas and water commodity

as well. The motivation for the wide deployment of smart meters is many-fold. Suppliers can

more precisely learn the time intervals houses consume more energy and thus tune appropriately

the billing of each customer and predict the potential energy demand. On the other hand, home

tenants can receive energy advices and can also change their energy consumption habits. In

particular, a customer learning the period of the highest consumption may prefer to consume in

a more efficient way.

In this Chapter, we consider the problem of computing continuous maximum energy con-

sumption over meterings sent by individual smart meters in a privacy preserving manner. Fol-

lowing the analysis that we made in Chapter 3, such type of statistics do not exist in the current

literature. We assume that both the supplier and individual smart meters are interested in de-

termining the interval in which the smart meter consumes the most. Such an operation cannot

be performed by a smart meter alone because of its lack of resources and in particular its lack of

memory: The smart meter would need an important number of values in order to find out the

maximum value corresponding to a “continuous” consumption. On the other hand, outsourcing

these computations to the supplier will naturally leak periodical consumptions which definitely

are very sensitive information. We therefore propose a solution, in which smart meters send their

periodical metering to the supplier in a privacy preserving manner while still allowing this entity

to compute the time interval of the maximum consumption. The proposed solution is based on

an order preserving encryption (OPE) which by definition preserves the order of plaintext val-

ues after their encryption without revealing any additional information. Additionally, in order

to filter out spontaneous peaks (due to some erroneous switch-on/switch-offs of home devices

for instance), the smart meter also sends the differences of consecutive consumption values in

an on-the-fly approach whereby the smart meter does not need to store auxiliary information.

Thanks to the differences the supplier is able to determine the period of maximum consumption

that is continuous. The proposed solution is provably secure with a reductionist proof to the
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POPF-CPA assumption [23] which corresponds to the security notion that characterizes the

security of OPE.

5.2 Problem Definition

In this section we precisely define the problem we are trying to address and the environment in

which we envision our protocol to run. We seek for Privacy Preserving Smart Grid Statistics

(PPSGS) scheme for a set of smart meters. The smart meters are sending their meterings to

a supplier and the supplier should identify the time interval at which each smart meter reports

the maximum consumption. The supplier learns nothing but the time period of the maximum

consumption.

5.2.1 Entities

1. Smart meters. We assume a set of n smart meters, each one denoted as smi. These

are deployed in separate households across a geographical region. The smart meters are

universally programmed to send energy consumption at a fixed time interval ti starting

from time t1 and ending at time te. Each smart meter has an embedded private key in a

tamper resistant hardware module.

2. Supplier. An energy supplier collects information from each smart meter and computes

the time interval corresponding to the maximum consumption individually for each smart

meter, thus acting as an Aggregator A.

Table 1 describes the notations used throughout the Chapter.

5.2.2 Protocol Definitions

Definition 37. (Privacy Preserving Smart Grid Statistics)(PPSGS) A PPSGS scheme consists

of the following algorithms:

Setup(1λ) It is a randomized lagorithm that on input of the security parameter 1λ outputs

for each user a secret key ski and mac key mki.
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Encrypt(xi,t, ski,mki) → (ci,t, di,t,maci,t) Each smart meter smi encrypts its meterings xi,t

for time interval t using its secret encryption key ski. It also computes the discretized differences

of consecutive meterings di,t. The output of the algorithm is the ciphertext value ci,t, the

discretized differences di and an integrity value maci,t computed with a MAC key mki.

Analyze({ci,t}, {di,t},maci,t,mki) → tj The supplier takes as input encrypted meterings

{ci,t}, differences {di,t}, MACs maci,t and the MAC key mki and it outputs a tag tj for each

meter smi that specifies an interval of the maximum consumption.

Definition 38. (Correctness) A PPSGS scheme is correct if for all individual smart meters

smi that submit their meterings to a supplier, after running Analyze({ci,t}, {di,t}) algorithm, the

supplier outputs the maximum consumption of smi with probability 1.

Notations

ski secret encryption key of user i
mki mac of user i
smi Smart meter i
tj Time interval tj
xi,t Energy consumption of smart meter i at time interval t
ci,t Encrypted energy consumption of smart meter i at time interval t
miw Maximum interval window defined by the supplier
di,t Difference of xi,t - xi,(t−1) metering values

Table 5.1: Protocol notations

5.2.3 Privacy Definition

We consider a honest-but-curious adversary model: Although following the steps of the protocol

correctly, the supplier will try to discover the content of the meterings sent by each smart meter.

Message forgery attacks are prevented thanks to the use of existentially unforgeable message

authentication codes (MACs). We namely present our privacy requirement:

Third party obliviousness(TPO). We adapt the security notions of aggregate oblivious-

ness in [132] to define our privacy requirements: The third party, which in our environment is the

supplier, cannot learn anything more than the time interval of maximum energy consumption.
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Consider an energy supplier that receives the encryptions of each smart meter sxi. The supplier

can only learn the time interval that corresponds to the maximum consumption of each sxi and

not the metering value in plaintext.

We formulate the third party obliviousness privacy definition with a game GameTPO, which

is played between the challenger C and a probabilistic polynomial time (PPT) adversary ATPO

We assume a data structure Ti which depicts time series data indexed by i. T can be seen as

an i× j matrix, in which each row Ti corresponds to a different time serie for time intervals j.

ATPO hass access to the game’s oracles in the following phases:

Learning. During the learning phase ATPO can issue two type of queries:

• Type I: ATPO submits encryption queries (x,Ti,j) to OTPO
Encrypt oracle and OTPO

Encrypt returns

to ATPO ci,j , which corresponds to an order preserving ciphertext ci,j for time interval

Ti,j .

• Type II: ATPO issues queries (Ti,k,Ti,l) to the OTPO
Diff oracle and the latter replies with

the corresponding difference xi,k − xi,l ⇐⇒ i) an encryption query for a message x for

the time serie Ti has not been submitted for a Type I query or ii) a message x was part

of an encryption query to the OTPO
Encrypt oracle for Ti,j > Ti,k,Ti,l.

Challenge. ATPO submits two differences of plaintext values d0 = x1 − x0, d1 = x3 − x2

to OTPO
C oracle which correspond to messages for time intervals (Ti,k0 , Ti,l0), (Ti,k1 , Ti,l1)

respectively. The latter choses uniformly and at random b
$←{0, 1} and returns to ATPO the

encryptions of one pair corresponding to either the encryptions of (x1, x0) if b = 0 or the

encryptions of (x3, x2) if b = 1.

Guess: At the end of the game the adversary outputs its guess b′.

We say that A wins the Third party obliviousness game if its guess b′ = b and none of the

(Ti,k0 , Ti,l0), (Ti,k1 , Ti,l1) have been queried at the learning phase to either OTPO
Encrypt or OTPO

Diff

oracle.

Definition 39. (Third party obliviousness). Let Υ = (Setup,Encrypt,Analyze) be a PPSGS

scheme with associated plaintext size M and ciphertext size N . Υ ensures third party obliv-

iousness if for all PPT adversaries A the probability of winning the aforementioned game is

75



CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

negligible: Pr[b′ = b] ≤ 1
2 + ε(λ), where ε(λ) is a negligible function and λ is the security

parameter.

5.3 Overview of PPSGS

In this section we give a brief description of our solution. Our PPSGS scheme achieves third-party

obliviousness thanks to an order preserving encryption scheme in which the order of numerical

items in the plaintext space is preserved in the ciphertext space as well. Each smart meter is

equipped with a tamper resistant hardware module in which a secret key is embedded. This

secret key is being used to encrypt meterings at each time interval. Thanks to the cryptographic

primitive of order preserving functions a keyed order preserving functions chosen uniformly and

at random is indistinguishable from an ideal one. Thus nothing more than the order is revealed

to the supplier who is acting as a data analysis entity.

For the accuracy of the analysis once the supplier has identified the time interval in which a

smart meter has consumed the maximum it can verify from the extra information composed by

the differences between each consumption, that actually there is a valid continuous maximum

energy consumption “around” this time interval. If the differences converge to 0 then it has a

strong indication that the meterings around that particular interval are part of a continuous

maximum consumption. Albeit the goal of publishing differences is to allow energy suppliers

determine continuous maximum energy consumptions, researchers have raised the interest for

the design of privacy preserving protocols for spike detections so as to energy operators identify

overloaded power lines [53]. As such our solution is suitable for this case as well. The advantage

of our approach is that the smart meters do not have to store the differences or the ciphertexts in

order to perform the analysis but these are computed and sent immediately on-the-fly. From the

supplier perspective the verification of a maximum continuous consumption interval is performed

in a batch way with a single operation. Moreover as it will be established in section 5.2.3, the

differences do not jeopardize the privacy requirements of the scheme.

The information from the identification of a continuous energy consumption will improve

the forecasts of energy consumption and will allow better energy allocation in advance from
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energy producers. Moreover, the information of the maximum energy consumption interval can

be sent back to the tenants in order to swift their increased energy habits into low tariff periods.

This operation cannot be performed locally at each smart meter because their resources are

not sufficient for big data analysis operations. On the other hand, an integrity mechanism is

needed in order for the supplier to be assured that the meterings are sent from existing and

authenticated smart meters.

5.4 Protocol Description

In this section, we formally define our PPSGS protocol. Before describing our protocol in full

details we give a brief description of what an order preserving encryption scheme is.

5.4.1 Order preserving encryption (OPE)

Privacy preserving queries on databases have raised the interest for non conventional symmetric

encryptions [6]. Recently, in [23], Boldyreva et. al. formally defined an Order Preserving

Encryption (OPE) scheme. An OPE leaks the order of plaintext data and ideally nothing more.

An order preserving function (OPF) is a function g such that for a < b then g(a) < g(b). A

symmetric encryption scheme is then an order preserving encryption scheme if the encryption

function Enc is an order preserving function. The construction is based on the observation that

an OPF with domain D of size M and range R of size N is a bijection of all combinations of M

out of N . The security of an OPE has been analyzed in [24] with strict security definitions and

bounds. The authors described how an “ideal” random order preserving function (ROPF) should

behave. The new security definition employs the notion of window one wayness. That is the

probability of the adversary to successfully identify the range of a plaintext message given many

randomly chosen ciphertexts. They also introduce the notion of distance window one wayness

where the adversary is further restricted to identify the interval r between two plaintexts given

a large set of ciphertexts.
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5.4.2 Our Protocol

The protocol consists of two phases. During the first phase each smart meter encrypts with an

OPE its meterings and it sends it to the supplier along with a MAC. Afterwards, in a second

phase the supplier collects all the encrypted values from each smi and sorts them. Since the

encryption uses OPE the supplier can discover the ordering of the ciphertexts. The purpose of

the protocol is for the supplier to identify high energy consumption periods for each householder.

Simply by using an order preserving encryption scheme, which preserves the order of the plain-

texts at the ciphertext space would solve the problem, since home tenants tend to spontaneously

switch on/off high energy appliances. That results in a faulty inference by the energy supplier.

As such the supplier must not only recognize peaks for high electricity consumptions but also

confirm a continuous duration of the maximum consumption. To address this requirement along

with its meterings, each smart meter smi sends discretized differences between consecutive me-

terings in such a way that the supplier can only verify the interval where the consumption

differences equal 0 which is interpreted as a continuous maximum energy consumption.

We now describe the protocol according to the definition in section 5.2.3 :

Setup(1λ) It is a randomized lagorithm that on input of the security parameter 1λ outputs

for each user a secret key ski and mac key mki. The mac key mki is shared with the supplier

under and a confidential channel.

Encrypt(xi,t, ski,mki)→ {ci,t, di,t,maci,t} Each smi encrypts its meterings xi,t with its secret

key ski using an OPE scheme. For each ciphertext ci,t for time interval t it also sends t as

auxiliary information associated with each ciphertext. For each two sequential time intervals

each smart meter sends di,t. Each smart meter then applies the MAC with the MAC key mki

to the encrypted data ci,t and the discretized differences di,t and sends ci,t||MACmki(ci,t, di,t) to

the suppliera long with di,t.

Analyze({ci,t}, {di,t},maci,t,mki) → tj : The supplier collects at each time interval t the

encrypted smart meterings from each smi. If the computed MAC by the supplier matches the

MAC it obtained from the smi then it continues with the execution of the protocol otherwise

it halts. Since the order is preserved it can identify the maximum energy consumption at time
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interval tj for each smi. To assure a continuous duration of the maximum consumption, the

supplier verifies:
wend∑

wstart

di,t
?
= 0 (5.1)

inside the miw that is specified by the supplier. The miw interval has a starting point wstart

and an end point wend. In the beginning the wend is set to tj and wstart = tj −miw. Inside this

window the analyzer checks if equation 5.1 holds in order to validate a continuous maximum

energy consumption around tj , where each di defines the differences of two consecutive meterings.

The differences from the meterings are discretized in order to avoid inequalities from 0 even for

small variations. This requirement obviously captures spontaneous switch on/offs of a high

energy consumption appliance that will erroneously record maximum consumptions. If equation

5.1 is not true, it continuously checks the condition by sliding the window one position to the right

until wstart = tj . By sliding the window 1 position we mean that we advance the corresponding

time frequency by 1. That is, if the smart meter reports meterings every 1 second for instance,

miw = k and tj = 23h40m40s then the supplier will verify equation 5.1 for wstart = tj − k and

wend = tj and will move the interval 1 second every time the condition does not hold. So the

second iteration would be from wstart = tj − k + 1 to wend = tj + 1 until wstart = tj and so on.

If none of the corresponding delta differences inside miw does not satisfy the condition then the

second maximum tj is selected and the procedure restarts.

Correctness. The correctness of PPSGS depends on the correctness of the order preserving

encryption scheme and on the fact that if the discretized differences of plaintext meterings are

equal to 0 then:
wend∑

wstart

di,t
?
= 0

Indeed, consider a smart meter smi which detects the set of plaintext values

{xi,tj1 , xi,tj2 , xi,tj3 , . . . , xi,tjn}. These plaintext values after decreasing ordering, they form the or-

dered set Op indexed by j which is the time interval . For every two consecutive values xi,tj , xi,tj+1

the smi computes the difference di,t = xi,tj+1−xi,tj and then sends to the supplier along with the

encrypted values {ci,tj1 , ci,tj2 , ci,tj3 , . . . , ci,tjn} the differences discretized by a parameter φ [di,t]φ.
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Thanks to the OPE the supplier can reconstruct the same ordered set Oc from the ciphertexts

but instead of plaintext values it obtains the corresponding for the time interval j ciphertext

values. If around the maximum time interval tj there are not big difference variations then after

the discretization of the differences [di,t]φ = 0 and
∑wend

wstart
di,t

?
= 0 .

5.5 Privacy Analysis

We show in this section that the published differences do not affect the privacy requirement for

third party obliviousness, which requires that nothing more other than the interval in which the

smart meter has consumed the maximum energy for at least miw time interval, is revealed. We

assume that the OPE in our protocol is instantiated as in [6] from the set of all possible OPE

functions fixed by the secret key of the smart meter. If the OPE acts as a pseudorandom OPE

fixed by a secret key then nothing more than the ordering is revealed. For our reduction we will

use the POPF-CPA security definition from [23].

Let an OPE scheme OPE = (K,Enc,Dec), with plaintext space D and ciphertext space

R, |D| ≤ |R|. We describe the oracles an adversary A has access to, during the POPF-CPA

game:

During the learning phase a A submits order preserving encryption queries to OPOPF−CPA
Encrypt for

a value x and the oracles replies with Enc(x). At the challenge phase A submits to OPOPF−CPA
C

oracle two pairs of same order plaintexts: (x0
0, x

0
1), (x1

0, x
1
1) that have not been queried at the

OPOPF−CPA
Encrypt oracle, during the learning phase. OPOPF−CPA

C flips a random coin b
$←{0, 1} and

returns to A : Encrypt(xb0, x
b
1). Eventually A outputs a guess b∗ for the bit b.

We say that A succeeds in the POPF-CPA game if its guess b∗ = b.

Definition 40. An OPE encryption scheme is CPA secure if for any adversary A against

an order preserving pseudorandom function under chosen-ciphertext attack (POPF-CPA) the

probability Pr[b′ = b] ≤ 1
2 + ε(λ), where ε is negligible function on input of the security parameter

λ.

Theorem 4. The PPSGS scheme presented in section 5.4 assures third party obliviousness

under the POPF-CPA security of the underlying OPE encryption scheme.
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Proof. (Sketch) Let us assume there is an adversary ATPO that breaks third party obliviousness

as presented in section section 5.4 with non negligible probability ε. We show in what follows that

there exists an adversary B that uses ATPO to break the POPF-CPA game with non-negligible

advantage. For ease of exposition, we denote OPOPF−CPA
Encrypt , and OPOPF−CPA

C the oracles of the

POPF-CPA game and by OTPO
Encrypt,OTPO

Diff ,OTPO
C the oracles that ATPO has access to. Now to

break the POPF-CPA game, aggregator B simulates the third party obliviousness game of our

scheme for adversary ATPO as follows:

• Whenever ATPO submits queries (x,Ti,j) to the OTPO
Encrypt oracle, B calls the OPOPF−CPA

Encrypt

oracle and returns ci to ATPO.

• B whenever receives (Ti,k,Ti,l) queries for the OTPO
Diff oracle, checks if for time interval Ti

A has issued an encryption query or if a message x was part of an encryption query to the

OTPO
Encrypt oracle for Ti,j > Ti,k,Ti,l. If none of the above holds the B forwards to A the

difference xi,k − xi,l.

• ATPO submits two plaintext values d0 = x2−x0, d1 = x2−x1 to B that correspond to the

delta encodings that A receives during the protocol execution.

• Sequentally B so as to simulate the OTPO
C oracle, it submits to OPOPF−CPA

C oracle the pairs

(x0
a, x

1
b), (x

0
c , x

1
d), such that d0 = xa − xb, d1 = xc − xd.

• OPOPF−CPA
C in turn flips a random coin b

$←{0, 1} and responds to B with ca, cb if b = 0 or

with cc, cd if b = 1.

• B finally forwards to A the ciphertext pair that it received from OPOPF−CPA
C .

The adversaryA cannot tell whether it is interacting with the actual oracles or with adversary

B during this simulated game. Now, A outputs a guess b′ for the bit b. Note that if A has a

non-negligible advantage ε in breaking the third party obliviousness of our scheme, then this

entails that it outputs a correct guess b′ for the bit b with a non-negligible advantage ε. Finally

in order to win the POPF-CPA game B outputs the guess b∗ = b′.
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To conclude, if there is an adversary A which breaks the third party obliviousness of our

solution, then there exists an adversary B which breaks the POPF-CPA game of [23] with some

non-negligible advantage ε: Adv[ATPO] ≤ Adv[BPOPF−CPA] ≤ ε(λ)

5.6 Feasibility

5.6.1 Smart Meter Computation Cost

Real-world smart meters that are deployed in houses are equipped with low-cost, ultra-low power

microcontrollers (MCU). We assume the existence of the widely used 16-bit RISC MSP430X

MCU. They consist of flash memory that can be extended up to 256KB, read-only-memory and

a distinct clock rate for their CPU that ranges from 8MHz to 25MHz. Some of them are equipped

with a radio frequency transceiver for wireless communication. For the metering procedure they

have sensors that measure energy and an analog-to-digital converter. We analyze the feasibility

of the protocol with respect to space and time overhead based on a 16-bit RISC MSP430 MCU,

with 256 KB flash memory, 20 MHz clock rate and an AES instruction set coming in the AES

accelerator hardware module that can speed up AES encryption in CTR mode up to 8 times [80].

In table 5.2, we show the computational and storage overhead of our solution. Since our OPE

like in [23] is based on the a symmetric block cipher, we refer to the performance analysis of AES

in counter mode on a 16-bit RISC MSP430 MCU with an AES accelerator module described

in [80] and further compute the cost of our solution. Results are shown in a per day analysis

considering different time slots.

To compute the storage overhead of the solution we observe from real data [13] that the

maximum energy consumption of smart meters deployed in a 1700 square foot home do not

exceed 1000kW and therefore can be represented by 2 bytes. Since the minimum block size for

AES is 128 bits (16 bytes) a metering value can be considered as 1 AES block. Thus for the

computational overhead we consider the cost of 1 block AES encryption. I.e: the first row of

table 5.2 shows that in 1 day we can have 24 ∗ 60 ∗ 60 = 86400 meterings that correspond to

86400∗2 = 172.8 MB for a total computational cost of 13.3 million cycles for the OPE encryption
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of all the meterings.

Table 5.2: Per day computational and storage overhead of OPE

Period (seconds) #Meterings Flash(KB) Time (Mcb)

1 86400 172.8 13.33
2 43200 86.4 6.32
3 28800 56.6 4.08
4 21600 43.2 2.99
5 17280 34.5 2.35
6 14400 28.8 1.93
7 12343 24.6 1.63
8 10800 21.6 1.41
9 9600 19.3 1.24
10 8640 17.2 1.10

Table 5.3: Space and computation analysis. Mcb denotes megacycles per block

5.6.2 Server Computation Cost

The procedure that dominates the computational overhead of the server is the sorting of the me-

terings. The server must first sort all per user encrypted meterings in a separate data structure.

Each encrypted smart metering ci,t is associated with a tag which is the time interval j. We

consider that the server holds a binary search tree (BST) for each user. The BST provides an

efficient way to keep a set of elements sorted [50]. In the average case it has O(logN) complexity

for insertions and O(logN) to find the maximum element of the BST. Thus the computational

complexity per smart meter for m metering is O(logm).

For the verification of the maximum continuous interval the server also has to perform n

additions (
∑wend

wstart
di,t

?
= 0) per smart meter, where n is the number of differences provided

by smart meter inside the miw. The miw is orders of magnitude smaller than the meterings.

Thus n additions are performed in the best case in which the server identifies a maximum

continuous energy consumption inside the miw. In the worst case the server has to compute

O((n−1)·TotalDurationmiw ) multiplications where TotalDuration corresponds to the overall metering

duration.
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5.7 Summary

In this Chapter we presented a protocol for personalized statistics in a smart grid environment

by showing that a reconciliation of privacy and utility is achievable. The solution is based on an

encryption scheme that preserves the order of the plaintexts in the ciphertext space along with

an appropriate delta encoding scheme. We proved the privacy of the protocol with a reduction

proof to the POPF-CPA [23] assumption of the OPE. The storage and computational costs of the

protocol are analyzed with real data. For the analysis we assumed real world microcontrollers.

