
2015-ENST-0059

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité Informatique et Réseaux

présentée et soutenue publiquement par

Mariano Graziano
le 28 Septembre 2015

Améliorations pour l’analyse mémoire
et l’analyse de code malveillant

Directeur de thèse : Davide Balzarotti

Jury
Edgar Weippl, Associate Professor, SBA Research and Technische Universität Wien Reporter
Levente Buttyán, Associate Professor, CrySyS Lab, Budapest University of Technology and Economics Reporter
Juan Caballero, Assistant Research Professor, IMDEA Software Institute Examiner
Brendan Dolan-Gavitt, Assistant Professor, New York University Examiner
Bruno Martin, Professor, Université Nice Sophia-Antipolis Examiner
Pietro Michiardi, Professor, Eurecom Examiner
Refik Molva, Professor, Eurecom Examiner

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

2015-ENST-0059

EDITE - ED 130

ParisTech Ph.D.

Ph.D. Thesis

to obtain the degree of Doctor of Philosophy issued by

TELECOM ParisTech

Specialisation in Computer Science and Networking

Publicly presented and discussed by

Mariano Graziano
September 28th, 2015

Advances in Modern Malware and Memory Analysis

Advisor : Davide Balzarotti

Committee in charge
Edgar Weippl, Associate Professor, SBA Research and Technische Universität Wien Reporter
Levente Buttyán, Associate Professor, CrySyS Lab, Budapest University of Technology and Economics Reporter
Juan Caballero, Assistant Research Professor, IMDEA Software Institute Examiner
Brendan Dolan-Gavitt, Assistant Professor, New York University Examiner
Bruno Martin, Professor, Université Nice Sophia-Antipolis Examiner
Pietro Michiardi, Professor, Eurecom Examiner
Refik Molva, Professor, Eurecom Examiner

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Acknowledgments

I would like to acknowledge the following people, for their help and support
during all the course of my PhD studies.

First, my advisor Davide Balzarotti. He gave me the possibility to join his
group, and I moved to France without any idea about academic research. In these
years, he has been always available to talk and discuss and I hope to be a good
researcher in the future by following his advices. I have been very lucky to work
with him. Thank you.

Second, all my “s3" collegues: Andrea, Andrei, Aurelien, Canali, Clementine,
Davide, Giancarlo, Jelena, Jonas, Leyla, Luca, Matteo, Merve, Onur and Xiao.
This experience has been great also because we are a great lab. Many times I was
stuck and I will always remember the endless brainstorming sessions with Andrea
and at the end we were able to find new solutions and create new papers.

Third, my friends in France, my own little Italy. Thanks Benza, British, Masche,
Viotti and Alberto for all the dinners and beers together. My old friends in Italy,
thanks Zame and Marco for your support, your messages and visits.

I am also really grateful to all the people of the “nops team". We had fun and
we played a couple of nice CTF competitions. Thank you Maurizio, Luca, Kjell
and Pecko. Another source of inspiration and of nice memories comes from the
visitors students. Thank you Gabor, Xabier, Fabio and Flavio.

I also really thankful to Cisco for the internship and my period in USA. The
VRT has been very welcoming and in particular I am really grateful to Alain and
Shaun, they did much more than a manager and a colleague.

I would also like to thank my committee (professors Edgar Weippl, Levente
Buttyán, Juan Caballero, Brendan Dolan-Gavitt, Bruno Martin, Pietro Michiardi,
and Refik Molva) for agreeing to be reporters and examiners for my Ph.D. disser-
tation.