.
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6.1 Introduction

In this Chapter, following the goals of this dissertation as presented in Chapter 1.4, we

propose a Privacy Preserving Data Collection and Analysis (PPDCA) protocol that eliminates

the need for key redistribution following a user join or leave and the need for fully trusted key

dealer. As such we strengthen the threat model of current PPDCA protocols with enhanced

functionalities of dynamicity and fault tolerance. The features of the enhanced protocol can be

summarized as follows:

• No key dealer. Contrary to most of previous privacy preserving aggregation protocols,

there is no trusted key dealer in our scheme. In contrast, we introduce a semi-trusted

party called Collector which gathers partial key information from users through a secure

channel.

• Support for dynamic user populations. No coordination is required to manage changes in

the population of users. This is possible due to a self-generated key mechanism by which

no key agreement between users is required.

• Privacy. With respect to privacy, the scheme assures Aggregator obliviousness as intro-

duced by Elaine Shi et al. [132]. That is, the untrusted Aggregator only learns the sum

and the average over users’ private data at the end of the protocol execution. Moreover,

we show that the Collector does not derive any information about the users’ private data.

• Efficiency. Like Joye et al. [92] our scheme enables the computation of the sum and the

average over a large number of users without restrictions on the range of users’ values. It

is also scalable in the sense that decryptions performed by the Aggregator do not depend

on the number of users.

6.2 Related Work

Önen and Molva [121] introduced a scheme to compute aggregate statistics over wireless sen-

sor networks with multilayer encryption by transforming a block cipher into a symmetrically
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homomorphic encryption. Even if the proposed solution provides generic confidentiality, the

sink-Aggregator is fully trusted and shares keys with the sensors. In [63], the authors proposed

a protocol for secure aggregation of data using a modified version of Paillier homomorphic en-

cryption. The Aggregator which is interested in learning the aggregate sum of data is able to

decrypt without knowing the decryption key. The idea behind the scheme is a secret sharing

mechanism executed between users such that the aggregation of encrypted data reveals the sum

if and only if all users’ data is aggregated. However, this scheme suffers from an increased com-

munication cost due to secret share exchange between users. A solution that blends multiparty

computation with homomorphic encryption is also presented in [102], but contrary to our scheme

it does not address the issue of dynamic group management.

The authors in [15, 42, 87, 124] studied privacy preserving data collection protocols with

differential privacy. The combination of differential privacy with non conventional encryption

schemes can provide an acceptable trade-off between privacy and utility. In [124], a secret sharing

mechanism and additively homomorphic encryption are employed together with the addition of

appropriate noise to data by the users. Upon receiving the encrypted values a second round

of communication is required between users and Aggregator to allow for partial decryption and

noise cancellation. At the end of the protocol, the Aggregator learns the differential private sum.

Jawurek and Kerschbaum [87] eliminate this extra communication round between the users and

the Aggregator by introducing a key manager which unfortunately can decrypt users’ individual

data. Barthe et al. [15] proposed a solution whereby each smart meter in the protocol establishes

an ephemeral DH shared secret with all the Aggregators. In their scheme the service provider

is willing to learn a noisy weighted sum. Interestingly dynamic leaves and joins are supported

with the cost of shared secrets between the smart meter and all the Aggregators. Aggregators

also, unless they collude they cannot learn individual meterings.

Chan et al. [42] devised a privacy preserving aggregation scheme that computes the sum of

users’ data, and handles user joins and leaves of smart meters and arbitrary user failures. The

decrypted sum is perturbed with geometric noise which ensures differential privacy. Nonetheless,

this solution calls for a fully trusted dealer that is able to decrypt users’ individual data. The
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authors in [104] presented a solution to tackle the issue of key redistribution after a user joins or

leaves. The propounded solution is based on a ring based grouping technique in which users are

clustered into disjoint groups, and consequently, whenever a user joins or leaves only a fraction

of the users is affected.

The existing work that resembles the most ours is the work of [92, 132]. Actually, Song

et al. [132] employs an additively homomorphic encryption scheme with differential noise to

ensure Aggregator obliviousness. The proposed solution is based on a linear correlation between

the keys which is known to the untrusted Aggregator. However the decrypted sum is encoded

as an exponent, thus forcing a small plaintext space. Whereas Joye et al. [92] designed a

solution that addresses the efficiency issues of [132]. Notably, Joye et al. [92] introduced a

nifty solution to compute discrete logarithms in composite order groups in which the decision

composite residuosity problem is intractable. Still, the scheme in [92] depends on a fully trusted

key dealer which renders the scheme impractical for a real world application. Moreover, both

schemes do not tackle either the issue of dynamic group management or user failures.

6.3 Problem Statement

We consider a scenario where an Aggregator A would like to compute the aggregate sum of the

private data of some users Ui. Similarly to the work of [92] and [132], we restrict ourselves to

time-series data which is a series of data point observations measured at equally spaced time

intervals. A straightforward approach to compute the aggregate sum would be encrypting Ui’s

individual data using the public key of A. This solution however relies on a trusted Aggregator

which first decrypts the users’ individual data using its secret key then computes the sum. To

tackle this issue, [92] and [132] employ a combination of secret sharing techniques and additively

homomorphic encryption to enable Aggregator A to compute the sum of users’ data without

compromising users’ privacy. The idea is to have a trusted third party called key dealer that

provides each user Ui with a secret share ski while supplying the Aggregator A with the secret

key skA defined as −∑ ski. Each user Ui encrypts its private data using its secret share ski

and forwards the resulting ciphertext to the Aggregator, which in turn combines the received
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ciphertexts so as to obtain an encryption of the sum of the users’ data that can be decrypted

using the Aggregator’s secret key skA.

Although such solutions prevent the Aggregator from learning users’ confidential data, they

suffer from two main limitations which we aim to address in this chapter. The first limitation is

that they build upon the assumption that the key dealer is trusted and does not have any interest

in undermining user privacy. Whereas the second shortcoming –which is generally overlooked– is

that these solutions only support static groups of users and as a result they are fault intolerant.

Namely, in the case of user failures, Aggregator A cannot compute the aggregate sum. Along

these lines, we propose a solution for privacy preserving data aggregation of time-series data that

draws upon the work of [92] and which in addition to supporting dynamic group management

and arbitrary user failures does not depend on trusted key dealers. The idea is to introduce

an intermediary untrusted party that we call Collector, which helps the Aggregator A with the

computation of the sum of users’ individual data, without any prior distribution of secret keys

by a trusted dealer.

6.3.1 Entities

A scheme for dynamic and privacy preserving data aggregation for time-series involves the

following entities:

• Users Ui: At each specific time interval t, each user Ui produces a data point xi,t that it

wants to send to an Aggregator. Each data point contains private sensitive information

pertaining to user Ui. To protect the confidentiality of the value of xi,t against the Aggre-

gator and eavesdroppers, user Ui encrypts xi,t using some secret input ski and forwards the

resulting ciphertext ci,t to the Aggregator. It also sends to the Collector some auxiliary

information auxi,t that will be used later to compute the aggregate sum of individual data.

Without loss of generality, we denote U the set of users Ui in the system.

• Collector C: It is an untrusted party which upon receiving the auxiliary information auxi,t

sent by users Ui ∈ U at time interval t computes a function g of auxi,t. Hereafter, we

denote auxt the output of function g at time interval t.
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• Aggregator A: It is an untrusted entity which upon receipt of ciphertexts ci,t and the

auxiliary information auxt at time interval t computes the sum
∑

Ui∈U
xi,t over the data

points xi,t underlying ciphertexts ci,t.

6.3.2 Privacy Preserving and Dynamic Time-Series Data Aggregation

A privacy preserving and dynamic time-series data aggregation protocol consists of the following

algorithms:

• Setup(1λ) → (P, skA, skC , {ski}Ui∈U): It is a randomized algorithm which on input of a

security parameter λ, outputs the public parameters P that will be used by subsequent

algorithms, the secret key skA of Aggregator A, the secret key skC of Collector C and the

secret keys {ski}Ui∈U of users Ui.

• Encrypt(t, ski, xi,t) → ci,t: It is a deterministic algorithm which on input of time interval

t, secret key ski of user Ui and data point xi,t, encrypts xi,t and outputs the resulting

ciphertext ci,t.

• Collect((auxi,t)Ui∈U, skC) → auxt: It is a deterministic algorithm executed by Collector C

which on input of the auxiliary information (auxi,t)Ui∈U provided by individual users Ui
and Collector C’s secret key skC computes a function g over auxi,t and outputs the result

auxt.

• Aggregate({ci,t}Ui∈U, auxt, skA) → ∑
xi,t: It is a deterministic algorithm run by Aggre-

gator A. It takes as inputs ciphertexts {ci,t}Ui∈U, auxiliary information auxt supplied by

Collector C and the secret key skA of the Aggregator A, and outputs the sum
∑
xi,t, where

xi,t is the plaintext underlying ciphertext ci,t.

6.3.3 Privacy Definitions

In accordance with the work of [92,132], we assume in this chapter an honest-but-curious model.

This means that while the participants in the protocol are interested in learning the individual

data of users, they still comply with the aggregation protocol. Namely, users are always presumed
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to submit a correct input to the aggregation protocol. Actually, data pollution attacks where

users submit bogus values to the Aggregator is orthogonal to the problem of privacy preserving

data aggregation. We also assume that while users Ui may collude with either Aggregator A or

Collector C by disclosing their private inputs, Aggregator A and Collector C never collude.

In this section, we present two formalizations: The first one defines privacy against Aggre-

gator A which we call in compliance with previous work Aggregator obliviousness, whereas the

second formalization defines privacy against Collector C which we refer to as Collector oblivi-

ousness.

6.3.3.1 Aggregator Obliviousness

Aggregator Obliviousness (AO) ensures that for each time interval t, the Aggregator learns

nothing other than the value of
∑
Ui∈U xi,t from ciphertexts ci,t and the auxiliary information

auxt that it receives from users Ui ∈ U and Collector C respectively. It ensures also that even

if Aggregator A colludes with an arbitrary set of users K ⊂ U, it will only be able to learn the

value of the aggregate sum of honest users (i.e.
∑

Ui∈U\K

xi,t) and nothing else.

To formally capture the capabilities of an Aggregator A against the privacy of aggregation

protocols, we assume that A is given access to the following oracles:

• Osetup,A: When called, this oracle provides Aggregator A with the public parameters

denoted P of the aggregation protocol and any secret information skA that may be needed

by Aggregator A to perform the aggregation.

• Oencrypt: When queried with time t, identifier uidi of some user Ui and a data point xi,t,

oracle Oencrypt outputs the encryption ci,t of xi,t in time interval t using Ui’s secret key ski.

• Ocorrupt: When queried with the identifier uidi of some user Ui, the oracle Ocorrupt returns

the secret key ski of user Ui.

• Ocollect,A: When called with time t, this oracle returns the auxiliary information auxt that

Collector C computed during time interval t. We note that in schemes such as [92, 132]

where a Collector is not needed, the Aggregator will not call this oracle.
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Algorithm 1 Learning phase of the Aggregator obliviousness game

(P, skA)← Osetup,A; // A executes the following a polynomial number of times
ski ← Ocorrupt(uidi);
A → t;
// A is allowed to call Oencrypt for all users Ui

ci,t ← Oencrypt(t, uidi, xi,t);
auxt ← Ocollect,A(t);

Algorithm 2 Challenge phase of the Aggregator obliviousness game

A → t∗,S∗;
A → X 0

t∗ ,X 1
t∗ ;

〈(cbi,t∗)Ui∈S∗ , auxbt∗〉 ← OAO(X 0
t∗ ,X 1

t∗);
A → b∗;

• OAO: When called with a subset of users S ⊂ U and with two time-series (Ui, t, x0
i,t)Ui∈S

and (Ui, t, x1
i,t)Ui∈S such that

∑
x0
i,t =

∑
x1
i,t, this oracle flips a random coin b ∈ {0, 1}

and returns an encryption of the time-serie (Ui, t, xbi,t)Ui∈S (that is the tuple of ciphertexts

(cbi,t)Ui∈S) and the corresponding auxiliary information auxbt that Aggregator A should

receive from the Collector in time interval t.

Aggregator A has access to the above oracles in two phases: a learning and a challenge phase.

In the learning phase (cf. Algorithm 1), Aggregator A first calls the oracle Osetup,A that provides

A with the set of public parameters P associated with the aggregation protocol together with

any secret information skA that Aggregator A may need to execute the aggregation correctly.

Next, A compromises users Ui by calling the oracle Ocorrupt which returns the secret keys of

compromised users. Then, A picks a time interval t and issues encryption queries (t, uidi, xi,t) to

the oracle Oencrypt which outputs the corresponding ciphertexts ci,t. Finally, A calls the oracle

Ocollect to get the auxiliary information auxt computed by Collector C in time interval t.

In the challenge phase (see Algorithm 2), Aggregator A chooses a subset S∗ of users that

were not compromised and a challenge time interval t∗ for which it did not make an encryption

query during the learning phase. A then submits two time-series X 0
t∗ = (Ui, t∗, x0

i,t∗)Ui∈S∗ and

X 1
t∗ = (Ui, t∗, x1

i,t∗)Ui∈S∗ to the oracle OAO, such that
∑
x0
i,t =

∑
x1
i,t. Oracle OAO accordingly

flips a coin b ∈ {0, 1} and returns the encryption (cbi,t∗)Ui∈S∗ of the time-serie X bt∗ and the

auxiliary information auxbt∗ computed by Collector C for time interval t∗. At the end of the
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challenge phase, Aggregator A outputs a guess b∗ for the bit b.

We say that Aggregator A succeeds in the Aggregator obliviousness game, if its guess b∗ = b.

Definition 41 (Aggregator Obliviousness). An aggregation protocol is said to ensure Aggregator

obliviousness if for any Aggregator A, the probability Pr(b = b∗) 6 1
2 +ε(λ), where ε is a negligible

function, and λ is the security parameter.

6.3.3.2 Collector Obliviousness

Collector Obliviousness (CO) guarantees that Collector C cannot infer any information about

the private input of individual users Ui either from the messages it receives directly from the

users or the protocol exchange between the users and the Aggregator. It also entails that even

in the case where Collector C colludes with a set of users K, it does not gain any additional

information about the individual values of honest users Ui in U \K.

To formally reflect the adversarial capabilities of Collector C against aggregation protocols,

we assume that in addition to the oracles Oencrypt and Ocorrupt, Collector C is given access to the

following oracles:

• Osetup,C : When queried, this oracle supplies Collector C with the public parameters denoted

P of the aggregation protocol and any secret information skC that Collector C may need

during the aggregation protocol.

• Ocollect,C : When invoked with time t, identifier uidi of some user Ui and ciphertext ci,t, this

oracle returns the auxiliary information auxi,t that corresponds to ciphertext ci,t that user

Ui computed during time interval t.

• OCO: When called with a subset of users S ⊂ U and with two time-series (Ui, t, x0
i,t)Ui∈S

and (Ui, t, x1
i,t)Ui∈S, this oracle flips a random coin b ∈ {0, 1} and returns to Collector

C an encryption of the time-serie (Ui, t, xbi,t)Ui∈S (i.e. the ciphertexts (cbi,t)Ui∈S) and the

corresponding auxiliary information computed by users Ui ∈ S (i.e. (auxbi,t)Ui∈S).

Collector C accesses the aforementioned oracles in a learning and a challenge phase. In the

learning phase (cf. Algorithm 3), Collector C first queries the oracleOsetup,C which supplies C with
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Algorithm 3 Learning phase of the Collector obliviousness game

(P, skC)← Osetup,C ; // C executes the following a polynomial number of times
ski ← Ocorrupt(uidi);
C → t;
// C is allowed to call Oencrypt and Ocollect,C for all users Ui

ci,t ← Oencrypt(t, uidi, xi,t);
auxi,t ← Ocollect,C(t, uidi, ci,t);

Algorithm 4 Challenge phase of the Collector obliviousness game

C → t∗,S∗;
C → X 0

t∗ ,X 1
t∗ ;

(〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ ← OCO(X 0
t∗ ,X 1

t∗) ;
C → b∗ ;

the set of public parameters P of the aggregation protocol and the secret information skC that

Collector C should have to execute the aggregation properly. Then, C calls the oracle Ocorrupt to

compromise users in the system. Next, it selects a time interval t and submits encryption queries

(t, uidi, xi,t) to the oracle Oencrypt which outputs the corresponding ciphertexts ci,t. Finally, it

issues queries (t, uidi, ci,t) to the oracle Ocollect,C to get the auxiliary information auxi,t generated

by users Ui for time interval t and ciphertext ci,t.

In the challenge phase (see Algorithm 4), Collector C selects a subset S∗ of honest users

and a challenge time interval t∗ for which it did not make an encryption query in the learn-

ing phase. Then, C queries the oracle OCO with two time-series X 0
t∗ = (Ui, t∗, x0

i,t∗)Ui∈S∗ and

X 1
t∗ = (Ui, t∗, x1

i,t∗)Ui∈S∗ . OCO then picks randomly a bit b ∈ {0, 1} and returns the tuple

(〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ for the time-serie X bt∗ . At the end of the challenge phase, Collector C out-

puts a guess b∗ for the bit b.

We say that Collector C succeeds in the Collector obliviousness game, if its guess b∗ = b.

Definition 42 (Collector Obliviousness). An aggregation protocol is said to ensure Collector

obliviousness if for any Collector C, the probability Pr(b = b∗) 6 1
2 + ε(λ), where ε is a negligible

function, and λ is the security parameter.
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6.4 Idea of Solution

The homomorphic scheme suggested by Joye and Libert [92] allows an untrusted Aggregator to

evaluate the sum or the average without any access to individual data. However to support this

functionality, a fully trusted dealer has to distribute secret keys to each user Ui and as a result,

it will be able to decrypt. Our scheme extends Joye and Libert scheme [92] through two major

enhancements :

• No key dealer: Our scheme does not require a trusted key dealer that might get individual

private data samples.

• Dynamic group management: In the Joye and Libert scheme [92], each join or leave

operation triggers a new key redistribution for all the users in the aggregation system,

whereas in our protocol, join and leave operations are possible without any key update at

the users. Hence, dynamic group management is assured with significantly lower commu-

nication and computation overhead. The proposed protocol is also resilient to user failures

that may occur due to communication errors or hardware failures.

In order to eliminate the need for a fully trusted dealer and to support dynamic group

management without inducing additional communication or computation overhead, we employ

two techniques:

• Responsibility splitting mechanism: Each user Ui sends an encryption of its private data

sample to Aggregator A and an obfuscated version of its secret key ski to the semi trusted

Collector C, in such a way that neither the Aggregator nor the Collector can violate the

privacy of individual samples provided by users.

• Self-generation of secret keys: The secret keys used to encrypt individual data samples are

generated independently by users with no coordination by a trusted key dealer.

An overview of our solution is depicted in figure 6.1. Each user Ui chooses independently

its secret key ski whereas the untrusted Aggregator generates a random key skA. For each time

interval t, Aggregator A publishes an obfuscated version pkA,t of the secret key skA. Users Ui
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Figure 6.1: Overview of our protocol for a single time interval t. pkA,t is public known value.

on the other hand encrypt their private data samples xi,t with their secret keys ski using the

Joye-Libert cryptosystem, and send the corresponding ciphertexts ci,t to Aggregator A. They

also obfuscate their secret keys ski using pkA,t and send the resulting auxiliary information auxi,t

to Collector C through a secure channel. Collector C computes a function g(t) of the auxiliary

information auxi,t it has received and forwards the output auxt to Aggregator A. Upon receiving

the ciphertexts ci,t and the auxiliary information auxt, A uses its secret key skA and learns the

sum
∑
xi,t for the time interval t.

In this manner, we eliminate the need of a trusted key dealer that knows users’ private keys

while ensuring that neither the Aggregator nor the Collector can infer information about users’

individual data, and we achieve efficient dynamic group management that does not call for any

key update mechanism.

6.5 Protocol Description

Without loss of generality, we assume in the remainder of this section that the aggregation

system comprises n users denoted U = {U1, ...,Un}.
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Now before providing the description of our solution, we first give a brief overview of the

Joye-Libert (JL) scheme [92].

6.5.1 Joye-Libert Scheme

• SetupJL: A trusted dealer D selects randomly two safe prime numbers p and q and sets

N = pq. Then, it defines a cryptographic hash function H : Z → Z∗N2 and outputs the

public parameters PJL = (N,H). Finally, the dealer D distributes to each user Ui ∈ U a

secret key ski ∈ [0, N2] and sends skA = −∑n
i=1 ski to the untrusted Aggregator A.

We note that hereafter all computations are performed ”modN2” unless mentioned other-

wise.

• EncryptJL: For each time interval t, each user Ui encrypts its private data xi,t using the

secret key ski and outputs the ciphertext ci,t = (1 +xi,tN)H(t)ski mod N2. We point out

that ciphertexts ci,t fulfills the following property:

n∏

i=1

ci,t =
n∏

i=1

(1 + xi,tN)H(t)ski = (1 +
n∑

i=1

xi,tN)H(t)
∑n
i=1 ski

= (1 +
n∑

i=1

xi,tN)H(t)−skA

• AggregateJL: Upon receiving ci,t the untrusted Aggregator computes

Pt =

n∏

i=1

ci,tH(t)skA = 1 +

n∑

i=1

xi,tN mod N2

and recovers
∑n

i=1 xi,t by computing Pt−1
N in Z. The value Pt−1

N is meaningful as long as

∑n
i=1 xi,t < N .

We recall that the JL scheme is Aggregator oblivious in the random oracle model under the

decisional composite residuosity (DCR) assumption (cf. [92]).
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6.5.2 Description

Our protocol runs in four phases:

• Setup: A trusted third party T P selects two safe primes p and q, sets N = pq, and picks a

cryptographic hash function H : {0, 1}∗ → Z∗N2 . T P then publishes the public parameters

P = (N,H) and goes offline. Next, AggregatorA generates a random secret key skA ∈ Z∗N2 ,

and each user Ui ∈ U independently chooses its random secret key ski ∈ [0, N2] without

any coordination by a trusted key dealer.

It is important to note here that contrary to the JL scheme, the trusted third party T P

does not know the individual secret keys of users Ui, and once the public parameters P

are published it can go offline.

• Encrypt: For each time interval t, each user Ui encrypts its private data xi,t using its secret

key ski and the algorithm EncryptJL as shown in subsection 6.5.1, and sends the resulting

ciphertext ci,t = (1 + xi,tN)H(t)ski mod N2 to Aggregator A.