A very special thank you goes to Flavia for her love, advices and support.
Thanks finally to my parents (Giusi and Nicola) and my brother (Luca) for be-

lieving in me. Your unconditional support has been my strength and this thesis and
all my publications are dedicated to you.

v

vi

viii

Contents

1 Introduction 1
1.1 Modern Malware Analysis . 2
1.2 Sandboxing Technology . 3

1.2.1 Sandbox Design . 4
1.2.2 Problem statement . 6

1.3 Memory Analysis . 6
1.3.1 Problem statement . 8
1.3.2 Contributions . 8

2 Related Work 11
2.1 Dynamic Malware Analysis . 12

2.1.1 Network Containment 14
2.1.2 Malware Development 16

2.2 Memory Analysis . 18
2.2.1 Hypervisors and Virtual Machines 20
2.2.2 Advanced Threats . 20

3 Malware Developments on Online Sandboxes 23
3.1 Introduction . 23
3.2 Overview and Terminology . 24
3.3 Data reduction . 25
3.4 Sample Analysis . 27

3.4.1 Sample Clustering . 28
3.4.2 Intra-cluster Analysis . 29
3.4.3 Feature Extraction . 31

3.5 Machine Learning . 33
3.6 Results . 36

3.6.1 Targeted Attacks Campaigns 37
3.6.2 Case studies . 38
3.6.3 Malware Samples in the Wild 41

3.7 Limitations . 42

ix

Contents

4 Network Containment in Malware Analysis Systems 43
4.1 Introduction . 43
4.2 Protocol Inference . 44
4.3 System Overview . 47

4.3.1 Traffic Collection . 48
4.3.2 Endpoint Analysis . 49
4.3.3 Traffic Modeling . 50
4.3.4 Containment Phase . 50
4.3.5 System Implementation 51

4.4 Evaluation . 52
4.4.1 System Setup . 52
4.4.2 Experiments . 53

4.5 Limitations . 56

5 Hypervisor Memory Forensics 57
5.1 Introduction . 57
5.2 Background . 58

5.2.1 Intel VT-x Technology 58
5.2.2 VMCS Layout . 59
5.2.3 Nested Virtualization . 59
5.2.4 Extended Page Table . 61

5.3 Objectives and Motivations . 62
5.4 System Design . 64

5.4.1 Memory Scanner . 64
5.4.2 VMCS Validation . 65
5.4.3 Reverse Engineering The VMCS Layout 66
5.4.4 Virtualization Hierarchy Analysis 66
5.4.5 Virtual Machine Introspection 67
5.4.6 System Implementation 68

5.5 Evaluation . 69
5.5.1 Forensic Memory Acquisition 69
5.5.2 System Validation . 70
5.5.3 Single-Hypervisor Detection 70
5.5.4 Nested Virtualization Detection 71

6 Analysis of ROP Chains 73
6.1 Introduction . 73
6.2 Background . 74

6.2.1 ROP . 74
6.2.2 Rootkits . 75
6.2.3 Chuck . 76

6.3 ROP Analysis . 77
6.3.1 Implications . 79

6.4 Design . 79

x

Contents

6.4.1 Chain Discovery . 80
6.4.2 Emulation . 81
6.4.3 Chain Splitting . 83
6.4.4 Unchaining Phase . 84
6.4.5 Control Flow Recovery 84
6.4.6 Binary Optimization . 85

6.5 Evaluation . 85
6.5.1 Chains Extraction . 86
6.5.2 Transformations . 87
6.5.3 CFG Recovery . 87
6.5.4 Results Assessment . 88
6.5.5 Performance . 88

7 Conclusions and Future Work 91

8 Résumé 95
8.1 Introduction . 96

8.1.1 Modern Malware Analysis 97
8.1.2 Sandboxing Technology 98
8.1.3 Memory Analysis . 102
8.1.4 Contributions . 104

8.2 Related Works . 106
8.2.1 Dynamic Malware Analysis 107
8.2.2 Memory Analysis . 113

8.3 Conclusions and Future Work . 117

xi

Contents

xii

List of Figures

1.1 Thesis overview . 3
1.2 Thesis Contributions . 9

3.1 Classification success of different feature combinations. 35
3.2 Anti-sandbox check - Timeline 38
3.3 Anti-sandbox check - Start function comparison 38

4.1 Simplified diagram of the ScriptGen operation 45
4.2 Creation of a Traffic Model . 48
4.3 Replaying Architecture . 50
4.4 Sequence of messages during traffic replay 52

5.1 VMCS structures in a Turtle-based nested virtualization setup . . 60
5.2 EPT-based Address Translation 61
5.3 Self-referential Validation Technique 65
5.4 Comparison between different VMCS fields in nested and parallel

configurations . 67

6.1 ROPMEMU Framework Architecture 79
6.2 Dispatcher - Raw CFG . 88
6.3 Dispatcher - Final CFG . 88
6.4 Copy Chain - IDA Pro . 89
6.5 Dispatcher Chain - IDA Pro . 89

8.1 Thesis overview . 98
8.2 Thesis Contributions . 104

xiii

List of Figures

xiv

List of Tables

2.1 Network access strategies in dynamic analysis 15

3.1 Number of submissions present in our dataset at each data reduc-
tion step. 26

3.2 List of Features associated to each cluster 33
3.3 Classification accuracy, including detection and false positive rates,

and the Area Under the ROC Curve (AUC) 34
3.4 Popular campaigns of targeted attacks in the sandbox database . . 36

4.1 Results of the Offline learning Experiments 53
4.2 Results of the Incremental learning Experiments 55

5.1 Single Hypervisor Detection . 70
5.2 Detection of Nested Virtualization 71

6.1 Statistics on the emulated ROP chains in terms of number of in-
structions, gadgets, basic blocks, branches, unique functions, and
total number of invoked functions. 86

6.2 Number of instructions in each chain after each analysis phase . . 87

8.1 Network access strategies in dynamic analysis 110

xv

List of Tables

xvi

List of Publications

This thesis comprises four papers. The first three papers have been published to
peer-reviewed academic conferences. The last one is currently under submission.
The following list summarizes the aforementioned publications:

— Mariano Graziano, Corrado Leita and Davide Balzarotti
Towards network containment in malware analysis systems
28th Annual Computer Security Applications Conference (ACSAC 2012)
December 2012, Orlando, Florida, USA

— Mariano Graziano, Andrea Lanzi and Davide Balzarotti
Hypervisor Memory Forensics
Symposium on Research in Attacks, Intrusion, and Defenses (RAID 2013)
October 2012, Saint Lucia

— Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi and Davide
Balzarotti
Needles in a Haystack: Mining Information from Public Dynamic Anal-
ysis Sandboxes for Malware Intelligence
24rd USENIX Security Symposium (USENIX Security 2015)
August 2015, Washington DC, USA

— Mariano Graziano, Davide Balzarotti and Alain Zidouemba
ROPMEMU: A Framework for the Analysis of ROP Chains
Under Submission at NDSS 2016

xvii

xviii

Chapter 1

Introduction

It has been estimated that three billion people were connected to the Internet in
2015 [6], and this figure increases every year as entire regions in emerging markets
are plugged to the cyberspace by telecommunication companies. The Internet, and
in particular the World Wide Web (WWW), has simplified the life of millions of
people and companies. Nowadays, many families have an Internet connection and
own several devices such as computers, laptops, and smartphones that are able to
connect to the network. As a consequence, in the last decade many business activ-
ities moved online and even governments foster institutions to move their services
on the Web.

This process offers several advantages to end users. For instance, people can
buy products online and make bank transfers from their living rooms, webcams
help people to interact with their families overseas, and instant messaging programs
allows for a free asynchronous communication. In general, these services reduce
costs and save time to the final users.

Unfortunately, the Internet revolution and its transformations have also at-
tracted criminal activities. Miscreants realized the lucrative business behind online
services and recognized the role played by Internet as a fundamental pillar in mod-
ern economies. As a consequence, over 317 million new malware variants were
discovered in 2014 [189]. In the last decade, malicious software has been devel-
oped by organized groups for financial gain. Their business is based on stealing
credentials and information. In the case the machine does not contain valuable in-
formation, it can be rented to a third party and used to send spam or for distributed
denial of service (DDoS) attacks.

More recently, malware and breaches have also been perpetrated by powerful
governments and private corporations. A hidden war is fought with exploits and
rootkits in order to exfiltrate information and gain an advantage against adversaries.
In these cases, the enemy may range from groups of terrorists to legitimate nations,
from private companies to dissidents. These silent attacks are called advanced per-
sistent threats (APT) and are the core component of cyber-espionage campaigns.