• Collect: For each time interval t, Aggregator A publishes pkA,t = H(t)skA . Each user Ui
then computes the auxiliary information auxi,t = pkski

A,t = H(t)skAski using its secret key ski

and sends auxi,t to Collector C through a secure channel.

Upon receiving auxi,t (1 6 i 6 n) from users Ui ∈ U, Collector C computes

auxt =
n∏

i=1

auxi,t =
n∏

i=1

H(t)skAski = H(t)skA
∑n
i=1 ski

and sends the result to Aggregator A.

Notice here that C does not obtain the secret value H(t)ski employed by users Ui during the

encryption, rather it only learns an obfuscated encoding of it which is auxi,t = H(t)skAski .

• Aggregate: Upon receiving the ciphertexts ci,t (1 6 i 6 n) and the auxiliary information
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auxt, Aggregator A calculates:

Pt = (

n∏

i=1

ci,t)
skA = ((1 +

n∑

i=1

xi,tN)H(t)
∑n
i=1 ski)skA

= (1 +

n∑

i=1

xi,tN)skAH(t)skA
∑n
i=1 ski

Since the order of (1 +
∑n

i=1 xi,tN) in Z∗N2 is either N or divisor of N , we have:

Pt = (1 +

n∑

i=1

xi,tN)sk′AH(t)skA
∑n
i=1 ski = (1 + sk′A

n∑

i=1

xi,tN)H(t)skA
∑ski
i=1

where sk′A = skA mod N .

Finally, Aggregator A computes It =
Pt

auxt
−1

N = sk′A
∑n

i=1 xi,t in Z and evaluates Rt =

sk′A
−1
It mod N =

∑n
i=1 xi,t mod N to obtain the sum of xi,t. Notice that since skA ∈

Z∗N2 , sk′A is in Z∗N . Now to obtain the average of the data points xi,t, Aggregator A

computes Rt
n in Z.

As in [92], the result of the aggregation is meaningful as long as
∑n

i=1 xi,t < N .

6.5.3 Privacy Analysis

Now the privacy of the above scheme can be stated as follows:

6.5.3.1 Aggregator Obliviousness

Theorem 5. The proposed solution ensures Aggregator obliviousness under the decisional com-

posite residuosity (DCR) assumption in Z∗N2.

Proof. Assume there is an Aggregator A that breaks the Aggregator obliviousness of our scheme

with a non-negligible advantage ε. We show in what follows that there exists an Aggregator B

that uses A to break the Aggregator obliviousness of the JL protocol (which is ensured under

DCR) with a non-negligible advantage ε.
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For ease of exposition, we denote OJL
setup, OJL

corrupt, OJL
encrypt and OJL

AO the oracles needed for the

Aggregator obliviousness game of the JL protocol. We also assume that the aggregation system

of the JL scheme involves n users U = {U1, ...,Un}, each endowed with secret key ski.

Now to break the Aggregator obliviousness of the JL scheme, Aggregator B simulates the

Aggregator obliviousness game of our scheme for Aggregator A as follows:

Learning phase:

• To simulate the oracle Osetup,A for Aggregator A, B first invokes the oracle OJL
setup which

returns the public parameters P = {N,H} (where N is the product of two safe primes,

and H : Z → Z∗N2 is a cryptographic hash function) and the Aggregator secret key skB.

We recall that according to the description of the JL scheme skB = −∑n
i=1 ski. Then,

B supplies Aggregator A in our scheme with the public parameters P = {N,H}. After

receiving P, Aggregator A selects a secret key skA ∈ Z∗N2 and for each time interval t it

publishes pkA,t = H(t)skA .

• Whenever A submits a corruption query for some user Ui to the oracle Ocorrupt, B relays

this query to the corruption oracle OJL
corrupt of the JL scheme which accordingly returns the

secret key ski of user Ui.

• Whenever A calls the encryption oracle Oencrypt with an encryption query (t, uidi, xi,t),

B forwards this query to OJL
encrypt which returns the matching ciphertext ci,t = (1 +

xi,tN)H(t)ski to B. Next, B provides A with ci,t.

• Whenever A queries the collection oracle Ocollect,A with time interval t, B computes auxt =

pk−skB
A,t which it returns to A. Note that auxt = pk−skB

A,t = H(t)−skAskB = H(t)skA
∑

ski

corresponds to the actual auxiliary information that a Collector in our scheme could have

computed.

Challenge phase: In the challenge phase, A chooses a subset S∗ of users that were not

compromised and a challenge time interval t∗ for which it did not make an encryption query

during the learning phase. A publishes pkA,t∗ = H(t∗)skA . A then submits two time-series
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X 0
t∗ = (Ui, t∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t∗, x1

i,t∗)Ui∈S∗ such that
∑
x0
i,t∗ =

∑
x1
i,t∗ to B which

simulates oracle OAO as follows:

• It submits the time-series X 0
t∗ and X 1

t∗ to the oracle OJL
AO which picks randomly b ∈ {0, 1}

and returns the encryption (cbi,t)Ui∈S∗ for the time-serie X bt∗ .

• Then it computes the auxiliary information auxbt∗ = pk−skB
A,t∗ = H(t∗)−skAskB =

H(t∗)skA
∑

ski matching the time interval t∗.

• Finally, B returns (cbi,t∗)Ui∈S∗ and auxbt∗ to A.

It is important to notice here that Aggregator A cannot tell whether it is interacting with

the actual oracles or with Aggregator B during this simulated game. As a matter of fact, the

messages that A receives during this simulation are correctly computed.

At the end of the challenge phase, A outputs a guess b∗ for the bit b. Note that if A has a non-

negligible advantage ε in breaking the Aggregator obliviousness of our scheme, then this entails

that it outputs a correct guess b∗ for the bit b with a non-negligible advantage ε. Notably, if A

outputs b∗ = 1, then (cbi,t∗)Ui∈S is an encryption of time-serie X 1
t∗ ; otherwise it is an encryption

of time-serie X 0
t∗ . Now to break the Aggregator obliviousness of the JL scheme, B outputs the

bit b∗.

To conclude, if there is an Aggregator A which breaks the Aggregator obliviousness of our

solution, then there exists an Aggregator B which breaks the Aggregator obliviousness of the

JL scheme with the same non-negligible advantage ε. This leads to a contradiction under the

decisional composite residuosity assumption in Z∗N2 .

6.5.3.2 Collector Obliviousness

Theorem 6. The proposed scheme assures Collector obliviousness in the random oracle model

under the decisional composite residuosity (DCR) assumption in Z∗N2, the quadratic residuosity

(QR) assumption in Z∗N and the decisional Diffie-Hellman (DDH) assumption in the subgroup

of quadratic residues in Z∗N .
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Proof. Assume there is a Collector C that breaks the Collector obliviousness of our scheme with

a non-negligible advantage ε. We show in what follows that there exists an Aggregator B that

uses C to break the Aggregator obliviousness of the JL protocol (which is ensured under DCR)

with a non-negligible advantage ε′.

To break the Aggregator obliviousness of the JL scheme, Aggregator B simulates the Collector

obliviousness game of our scheme to Collector C as follows:

Learning phase:

• To simulate the oracle Osetup,C for Collector C, B first queries the oracle OJL
setup which

returns the Aggregator’s secret key skB and the public parameters P = {N,H} (where

N is the product of two safe primes and H : Z → Z∗N2 is a cryptographic hash function).

Then, B supplies Collector C with the public parameters P = {N,H}. Finally, Aggregator

B picks randomly skA ∈ Z∗N2 and for each time interval t, B simulates Aggregator A by

publishing pkA,t = H(t)skA .

• Whenever C queries the oracle Ocorrupt for some user Ui, B forwards the query to the

corruption oracle of the JL scheme OJL
corrupt which outputs the secret key ski of user Ui.

• Whenever C submits an encryption query (t, uidi, xi,t) to oracle Oencrypt, B sends this query

to OJL
encrypt which returns the matching ciphertext ci,t = (1 + xi,tN)H(t)ski to B. B then

provides C with ciphertext ci,t.

• Whenever C queries the collection oracle Ocollect,C with time interval t, user identifier uid

and ciphertext ci,t, B simulates Ocollect,C as follows:

– It submits the encryption query (t, uidi, 0) to OJL
encrypt which returns accordingly (1 +

0 ·N)H(t)ski = H(t)ski .

– Then using skA it computes auxi,t = H(t)skiskA .

It is noteworthy that the messages that C received so far are correctly computed. This entails

that C cannot detect during the learning phase that it is interacting with Aggregator B.

Challenge phase: In the challenge phase, C chooses a subset S∗ of users that were not

compromised and a challenge time interval t∗ for which it did not make an encryption query
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during the learning phase. Next, C submits two time-series X 0
t∗ = (Ui, t∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ =

(Ui, t∗, x1
i,t∗)Ui∈S∗ to B which simulates oracle OCO as follows:

• It picks time-serie X 0
t∗ and generates a new time serie X ′1t∗ = (Ui, t∗, x′1i,t∗)Ui∈S∗ such that

∑
x0
i,t =

∑
x′1i,t and provides oracle OJL

AO with the time series X 0
t∗ and X ′1t∗ . OJL

AO conse-

quently flips a coin b ∈ {0, 1} and returns the tuple of ciphertexts (cbi,t∗)Ui∈S∗ such that

(cbi,t∗)Ui∈S∗ is an encryption of the time-serie X 0
t∗ if b = 0; otherwise, it is an encryption of

the time-serie X ′1t∗ .

• Upon receipt of (cbi,t∗)Ui∈S∗ , B selects randomly pkA,t∗ ∈ Z∗N2 , and computes auxbi,t∗ of each

user Ui ∈ S by picking a random number rbi,t∗ ∈ Z∗N2 and setting auxbi,t∗ = rbi,t∗ .

• Finally, B gives (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ to Collector C. It is important to indicate here that

under the DDH assumption and the random oracle model, C cannot detect that pkA,t∗

and auxbi,t∗ are generated randomly, instead of being computed as pkA,t∗ = H(t∗)skA and

auxi,t∗ = H(t∗)skiskA (cf. Lemma 7).

Lemma 7. In the random oracle model, Collector C cannot detect that pkA,t∗ and (auxi,t∗)Ui∈S∗

are generated randomly under the decisional composite residuosity (DCR) assumption in Z∗N2,

the quadratic residuosity (QR) assumption in Z∗N and the decisional Diffie-Hellman (DDH)

assumption in the subgroup of quadratic residues in Z∗N .

The proof of lemma 7 can be found in the Appendix Chapter. Now notice that if b = 0 and

if C does not detect that 〈(auxi,t∗)Ui∈S∗ , pkA,t∗〉 are generated randomly, then from the point of

view of Collector C (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ corresponds to a well formed tuple for the time-serie

X 0
t∗ , and as a result, C will have a non-negligible advantage ε in breaking Collector obliviousness

of our scheme. Notably, C will output the correct guess b∗ = 0 for the bit b with a non-

negligible advantage ε. In this case, if B outputs the bit b∗ = 0 then it will break the Aggregator

obliviousness of the JL scheme with a non-negligible advantage ε.

If b = 1, then the tuple (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ is independent of the time-series X 0
t∗ and X 1

t∗

submitted by C. Consequently, C will return with probability 1/2 either the bit b∗ = 1 or the
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bit b∗ = 0. Therefore, to break the Aggregator obliviousness of the JL scheme, all B needs to

do is output b∗.

6.5.4 Dynamic Group Management

Suppose at time interval t a set of users F fail to participate in the protocol execution. This event

does not affect the computation of the aggregate sum by the Aggregator A. Indeed, each user

Ui 6∈ F computes: auxi,t = pkski
A,t and encrypts its data by computing ci,t = (1 + xi,tN)H(t)ski .

Upon receiving the auxiliary information auxi,t from users Ui 6∈ F, Collector C computes auxt =
∏

Ui 6∈F
auxi,t =

∏

Ui 6∈F
H(t)skAski . When Aggregator A receives the ciphertexts ci,t from users Ui 6∈ F

and auxt from Collector C, it first computes the product
∏

Ui 6∈F
ci,t and computes as depicted above

the value of
∑

Ui 6∈F
xi,t. Thus, our solution will still function correctly even when an arbitrary

number of users fail to submit their contributions to the protocol as long as Collector C operates

properly.

Similarly, if a set of k new users J = {U∗1 , ...,U∗k} join the protocol at time t, nothing changes

from the point of view of Aggregator A and Collector C. Notably, the new users U∗i compute the

auxiliary information aux∗i,t = pk
sk∗i
A,t corresponding to their ciphertexts c∗i,t. The Collector C in

turn evaluates the product auxt =
∏

Ui∈U
auxi,t ×

∏

U∗i ∈J
aux∗i,t, whereas the Aggregator A calculates

the product
∏

Ui∈U
ci,t ×

∏

U∗i ∈J
c∗i,t. Now provided with auxt and the secret key skA, Aggregator A

can derive the sum
∑

Ui∈U
xi,t +

∑

U∗i ∈J
x∗i,t.

6.6 Evaluation

Table 7.1 depicts the theoretical computational and communication costs of our protocol. In each

time interval t, Aggregator A first publishes pkA,t = H(t)skA , whereas each user Ui computes the

ciphertext ci,t = (1+xi,tN)H(t)ski which consists of one exponentiation, one multiplication, one

addition and one hash evaluation in Z∗N2 . User Ui also performs an additional exponentiation

to compute the auxiliary information auxi,t = pkski
A,t = H(t)skAski ∈ Z∗N2 . Then, the Collector
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receives the auxiliary information auxi,t (1 6 i 6 n) and computes the product auxt =
∏n
i=1 auxi,t

which calls for n−1 multiplications in Z∗N2 . Finally, the Aggregator computes the sum
∑n

i=1 xi,t

by performing n − 1 multiplications, one exponentiation, one division in Z∗N2 and one division

in Z. Moreover, if l is the size in bits of N , then each user Ui sends 2l bits for ciphertext ci,t to

Aggregator A and 2l bits for auxi,t to Collector C. As such, the overall communication cost per

user is 4l per time interval.

Algorithm Computation Communication

User 2EXP +1MULT +1ADD +1HASH 4 · l
Aggregator 2EXP +2DIV +(n− 1) MULT +1HASH 2 · l
Collector (n− 1) MULT 2 · l

Table 6.1: Performance analysis

6.6.1 Implementation

In order to show the feasibility of our protocol, we implemented a prototype in different hardware

platforms. First we implemented our scheme in Python 3.2.3 using Charm [9, 10]. Charm is a

Python library that provides cryptographic abstraction in order to build security protocols. The

PC benchmarks run on an Intel Core i5 CPU M 2430 @ 2.40GHz × 4 with 6GB of memory

machine, running Ubuntu 12.04 64bit. The implementation has been merged with the Charm

library, which is maintained at John Hopkins University1. In order to show the feasibility and

the efficiency of our protocol we measured the encryption time, which includes the computational

overhead of the auxiliary information auxi,t and the computation of the ciphertext by each user.

Due to the simple mathematical operations involved in the computation of the ciphertext and

the auxiliary information, the user side overhead is very low. In our benchmark analysis, we also

included the running time of an Aggregator to decrypt the sum, and the cost of the Collector

which aggregates auxiliary information and sends it to the Aggregator. We included different

number of users in order to show the scalability of the protocol and different security parameters

with respect to the bit-length of moduli N . As it was expected Aggregator’s decryption time is

proportional on and the size of the users.

1https://github.com/JHUISI/charm/blob/dev/charm/schemes/lem_scheme.py
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We also put forward a comparison with Joye et al. [92] scheme in order to see the differences

of the two schemes. The extra auxiliary information that is computed by each user increases the

encryption time, and the total decryption overhead as well, since the Collector needs to aggregate

all auxi,t. However, that extra overhead, allows efficient fault tolerance and dynamicity, since

there is no further key distribution phase, in contrast with the work in [92].

In order to demonstrate the feasibility of our scheme in an ubiquitous environment we also

performed a benchmark analysis on cubieboard2, which is a single board computer, with 1 GB

RAM running on ARM Cortex-A7 Dual-Core. The operating system on top of cubieboard2

platform is Ubuntu/Linaro 4.8.2. In order to boost efficiency we implemented our scheme in

standard ANSI C using libgmp 6.0.0 and openssl 1.0.1. As with the benchmarks on a PC,

we measured the encryption time per user and the overhead of the Collector and Aggregator in

order for the latter to learn the sum.

Finally we deployed the Python code on a mobile device. We used for our implementation a

SAMSUNG I9500 S4 smart phone with 2GB RAM and a quad-core 1.6 GHz Cortex A5 processor

with Android 4.2.2. For this setting, we are envisioning mobile phones as end users that send

their values encrypted to an Aggregator. As such we measured the cost on the user side only.

6.6.1.1 PCs

In this section we make a performance analysis on PCs. In table 6.2 we present our results that

show the scalability for aggregation. Namely, for a different number of users we measured the

time that the Aggregator needs to compute the sum and the time that the Collector needs to

aggregate all the auxiliary information auxi,t. There is a growing overhead as the number of

users increases: From ≈ 30 ms in order to decrypt the sum of 500 users, the computational

overhead is increased to ≈ 1 minute for 1 million users and to ≈ 9 minutes for 10 million users

with moduli bit-length 2048. Collector performs operations that are executed in less time than

the Aggregator’s operations, since the Collector does not need to perform costly mathematical

operations as exponentiations or divisions but it only multiplies all the auxiliary information

auxi,t, that is computed by each user. We also changed the moduli size of N to 4096 and as it
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was expected there is an increase at the cost for the Aggregator and the Collector due to the

larger size of the group that the mathematical operations take place (table 6.3).

`````````̀Entity
#Users

500 1K 10K 100K 1M 10M

Collector 0.030 0.056 0.556 5.60 59.72 562.66
Aggregator 0.159 0.190 0.690 5.73 59.22 569.19

Table 6.2: Computational costs in seconds, for Collector and Aggregator when bit-length |N | =
2048 for PC benchmarks.

Table 6.4 presents the overhead on the user side due to the encryption process and the

auxiliary information computation. We performed our analysis for different bit-lengths of N .

Both encryption and auxiliary information computation are very efficient at the scale of ms. The

computational cost for auxiliary information computation is higher than the one of computing

the ciphertext, because the exponentiation performed by each user H(t)ski is being reused during

the ciphertext computation ci,t = (1 + xi,tN)H(t)ski to optimize the encryption.

Finally, we make a comparison with the Joye-Libert scheme. In case of encryption, Joye-

Libert scheme [92] outperforms our scheme since there is no need for auxiliary information

computation at the user side (cf. table 6.5). However the extra computational cost is very

low for both moduli N bit-lengths: 2048 and 4096. We also compared the decryption times.

As it can be seen from figures 6.2a and 6.2b, for a population of users up to 1 million users,

the difference in time for the decryption procedure is slightly higher for our scheme, since we

included the cost of the Collector which aggregates the auxiliary information. The extra cost is

almost doubled in case of 10 million users. These extra overhead of our scheme in comparison

with Joye-Libert scheme [92] comes as a trade-off for supporting dynamicity and fault-tolerance

with minimal extra computational and communication costs for existing users, since there is no

need to perform a new key-distribution phase. In contrast in Joye-Libert scheme [92] at every

dynamic leave or join of user the trusted key dealer has to distribute new secret keys to each

user and to the Aggregator, which increases the communication cost of the scheme and the

computational overhead of the key dealer.
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`````````̀Entity
#Users

500 1K 10K 100K 1M 10M

Collector 0.103 0.206 2.06 20.32 205.74 2034.94
Aggregator 0.574 0.674 2.53 20.77 204.63 2257.87.19

Table 6.3: Computational costs in seconds, for Collector and Aggregator when bit-length |N | =
4096 for PC benchmarks.

`````````̀Algorithm
|N|

2048 4096

Encrypt 0.116 0.4
Aux 0.123 0.44
Total 0.239 0.84

Table 6.4: Computational overhead of users for encryption and auxiliary information in seconds
for different security levels with respect to the bit-length of N implemented on a PC.

XXXXXXXX|N|
Scheme

Our scheme Joye-Libert

2048 0.239 0.156
4096 0.84 0.4

Table 6.5: Comparison in seconds for Encryption.

6.6.1.2 Cubieboard

We implemented our scheme on single board computers: cubieboard2. For this setting we

simulated different users with a single cubieboard2 and the Aggregator and the Collector at

different cubieboard2 platforms. We measured the decryption time for the Aggregator and the

computational overhead of the Collector. In tables 6.6 and 6.7 we can see the computational

overhead in seconds for different security parameters. In order to evaluate the performance on

the user side we randomly selected a possible data range for users’ data and we measured the

total encryption time for different security parameters. We observed that the encryption time

is proportional to the plaintext space. Due to the simplicity of the scheme the encryption time

overall is a very fast process (cf. figure 6.3).

6.6.1.3 Mobile Device

Finally, we implemented our scheme on a mobile device running Android 4.2.2. For the de-

ployment in Android we used the Py3KA package for the Python library for Android and the

scripting layer SL4A. We computed the average encryption time per user with |N | = 2048 and
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Figure 6.2: Decryption comparison with Joye-Libert scheme.

`````````̀Entity
#Users

500 1K 10K

Collector 0.098 0.202 2.015
Aggregator 0.100 0.202 2.014

Table 6.6: Computational costs in seconds,
for Collector and Aggregator when bit-length
|N | = 2048 for cubieboard2 benchmarks.

`````````̀Entity
#Users

500 1K 10K

Collector 0.305 0.629 6.201
Aggregator 0.833 1.166 6.656

Table 6.7: Computational costs in seconds,
for Collector and Aggregator when bit-length
|N | = 4096 for cubieboard2 benchmarks.

the average time to compute the auxiliary information per user. The average encryption time

per user is 0.97 seconds the highest of all of our benchmark results on different platforms and

the auxiliary information computational cost is 1.02 seconds. We also measured the energy

consumption during encryption and is approximately 400mW (cf. Figure 6.4).

The benchmark results showed the practicality and scalability of our scheme on different

platforms ranging from PCs and single board computers to mobile devices. Further code opti-

mization can improve the computational overhead.