1

1.1. Modern Malware Analysis

The amount of money lost by private citizens and companies due to cyberat-
tacks reached 400 billion dollars in 2014 [144]. This is a just a rough estimation
and does not take into account damage to reputation, indirect costs, and compro-
mised companies (like Sony [194] and Home Depot [197]) that do not publicly
disclose their financial losses. Consequently, ordinary people and private compa-
nies in industrialized countries demand protection for their accounts and intellec-
tual property. Security companies play an important and active role in this never
ending war. They offer custom solutions to the private and public sector. For exam-
ple, brand new computers are shipped with a pre-installed antivirus software, new
start-ups promise to eradicate APTs, governments forced strict guidelines as well
as certifications to guarantee a minimum level of security, specialized companies
sell zero-day exploits and stealthy rootkits for lawful interceptions, and govern-
ments pay advanced trainings for their cyber army.

In some operations, security companies joined forces to take over botnets and
arrest malware authors. Moreover, they created immense infrastructures to auto-
matically collect and analyze the increasing number of suspicious samples. In fact,
mainly due to packing and polymorphism, modern anti-malware companies col-
lect an overwhelming number of new samples per day, for instance a well-known
company like Virustotal [198] daily collects more than one million samples.

1.1 Modern Malware Analysis

Modern malware analysis is in large part automated, and only a small subset of
the collected samples are manually analyzed by reverse engineering experts. In the
last years, security companies deployed a complex infrastructure to collect samples
from their customers and from ad-hoc vulnerable machines (honeypots). These in-
frastructures, often hosted on the cloud, analyze in real time the customers traffic,
extract documents and executables, and analyze them inside an instrumented envi-
ronment (normally called a sandbox). The system then applies several heuristics on
the generated reports and an alarm is raised in case the file is considered malicious.

Unfortunately, this process has several limitations that may be exploited by ad-
vanced malware. For instance, samples may be designed to detect the instrumented
environment and hide their real malicious behavior or they may be programmed to
work only on a specific target machine. For this reason, the analysis of sophis-
ticated malware often involves runtime information collected on the infected sys-
tems, typically in the form of a dump of the physical memory. In fact, from the
memory of the infected machine it is possible to extract important artifacts and
collect additional information while the malware is operating in its target environ-
ment. The combination of these two approaches is summarized in Figure 8.1. The
analyst leverages both approaches, binary dynamic analysis and memory analysis,
to have a broader view about a specific threat.

This dissertation proposes improvements to the modern malware and mem-
ory analysis. Although these fields have been extensively studied from different

2

Chapter 1. Introduction

v

v

v

v VMM

OS

APIs

SANDBOX

INTERNET

MALWARE REPORTS

ANALYST

MEMORY ANALYSIS

SANDBOX

INFECTED MACHINES

REPORTS

Figure 1.1 – Thesis overview

perspectives in the last years, there are still several aspects that may be signifi-
cantly improved. In particular, sandboxes can be optimized to have more granular
network containment techniques. In addition, researchers can monitor submitted
executables to spot active malware developments on these online systems and pri-
oritize the samples assigned for a manual analysis.

Along the same lines, memory analysis is still a young field with room for
improvements. In this case, we proposed the first framework able to analyze virtual
machines and hypervisors also when nested configurations are in place. Moreover,
we leveraged memory analysis to cope with advanced threats that do not require
code injection techniques.

1.2 Sandboxing Technology

Sandbox solutions are a key component of modern malware analysis as the
overwhelming number of samples collected per day makes other solutions imprac-
tical. For instance, manual analysis does not scale and requires experts to dissect
malware binaries. Second, an automated system is required to filter out irrele-
vant samples and collect valuable information in a reasonable amount of time.
Third, static analysis techniques are often not effective against malicious files.
To tackle these issues, security researchers devised a number of sandbox envi-
ronments. These instrumented environments can be run in parallel and can be
customized per sample. For instance, it is possible to run the same sample on both

3

1.2. Sandboxing Technology

Windows XP and Windows 8. Moreover, analysts can plug additional plugins to
extend sandbox functionality (e.g user activity simulation).

1.2.1 Sandbox Design

Sandboxes are designed to collect malware behavior. Unfortunately, malware
samples are evasive and very complex to analyze. Researchers have to isolate
and actively monitor the relevant events such as the network traffic, the Windows
registry, filesystem modifications, the creation of new processes, and suspicous
memory operations. In order to gather this information, researchers can decide
to deploy an in-guest monitor agent that collects the information by using hook-
ing techniques. This agent can work both as a kernel- and user-land component.
The kernel monitoring is necessary at least in case of kernel rootkit analysis. This
malware category works directly at ring 0 and tampers the core of the operating
system. Another approach is to deploy the monitor agent out-of-guest. In this case,
the agent is implemented inside the hypervisor (or emulator) and virtual machine
introspection techniques are used. Despite the fact that dynamic malware analysis
has several advantages, in the last years malware authors have introduced anti-
sandbox functionality to hinder the analysis. For this reason, security researchers
have to carefully implement instrumented environments to be as stealthy as pos-
sible. Sandboxes can be built on top of either hypervisors or emulators. Both
approaches have pros and cons and strive for the same result.

Full virtualization solutions instrument hypervisor code. In this way, researchers
can extend the virtual machine monitor functionality and introduce the necessary
modules to log the malware activity. The monitor component is outside the guest
operating system, thus it should be impossible for the malware to detect the instru-
mentation code. Moreover, the majority of the instructions are executed directly on
the CPU, the additional overhead is introduced only to monitor particular events of
interest. In these cases, the hypervisor traps and executes the proper routine to
record information. Unfortunately, this phase is not trivial and it is complicated by
the so-called semantic gap. At this point, the hypervisor has to analyze the physi-
cal memory to rebuild the data structures of interest of the running guest operating
system. This is really challenging and requires a deep knowledge about the oper-
ating system internals. For example, Windows systems have three different views
about the process: EPROCESS, KPROCESS and PEB. The first two data structures
keep track of vital information for the executive and the kernel subsystems while
the last one represents the process in user-land. Moreover, the hypervisor does not
have any state information so the mechanism to distinguish processes is by using
the CR3 register on x86 systems. This register contains a physical address and
points directly to the base address of the the first data structure implementing the
memory management unit (MMU). Any event is associated to a process by inspect-
ing this register and additional information is retrieved through corresponding data
structures (e.g., EPROCESS). However, it is not trivial to locate and follow these
data structures. The system needs heuristics to find the structures of interest in

4

Chapter 1. Introduction

the physical memory and then implement the translation mechanism (from virtual
to physical addresses) to follow interesting pointers. More in general, researchers
refer to this set of techniques as virtual machine introspection (VMI).

Commonly, virtualization is used as underlying technology to boot guest op-
erating systems. In these cases, the hypervisor code is not instrumented and the
monitor component is implanted inside the virtual environment. In this scenario,
this component can be either a kernel driver or a dynamic library (DLL) designed
to log functions of interest as well as the network activity. This option needs spe-
cial precautions. By default, brand new virtual machines installed on top of the
most common virtual machine monitors such as VMWare, Virtualbox, Xen, KVM
contain many evidences about the virtual environment as well as about the under-
lying hypervisor. Researchers have to configure these machines and remove trivial
detection points.

Emulation is a technology able to simulate assembly instructions via software.
As a result, emulators can simulate complex programs such as operating systems.
This approach is flexible, the emulator can implement assembly instructions of
several architectures. In this way, it is possible to observe programs running on
ARM on top of x86 systems. Emulators provide easy-to-use instrumented envi-
ronments. In particular, solutions like Qemu may be extended by researchers to
log malware activity. The most common emulation approaches are: OS emulation
and full system emulation.