6.7 Summary

In this chapter, we presented a privacy preserving solution for time-series data aggregation which

contrary to existing work supports arbitrary user failures and does not depend on trusted key

dealers. The idea is to rely on a semi-trusted Collector which plays the role of an intermediary

between the users and the Aggregator, and which enables the Aggregator to compute the aggre-
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Figure 6.3: User overhead on cubieboard2.

gate sum of users’ private data without undermining users’ privacy. An interesting feature of

the proposed scheme is that users’ joins and leaves do not incur any additional computation or

communication cost at either the users or the Aggregator. Furthermore, the scheme is provably

privacy preserving against honest-but-curious Aggregators and Collectors. Finally, we evaluated

the feasibility of our scheme on different platforms (PC, cubieboard2, Android) and we com-

pared it with the Joye-Libert scheme [92]. The benchmark results demonstrate the practicality

of the propounded solution.
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Figure 6.4: Energy consumption on SAMSUNG S4 - Android 4.2.2.
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7.1 Introduction

In this Chapter we consider a scenario whereby an Aggregator collects individual data from

multiple users which do not interact with each other and executes a function which outputs

an aggregate value. In contrast with the protocol presented in Chapter 6, the result is further

forwarded to a Data Analyzer which can finally extract useful information about the entire

population. Existing PPDCA protocols only focus on the problem of data confidentiality and

consider the Aggregator to be honest-but-curious: the Aggregator is curious in discovering the

content of each individual data, but performs the aggregation operation correctly. Here we con-

sider a more powerful security model, where the Aggregator is assumed to be malicious: The

Aggregator may provide a bogus aggregate value to the Data Analyzer. In order to protect

against such a malicious behavior, we propose that along with the aggregate value, the Aggre-

gator provides a proof of the correctness of the computation of the aggregate result. We also

require the Data Analyzer not to be able to communicate with each user and the result to be

publicly verifiable. Moreover, similarly to the existing solutions, the proposed protocol assures

obliviousness against the Aggregator and the Data Analyzer in the multi-user setting; meaning

that neither the Data Analyzer nor the Aggregator learns individual data inputs.

The underlying idea of our solution is that each user encrypts its data according to Shi et

al. [132] scheme using its own secret encryption key, and sends the resulting ciphertext to the

untrusted Aggregator. Users, also homomorphically tag their data using two layers of random-

ness with two different keys and they forward the tags to the Aggregator. The latter computes

the sum by applying operations on the ciphertexts and it also derives a proof for the correctness

of the result from the tags. The Aggregator finally sends the result and the proof to the Data

Analyzer. The latter verifies the correctness of the computation.

To the best of our knowledge we are the first to define a model for Privacy and Unforgeability

for Data Aggregation (PUDA). We also instantiate a PUDA scheme which mainly pursues

the following three objectives:

• Multi-user setting where multiple users produce personal sensitive data without interacting
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with each other.

• Public verifiability of the aggregate value.

• Privacy of individual data for all participants.

7.2 Related Work

In [37], authors proposed a solution which is based on homomorphic message authenticators

in order to verify the computation of generic functions on outsourced data. Each data input is

authenticated with an authentication tag. A composition of the tags is computed by the cloud in

order to demonstrate the correctness of the output of a program P . Thanks to the homomorphic

properties of the tags the user can verify the correctness of the program. The main drawback of

the solution is that the verifier in order to verify the correctness of the computation has to be

involved in computations that take exactly the same time as the computation of the function

f . Backes et al. [12] proposed a generic solution for efficient verification of bounded degree

polynomials in time less than the evaluation of f . The solution is based on closed form efficient

pseudorandom function PRF . Contrary to our solution both solutions do not provide individual

privacy and they are not designed for a multi-user scenario.

Catalano et al. [39] employed a nifty technique to allow single users to verify computations

on encrypted data. The idea is to re-randomize the ciphertext and sign it with a homomorphic

signature. Computations then are performed on the randomized ciphertext and the original one.

However the aggregate value is not allowed to be learnt in cleartext by the untrusted aggregator

since the protocols are geared for cloud based scenarios.

In the multi-user setting, Choi et al. [47] proposed a protocol in which multiple users are

outsourcing their inputs to an untrusted server along with the definition of a functionality f .

The server computes the result in a privacy preserving manner without learning the result and

the computation is verified by a user that has contributed to the function input. The users

are forced to operate in a non-interactive model, whereby they cannot communicate with each

other. The underlying machinery entails a novel proxy based oblivious transfer protocol, which
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along with a fully homomorphic scheme and garbled circuits allows for verifiability and privacy.

However, the need of fully homomorphic encryption and garbled circuits renders the solution

impractical for a real world scenario.

7.3 Problem Statement

We are envisioning a scenario whereby a set of users U = {Ui}ni=1 are producing sensitive data

inputs xi,t at each time interval t. These individual data are first encrypted into ciphertexts

ci,t and further forwarded to an untrusted Aggregator A. Aggregator A aggregates all the

received ciphertexts, decrypts the aggregate and forwards the resulting plaintext to a Data

Analyzer DA together with a cryptographic proof that assures the correctness of the aggregation

operation, which in this Chapter corresponds to the sum of the users’ individual data. An

important criterion that we aim to fulfill is allowing Data Analyzer DA to verify the correctness

of the Aggregator’s output without compromising users’ privacy. Namely, at the end of the

verification operation, both Aggregator A and Data Analyzer DA learn nothing, but the value

of the aggregation. While homomorphic signatures proposed in [29, 66] seem to answer the

verifiability requirement, these solutions only consider scenarios where a single user generates

data.

In the aim of assuring both individual user’s privacy and unforgeable aggregation, we first

come up with a generic model for privacy preserving and unforgeable aggregation that identi-

fies the algorithms necessary to implement such functionalities and defines the corresponding

privacy and security models. Furthermore, we propose a concrete solution which combines an

already existing privacy preserving aggregation scheme [132] with an additively homomorphic

tag designed for bilinear groups.

Notably, a scheme that allows a malicious Aggregator to compute the sum of users’ data

in privacy preserving manner and to produce a proof of correct aggregation will start by first

running a setup phase. During setup, each user receives a secret key that will be used to encrypt

the user’s private input and to generate the corresponding authentication tag; the Aggregator

A and the Data Analyzer DA on the other hand, are provided with a secret decryption key

116



CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

and a public verification key, respectively. After the key distribution, each user sends its data

encrypted and authenticated to Aggregator A, while making sure that the computed ciphertext

and the matching authentication tag leak no information about its private input. On receiving

users’ data, Aggregator A first aggregates the received ciphertexts and decrypts the sum using its

decryption key, then uses the received authentication tags to produce a proof that demonstrates

the correctness of the decrypted sum. Finally, Data Analyzer DA verifies the correctness of the

aggregation, thanks to the public verification key.

7.3.1 PUDA Model

A PUDA scheme consists of the following algorithms:

• Setup(1λ)→ (P, skA, {ski}Ui∈U, vk): It is a randomized algorithm run by a trusted dealer

KD, which on input of a security parameter λ outputs the public parameters P that will

be used by subsequent algorithms, the Aggregator A’s secret key skA, the secret keys ski

of users Ui and the public verification key vk.

• EncTag(t, ski, xi,t) → (ci,t, σi,t): It is a randomized algorithm which on inputs of time

interval t, secret key ski of user Ui and data xi,t, encrypts xi,t to get a ciphertext ci,t and

computes a tag σi,t that authenticates xi,t.

• Aggregate(skA, {ci,t}Ui∈U, {σi,t}Ui∈U)→ (sumt, σt): It is a deterministic algorithm run by

the Aggregator A. It takes as inputs Aggregator A’s secret key skA, ciphertexts {ci,t}Ui∈U
and authentication tags {σi,t}Ui∈U, and outputs in cleartext the sum sumt of the values

{xi,t}Ui∈U. Moreover, it computes a proof σt attesting the correctness of sumt, using the

authentication tags {σi,t}Ui∈U.

• Verify(vk, sumt, σt)→ {0, 1}: It is a deterministic algorithm that is executed by the Data

Analyzer DA. It outputs 1 if Data Analyzer DA is convinced that the sum sumt =

∑
Ui∈U{xi,t}; and 0 otherwise.
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7.3.2 Security Model

We only focus on the adversarial behavior of Aggregator A. The rationale behind this is that

Aggregator A is the only party in the protocol that sees all the messages exchanged during the

protocol execution: Namely, Aggregator A has access to users’ ciphertexts and it is the party

that interacts directly with the Data Analyzer. It follows that by ensuring security properties

against the Aggregator, one by the same token, ensures these security properties against both

Data Analyzer DA and external parties.

In accordance with previous work [92, 132], we formalize the property of Aggregator oblivi-

ousness, which ensures that at the end of a protocol execution, Aggregator A only learns the

sum of users’ inputs xi,t and nothing else. Also, we enhance the security definitions of data

aggregation with the notion of aggregate unforgeability. As the name implies, aggregate unforge-

ability guarantees that Aggregator A cannot forge a valid proof σt for a sum sumt that was not

computed correctly from users’ inputs (i.e. cannot generate a proof for sumt 6=
∑
xi,t).

7.3.2.1 Aggregator Obliviousness

Aggregator obliviousness ensures that when users Ui provide Aggregator A with ciphertexts

ci,t and authentication tags σi,t, Aggregator A cannot reveal any information about indi-

vidual inputs xi,t, other than the sum value
∑
xi,t. We extend the existing definition of

Aggregator Obliviousness (cf. [92, 103, 132]) so as to capture the fact that Aggregator A not

only has access to ciphertexts ci,t, but also has access to the authentication tags σi,t that enable

Aggregator A to generate proofs of correct aggregation.

Similarly to the work of [92, 132], we formalize Aggregator obliviousness using an

indistinguishability-based game in which Aggregator A accesses the following oracles:

• OSetup: When called by Aggregator A, this oracle initializes the system parameters; it then

gives the public parameters P, the Aggregator ’s secret key skA and public verification key

vk to A.

• OCorrupt: When queried by AggregatorA with a user Ui’ s identifier uidi, this oracle provides
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Aggregator A with Ui’s secret key denoted ski.

• OEncTag: When queried with time t, user Ui’s identifier uidi and a data point xi,t, this

oracle outputs the ciphertext ci,t and the authentication tag σi,t of xi,t computed using

Ui’s secret key ski.

• OAO: When called with a subset of users S ⊂ U and with two time-series (Ui, t, x0
i,t)Ui∈S

and (Ui, t, x1
i,t)Ui∈S such that

∑
x0
i,t =

∑
x1
i,t, this oracle flips a random coin b ∈ {0, 1}

and returns an encryption of the time-serie (Ui, t, xbi,t)Ui∈S (that is the tuple of ciphertexts

{cbi,t}Ui∈S) and the corresponding authentication tags {σbi,t}Ui∈S.

Aggregator A is accessing the aforementioned oracles during a learning phase (cf. Algorithm

5) and a challenge phase (cf. Algorithm 6). In the learning phase, A calls oracle OSetup which

in turn returns the public parameters P, the public verification key vk and the Aggregator ’s

secret key skA. It also interacts with oracle OCorrupt to learn the secret keys ski of users Ui, and

oracle OEncTag to get a set of ciphertexts ci,t and authentication tags σi,t.

In the challenge phase, Aggregator A chooses a subset S∗ of users that were not corrupted in

the learning phase, and a challenge time interval t∗ for which it did not make an encryption query.

Oracle OAO then receives two time-series X 0
t∗ = (Ui, t∗, x0

i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t∗, x1

i,t∗)Ui∈S∗

from A, such that
∑
x0
i,t∗ =

∑
Ui∈S∗ x

1
i,t∗ . Then oracle OAO flips a random coin b

$←{0, 1} and

returns to A the ciphertexts {cbi,t∗}Ui∈S∗ and the matching authentication tags {σbi,t∗}Ui∈S∗ .

At the end of the challenge phase, Aggregator A outputs a guess b∗ for the bit b.

We say that Aggregator A succeeds in the Aggregator obliviousness game, if its guess b∗

equals b.

Algorithm 5 Learning phase of the obliviousness game

(P, skA, vk)← OSetup(1λ); // A executes the following a polynomial number of times

ski ← OCorrupt(uidi); // A is allowed to call OEncTag for all users Ui

(ci,t, σi,t)← OEncTag(t, uidi, xi,t);

Definition 43 (Aggregator Obliviousness). Let Pr[AAO] denote the probability that Aggregator

A outputs b∗ = b. Then an aggregation protocol is said to ensure Aggregator obliviousness if
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Algorithm 6 Challenge phase of the obliviousness game

A → t∗,S∗;
A → X 0

t∗ ,X 1
t∗ ;

(cbi,t∗ , σ
b
i,t∗)Ui∈S∗ ← OAO(X 0

t∗ ,X 1
t∗);

A → b∗ ;

for any polynomially bounded Aggregator A the probability Pr[AAO] 6 1
2 + ε(λ), where ε is a

negligible function and λ is the security parameter.

7.3.2.2 Aggregate Unforgeability

We augment the security requirements of data aggregation with the requirement of

aggregate unforgeability. More precisely, we assume that Aggregator A is not only interested

in compromising the privacy of users participating in the data aggregation protocol, but also

interested in tampering with the sum of users’ inputs. That is, Aggregator A may sometimes

have an incentive to feed Data Analyzer DA erroneous sums. Along these lines, we define

aggregate unforgeability as the security feature that ensures that Aggregator A cannot convince

Data Analyzer DA to accept a bogus sum, as long as users Ui in the system are honest (i.e. they

always submit their correct input and do not collude with the Aggregator A).

In compliance with previous work [38, 66] on homomorphic signatures, we formalize ag-

gregate unforgeability via a game in which Aggregator A accesses oracles OSetup and OEncTag.

Furthermore, given the property that anyone holding the public verification key vk can execute

the algorithm Verify, we assume that Aggregator A during the unforgeability game runs the

algorithm Verify by itself.

As shown in Algorithm 7, Aggregator A enters the aggregate unforgeability game by querying

the oracle OSetup with a security parameter λ. Oracle OSetup accordingly returns public param-

eters P, verification key vk and the secret key skA of Aggregator A. Moreover, Aggregator A

calls oracle OEncTag with tuples (t, uidi, xi,t) in order to receive the ciphertext ci,t encrypting xi,t

and the matching authenticating tag σi,t, both computed using user Ui’s secret key ski. Note

that for each time interval t, Aggregator A is allowed to query oracle OEncTag for user Ui only

once. In other words, Aggregator A cannot submit two distinct queries to oracle OEncTag with
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Algorithm 7 Learning phase of the aggregate unforgeability game

P, vk← OSetup(1λ); // A executes the following a polynomial number of times

(ci,t, σi,t)← OEncTag(t, uidi, xi,t);

Algorithm 8 Challenge phase of the aggregate unforgeability game

(t∗, sumt∗ , σt∗)← A;

the same time interval t and the same user identifier uidi. Without loss of generality, we suppose

that for each time interval t, Aggregator A invokes oracle OEncTag for all users Ui in the system.

At the end of the aggregate unforgeability game (see Algorithm 8), Aggregator A outputs a

tuple (t∗, sumt∗ , σt∗). We say that Aggregator A wins the aggregate unforgeability game if one of

the following statements holds:

1. Verify(vk, sumt∗ , σt∗) → 1 and Aggregator A never made a query to oracle OEncTag that

comprises time interval t∗. In the remainder of this Chapter, we denote this type of forgery

Type I Forgery.

2. Verify(vk, sumt∗ , σt∗) → 1 and Aggregator A has made a query to oracle OEncTag for time

t∗, however the sum sumt∗ 6=
∑
Ui xi,t∗ . In what follows, we call this type of forgery Type

II Forgery.

Definition 44 (Aggregate Unforgeability). Let Pr[AAU] denote the probability that Aggregator

A wins the aggregate unforgeability game, that is, the probability that Aggregator A outputs a

Type I Forgery or Type II Forgery that will be accepted by algorithm Verify.

An aggregation protocol is said to ensure aggregate unforgeability if for any polynomially

bounded adversary A, Pr[AAU] 6 ε(λ), where ε is a negligible function in the security parameter

λ.

7.4 Idea of our PUDA protocol

In an extended model with an untrusted Aggregator, it is of utmost importance to design a

solution in which the untrusted Aggregator cannot provide bogus results to the Data Analyzer.
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Such a solution will use a proof system that enables the Data Analyzer to verify the correctness

of the computation. Yet verifiability should be achieved without sacrificing privacy. Towards

this goal, we propose a protocol that relies on the following techniques:

• A homomorphic encryption algorithm that allows the Aggregator to compute the sum

without divulging individual data.

• A homomorphic tag that allows each user to authenticate the data input xi,t, in such a

way that the Aggregator can use the collected tags to construct a proof that demonstrates

to the Data Analyzer DA the correctness of the aggregate sum.

Concisely, a set of non-interacting users are connected to personal services and devices that

produce personal data. Without any coordination, each user chooses a random tag key tki and

sends an encoding thereof, tki to the key dealer. After collecting all encoded keys tki by users,

the key dealer publishes the public verification key vk of this group of users. This verification

key is computed as a function of the encodings tki. Later, the key dealer gives to each user in the

system an encryption key eki that will be used to compute the user’s ciphertexts. Accordingly,

the secret key of each user ski is defined as the pair of tag key tki and encryption key eki. Finally,

the key dealer provides the Aggregator with secret key skA computed as the sum of encryption

keys eki and goes off-line.

Now at each time interval t, each user employs its secret key ski to compute a ciphertext

based on the encryption algorithm of Shi et al. [132] and a homomorphic tag on its sensitive data

input. When the Aggregator collects the ciphertexts and the tags from all users, it computes

the sum sumt of users’ data and a proof σt for the sum, and forwards the sum and the proof

to the Data Analyzer. At the final step of the protocol, the Data Analyzer verifies with the

verification key vk and proof σt the validity of the result sumt. Although the modification seems

straightforward, the proof for Type II Forgery turns out to be challenging.

Thanks to the homomorphic encryption algorithm of Shi et al. [132] and the way in which we

construct our homomorphic tags, we show that our protocol ensures Aggregator obliviousness.

Moreover, we show that the Aggregator cannot forge bogus results. Finally, we note that the
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Data Analyzer DA does not keep any state with respect to users’ transcripts be they ciphertexts

or tags, but it only holds the public verification key, the sum sumt and the proof σt.

7.5 PUDA Instantiation

For encryption and sum computation we employ the discrete logarithm based encryption scheme

of Shi et al. [132]:

7.5.1 Shi-Chan-Rieffel-Chow-Song Scheme

• Setup(1κ): Let G1 be a group of large prime order p. A trusted key dealer KD selects a

hash function H : {0, 1}∗ → G1 . Furthermore, KD selects secret encryption keys eki ∈ Zp,

uniformly at random. KD distributes to each user Ui the secret key eki and it also sends

the secret key skA = −∑n
i=1 eki to the Aggregator.

• Encrypt(eki, xi,t): Each user Ui encrypts the value xi,t by using its secret encryption key

eki and outputs the corresponding ciphertext ci,t = H(t)ekig
xi,t
1 ∈ G1.

• Aggregate({ci,t}Ui∈U, {σi,t}Ui∈U, skA): Upon receiving all the ciphertexts {ci,t}ni=1, the

Aggregator computes: Vt = (
∏n
i=1 ci,t)H(t)skA = H(t)

∑n
i=1 ekig

∑n
i=1 xi,t

1 H(t)−
∑n
i=1 eki =

g
∑n
i=1 xi,t

1 ∈ G1. Finally A learns the sum sumt =
∑n

i=1 xi,t ∈ Zp by computing the discrete

logarithm of Vt on the base g1. The sum computation is correct as long as
∑n

i=1 xi,t < p.

7.5.2 PUDA Scheme

In what follows we describe our PUDA protocol:

• Setup(1κ): KD outputs (p, g1, g2,G1,G2,GT ) for an efficient computable bilinear map

e : G1 × G2 → GT , where g1 and g2 are two random generators for the multiplicative

groups G1 and G2 respectively and p is a prime number that denotes the order of all

the groups G1,G2 and GT . Moreover a secret key a is selected by KD. Each Ui selects

a random tag key tki ∈ Zp independently and forwards gtki
2 to KD. KD publishes the

verification key vk = (vk1, vk2) = (g
∑n
i=1 tki

2 , ga2) and distributes to each user Ui ∈ U the
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secret key ga1 ∈ G1 through a secure channel. Thus the secret keys of the scheme are

ski = (eki, tki, g
a
1). After publishing the public parameters P = (H, p, g1, g2,G1,G2,GT )

and the verification key vk, KD goes off-line and it does not further participate in any

protocol phase.

• EncTag(t, ski = (eki, tki, g
a
1), xi,t): At each time interval t each user Ui encrypts the data

value xi,t with its secret encryption key eki, using the encryption algorithm, described in

section 7.5.1, which results in a ciphertext

ci,t = H(t)ekig
xi,t
1 ∈ G1

Ui also constructs a tag σi,t ∈ G1 with its secret tag key (tki, g
a
1):

σi,t = H(t)tki(ga1)xi,t ∈ G1

Finally Ui sends (ci,t, σi,t) to A.

• Aggregate(skA, {ci,t}Ui∈U, {σi,t}Ui∈U): Aggregator A computes the sum sumt =
∑n

i=1 xi,t

by using the Aggregate algorithm presented in section 7.5.1.

Moreover, A aggregates the corresponding tags as follows:

σt =
n∏

i=1

σi,t =
n∏

i=1

H(t)tki(ga1)xi,t = H(t)
∑

tki(ga1)
∑
xi,t

A finally forwards sumt and σt to data analyzer DA.

• Verify(vk, sumt, σt): During the verification phase DA verifies the correctness of the com-

putation with the verification key vk = (vk1 = g
∑

tki
2 , vk2 = ga2), by checking the following

equality:

e(σt, g2)
?
= e(H(t), vk1)e(gsumt

1 , vk2)
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Verification correctness follows from bilinear pairing properties:

e(σt, g2) = e(

n∏

i=1

σi,t, g2) = e(

n∏

i=1

H(t)tkig
axi,t
1 , g2) = e(H(t)

∑n
i=1 tkig

a
∑n
i=1 xi,t

1 , g2)

= e(H(t)
∑n
i=1 tki , g2)e(g

a
∑n
i=1 xi,t

1 , g2) = e(H(t), g
∑n
i=1 tki

2 )e(gsumt
1 , ga2)

= e(H(t), vk1)e(gsumt
1 , vk2)

7.6 Analysis

7.6.1 Aggregator Obliviousness

Theorem 7. The proposed solution achieves Aggregator obliviousness in the random oracle

model under the decisional Diffie-Hellman (DDH) assumption in G1.

Proof. Assume there is an Aggregator A which breaks the obliviousness of the PUDA scheme

with a non-negligible advantage ε. We build in what follows an adversary B, which uses A as

a subroutine to break the Aggregator obliviousness of the private streaming aggregation (PSA)

protocol presented in [132], which is guaranteed under DDH. Without loss of generality we call

the oracles that the adversary B has access to from the PSA scheme as follows: OPSA
Setup, OPSA

Corrupt,

OPSA
Encrypt, and OPSA

AO .

We consider in PSA as in PUDA that there are n users Ui and each one of these users

possesses a secret encryption key eki. In the following, we show how an adversary B simulates

the Aggregator obliviousness game presented in Algorithms 5 and 6 to Aggregator A and how

therewith breaks the Aggregator obliviousness of PSA.

Learning phase: In the learning phase, adversary B proceeds as following: Whenever A

calls oracle OSetup with a security parameter κ, B queries oracle OPSA
Setup with the same security

parameter. Oracle OPSA
Setup in turn outputs the public parameters that are composed of a hash

function H : {0, 1}∗ → G1, a generator g1 of the group G1 of large prime order p, and the

Aggregator’s secret key skA = −∑n
i=1 eki. B then selects the parameters of a bilinear pairing

(e, g1, g2,G1,G2,GT ). B chooses uniformly at random a, {ri}Ui∈U and defines the verification
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key vk as follows:

vk = (g
askA+

∑n
i=1 ri

2 , ga2) = (g
a
∑n
i=1 eki+

∑n
i=1 ri

2 , ga2) = (g
∑n
i=1 aeki+ri

2 , ga2)

This entails that tki is defined as: aeki + ri. Finally B forwards to A the public parameters:

P = (H, p, g1, g2,G1,G2,GT ), the verification keys vk = (g
∑n
i=1 tki

2 , ga2) and the secret key of the

Aggregator skA.

Whenever A calls oracle OCorrupt with a user’s identifier uidi, B relays the query uidi to

OPSA
Corrupt of the PSA scheme which in turns outputs the secret encryption key eki of user Ui. B

then returns secret key ski = (eki, tki) = (eki, aeki + ri).

Whenever A calls oracle OEncTag with query (t, uidi, xi,t), B forwards the query to the

OPSA
Encrypt oracle which returns the appropriate ciphertext ci,t = H(t)ekig

xi,t
1 . B computes then

the tag associated with ciphertext ci,t as σi,t = (ci,t)
aH(t)ri = H(t)aeki+rig

axi,t
1 = H(t)tkig

axi,t
1

and transmits to A ciphertext ci,t and tag σi,t.

Challenge phase: In the challenge phase A chooses a set of users S∗ that have not been

corrupted during the learning phase and a time interval t∗ for which A did not make

a query to oracle OEncTag. A then submits two time-series X ∗0 = (Ui, t∗, x0
i,t∗)Ui∈S∗ and

X ∗1 = (Ui, t∗, x1
i,t∗)Ui∈S∗ to OAO, such that

∑
x0
i,t∗ =

∑
x1
i,t∗ . B simulates this oracle as follows:

It forwards the series X ∗0 and X ∗1 to OPSA
AO which chooses uniformly at random a bit

b
$←{0, 1} and returns to B the ciphertexts {cbi,t∗}Ui∈S∗ encrypting X ∗b .

Next, B constructs for all Ui in S∗ the tag σbi,t∗ corresponding to ciphertext cbi,t∗ by com-

puting:

σbi,t∗ = (cbi,t)
aH(t∗)ri = (H(t∗)ekig

xb
i,t∗

1 )aH(t∗)ri = H(t∗)aeki+rig
axb
i,t∗

1 = H(t∗)tkig
axb
i,t∗

1

126



CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Note that σbi,t∗ corresponds to a correctly computed tag for input xbi,t∗ . Finally, B forwards

{cbi,t∗ , σbi,t∗}Ui∈S∗ to A. At this point, the simulated view of Aggregator A is computationally in-

distinguishable from its view in an actual Aggregator obliviousness game as defined in Algorithms

5 and 6. This leads to correct verification of the sum computed by A, more precisely:

e(
∏

i∈S∗
σbi,t∗ , g2) = e(

n∏

i=1

H(t∗)tkig
axb
i,t∗

1 , g2) = e(H(t∗), g
a
∑n
i=1 eki+

∑n
i=1 ri

2 )e(g

∑n
i=1 x

b
i,t∗

1 , ga2)

= e(H(t∗), vk1)e(g

∑n
i=1 x

b
i,t∗

1 , vk2)

It follows that if Aggregator A is able to output a correct guess b∗ for the bit b with a non-

negligible advantage ε: (i.e. is able to break the Aggregator obliviousness of our scheme), then

B will break the Aggregator obliviousness of the PSA scheme with the same non-negligible

advantage ε by outputting the guess b∗.

As such PSA scheme ensures Aggregator obliviousness under the DDH assumption in G1,

we can conclude that our scheme also ensures Aggregator obliviousness: Pr[AAO] 6 1
2 + ε(κ) as

long as DDH holds in G1.

7.6.2 Aggregate Unforgeability

Theorem 8. Our scheme achieves Aggregate Unforgeability for a Type I Forgery under

BCDH assumption in the random oracle model.

Proof. We show how to build an adversary B that solves BCDH in (G1,G2,GT ). Let g1 and g2

be two generators for G1 and G2 respectively. B receives the challenge (g1, g2, g
a
1 , g

b
1, g

c
1, g

a
2 , g

b
2)

from the BCDH oracle OBCDH and is asked to output e(g1, g2)abc ∈ GT . B simulates the

interaction with A in the two phases (Setup, Learning) as follows:

Setup:

• To simulate the OASetup oracle B selects uniformly at random 2n keys {ki}ni=1, {yi}ni=1 ∈ Zp

and outputs the public parameters P = (κ, p, g1, g2,G1,G2) the verification key vk =

(vk1, vk2) = (g
b
∑n
i=1 ki

2 , ga2) and the secret key of the Aggregator skA = −∑n
i=1 yi.
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Learning phase

• A is allowed to query the random oracle H for any time interval . B constructs a H− list

and responds to A query as follows:

1. If query (t) already appears in a tuple H-tuple〈t : rt, coin(t), H(t)〉 of the H− list it

responds to A with H(t).

2. Otherwise it selects a random number rt ∈ Zp and flips a random coin
$←{0, 1}. With

probability p, coin(t) = 0 and B answers with H(t) = grt1 . Otherwise if coin(t) = 1

then B responds with H(t) = gcrt1 and updates the H− list with the new tuple

H-tuple〈t : rt, coin(t), H(t)〉.

• Whenever A submits a query (t, uidi, xi,t) to the OAEncTag, B constructs a T− list and

responds as follows:

1. If at time interval t A has never queried before the OAEncTag oracle then:

1.1. B initializes a variable Σt = 0.

1.2. B calls the simulated random oracle, receives the result for H(t) and appends the

tuple H-tuple〈t : rt, coin(t), H(t)〉 to the H− list.

1.3. If coin(t) = 1 then B stops the simulation.

1.4. Otherwise it chooses the secret tag key ki where i = uidi to be used as secret tag

key from the set of {ki} keys, chosen by B in the Setup phase.

1.5. B sends to A the tag σi,t = grtbki1 g
axi,t
1 = H(t)bkig

axi,t
1 , which is a valid tag for

the value xi,t. Notice that B can correctly compute the tag without knowing a

and b from the BCDH problem parameters ga1 , g
b
1.

1.6. B chooses also a secret encryption key yi ∈ {yi}ni=1 ∈ Zp and computes the

ciphertext as ci,t = H(t)yig
xi,t
1 . The simulation is correct since A can check that

the sum
∑n

i=1 xi,t corresponds to the ciphertexts given by B with its decryption

key skA = −∑n
i=1 yi, considering the adversary has made distinct encryption

queries for all the n users in the scheme at a time interval t.
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1.7. B sets Σt = Σt + xi,t and updates the T− list with the tuple: 〈t, uidi, xi,t, σi,t〉

2. Else if T− list contains i′ = uidi and xi,t = x′i,t then B fetches the corresponding σi,t

from the list and forwards it to A.

3. Else if T− list contains i′ = uidi and xi,t 6= x′i,t then B aborts.

4. Otherwise, B looks to the H− list list for the tuple indexed by t in order to get

〈t : rt, coin(t), H(t)〉. If the tuple does not exist then B tosses a random coin and

if coin(t) = 1 then B aborts. If coin(t) = 0 then B computes the tag identically

as in 1(d)(e)(f)(g) steps: It chooses a key ki where i = uidi from the selected keys

{ki}. It constructs the tag as σi,t = grtbki1 g
axi,t
1 = H(t)bkig

axi,t
1 and the ciphertext as

ci,t = H(t)yig
xi,t
1 . Finally B sets Σt = Σt + xi,t, updates the T− list with the tuple:

〈t, uidi, xi,t, σi,t〉.

Now, when B receives the forgery (sumt
∗, σt

∗) at time interval t = t∗, it continues if sumt
∗ 6=

Σt. B first queries the H-tuple for time t∗ in order to fetch the appropriate tuple.

• If coin(t∗) = 0 then B aborts.

• If coin(t∗) = 1 then since A outputs a valid forged σt
∗ at t∗, it is true that the following

equation should hold:

e(σt
∗, g2) = e(H(t∗), vk1)e(gsumt

∗

1 , vk2)

which is true when A makes n queries for time interval t∗ for distinct users to the OAEncTag

oracle during the Learning phase. As such σt
∗ = g

crtb
∑

ki
1 gasumt

∗

1

Finally B outputs:

e((
σt
∗

gasumt
∗

1

)
1

rt
∑

ki , ga2) = e((
g
crtb

∑
ki

1 gasumt
∗

1

gasumt
∗

1

)
1

rt
∑

ki , ga2) =

e((g
crtb

∑
ki

1 )
1

rt
∑

ki , ga2) = e(gbc1 , g
a
2) = e(g1, g2)abc
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Let AAU1 the event when A successfully forges a Type I forgery σt for our PUDA

protocol that happens with some non-negligible probability ε′. Then Pr[BBCDH] =

Pr[event0] Pr[event1] Pr[AAU2] = p(1− p)qH−1ε′, for qH random oracle queries with the proba-

bility Pr[coin(t) = 0] = p. As such we ended up in a contradiction assuming the hardness of the

BCDH assumption and finally Pr[AAU1] ≤ ε1, where ε1 is a negligible function.

For the security proof against an adversary A for Type-II Forgery we first introduce a

new assumption that is used during the security analysis of our PUDA instantiation. Our new

assumption named hereafter LEOM is a variant of the LRSW assumption [110] which is proven

secure in the generic model [134] and used in the construction of the CL signatures [32].

The oracle OLEOM first chooses a and ki, 1 6 i 6 n in Z∗p. Then it publishes the tuple

(g1, g
∑n
i=1 ki

2 , ga2). Thereafter, the adversary picks ht ∈ G1 and makes queries (ht, i, xi,t) for

1 6 i 6 n to the OLEOM oracle which in turn replies with hkit g
axi,t
1 for 1 6 i 6 n.

The adversary is allowed to query the oracle OLEOM for different ht with the restriction that

it cannot issue two queries for the same pair (ht, i).

We say that the adversary breaks the LEOM assumption, if it outputs a tuple

(z, ht, h
∑n
i=1 ki

t gaz1 ) for a previously queried t and z 6= ∑n
i=1 xi,t.

Theorem 9. (LEOM Assumption) Given the security parameter κ, the public parameters

(p, e,G1,G2, g1, g2), the public key (ga2 , g
∑n
i=1 ki

2 ) and the oracle OLEOM, we say that the LEOM

assumption holds iff:

For all probabilistic polynomial time adversaries A, the following holds:

Pr[(z, ht, σt) ← AOLEOM(.) : z 6=
n∑

i=1

xi,t ∧ σt = h
∑n
i=1 ki

t gaz1 ] ≤ ε2(κ)

Where ε2 is a negligible function.

The security evidence of the assumption is referred to the Appendix Chapter.

Theorem 10. Our scheme guarantees aggregate unforgeability against a Type II Forgery

under the LEOM assumption in the random oracle model.
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Proof. (Sketch) Here we show how an adversary B breaks the LEOM assumption by using an

Aggregator A that provides a Type II Forgery with a non-negligible probability. Notably,

adversary B simulates oracle OSetup as follows: It first picks secret encryptions keys {eki}ni=1 and

sets the corresponding decryption key SKA = −∑n
i=1 eki. Then, it forwards to A the public

parameters P = (p, g1, g2,G1,G2), the public key (vk1, vk2) = (g
∑n
i=1 ki

2 , ga2) of the OLEOM oracle

and the secret key SKA = −∑n
i=1 eki.

Afterwards, when adversary B receives a query (t, uidi, xi,t) for oracle OEncTag, adversary B

calls oracle OLEOM with the pair (ht = H(t), i, xi,t). Oracle OLEOM accordingly returns hkit g
axi,t
1

and adversary B outputs σi,t = hkit g
axi,t
1 . Note that if we define the tag key tki of user Ui as ki,

then the tag σi,t = hkit g
axi,t
1 is computed correctly.

Eventually with a non-negligible advantage, Aggregator A outputs a Type II Forgery

(t∗, sumt∗ , σt∗) that verifies:

e(σt∗ , g2) = e(H(t∗), vk1)e(g
sumt∗
1 , vk2)

where t∗ is previously queried by Aggregator A and sumt∗ 6=
∑n

i=1 x(i,t∗).

It follows that B breaks the LEOM assumption with a non-negligible probability by outputting

the tuple (H(t∗), sumt∗ , σt∗). This leads to a contradiction under the LEOM assumption. We

conclude that our scheme guarantees aggregate unforgeability for a Type II Forgery under the

LEOM assumption.

To conclude with the analysis the success probabilities for the aggregate unforgeability game

Pr[AAU], are taken over the union of the success probabilities for the two type of forgeries. As

such

Pr[AAU] = Pr[AAU1] + Pr[AAU2] ≤ ε1(κ) + ε2(κ)

where ε1 and ε2 are negligible functions.
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Participant Computation Communication

User 2EXP +1MULT 2 · l
Aggregator (n− 1) MULT 2 · l
Data Analyzer 3PAIR +1EXP +1MULT +1HASH -

Table 7.1: Performance of tag computation, proof construction and verification operations. l
denotes the bit-size of the prime number p.

7.6.3 Performance Evaluation

In this section we analyze the extra overhead of ensuring the aggregate unforgeability property

in our PUDA instantiation scheme. First, we consider a theoretical evaluation with respect

to the mathematical operations a participant of the protocol be it user, Aggregator or Data

Analyzer has to perform with respect to the verifiability transcripts. That is, the computation

of the tag by each user, the proof by the Aggregator and the verification of the proof by the

Data Analyzer. We also present an experimental evaluation that shows the practicality of out

scheme.

To allow the Data analyzer to verify the correctness of computations performed by an un-

trusted Aggregator each user selects uniformly and at random a secret key tki ∈ Zp. The

key dealer distributes to each user ga1 ∈ G1 and publishes ga2 ∈ G2, which calls for two

exponentiations: one in G1 and one in G2. At each time interval t each user computes

σi,t = H(t)tki(ga1)xi,t ∈ G1, which entails two exponentiations and one multiplication in G1. For

the computation of the σt the Aggregator is involved in n− 1 multiplications in G1 :
∏n
i=1 σi,t.

Finally the data analyzer verifies by checking the equality: e(σt, g2)
?
= e(H(t), vk1)e(gsumt

1 , vk2),

which asks for three pairing evaluations, one hash in G1, one exponentiation in G1 and one

multiplication in GT (see table 7.1). The efficiency of PUDA stems from the constant time

verification with respect to the size of the users. This is of crucial importance since the Data

Analyzer may not own computational power.

We implemented the verification functionalities of PUDA with the Charm cryptographic

framework [9, 10]. For pairing computations, it inherits the PBC [109] library which is also

written in C. All of our benchmarks are executed on Intel Core i5 CPU M 560 @ 2.67GHz × 4

with 8GB of memory, running Ubuntu 12.04 32bit. Charm uses 3 types of asymmetric pairings:
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hhhhhhhhhhhhOperation
Pairings

MNT159 MNT201 MNT224

Tag 1.2µs 1.8µs 2.2µs
Verify 28.3µs 42.7µs 53.5µs

Table 7.2: Computational cost of PUDA operations with respect to different pairings.

XXXXXXXXOp.
Curve

MNT159 MNT201 MNT224

HASH in G1 0.139µs 0.346µs 0.296µs
HASH in G2 25.667µs 41.628µs 48.305µs
MULT in G1 0.004µs 0.0006µs 0.006µs
MULT in G2 0.040µs 0.051µs 0.054µs
MULT in GT 0.012µs 0.015µs 0.016µs
EXP in G1 0.072µs 0.092µs 0.099µs
EXP in G2 0.615µs 0.757µs 0.784µs
PAIR 7.077µs 10.674µs 13.105µs

Table 7.3: Average computation overhead of the underlying mathematical group operations for
different type of curves.

MNT159, MNT201, MNT224. We run our benchmarks with these three different types of asymmetric

pairings. The timings for all the underlying mathematical group operations are summarized in

table 7.3. There is a vast difference on the computation time of operations between G1 and G2

for all the different curves. The reason is the fact that the bit-length of elements in G2 is much

larger than in G1.

As shown in table 7.2, the computation of tags σi,t implies a computation overhead at a

scale of milliseconds with a gradual increase as the bit size of the underlying elliptic curve

increases. The data analyzer is involved in pairing evaluations and computations at the target

group independent of the size of the data-users.

7.7 Summary

In this Chapter, we designed and analyzed a protocol for private and unforgeable aggregation.

First we modeled the security and privacy requirements. In this setting, a set of trustworthy

users submits data coupled with unforgeable tags. The purpose of the protocol is to allow a data

analyzer to verify the correctness of computation performed by a malicious Aggregator, with-

out discovering the underlying data. The challenge of the verification in aggregation protocols

that we tackled with the PUDA protocol is the fact that the privacy from the authentication
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tags is guaranteed against a malicious Aggregator. Our PUDA instantiation allows for public

verification in constant time and is provably secure under the DDH, BCDH and the new LEOM

assumption in bilinear pairing groups in the random oracle model.
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8.1 Summary

Privacy Preserving Data Collection and Analysis protocols significantly contribute in decision

making. The aggregation of data allows Aggregators to infer useful statistical information that

contributes to the social welfare. However, due to the nature of the personal sensitive information

that each user outsources to an untrusted party, users are reluctant to reveal their data values

in cleartext. Current solutions propose different privacy preserving mechanisms such that users’

privacy is not compromised but at the same time an untrusted party learns a statistical function

f over the entire population of users.

In this dissertation, we first defined what a Privacy Preserving Data Collection and Analysis

protocol (PPDCA) is and we presented the state-of-the-art of PPDCA protocols. We started

our analysis with noise-based techniques, in which each user adds noise to the data value such

that an untrusted Aggregator can infer noisy-statistics for the entire population of the users.

Noise-based techniques are restricted to provide noisy statistics and therefore, they are not

suitable for use case scenarios in which there is necessity for precision in the final result of the

statistical function f . Cryptographic protocols aim to address the need for precision in the

computation of f . Users encrypt their data appropriately, so as to allow partial access control

over an aggregate value. After presenting current cryptographic protocols for PPDCA, we

proceeded into a detailed taxonomy of the cryptographic protocols in the existing literature

based on different characteristics thereof. With our analysis, we identified a gap in the following

directions:

• Existing protocols are focused on a restricted family of functions f an Aggregator can

learn, such as the sum, inner product and boolean operations.

• The majority of current cryptographic solutions assume the existence of a fully trusted key

dealer, which distributes secret keys to the users and to the Aggregator. The consequences

of a fully trusted key dealer hinder the deployment of the protocols in a dynamic envi-

ronment. Namely, within a dynamic environment users are joining and leaving at every

single execution of the protocol, thus forcing existing users to receive new secret keys by

136



CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

the trusted key dealer. Moreover, this single point of trust, renders the protocols fault

intolerant, since the trusted key dealer needs to distribute new keys to all existing users

in case of a fault.

• There are no solutions supporting a stronger security model in Privacy Preserving Data

Collection and Analysis protocols. Current protocols either assume the existence of a fully

trusted Aggregator or they base their security on a honest-but-curious model in which

the Aggregator is trusted to execute the steps of the protocol correctly, but is curious in

learning any exchanged messages.

The aforementioned observations led us to the following results of this dissertation:

In Chapter 4, we presented our solution for privacy preserving clustering. Namely, in this

scenario an untrusted party wants to learn the degree of similarity of two users’ data in order

to perform clustering. Our solution entails a novel approach in which data are first transformed

to a set of bi-vectors and users encrypt the set of bi-vectors such that an untrusted Aggregator

can compare two vectors with the cosine similarity metric. Out technique assures:

• Oblivious similarity detection: An untrusted party can perform clustering on en-

crypted data without learning individual data inputs.

• Provably secure: Our protocol is provably secure in the standard model.

In Chapter 5, we analyzed a protocol for a smart grid scenario. Users encrypt their energy

consumptions and they send them to an energy supplier who acts as an Aggregator. The latter is

interested in learning the time intervals in which users consumed the maximum, for energy utility

awareness and energy forecasting. Our technique is based on an order preserving encryption

scheme, combined with a delta encoding function in order to eliminate short spontaneous spikes

in the energy consumption graph which are not continuous. Our protocol guarantees:

• Aggregator obliviousness: An untrusted Aggregator does not learn any individual

inputs but only the final result, which is the time interval in which a user consumed the

maximum.
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• Continuous maximum consumption: A user in a home may switch on and switch

off immediately a high energy appliance. This will contribute to faulty results for the

Aggregator, since a spontaneous usage of an energy appliance for a very short period will

wrongfully dominate the aggregate statistics. We were able to capture this information

with a delta encoding function that allows an Aggregator to discern if the differences of

plaintext energy consumptions around a time window, converge to zero, which is inter-

preted as a continuous maximum energy consumption.

• Provably secure: Our protocol is provably secure.

In Chapter 6, we presented a protocol which is suitable for a dynamic population of users.

Namely, dynamic leaves and joins of users do not increase the computational and communication

overhead of existing users. Moreover, we relax the requirement for a fully trusted dealer. The

core idea of the scheme is that each user independently and without any coordination, chooses

its secret encryption key. Then, users obfuscate the secret keys with some public information

provided by the untrusted Aggregator, and they send the obfuscated keys to a semi-trusted

Collector. Finally, the Aggregator learns the sum of the values without compromising individual

privacy. In this way our protocol assures:

• Aggregator & Collector obliviousness: The protocol provides Aggregator and Col-

lector obliviousness, which assures that individual privacy is not compromised neither by

the Aggregator nor by the Collector, which helps the Aggregator in the computation of

the sum.