OS emulation tries to emulate via software the behavior of the operating sys-
tem. More in general, this approach is able to provide the result of common func-
tions. In malware analysis the operating system in place on sandboxes is Win-
dows (ranging from XP to the latest stable version) – the operating system most
affected by malware. These OS releases are generally deployed with different
service packs, some malware can show their real nature only in a very specific
environment. In this configuration, researchers have to decide the functions of in-
terest. Generally speaking, they decide to monitor suspicious calls, functions like
LoadLibrary, CreateRemoteThread, WriteProcessMemory, etc are
properly emulated. On Windows systems, there are two function families: Win32
APIs and native functions. Unfortunately, only Win32 APIs are well documented
and considered stable. On the contrary, native functions have no documentation
and can be changed at any time. Sandbox developers support the most common
Win32 APIs, but these functions are a wrapper around the native ones that can talk
directly to the kernel. Malware authors know this limitation and evade the analysis
based on OS emulation by invoking native APIs.

Full system emulation is a technique able to emulate the entire operating sys-
tem, this is possible by supporting hardware peripherals. In this configuration, the
emulator is able to collect every instruction executed by the malware inside a tar-
get operating system. The monitor component can track all the memory read and
write operations. All this information is really useful during a detailed analysis. In
addition, the report have more insights and, in general, it is easier for an analyst to

5

1.3. Memory Analysis

figure out the nature of the sample. In this configuration, the more instructions the
emulator supports, the more accurate and stealthy is the analysis.

Emulation and virtualization approaches are flexible and easy to deploy. Se-
curity researchers set up the machine, take a snapshot and can run thousands of
samples on the same guest. Once the analysis is over, the snapshot is restored and
the system is clean again. Despite the limitation and the possibile evasion tech-
niques, these two solutions provide a good trade-off. In very specific cases, the
analyst can decide to run the sample on a bare metal system. The monitor compo-
nent can be directly installed on the host operating system. In this case, the analysis
is accurate, there are no virtual components. Unfortunately, this approach does not
scale. Once the machine is infected, the researcher has to install again the entire
operating system.

1.2.2 Problem statement

Dynamic analysis is a powerful approach to uncover malware behavior, and
sandboxes are the most common instance of this technique. These instrumented
and virtual environments can run untrusted code in an isolated environment and can
provide the analyst a very flexible and customizable analysis framework. Unfortu-
nately, current sandboxes still suffer from several limitations. In this dissertation,
we focus on two problems in the area of dynamic malware analysis.

First, malware analysis is not repeatible. In particular, the malware behavior
often depends on the network context. This means that many samples interact with
online servers and if these servers are not available the behavior (and therefore the
analysis report) is affected. Moreover, some samples are only designed to run in
specific target environments and would fail when executed elsewhere. Unfortu-
nately, repeatability is a very important aspect of malware analysis and it is desir-
able in many scenarios. For example, researchers may want to re-analyze the same
sample after months with a new technique, in order to gather more information. In
a completely automated infrastructure based on parallel sandboxes this limitation
may hinder and pollute the analysis and the reports.

Second, packing and polymorphism have become very common in malware
and nowadays it is common to have many different samples for the same family.
As a result, sandboxes are overloaded by binaries that are all equivalent from a
behavior point of view. This phenomenon complicates the job of security analysts.
In particular, the task of distinguishing new and important malware from the back-
ground noise of polymorphic and uninteresting samples is a very challenging open
problem in the field.

1.3 Memory Analysis

Memory analysis comprises a set of techniques to analyze the content of sys-
tem memory (RAM). In the last decade, it has gained popularity and it is now an

6

Chapter 1. Introduction

important step in many real investigations. Researchers proposed stable techniques
to inspect physical memory, locate data structures of interest, and extract the nec-
essary information. The popularity of this approach resides in the central role of
the memory in a system. In addition, advanced attacks now exist that are located
only in memory and do not leave any footprint inside the filesystem.

Memory analysis is an active research field that has rapidly evolved over the
years. It can be performed both offline (memory forensics) and in an online fashion
– but the two approaches typically adopt the same techniques. Memory forensics
is based on the analysis of physical memory dumps, collected by acquisition tools
and devices. In contrast, online analysis systems inspect the system memory live.
This is possible by using programs able to export a special device that enables
direct access to the physical memory.