• Dynamicity & Fault tolerance: The Aggregator learns the sum even in case of a fault

due to a communication error. Moreover the protocol is dynamic in the sense that dynamic

leaves and joins do not affect the existing users of the protocol, since there is no need to

proceed in a new key distribution phase.

• Provably secure: Out protocol is provably secure in the random oracle model under the

intractability of well known mathematical problems against honest-but-curious Aggrega-

tors.
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We then considered the problem of verifiability of aggregation in Chapter 7. In this case

we strengthen the security requirements of the protocol with a malicious Aggregator, which can

deviate from the protocol rules and provide faulty results. The Aggregator along with the result

of f which is the sum of the values, computes a proof that allows anyone to verify the correctness

of computations. Throughout our analysis we made the following contributions:

• Aggregate unforgeability: A malicious Aggregator cannot convince a Data Analyzer

with erroneous aggregation with non negligible probability.

• Obliviousness: Individual privacy is preserved against untrusted parties of the protocol,

while the Aggregator is able to learn the sum of the data inputs.

• Constant time public verification: The running time of the verification algorithm is

constant and independent on the number of the users. Moreover, the construction allows

for public verification of the correctness of the result with a public verification key.

• Provably secure: Our protocol is provably secure under a new mathematical assumption

whose security evidence is shown in the generic group model.
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8.2 Future Work

In this section we present possible directions for future research that stems from the results of

this dissertation.

• Multi-User Order Preserving Encryption: The protocol presented in Chapter 5 is

suitable for single user statistics. A possible line of extension would be to design and

analyze an order preserving encryption scheme that takes as input encrypted data by

different users and outputs ciphertexts which preserve their plaintext space ordering. The

design of such a scheme is challenging since any public key order preserving encryption

scheme would be insecure: An adversary which is able to encrypt with the public key of

an order preserving encryption scheme can mount an attack based on the result of the

encryption algorithm: Adversary A seeks to learn the plaintext from a ciphertext c. A

chooses a random value r and encrypts it with an OPE scheme, that results in ciphertext

c′r. If the c′r > c then A chooses r′ < r and encrypts again. Else A chooses r′ > r and

continues until it finds a match c′r = c. The search is not exhaustive on the plaintext space

but logarithmic. As such a multi-user order preserving encryption scheme needs further

investigation.

• Homomorphic Group Signatures: The protocol for verification of the aggregate com-

putation presented in Chapter 7 assumes the existence of trustworthy users. That is, users

will not try to forge others’ tags. In a setting with untrusted users, whereby users have

incentives to falsely accuse other users, our protocol falls short to provide the necessary se-

curity guarantees. While group signatures can trace users’ signatures and provide sender’s

anonymity, in case of PPDCA protocols–in which there must be some homomorphism

on the signatures, such that an Aggregator can compute a signature for a function over

the received group signatures–group signatures fail to provide a solution. Therefore, a

further investigation on how homomorphic group signatures can be realized is a well worth

endeavor.

• Selective Aggregation: The protocols in Chapters 6 and 7 compute the sum of the users
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obliviously. However, in real world scenarios, statistics often need to be computed over a

sample of a population in order to extract the outliers. A trivial solution would be a Data

Analyzer to publish a predicate for the outliers. Then, each user based on the satisfiability

of the predicate on input their value, contributes with its encrypted value during the

collection phase or excludes itself from sending data. This motivates mistrustful users

to lie about their data values. Moreover, the publication of the predicate increases the

leakage information a malicious Aggregator learns. Studying the design of a protocol with

a dual privacy guarantee, which assures that the predicate is not learnt by the users and

the Aggregator aggregates only the values that satisfy the predicate, seems a particularly

interesting challenge.

• Indistinguishability obfuscation: A long standing problem in computer science has

been put forward recently [69]. Namely, the primitive of indistinguishability obfuscation

guarantees that by obfuscating a program f in f1 and f2, an adversary with full power

over a machine which executes the circuits that realize the functionality f with f1 and

f2, cannot distinguish the execution of f1 from f2. An adversary can correctly execute

an indistinguishable obfuscated program that takes as input the secret key of the user

without learning the secret key. This observation has led to the transformation of public

key protocols in symmetric protocols, while keeping the secret key private to an adversary

[46,81]. The new primitive can lend more security in PPDCA protocols. The assumption

of non-collusion between an Aggregator and a Collector for the protocol in Chapter 6 can

be mitigated as follows: Instead of A asking for the aggregation of auxiliary information

from the Collector, each user along with the ciphertext generates an indistinguishable

obfuscated program that takes as input the auxiliary information auxi,t and outputs the

aggregation of auxi,t only when all indistinguishable obfuscated programs are combined.

Otherwise it outputs gibberish data. The construction of joint indistinguishable obfuscated

programs that output a correct value only when they are combined appropriately will make

great strides towards stronger security models for PPDCA protocols.
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A Lemma 7

We provide the full proof of the following lemma that has been used in Chapter 6.5.3.2:

Lemma 7. In the random oracle model, collector C cannot detect that pkA,t∗ and (auxi,t∗)Ui∈S∗

are generated randomly under the decisional composite residuosity (DCR) assumption in Z∗N2,

the quadratic residuosity (QR) assumption in Z∗N and the decisional Diffie-Hellman (DDH)

assumption in the subgroup of quadratic residues in Z∗N .

Let ODDH be an oracle which upon a DDH query, first selects randomly g in the subgroup

of quadratic residues in Z∗N and the pair (a, b) ∈ Z∗φ(N)/4 (φ(N) is the Euler totient of N), then

flips a random coin β ∈ {0, 1}. If β = 0, then ODDH selects c randomly from Z∗φ(N)/4; otherwise,

it sets c = ab. Finally, ODDH returns the tuple (g, ga, gb, gc).

We say that an adversary B breaks the DDH assumption in the subgroup of quadratic

residues, if it can tell whether gc = gab or not.

Proof. (Sketch) Assume there is a collector C that detects pkA,t∗ and (auxi,t∗)Ui∈S∗ are generated

randomly. We show in the random oracle model that there exists an adversary B that uses

collector C to break DDH in the subgroup of quadratic residues in Z∗N under DCR in Z∗N2 and

QR in Z∗N .

• Let (g, ga, gb, gc) be the DDH tuple provided by ODDH to adversary B.

• Let RN denote the subgroup of Z∗N2 defined as RN = {hN , h ∈ Z∗N2}. We recall that RN
is of order φ(N) = (p − 1)(q − 1) and thus there exists an isomorphism ρ : Z∗N → RN .

Notably, ρ could be defined as: ∀ g ∈ Z∗N , ρ(g) = gN mod N2.

• Let QRN denote the subgroup of RN defined as QRN = {h̃2, h̃ ∈ RN}.

Game 0. This game is the collector obliviousness game: Adversary B executes the setup

algorithm by generating the users’ secret keys ski and the Aggregator A’s secret key skA and

by publishing the public parameters P = (N,H), where H is a cryptographic hash function

H : Z → Z∗N2 . By having the user’s secret keys ski and A’s secret key skA, adversary B can

simulate successfully the collector obliviousness game to collector C.
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Game 1. This game is identical to the above game except for the following:

• For each time interval t, B publishes pkA,t = H(t)skAN ∈ RN instead of pkA,t = H(t)skA ∈

Z∗N2 (i.e., the Aggregator’s secret key is actually skAN instead of skA).

• For each time interval t, B computes auxi,t = (H(t)ski)skAN ∈ RN instead of auxi,t =

(H(t)ski)skA ∈ Z∗N2 .

Note that under the DCR assumption, C cannot tell whether pkA,t and auxi,t are in RN or not,

and accordingly, Game 0 and Game 1 are computationally indistinguishable.

Game 2. In this game, we compute pkA,t as H(t)2skAN mod N2 and auxi,t as

(H(t)ski)2skAN mod N2. Note that under the quadratic residuosity assumption in Z∗N , Game

1 and Game 2 are computationally indistinguishable. Indeed, if there is a distinguisher D that

is able to tell for instance whether pkA,t is an element of QRN or not, then D can be used to

break the quadratic assumption in Z∗N by employing the isomorphism ρ : Z∗N → RN . Namely,

given an element g ∈ Z∗N , one computes ĥ = ρ(g) and submits ĥ to D. If D outputs that ĥ is of

the form h̃2 (h̃ ∈ RN ), then one outputs that g is quadratic residue in Z∗N .

Game 3. This game is identical to Game 2 except that this time adversary B controls a

random oracle H and instead of generating the secret key skA randomly in Z∗N2 , it sets pkA = ga

mod N and uses the random oracle to simulate that it possesses the secret key skA = a. We

recall that (g, ga, gb, gc) is the DDH tuple that adversary B received from ODDH.

Without loss of generality, we assume that collector C makes q hash queries to the random

oracle H.

Random Oracle Simulation. To answer the queries of the random oracle H, adversary B keeps

a table TH of tuples (ti, ri, coini(t), H(ti)) as explained next. On a query H(t) to H, adversary

B replies as follows:

• If there is a tuple (t, r, coin(t), H(t)) that corresponds to t in table TH , then B returns

H(t).

• If t has never been queried before, then B picks a random number r ∈ [0, N/4], and flips

a random coin coin(t) ∈ {0, 1} such that: coin(t) = 1 with probability p, and it is equal
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to 0 with probability 1 − p. If coin(t) = 0, then B answers with H(t) = grN mod N2.

Otherwise, it answers with H(t) = grbN mod N2. Finally, adversary B stores the tuple

(t, r, coin(t), H(t)) in table TH .

Notice that H(t) ∈ QRN instead of being in Z∗N2 , nonetheless collector C cannot detect this

fact thanks to the QR assumption in Z∗N and the DCR assumption in Z∗N2 .

Now suppose that coin(t∗) = 1, then H(t∗) is of the form gr
∗bN . Accordingly, B simulates

the oracle OCO, by computing pkA,t∗ = gr
∗cN mod N2 and auxi,t∗ = gr

∗skicN mod N2. Note

that in the case where c = ab, then pkA,t∗ = H(t∗)a = H(t∗)skA and auxi,t∗ = H(t∗)skiskA , and as

a result, collector C continues the collector obliviousness game. However, if c 6= ab and if C has

a non-negligible advantage ε in detecting that pkA,t∗ and auxi,t∗ are randomly generated, then C

aborts the game with non-negligible advantage ε. Therefore, to break the DDH assumption, B

outputs 1 when collector C continues the collector obliviousness game; and outputs 0 otherwise.

We remark here that the event coin(t∗) = 1 occurs with probability Π = p(1− p)q−1, where

q is the number of hash queries that C issues during the collector obliviousness game. The

probability Π is maximal when p = 1/q and it equals to Πmax ' 1
eq . Therefore, the advantage ε′

of adversary B in breaking DDH is equal to ε
eq .

B LEOM Assumption

In this section we provide security evidence for the hardness of the new LEOM assumption by

presenting bounds on the success probabilities of an adversary A, which presumably breaks the

assumption. We follow the theoretical generic group model (GGM) as presented in [134]. Namely

under the GGM framework an adversary A has access to a black box that conceptualizes the

underlying mathematical group G in which the assumption takes place. A without knowing any

details about the underlying group apart from its order p is asking for encodings of its choice and

the black box replies through a random encoding function ξ that maps elements from G → Ξ

as random bit strings of size dlog2 pe. Since our construction operates on asymmetric bilinear

pairing groups G1,G2,GT we make use of three random encoding functions ξc, c ∈ [1, 2, T ] where
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ξc : Gc → {0, 1}dlog2 pe.

Theorem 11. Suppose A is a polynomial probabilistic time adversary that solves the LEOM

assumption, making at most qG oracle queries for the underlying group operations on

G1,G2,GT and the OLEOM oracle, all counted together. All the encodings ξc, c ∈ [1, 2, T ]

and δ, {γu}nu=1 ∈ Zp are chosen at random. Then the probability ε2 that A on in-

put (p, ξ1(1), ξ2(1), ξ1(a), ξ1(b), ξ1(c), ξ2(δ), ξ2(
∑n

i=1 γi)) to output a tuple (ξ1(a), ξ1(b), ξ1(cf =

ξ1(βt
∑n

u=1 γu + αδ
∑n

u=1 xu,t))) for which neither xu′,t′ 6= xu,t nor A has made more than n

distinct queries for a fixed time interval t, is bounded as:

ε2 ≤
(qG + 16)2

p

.

Proof. We assume a polynomial time simulator B that interacts with adversary A and simulates

the black box for the underlying groups G1,G2,GT . B maintains 3 lists of tuples:

• L1 = {(F1,i, ξ1,i) : i = 1, · · · , τ1}

• L2 = {(F2,i, ξ2,i) : i = 1, · · · , τ2}

• LT = {(FT,i, ξT,i) : i = 1, · · · , τT }

where F1,i ∈ Zp[A,B, {Γu}nu=1,∆, X], F2,i,Zp[∆, E] and FT,i ∈ Zp[A,B, {Γu}nu=1,∆, E,X] are

multivariate polynomial on the indeterminants A,B, {Γu}nu=1,∆, E,X. Hereafter we will denote

inteterminants for polynomials with capital letters and coefficients with lowercase. The random

encodings ξc,i, c ∈ [1, 2, T ] of each list Lc, c ∈ [1, 2, T ] are provided to the adversary A at

each step τ , where τ = τ1 + τ2 + τT + 4. The lists are initialized at step τ = 0 by setting

τ1 = 1, τ2 = 3, τT = 0 and assigning F1,1 = 1, F2,1 = 1, F2,2 =
∑n

u=1 Γu, F2,3 = ∆, that

corresponds to the generators g1, g2 and the public information g
∑n
u=1 γu

2 , gδ2. A has access to the

random encodings ξ1,1, ξ2,1, ξ2,2, ξ2,3 respectively.

In what follows we describe how B simulates the groups operations in G1,G2,GT and the

oracle responses to OLEOM. We first assume that before A queries the oracle or asks for group op-
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erations it has already asked for the random encodings of the elements involved in the operations.

Consequently when A asks for operations in Gc, c ∈ [1, 2, T ] for some operands ξc, c ∈ [1, 2, T ],

B checks if ξc, c ∈ [1, 2, T ] already exists in Lc, c ∈ [1, 2, T ] and aborts if this happens.

• Group operations: A provides B two operands ξc,1, ξc,2, c ∈ [1, 2, T ] and a bit defining

multiplication or division. B starts by incrementing τc+ = 1, c ∈ [1, 2, T ]. It the computes

F1,τc = F1,i + F1,j , where 1 ≤ i, j ≤ τc if the operation bit is for multiplication or Fc,τc =

F1,i − F1,j , where 1 ≤ i, j ≤ τc if it is for division. If the new polynomial Fc,τc is equal to

another polynomial Fc,l for some l ≤ τc, c ∈ [1, 2, T ] in list Lc, c ∈ [1, 2, T ] then B fetches

the corresponding ξc,l and forwards it to A, otherwise it chooses a fresh random ξc,τc ∈

{0, 1}log2 p and gives it to A. B finally appends to Lc, c ∈ [1, 2, T ] the pair (Fc,τc , ξc,τc), c ∈

[1, 2, T ].

• Pairing: A pairing operation in GT consists of two random encodings ξ1,i, ξ2,j with 1 ≤

i ≤ τ1 and 1 ≤ j ≤ τ2. B first increments the counter τT+ = 1. Afterwards it computes

the pairing as the multiplication of the appropriate polynomials: FT,τT = F1,τ1 · F2,τ2 . If

the same polynomial already exists in LT : FT,τT = FT,l, 1 ≤ l ≤ τT then B clones the

random string ξT,l, otherwise it chooses a fresh random ξT,τT ∈ {0, 1}log2 p and gives it to

A. B finally appends to LT the pair (FT,τT , ξT,τT ).

• OLEOM: B increments a counter τO by 1 and sets τ1+ = 3. A inputs (u, t, xu,t). B

computes the polynomials F1,τ1−2 = At, F1,τ1−1 = At(Y ), F1,τ1 = (BΓu + A∆X) for the

indeterminants B,Γu, A,∆, X. If any of the F1,τ1−2 , F1,τ1−1 , F1,τ1 already exists in L1 then

B clones the associated random encodings ξ1,l for some l ∈ [1, · · · , τ1]. Otherwise it creates

three random encodings ξ1,τ1−2 , ξ1,τ1−1 , ξ1,τ1 ∈ {0, 1}log2 p and forwards them to A. It also

stores the pairs (F1,τ1−2 , ξ1,τ1−2), (F1,τ1−1 , ξ1,τ1−1), (F1,τ1 , ξ1,τ1) in L1 list.

Eventually A outputs a forgery (mf , ξ1,fa, ξ1,fy, ξ1,fxy). If A’s forgery is valid then it must

hold:

e(
∏
ct, g2)

e(βt, g
∑n
u=1 γu

2 )e(a
∑n
u=1 mu , gδ2)

= 1 ∈ GT (1)
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We show now that this does not happen always. Indeed w.l.o.g we have the following form

for each polynomial in the three lists:

• F1,i = z0,i + z1,ihBΓu,i + z2,iA∆X, for coefficients z0,i, z1,i, h, z2,i.

• F2,i = w0,i + w1,i∆ + w2,iE, for coefficients w0,i, w1,i, w2,i.

• FT,i = y0,i + η1,i∆hBΓu,i + η2,iEhBΓu,i + ρ1,iA∆2X + ρ2,iA∆XE, for coefficients

y0,i, η1,i, h, η2,i, ρ1,i, ρ2,i.

Equation (1) following the aforementioned presentation of each polynomial can be rewritten

as

Ff = FT,k − FT,lFT,o (2)

for indexes k, l, o. Simplifying the equation, since it is equal to 0, then the second part consists

of a polynomial with determinants (∆Γ)2, (EΓ)2, A∆4X2, (A∆XE)2 and the first part with

determinants (∆Γ, EΓ, A∆2X,A∆XE). Since there are no common terms, then all are canceled

out and we are left with y0,k = y0,ly0,o. As such Ff = 0 only when y0,k = y0,ly0,o.

B assigns random values (α, β, γ, δ, ε, x) for the indeterminants A,B,Γ,∆, E,X and in order

for A to win in the game, it should find two identical polynomial in any of the lists L1,L2,LT
or Ff = 0. As such the success probability of A is bounded by the probability that one at least

of the following equations holds:

1. F1,i(α, β, γ, δ, x)− F1,j(α, β, γ, δ, x) = 0 : i 6= j

2. F2,i(δ, ε)− F2,j(δ, ε) = 0 : i 6= j

3. FT,i(α, β, γ, δ, x)− FT,j(α, β, γ, δ, x) = 0 : i 6= j

4. Ff,i(α, β, γ, δ, ε, x)− Ff,j(α, β, γ, δ, ε, x) = 0 : i 6= j

F1,i degree is at most 3, F2,i at most 1, and FT,i at most 4. . As such they vanish with probability

3
p ,

1
p ,

4
p respectively, from the Schwartz-Zippel theorem. As such summing for all possible pairs

i, j for each of the aforementioned polynomials the success probability of A is bounded by:

ε2 ≤
(
τ1

2

)
3

p
+

(
τ2

2

)
1

p
+

(
τT
2

)
4

p
+

4

p
≤ (τ1 + τ2 + τT + 12)2

p
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As τ1 + τ2 + τT ≤ qG + 4 then ε2 ≤ (qG+16)2

p
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C Resume

La motivation pour cette thèse provient de notre engagement dans un projet sur contrôle d’usage,

qui a commencé comme un problème de côté et nous a emmenés progressivement au sujet

principal de cette thèse. A savoir, la fonction de ces protocoles de contrôle d’usage est de contrôler

la manière dont les données sont utilisées tout au long de leur vie, car les systèmes ordinaires

de contrôle d’accès ne peuvent pas assurer la confidentialité pour l’utilisation des données. Un

système ordinaire de contrôle d’accès permet à un adversaire de copier et stocker des données

supprimées, les dupliquer ou les utiliser avec malveillance et de manière non autorisée. Un

élément essentiel d’un régime d’application de contrôle d’usage s’avère être une fonction de la

détection de similarité, qui est utilisé pour détecter l’utilisation de données malveillantes par les

parties non fiables. Notre étude d’une catégorie spécifique des opérations d’analyse de données,

telles que la détection de similarité à des fins de sécurité, nous a inciter à s’intéresser à une

catégorie plus vaste des protocoles, dans laquelle d’autres fonctions que la similarité sont évalués

par des parties non fiables pour des raisons différentes.

Dans ce type des protocoles, tout comme avec le problème de contrôle d’usage, il existe

une exigence contradictoire entre la sécurité et l’utilité, dans ce type de protocoles. Un tiers

non fiables cherche à apprendre certaines informations statistiques utiles grâce à un recense-

ment des données représentant une population d’usagers. Les parties non fiables recueillent

des données provenant d’individus pendant la phase de collecte. Après avoir recueilli toutes les

données, les agrégateurs, qui ne sont pas autorisées à avoir accès aux données individuelles, vont

essayer de les analyser, afin d’en tirer une valeur globale. Les données individuelles contien-

nent des informations personnelles et sensibles, c’est pourquoi les utilisateurs qui les fournissent

cherchent à protéger leur vie privée. Grâce à l’analyse des données recueillies auprès des util-

isateurs, des informations statistiques utiles peuvent être calculées en texte clair qui aidera aux

agrégateurs à prendre une décision. En tant que tel, le problème devient un défi, lorsque les

entrées individuelles à la fonction sont obscurcis, afin d’assurer la confidentialité. Désormais,

des solutions différentes répondant à ce problème sont appelées PPDCA, en elles utilisent deux

classes de techniques. La première classe repose sur l’ajout de bruit aux échantillons de données
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afin d’assurer la confidentialité. Le bruit ajouté permet à l’agrégateur de calculer une fonction

statistique avec une erreur. L’autre variante de solutions est basée sur la cryptographie. Grâce

à des techniques non-conventionnelles de cryptage et de gestion de clés, l’agrégateur non fiable

apprend le résultat d’une fonction statistique sans aucun bruit. En dépit des progrès réalisés

par ces solutions cryptographiques concernant la vie privée et l’efficacité, le modèle de sécurité

n’implique pas un agrégateur entièrement malveillant ou suppose l’existence d’un distributeur

de clés complètement fiable qui distribuant des clés à chaque partie du protocole. Cette thèse

porte sur les techniques cryptographiques pour les protocoles PPDCA avec un modèle de menace

plus fort, tout en assouplissant les hypothèses de confiance existantes, afin de mieux répondre

au déploiement de monde réel. Avant de présenter les défis et les objectifs que nous abordons,

nous présentons des scénarios de cas d’utilisation qui nous motivent.

C.1 Applications

Dans cette partie, nous fournissons, à travers des scénarios du monde réel, des preuves pour

les applications diverses des protocoles PPDCA. La confluence des serveurs puissants, des ap-

pareils informatiques omniprésents et d’informatique intelligente, permet la collection d’une

énorme quantité des données provenant des utilisateurs finaux. L’existence d’une grande quan-

tité d’informations, permet à l’agrégateur de déduire, grâce à ses opérations, des informations

statistiques sur la population sous-jacente, qui améliorent la protection sociale: imaginez un scé-

nario de services médicaux, selon lequel les patients d’un hôpital reçoivent des renseignements

personnels sur leur santé en forme électronique. Cette information représente leur historique

médicale et elle est considéré comme une information personnelle. Les scientifiques médicaux,

d’autre part, cherchent à travailler sur les données afin d’en tirer des informations statistiques,

notamment les modèles prédictifs sophistiqués pour découvrir la prédisposition aux maladies

(cancer, crise cardiaque, des anomalies génétiques) ou pour connaitre, grâce à des données

génomiques, à quel point il est probable que les descendants héritent certaines maladies. Les

données médicales, produites par une population de patients, sont recueillies par les scientifiques

médicaux qui se comportent comme des agrégateurs. La mauvaise usage de données privées des
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patients est possible, ce qui peut avoir une conséquence négative dans la vie des patients: par

exemple, quand une compagnie d’assurance décide si un patient va devenir un client poten-

tiel ou pas, l’élicitation des données médicales à cette compagnie d’assurance peut avoir une

influence négative sur sa décision. Le problème centrale de ce scénario, qui se passe entre les

fournisseurs des données médicales (utilisateurs) et les scientifiques médicaux, qui peuvent agir

avec malveillance, est d’assurer la confidentialité des données individuelles, tout en permettant

aux scientifiques médicaux d’effectuer certaines opérations dessus.

Dans un autre contexte, grâce à la chute des coûts des appareils informatiques, les compteurs

intelligents sont beaucoup déployés dans les foyers afin de signaler la consommation d’énergie

dans un environnement de réseau électrique intelligent. Comme la consommation d’énergie,

surveillé par les compteurs intelligents, peut révéler des informations sensibles d’un foyer, tels

que le nombre de personnes, les appareils et les activités personnelles, les usagers n’ont pas trop

envie de dévoiler leurs habitudes de consommation d’énergie. De l’autre côté du système de

réseau intelligent, les fournisseurs d’énergie, considérés comme des consommateurs des données,

collecte et analyse des échantillons de la consommation d’énergie de compteurs intelligents afin

de réaliser différents types d’optimisation. A partir de l’analyse de ces échantillons, ils sont en

mesure de prévoir précisément la demande d’électricité, afin de répartir l’énergie à l’avance, en

fonction des besoins de toute une population. C’est une opposition typique qui se pose donc entre

les deux bout du système de réseau intelligent, la vie privée d’un côté et l’utilité de l’autre côté.

Le défi du scénario de comptage intelligent est, donc, de préserver la confidentialité des données

individuelles, tout en permettant aux tiers non fiables d’avoir accès à certaines informations

globales sur les comptages.

C.2 PPDCA

Dans les scénarios mentionnés ci-dessus un tiers non fiable collecte les données provenant de

plusieurs utilisateurs. Les utilisateurs veulent protéger la confidentialité de leurs données et ils

hésitent à révéler leurs informations personnelles. D’autre part, la partie non fiable cherche

à obtenir en texte clair une fonction sur l’ensemble des données, sans apprendre des entrées
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individuelles. Pendant une phase de collecte, un agrégateur recueille des données obscurcies.

Ensuite, au cours de la phase d’analyse, l’agrégateur effectue certaines opérations sur les données

qui lui permettent de révéler en texte clair des informations statistiques utiles sur les informations

recueillies. Les faits de préserver la confidentialité des données et de permettre l’accès spécifique

à l’information globale ont les exigences contradictoires, ce qui rend la conception de protocoles

PPDCA difficile. Examinons maintenant quelques solutions possibles de ce problème. Cryptage

homomorphique permet des opérations sur les données cryptées, mais ne résout pas le problème

de la dérivation d’une valeur globale en texte clair. Dans un contexte standard, basé sur le

cryptage homomorphique, l’agrégateur non fiable aurait besoin de la clé de cryptage secrète

pour décrypter le résultat global cryptées, ce qui compromettrait la vie privée des utilisateurs.

Suite à une direction différente, le problème pourrait être atténué avec les protocoles calculs

multi-partis (MPC). Cependant, MPC implique une surcharge importante de communication,

car les utilisateurs sont obligés d’échanger des multiples messages secrets pour que le calcul d’une

fonction sur les données puisse être effectué. Le paradigme de cryptage fonctionnel peut être

utilisé pour concevoir des protocoles PPDCA, mais en cas des entrées multiples les modèles de

cryptage fonctionnels proposés seraient complexes et d’un coût prohibitif. Nous nous tournons

vers des approches plus adaptées qui portent spécifiquement sur le problème PPDCA. L’idée

des solutions liées au bruit est d’ajouter un peu de bruit à chaque valeur de données avant

de l’envoyer à l’agrégateur. Le bruit empêche l’agrégateur de compromettre la confidentialité

individuelle, mais il est adapté de manière appropriée pour que certaines statistiques portant

sur toutes les entrées de données puissent être inférées. Il existe un autre approche qui utilise

des protocoles cryptographiques avec un ensemble restreint d’opérations qu’un agrégateur peut

effectuer sur l’ensemble des données.

C.3 Objectifs

Bien que l’approche le plus approprié pour PPDCA semble être celui qui utilise des protocoles

cryptographiques, des solutions existantes, basées sur des protocoles cryptographiques, ont tou-

jours quelques limitations. Tout d’abord, les protocoles existants ne fonctionnent qu’avec un
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ensemble basique de fonctions d’agrégation: l’extension de ceux-ci semble être un très bon défi

pour la recherche. De plus, des protocoles cryptographiques existants pour PPDCA souffrent

d’exigences irréalistes concernant la gestion des clés, car il existe une dépendance d’un distribu-

teur des clés entièrement fiable ainsi que la nécessité de mettre à jour le matériel de clé pour la

population entière des utilisateurs. Les utilisateurs existants du modèle sont également touchés

en cas de faute, parce que les utilisateurs qui participent déjà dans le protocole, ont besoin de

recevoir de nouvelles clés. Dans le cas des appareils à faibles ressources, tel que les compteurs

intelligents, en raison des contraintes de ressources de l’appareil, il est d’une grande importance

de soutenir la dynamicité et la résilience aux pannes avec faibles coûts de communication. En-

fin, les protocoles cryptographiques suivent le modèle de menace honnête, mais curieux, dans

lequel l’agrégateur est semi-approuvé de suivre les règles du protocole. Nous concluons qu’il est

important d’introduire un modèle de sécurité plus fort en prenant en compte adversaires plus

puissants qui cherchent à s’écarter des règles de protocole, afin d’altérer de façon malicieuse les

résultats globaux. Les objectifs de cette thèse peuvent être résumés en quelques points:

1. Fournir de nouvelles fonctionnalités qu’un agrégateur peut effectuer sur les données pour

la collecte de données sécurisées et sur l’analyse, qui ne sont pas disponibles à partir des

protocoles cryptographiques existants. Nous soulignons que les fonctionnalités étendues

devraient venir avec une récompense idéal pour la confidentialité sans la compromettre

en grande partie: l’apprentissage des statistiques globales sur l’ensemble de la population

d’utilisateurs est faisable et acceptable, mais l’apprentissage de comportement en ligne de

chaque utilisateur de la population est considéré comme la violation de la vie privée des

utilisateurs.

2. Conception d’un protocole cryptographique qui serait approprié pour une population dy-

namique des utilisateurs avec la résilience aux pannes. Nous soulignons que le soutien

de dynamicité et de tolérance aux pannes ne devrait pas compromettre la vie privée des

utilisateurs.

3. La formalisation de nouvelles définitions de sécurité qui ne existent pas dans la littérature

actuelle. En quelques mots, nous renforçons les définitions de confidentialité existantes
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concernant inconscience de l’Aggregator, telles qu’elles ont déjà été proposées, en réduisant

la quantité de confiance qui doit être placé dans une seule entité. De plus, nous proposons

une définition intégrée de la sécurité qui garantit à la fois la confidentialité et la vérification

des calculs. D’après l’analyse effectuée, nous présentons brièvement les résultats de cette

thèse:

C.4 Clustering aux profils privées

Les tiers non fiables ont tendance à exploiter, de plus en plus, les informations des usagers pour

assurer une meilleure diffusion de contenu. Les systèmes recueillent des données sur les utilisa-

teurs et leurs interactions avec leur environnement afin de fournir le contenu le plus adéquat et

personnalisé. Les informations utilisées, comprenant les relations sociales des usagers et leurs

intérêts personnels, sont constituées des données très sensibles, ce qui, donc, pose le problème

dans le domaine de la vie privée. Une solution näıve du problème mentionné ci-dessus pourrait

être le cryptage des données avant de les analyser. Cela ne résoudra pas le problème puisque

les opérations ne sont pas envisageables après le cryptage. Une solution plus adéquate pourrait

être le cryptage des données de façon homomorphique, pour que les propriétés statistiques des

données après le cryptage puissent être calculées. Bien que cette solution semble abordable, les

systèmes actuels de cryptage homomorphiques ne réussissent pas à donner une solution pour un

système d’analyse globale appliqué aux certaines grandes échelles d’ensemble de données. L’un

des éléments constitutifs de base dans la grande majorité des scénarios d’analyse de données

est la détection de similarité. En analysant l’ensemble de données d’utilisateurs, un moteur de

recommandation peut découvrir des profils similaires et ainsi recommander à un nouvel utilisa-

teur un contenu qui a déjà été consommé par d’autres utilisateurs similaires déjà existants. Les

annonceurs en ligne ont cherché à augmenter leur chiffre d’affaires en examinant le comportement

en ligne des usagers. Cela implique que les détaillants en ligne externalisent des informations

personnelles sensibles aux annonceurs. Les utilisations mentionnées ci-dessus impliquent un

risque de violation de confidentialité. Etant donné que les opérations d’analyse de données sont

effectuées sur des informations personnelles confidentielles et sensibles, il est possible que la vie
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privée des individus ne soit protégés. Ainsi, les utilisateurs et les entreprises, soit ont tendance

à ne pas soumettre leurs données à une analyse plus approfondie des tiers non fiables, soit ils

leur donnent un accès limité en raison du risque de violation de confidentialité [86, 107, 112,

127]. Des solutions radicales comprennent une limitation relative aux opérations d’analyse de

données disponibles qu’un agrégateur peut effectuer à partir de la perspective de l’analyseur, ce

qui dégrade la précision de l’analyse des données. Dans ce chapitre, nous présentons un pro-

tocole de la préservation de la vie privée pour la détection de similarité. Similarité cosinus est

capable de reconnâıtre des vecteurs similaires basés sur l’angle formé entre ces deux vecteurs.

Notre mécanisme de préservation de la vie privée, trace d’abord les données des utilisateurs sous

la forme des vecteurs et ensuite chaque utilisateur crypte individuellement ses données, de sorte

que la représentation géométrique des données vectorisées soit préservée. La sécurité de cette

solution est confirmée sous la sécurité des générateurs pseudo-aléatoires. L’exactitude de la so-

lution proposée est ensuite évaluée avec l’aide d’étude sur les caractéristiques de la personnalité

des utilisateurs.

L’idée de la solution est d’appliquer des transformations sur les vecteurs originaux qui d’une

part préservent l’angle entre n’importe quel paire d’entre eux et d’autre part assurent la vie

privée. Étant donné que la rotation dans un espace à deux dimensions conserve les angles, on

applique cette transformation aux vecteurs à deux-dimensions, nommés des sous-vecteurs qui

sont originaires du vecteur de données initial. En outre, ces sous-vecteurs sont encore dilatés

au hasard et ainsi obscurcis, mais sans encore avoir eu un impact sur l’angle. Nous avons ob-

servé des fuites de sécurité lorsque le mécanisme de cryptage ne comporte pas tous les deux

éléments, les dilatations aléatoires et les rotations. Si chaque utilisateur sélectionne unique-

ment la dilatation aléatoire comme le mécanisme de cryptage, un adversaire, après avoir obtenu

une bonne estimation d’un coefficient de vecteur d’un utilisateur, peut récupérer les vecteurs

bidimensionnels spécifiques en calculant l’inverse de l’élément estimé et en le multipliant par

le coefficient crypté. Le problème susmentionné est atténué grâce à des rotations. Cependant,

un autre apparâıt lorsque les rotations de vecteur aléatoires sont utilisées: si deux utilisateurs

avec des vecteurs secrets Di, Dj ont respectivement la même valeur en même position de leurs
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vecteurs, des vecteurs cryptés correspondants auraient la même valeur à cette position, unique-

ment si le cryptage est fait avec une matrice de rotation Rθ de l’angle θ. Ceci s’oppose à la

définition de la sécurité 36. Ainsi, pour bien préserver la similarité cosinus après le cryptage

des vecteurs, à la fois la dilatation aléatoire et la rotation sont appliquées. Par conséquent,

grâce à la rotation, l’adversaire ne peut pas découvrir des similarités entre les coordonnées d’un

vecteur. Le processus de tracer les vecteurs en sous-vecteurs diminue également la probabilité de

découvrir le vecteur d’origine, puisque chaque sous-vecteur a un facteur de dilatation différent.

Contributions Notre technique assure :

• Calculation de similarité sans avoir : Un tiers non fiable peut effectuer l’agrégation des

données cryptées sans apprendre des entrées de données individuelles.

• La sécurité confirmée : La sécurité de notre protocole est confirmée dans le modèle stan-

dard.

C.5 Preservation de la vie privée par les statistiques dans le réseau intelligent

Les compteurs intelligents sont des appareils déployés dans les foyers qui ont pour l’objet de

mesurer la consommation d’énergie dans des intervalles de temps spécifiques. Ils ne mesurent

pas uniquement la consommation d’électricité mais aussi celle du gaz et de l’eau. Les raisons

de ce déploiement important des compteurs intelligents sont nombreuses. D’une part, les four-

nisseurs peuvent, ainsi, apprendre plus précisément les intervalles de temps où chaque foyer

consomme plus d’énergie et donc ajuster de manière appropriée la facturation de chaque client

et de prévoir la demande potentielle d’énergie. D’autre part, les habitants d’un foyer peuvent

recevoir des conseils et ainsi changer leurs habitudes de consommation d’énergie. Notamment,

après avoir appris quelle est la période de consommation la plus élevée, un client peut préférer de

consommer l’énergie d’une manière plus efficace. Dans ce chapitre, nous abordons le problème

consistant en calcul de la consommation maximale continue de l’énergie au cours des relevés,

envoyées par les compteurs intelligents individuels tout en préservant la vie privée des usagers.

Suite à l’analyse que nous avons faite dans le chapitre 3, ce type de statistiques n’existe pas

dans les ouvrages scientifiques actuels. Nous supposons que tout les deux, le fournisseur et les
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compteurs intelligents individuels, cherchent à déterminer l’intervalle où le compteur intelligent

consomme le plus. Une telle opération ne peut être effectuée que par un compteur intelligent,

car il lui manque de ressources et en particulier de mémoire. Le compteur intelligent aurait be-

soin d’un nombre important de valeurs afin de trouver la valeur maximale correspondant à une

consommation continue. Cependant, la conséquence de l’externalisation de ces calculs au four-

nisseur sera naturellement la fuite des informations concernant les consommations périodiques

qui sont certainement des informations très sensibles. Nous proposons donc une solution, dans

laquelle les compteurs intelligents envoient leur mesure périodique au fournisseur de la façon que

la confidentialité soit préservée, tout en permettant à cette organisme de calculer l’intervalle de

temps de la consommation maximale. La solution proposée est fondé sur un cryptage de main-

tien de l’ordre (OPE), qui par définition conserve l’ordre des valeurs en texte clair après leur

cryptage sans révéler aucune information supplémentaire. De plus, afin de filtrer les maximums

spontanés (qui apparaissent, car parfois des appareils domestiques par exemple, s’allument et

s’éteignent du façon erroné), le compteur intelligent envoie également les différences de valeurs

de consommation consécutive au fur et à mesure, en utilisant une approche ”sur la volée” de

sorte que le compteur intelligent n’a pas besoin de stocker de l’information auxiliaire. Grâce

aux différences le fournisseur est capable de déterminer la période de consommation maximale

qui est continue. La sécurité de la solution proposée est confirmée avec l’aide d’une preuve

réductionniste de l’hypothèse POPF-CPA [23], ce qui correspond à la notion de sécurité qui

caractérise la sécurité de l’OPE. Idée Dans cette partie, nous donnons une courte description

de notre solution. Notre modèle de PPSGS réussie à faire oublier les tiers grâce à un système

de cryptage de maintien de l’ordre dans lequel l’ordre des éléments numériques dans l’espace de

texte clair est également conservé dans l’espace de texte codé. Chaque compteur intelligent est

équipé d’un module matériel inviolable dans lequel une clé secrète est intégrée. Cette clé secrète

est utilisée pour crypter les mesurages à chaque intervalle de temps. Grâce à la primitive cryp-

tographique des fonctions de maintien de l’ordre, des fonctions préservant un ordre et utilisant la

clé, choisies de manière uniforme et au hasard, ne se distinguent pas des fonctions idéales. Ainsi,

ce n’est que l’ordre qui est révélé au fournisseur qui agit en tant qu’entité d’analyse de données.
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Pour l’exactitude de l’analyse, une fois que le fournisseur a identifié l’intervalle de temps dans

lequel un compteur intelligent a consommé le maximum, grâce à l’information supplémentaire

composée par les différences entre chaque consommation, il peut vérifier qu’en effet il y a une

consommation valable d’énergie continue maximale autour de cet intervalle de temps. Si les

différences sont convergées à 0, cela veut dire qu’il a une forte indication que les mesurages

autour de cet intervalle particulier font partie d’une consommation continue maximale. Bien

que l’objectif de la publication des différences est de permettre aux fournisseurs d’énergie de

détecter les consommations continues d’énergie maximale, les chercheurs ont exprimé l’intérêt

pour concevoir des protocoles préservant la confidentialité pour les détections de crête, pour que

les opérateurs énergétiques puissent identifier les lignes électriques surchargées [53]. En tant

que tel, notre solution est également convenable pour le cas mentionné ci-dessus. L’avantage

de notre approche est que les compteurs intelligents n’ont pas besoin de stocker les différences

ou les textes chiffrés afin d’effectuer l’analyse, mais ceux-ci sont calculées et envoyées immédi-

atement au fur et à mesure. Du point de vue des fournisseurs, la vérification d’un intervalle

de consommation maximale continue est effectuée par lot avec une seule opération. De plus,

comme il sera établi dans la section 5.2.3, les différences ne compromettent pas les exigences de

la confidentialité du modèle. L’information provenant de l’identification d’une consommation

d’énergie continue améliorerra les prévisions de consommation d’énergie mais également perme-

ttra une meilleure allocation de l’énergie à l’avance des producteurs d’énergie. En outre, les

informations sur l’intervalle de la consommation d’énergie maximale peuvent être renvoyées aux

usagers pour qu’ils puissent passer rapidement de leur utilisation habituelle d’énergie pendant les

périodes de tarif haut à celle des périodes de tarif bas. Il est impossible d’effectuer cette opéra-

tion individuellement à chaque compteur intelligent, car leurs ressources ne sont pas suffisantes

pour l’exécution des grandes opérations d’analyse de données. D’autre part, un mécanisme de

vérification de l’intégrité est indispensable pour que le fournisseur soit assuré que les mesurages

sont envoyés à partir des compteurs intelligents existants et authentifiés.

Contributions

Notre protocole assure:
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• L’inconscience d’agrégateur: Un agrégateur non fiable n’apprend aucune des entrées indi-

viduelles. Il n’apprend que le résultat final, ce qui est en effet l’intervalle de temps dans

lequel un utilisateur consomme le maximum.

• La consommation continue maximale: Un utilisateur dans un foyer peut allumer et étein-

dre un appareil de haute énergie, immédiatement et dans n’importe quel moment. Cela

résultera en résultats erronés pour l’agrégateur, car un usage spontané d’un appareil de

l’énergie pour une période très courte donnera les statistiques globales fausses. Nous étions

en mesure de capter cette information grâce à une fonction de codage delta, qui permet à

l’agrégateur de discerner si les différences de consommations d’énergie en texte clair autour

d’un intervalle de temps, convergent à zéro, ce qui est interprété comme une consommation

maximale d’énergie continue.

• La sécurité confirmée: La sécurité de notre protocole est bien confirmée.

C.6 Protection de la vie privee pour l’agrégation de séries temporelles dans le

manière dynamique

Nous proposons un protocole PPDCA, qui élimine le besoin d’une redistribution des clés après

une connexion et une déconnexion d’un utilisateur, ainsi que la nécessité d’un distributeur des

clés complètement fiable. Ainsi, nous renforçons le modèle de menace des protocoles PPDCA

actuels avec des fonctionnalités améliorées concernant la dynamicité et la tolérance aux pannes.

Les caractéristiques du protocole amélioré peuvent être résumées comme suit:

• Pas de distributeur de clés. Contrairement à la plupart des protocoles PPDCA, dans notre

modèle il n’y a pas distributeur des clés fiable. Par contre, nous introduisons une partie

semi-fiable, appelée Collecteur, qui rassemble des informations clés partielles prises des

utilisateurs via un canal sécurisé.

• Populations dynamiques des utilisateurs soutenues. Aucune coordination n’est indispens-

able pour gérer les changements qui concernent la population des usagers. Ceci est possible
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grâce à un mécanisme de clé auto-générée, selon lequel aucun accord de clé entre utilisa-

teurs n’est exigé.

• Confidentialité. En ce qui concerne la confidentialité, le modèle assure l’inconscience

d’agrégateur, tel qu’introduit par Elaine Shi et al. [131]. Autrement dit, l’agrégateur

non fiable n’apprend que la somme et la moyenne sur les données privées des utilisateurs

à la fin de l’exécution du protocole. Par ailleurs, nous montrons que le collecteur ne relève

aucune information sur les données privées des utilisateurs.

• Efficacité. Notre modèle reprend certaines fonctionnalités de Joye et al. [92], telles que

la possibilité de calculer la somme et la moyenne sur un grand nombre d’utilisateurs sans

restrictions concernant la diversité des valeurs des utilisateurs. Il est également extensible

dans le sens que les décryptages effectués par l’agrégateur ne dépendent pas du nombre

d’utilisateurs.

Aperçu

Afin d’éliminer le besoin d’un distributeur entièrement fiable et pour soutenir la gestion de

groupe dynamique sans induire de communication ou de calcul supplémentaires au-dessus, nous

utilisons deux techniques:

• Le mécanisme de division de responsabilité: Chaque utilisateur, Ui, envoie en même temps,

un cryptage de son échantillon de données privées à l’agrégateur A et une autre version

obscurcie de son clé secrète, ski, au collecteur demi-fiable C, de façon que ni l’agrégateur,

ni le collecteur, ne peuvent violer la confidentialité des échantillons individuels fournis par

les utilisateurs.

• Auto-génération de clés secrètes: Les clés secrètes, utilisées pour le cryptage des échantil-

lons de données, sont générées indépendamment par les utilisateurs, sans coordination par

un distributeur des clés fiable.

Une présentation de notre solution est illustrée dans la figure 6.1. Chaque utilisateur Ui
choisit indépendamment sa clé secrète ski, alors que l’Aggregator non fiable génère une clé
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aléatoire skA. Pour chaque intervalle de temps t, agrégateur, A, publie une version obscurcie

pkA,t de la clé secrète pkA. Les utilisateurs Ui, d’autre part, cryptent leurs échantillons de

données privée xi,t, avec leurs clés secrètes, ski, en utilisant le système de cryptage Joye-Libert,

et envoient les textes chiffrés correspondants ci,t, à l’agrégateur A. Ils, également, occultent

leurs clés secrètes ski par pkA,t, et envoient l’information auxiliaire obtenue auxi,t au Collector C

via un canal sécurisé. Collecteur C calcule une fonction g(t) à partir de l’information auxiliaire

auxi,t qu’il a reçu et transmet la sortie auxt à l’agrégateur A. Après avoir reçu les textes chiffrés

ci,t et l’information auxiliaire auxt, l’agrégateur, A, utilise sa clé secrète skA et apprend la somme

∑
xi,t, pour l’intervalle de temps t. De cette façon, nous éliminons le besoin d’un distributeur

de clés fiable qui connâıt de clés privées des usagers, tout en assurant que ni l’agrégateur,

ni le collecteur ne peuvent déduire des informations sur les données individuelles des usagers.

Egalement, la gestion efficace de groupe dynamique qui ne nécessite pas de mécanisme d’aucune

mise à jour de clé est atteinte.

De cette manière notre protocole assure :

• L’inconscience d’agrégateur et de collecteur : Le protocole assure l’inconscience

d’agrégateur et de Collector. Grâce à cela la confidentialité n’est pas compromise ni par

l’agrégateur, ni par le collecteur, ce qui aide l’agrégateur de calculer la somme.

• Dinamicité et la tolérance aux pannes : L’agrégateur apprend la somme, même en cas d’une

panne causée par une erreur de communication. De plus, le protocole est dynamique dans

le sens que les connections et déconnections dynamiques n’ont aucune influence sur les

utilisateurs existants de ce protocole, car il n’y a pas besoin de procéder à une nouvelle

phase de distribution de clé.

• La sécurité confirmée : La sécurité de notre protocole est confirmée dans le modèle de

l’oracle aléatoire sous le caractère insoluble des problèmes mathématiques bien connus

contre agrégateurs honnêtes, mais curieux.
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C.7 PUDA – Confidentialité et infalsifiable pour l’agrégation

Nous considérons un scénario dans lequel un agrégateur recueille des données individuelles de

plusieurs utilisateurs, qui n’interagissent pas entre eux, et ensuite exécute une fonction qui délivre

une valeur globale. Contrairement au protocole présenté dans le chapitre 6, le résultat est ensuite

transmis à un analyseur de données qui peut enfin extraire des informations utiles relatives à

l’ensemble de la population des usagers. Protocoles PPDCA existants sont concentrés unique-

ment sur le problème de la confidentialité des données et ils considèrent que l’agrégateur est

honnête, mais curieux: l’agrégateur est curieux de découvrir le contenu de chacune des données

individuelles, mais effectue l’opération d’agrégation correctement. Ici, nous considérons un mod-

èle de sécurité plus puissant, où l’agrégateur est supposée être malveillant: L’agrégateur peut

fournir une valeur globale fausse à l’analyseur de données. Pour protéger contre ce comportement

malveillant, nous proposons qu’en plus des la valeur globale, l’agrégateur fournit une preuve de

l’exactitude du calcul du résultat global. Nous exigeons également que l’analyseur de données ne

puisse pas communiquer avec chaque utilisateur et que le résultat soit publiquement vérifiable.

De plus, analogue aux solutions existantes, le protocole proposé assure inconscience l’agrégateur

et l’analyseur de données dans le contexte multi-utilisateur; ce qui signifie que ni l’analyseur de

données, ni l’agrégateur apprend des entrées de données individuelles. L’idée sous-jacente de

notre solution est la suivante: chaque utilisateur crypte ses données selon le modèle Shi et al.

[131], en utilisant sa propre clé de codage secrète, et envoie le texte chiffré obtenu à l’agrégateur

non fiable. Les utilisateurs, également étiquètent leurs données de façon homomorphique, tout

en utilisant deux couches d’aléatoire avec deux clés différentes et ils transmettent les étiquètes à

l’agrégateur. Ce dernier calcule la somme en appliquant des opérations sur les textes chiffrés et

également il dérive de ces étiquètes une preuve de l’exactitude du résultat. L’agrégateur envoie

finalement le résultat et la preuve à l’analyseur de données qui vérifie l’exactitude du calcul.

A notre connaissance, nous sommes les premiers à définir un modèle PUDA. Nous instancions

également un modèle PUDA qui poursuit principalement les trois objectifs suivants :

• Milieu multi-utilisateurs où plusieurs utilisateurs produisent des données personnelles sen-

sibles sans aucune interaction entre eux.
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• Vérifiabilité publique de la valeur globale.

• Confidentialité des données individuelles pour tous les participants.

Aperçu de PUDA

Quand il s’agit d’un modèle étendu avec un agrégateur non fiable, il est extrêmement im-

portant de concevoir une solution dans laquelle l’agrégateur non fiable ne peut pas fournir des

résultats faux à l’analyseur de données. Une telle solution utilisera un système de preuve qui

permet à l’analyseur de données de vérifier l’exactitude du calcul. Pourtant la vérifiabilité de-

vrait se réaliser sans sacrifier la confidentialité. Pour atteindre cet objectif, nous proposons un

protocole qui s’appuie sur les techniques suivantes:

• Un algorithme de cryptage homomorphique qui permet à l’agrégateur de calculer la somme,

sans dévoiler les données individuelles

• Une étiquette homomorphique qui permet à chaque utilisateur d’authentifier l’entrée de

données xi t, de sorte que l’agrégateur puisse utiliser les étiquettes recueillies, pour con-

stituer une preuve démontrant à l’analyseur de données DA l’exactitude de la somme

globale.

L’explication la plus concise est la suivante: un ensemble d’utilisateurs sans interférence sont

connectés à des services personnelles et appareils qui produisent des données personnelles. Sans

aucune coordination, chaque utilisateur choisit une clé d’étiquette aléatoire, tki , et envoie un

codage de celle-ci, tki, au distributeur de clés. Après avoir recueilli toutes les clés codées, tki,

des utilisateurs, le distributeur des clé publie la clé de vérification publique, VK, de ce groupe

d’utilisateurs. Cette clé de vérification est calculé comme une fonction du codage tki. Ensuite,

le distributeur de clés donne à chaque utilisateur dans le système une clé de cryptage, eki, qui

sera utilisée pour calculer les textes chiffrés des utilisateur. Par conséquent, la clé secrète de

chaque utilisateur, ski, est définie comme la paire constituée de la clé d’étiquette, tki, et la clé

de cryptage, eki. Finalement, le distributeur de clés fournit l’agrégateur avec une clé secrète,

skA, calculée comme la somme des clés codées, eki, et ensuite se met hors ligne. Or, à chaque

intervalle de temps t, chaque utilisateur utilise sa clé secrète, ski, pour calculer un texte chiffré
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basé sur l’algorithme de cryptage de Shi et al. [131] et une étiquette homomorphique sur son

entrée de données sensibles. Lorsque l’agrégateur collecte les textes chiffrés et les étiquettes de

tous les utilisateurs, il calcule la somme, sumt, des données des utilisateurs et une preuve de la

somme, σt, et ensuite les transmet à l’analyseur de données. Lors de l’étape finale du protocole,

l’analyseur de données vérifie avec la clé de vérification, VK, et la preuve σt, la validité du

résultat, sumt. Bien que la modification semble simple et évidente, la preuve de Falsification -

type II s’avère être complexe. Grâce à l’algorithme de cryptage homomorphique de Shi et al.

[131] et à la manière dont nous construisons nos étiquettes homomorphiques, nous montrons que

notre protocole assure inconscience de l’agrégateur. De plus, nous montrons que l’agrégateur ne

peut pas forger des résultats faux. Enfin, nous constatons que l’Analyseur de données DA ne

conserve aucune forme des transcriptions des utilisateurs textes chiffrés, mais il ne retient que

la clé de vérification publique, la somme, sumt et la preuve, σt.

Contributions

En réalisant notre analyse, nous avons fait les contributions suivantes:

• Agrégation infalsifiable: Un agrégateur malveillant ne peut pas convaincre un analyseur

de données avec une agrégation erronée avec une probabilité non négligeable.

• L’inconscience: La confidentialité individuelle est préservée contre les parties non fiables

du protocole, tandis que l’agrégateur peut apprendre la somme des entrées de données.

• Vérification publique du temps constant: Le temps d’exécution de l’algorithme de vérifi-

cation est constant et ne dépend pas du nombre d’utilisateurs. De plus, la construction

permet la vérification publique de l’exactitude du resultat avec une clé de vérification

publique.

• La sécurité confirmée: La sécurité de notre protocole est confirmé grâce à une nouvelle

hypothèse mathématique dont la preuve de la sécurité est montré dans le modèle de groupe

générique
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C.8 Conclusion

PPDCA contribuent considérablement à la prise de décision. L’agrégation des données permet

aux agrégateurs de déduire des informations statistiques utiles, contribuant à la protection so-

ciale. Cependant, les usagers sont réticents à révéler leurs valeurs de données en clairtext, à

cause de la nature des informations personnelles sensibles que chaque usager confie à un tiers

non fiable. Les solutions actuelles proposent des différents mécanismes de la protection de la vie

privée des usagers. Ils préservent la vie privée des usagers, mais en même temps ils donnent la

possibilité à un tiers non fiable d’apprendre une fonction statistique f sur l’ensemble de la popu-

lation d’usagers. Dans cette thèse, nous avons d’abord défini ce qu’est un protocole PPDCA et

ensuite nous avons présenté l’état de l’art des protocoles PPDCA. Nous avons commencé notre

analyse avec des techniques basées sur le bruit. D’après ces techniques, chaque usager ajoute du

bruit à la valeur de données, de façon qu’un agrégateur non fiable puisse déduire des statistiques

bruyantes pour l’ensemble de la population des usagers. Les techniques basées sur le bruit sont

limitées à fournir des statistiques bruyantes et donc, elles ne conviennent pas aux scénarios de

cas d’utilisation dans lesquels la précision dans le résultat final de la fonction statistique f est

indispensable. Les protocoles cryptographiques ont pour l’objectif de répondre au besoin de

précision dans le calcul de f. Les usagers cryptent leurs données de façon appropriée, afin de

permettre le contrôle d’accès partiel sur une valeur globale. Après avoir présenté les proto-

coles cryptographiques actuels pour PPDCA, nous avons procédé à une taxonomie détaillée des

protocoles cryptographiques dans la littérature déjà existante basées sur des caractéristiques dif-

férentes de ceux-ci. En faisant notre analyse, nous avons identifié une lacune dans les directions

suivantes:

• Les protocoles existants sont concentrés sur une famille restreinte des fonctions f, qu’un

agrégateur peut apprendre, telle que la somme, le produit intérieur et des opérations

booléennes.

• La majorité des solutions cryptographiques actuelles supposent qu’il existe un revendeur

de clé complètement fiable, qui distribue des clés secrètes aux usagers et à l’agrégateur. Les
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conséquences d’un revendeur de clé entièrement fiable entravent le déploiement des proto-

coles dans un environnement dynamique. A savoir, dans un environnement dynamique les

usagers se joinder et se laisser à chaque exécution du protocole, obligeant ainsi les usagers

existants d’obtenir de nouvelles clés secrètes par le revendeur de clé fiable. De plus, ce

point de confiance, rend la faute des protocoles intolérante, puisque en cas de faute, le

revendeur de clé fiable doit distribuer de nouvelles clés à tous les usagers existants.

• Il n’y a pas de solutions soutenant un modèle de sécurité plus forte dans les protocoles

PPDCA. Les protocoles actuels ont deux fonctionnalités. Soit ils supposent qu’il existe

un agrégateur entièrement fiable, soit ils appuient leur sécurité sur un modèle honnête

mais curieux, dans lequel l’agrégateur est fiable pour exécuter correctement les étapes du

protocole, mais aussi il est curieux d’apprendre toute messages échangés.

Ainsi, on a introduit quatre protocoles pour PPDCA:

• Un protocol permettant de calculer la similarité entree deux profils privées.

• Un protocol qui facilite le calcul de l’intervalle de temps dans laquelle la consommation

énergétique d’un utilisateur a été maximale, sans divulguer les valeurs individuelles de

cette consommation.

• Un protocol dynamique pour l’aggregation des séries temporelles sans distributeur des clés.

• Un protocol PPDCA avec verification de calcul.
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[15] G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Z. Béguelin. Verified computational

differential privacy with applications to smart metering. In CSF, pages 287–301, 2013.

[16] M. Bellare. Practice-oriented provable security. In Lectures on Data Security, Modern

Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998, pages

1–15, London, UK, UK, 1999. Springer-Verlag.

[17] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In Proceedings of the 1st ACM conference on Computer and communi-

cations security, pages 62–73. ACM, 1993.

[18] F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving aggre-

gation of time-series data. https://hal.inria.fr/hal-01181321, 2015.

[19] E. Bertino, I. N. Fovino, and L. P. Provenza. A framework for evaluating privacy preserving

data mining algorithms*. Data Min. Knowl. Discov., 11(2):121–154, Sept. 2005.

172



[20] E. Bertino, D. Lin, and W. Jiang. A survey of quantification of privacy preserving data

mining algorithms. In Privacy-preserving data mining, pages 183–205. Springer US, 2008.

[21] I. Bilogrevic, J. Freudiger, E. De Cristofaro, and E. Uzun. What’s the gist? privacy-

preserving aggregation of user profiles. In Computer Security-ESORICS 2014, pages 128–

145. Springer International Publishing, 2014.

[22] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The sulq framework.

In Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS ’05, pages 128–138, New York, NY, USA, 2005.

ACM.

[23] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryp-

tion. In EUROCRYPT, pages 224–241, 2009.

[24] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Im-

proved security analysis and alternative solutions. In CRYPTO, pages 578–595, 2011.

[25] J. Bolot, N. Fawaz, S. Muthukrishnan, A. Nikolov, and N. Taft. Private decayed predicate

sums on streams. In Proceedings of the 16th International Conference on Database Theory,

ICDT ’13, pages 284–295, New York, NY, USA, 2013. ACM.

[26] D. Boneh and X. Boyen. Short signatures without random oracles and the sdh assumption

in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

[27] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology–

CRYPTO 2004, pages 41–55. Springer Berlin Heidelberg, 2004.

[28] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Advances

in Cryptology-CRYPTO 2001, pages 213–229. Springer Berlin Heidelberg, 2001.

[29] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In EUROCRYPT, pages 416–432, 2003.

173



[30] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Advances

in Cryptology-ASIACRYPT 2001, pages 514–532. Springer Berlin Heidelberg, 2001.

[31] D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.

In Y. Ishai, editor, Theory of Cryptography, volume 6597 of Lecture Notes in Computer

Science, pages 253–273. Springer Berlin Heidelberg, 2011.

[32] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from

bilinear maps. In Advances in Cryptology - CRYPTO 2004, 24th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,

pages 56–72, 2004.

[33] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J.

ACM, 51(4):557–594, 2004.

[34] J. Cao, Q. Xiao, G. Ghinita, N. Li, E. Bertino, and K.-L. Tan. Efficient and accurate

strategies for differentially-private sliding window queries. In Proceedings of the 16th In-

ternational Conference on Extending Database Technology, EDBT ’13, pages 191–202, New

York, NY, USA, 2013. ACM.

[35] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik. Efficient and provably

secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen. Netw.,

5(3):20:1–20:36, June 2009.

[36] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of encrypted data

in wireless sensor networks. In Mobile and Ubiquitous Systems: Networking and Services,

2005. MobiQuitous 2005. The Second Annual International Conference on, pages 109–117,

July 2005.

[37] D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In EU-

ROCRYPT, pages 336–352, 2013.

174



[38] D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verifica-

tion for polynomial functions. In Advances in Cryptology–CRYPTO 2014, pages 371–389.

Springer Berlin Heidelberg, 2014.

[39] D. Catalano, A. Marcedone, and O. Puglisi. Authenticating computation on groups: New

homomorphic primitives and applications. In Advances in Cryptology - ASIACRYPT

2014 - 20th International Conference on the Theory and Application of Cryptology and

Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,

Part II, pages 193–212, 2014.

[40] T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially private continual monitoring of

heavy hitters from distributed streams. In Proceedings of the 12th International Conference

on Privacy Enhancing Technologies, PETS’12, pages 140–159, Berlin, Heidelberg, 2012.

Springer-Verlag.

[41] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM

Trans. Inf. Syst. Secur., 14(3):26:1–26:24, Nov. 2011.

[42] T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault

tolerance. In Financial Cryptography, pages 200–214, 2012.

[43] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public

databases. In Theory of Cryptography, pages 363–385. Springer, 2005.

[44] S. Chawla, C. Dwork, F. McSherry, and K. Talwar. On the utility of privacy-preserving

histograms. Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence,

2005.

[45] R. Chen, I. E. Akkus, and P. Francis. Splitx: High-performance private analytics. SIG-

COMM Comput. Commun. Rev., 43(4):315–326, Aug. 2013.

[46] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren. Verifiable searchable symmetric en-

cryption from indistinguishability obfuscation. In Proceedings of the 10th ACM Symposium

175



on Information, Computer and Communications Security, ASIA CCS ’15, pages 621–626,

New York, NY, USA, 2015. ACM.

[47] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable

computation. In Proceedings of the 10th Theory of Cryptography Conference on Theory of

Cryptography, TCC’13, pages 499–518, Berlin, Heidelberg, 2013. Springer-Verlag.

[48] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy preserving

distributed data mining. ACM SIGKDD Explorations, 4:2003, 2003.

[49] F. Cohen. Introductory information protection, 1995.

[50] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3.

ed.). MIT Press, 2009.

[51] T. Dalenius. Finding a needle in a haystack - or identifying anonymous census record.

Journal of Official Statistics, 2:329–336, 1986.

[52] G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin. Smart meter aggregation

via secret-sharing. In Proceedings of the First ACM Workshop on Smart Energy Grid

Security, SEGS ’13, pages 75–80, New York, NY, USA, 2013. ACM.

[53] B. Defend and K. Kursawe. Implementation of privacy-friendly aggregation for the smart

grid. In Proceedings of the First ACM Workshop on Smart Energy Grid Security, SEGS

’13, pages 65–74, New York, NY, USA, 2013. ACM.

[54] A. W. Dent. A note on game-hopping proofs. IACR Cryptology ePrint Archive, 2006:260,

2006.

[55] C. Dwork. Differential privacy. In Automata, languages and programming, pages 1–12.

Springer, 2006.

[56] C. Dwork. Differential privacy: A survey of results. In Theory and Applications of Models

of Computation, pages 1–19. Springer, 2008.

176



[57] C. Dwork. Differential privacy in new settings. In SODA, pages 174–183. SIAM, 2010.

[58] C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–95, Jan.

2011.

[59] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Pri-

vacy via distributed noise generation. In Proceedings of the 24th Annual International Con-

ference on The Theory and Applications of Cryptographic Techniques, EUROCRYPT’06,

pages 486–503, Berlin, Heidelberg, 2006. Springer-Verlag.

[60] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in

private data analysis. In Proceedings of the Third Conference on Theory of Cryptography,

TCC’06, pages 265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

[61] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual

observation. In Proceedings of the 42nd ACM symposium on Theory of computing, pages

715–724. ACM, 2010.

[62] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned

databases. In Advances in Cryptology–CRYPTO 2004, pages 528–544. Springer, 2004.

[63] Z. Erkin and G. Tsudik. Private computation of spatial and temporal power consumption

with smart meters. In ACNS, pages 561–577, 2012.

[64] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserv-

ing data mining. In Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’03, pages 211–222, New York, NY,

USA, 2003. ACM.

[65] L. Fan and L. Xiong. Real-time aggregate monitoring with differential privacy. In Proceed-

ings of the 21st ACM international conference on Information and knowledge management,

pages 2169–2173. ACM, 2012.

[66] D. M. Freeman. Improved security for linearly homomorphic signatures: A generic frame-

work. In Public Key Cryptography - PKC 2012 - 15th International Conference on Practice

177



and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceed-

ings, pages 697–714, 2012.

[67] G. Frey, M. Muller, and H. G. Ruck. The tate pairing and the discrete logarithm applied

to elliptic curve cryptosystems. IEEE Trans. Inf. Theor., 45(5):1717–1719, Sept. 2006.

[68] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete

Appl. Math., 156(16):3113–3121, Sept. 2008.

[69] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indis-

tinguishability obfuscation and functional encryption for all circuits. In Foundations of

Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49, Oct

2013.

[70] D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via low-bandwidth acoustic

cryptanalysis. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology

Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages

444–461, 2014.

[71] A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy

mechanisms. In Proceedings of the Forty-first Annual ACM Symposium on Theory of

Computing, STOC ’09, pages 351–360, New York, NY, USA, 2009. ACM.

[72] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikäinen. On private scalar product computa-
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