Practitioners have to cope with several challenges. The semantic gap is a com-
mon issue. The information is stored in memory as a raw stream of bytes and
experts need a deep knowledge about the operating system internals to extract and
reconstruct the required artifacts. There are several available tools (such as Volatil-
ity, Rekall, and Memorize) that are designed to cope with this problem. They all
start by locating important data structures. These data structures can reside in the
physical memory at a fixed offset. Unfortunately, the increasing adoption of ASLR
techniques in user- and kernel-space makes this approach less effective against
the latest OS releases. A more reliable approach is based on walking through a
number of intermediate data structures (starting from global symbols) in order to
reach the target data. Finally, it is possible to create strong signatures to scan lin-
early the physical memory and discover all occurrences of a particular object. This
phase is further complicated by the OS diversity, since the memory layout of data
structures is not constant over different operating system releases. Therefore, the
analysts need a profile in which every data structure is described in details.

Another common problem of memory analysis is address translation. Once the
location phase is terminated, the analyst has an object containing several fields.
However, any pointer is a virtual addresses and the memory analysis framework
works only with the physical memory. Particularly, the framework needs to imple-
ment its own memory management unit (MMU). This implies the knowledge of
the architecture, generally contained in the profile. Fortunately, the available tools
are able to address all these challenges.

Besides these known and solvable problems, memory analysis, as a comple-
mentary approach, provides an unique point of view. This new perspective speeds
up considerably the analysis time. For example, analysts can immediately isolate
hidden processes. Volatility plugins like psxview compare the output of six dif-
ferent techniques to list the running processes. In this way, analysts can easily spot
malicious processes. Moreover, in the last years, static analysis showed its weak-
nesses. Specifically, attackers can obfuscate their code and significantly hinder the
analysis. The evolution of these techniques made static analysis almost ineffec-
tive. Consequently, researchers adopted new approaches. In particular, memory
forensics may offer new insights for the analyst and, in most of the simple cases,

7

1.3. Memory Analysis

is able to defeat light forms of obfuscation such as packing. Another common use
case is the deep analysis of an infection. For instance, malware commonly injects
code and even entire DLLs into another process address space, this is known as
code injection. Memory forensics offers approaches to automatically detect these
threats (e.g., malfind Volatility plugin).

1.3.1 Problem statement

Memory analysis is a complementary approach in modern malware analysis.
It is a rapidly growing area that has proven to be useful in many investigations
– but it has still several limitations. In particular, in this dissertation we explore
how memory analysis techniques can be extended to study two forms of advanced
threats.

First, memory forensics is currently unable to detect and cope with any form
of virtual machine monitor. Consequently, all the available tools cannot detect and
transparently introspect guest operating systems. The situation is even worse in
presence of nested configurations as the malware analyst has no tool to detect and
dissect malicious hypervisors. In fact, sandboxes do not support nested virtualiza-
tion and, to the best of our knowledge, there are no tools and techniques to monitor
these possible advanced threats.

Second, the current approaches in memory forensics aim at finding intrusion
evidences in the physical memory dumps. Commonly, these evidences involve ar-
tifacts that have been created or injected in memory by the malicious components.
Volatility plugins like psxview and malfind are good example of tools that per-
form this task. Unfortunately, there is now an emerging trend of advanced threats
that adopt code reuse techniques (such as return oriented programming) as a mean
of obfuscation, to perform malicious computation without injected code. In these
cases, both memory and binary analysis tools are completely ineffective to locate
and dissect instances of code reuse, thus leaving the analyst blind to this new type
of threats.

1.3.2 Contributions

In this thesis we propose a number of techniques to address unsolved problems
in the areas of modern malware and memory analysis. In particular, the research
presented in this document makes four individual contributions: two on the area of
dynamic malware analysis, and two to improve memory forensics to support the
analysis of advanced threats. Figure 8.2 shows the four contributions and how they
are located in respect to the general picture.

Overall, we made the following contributions:

1. In Chapter 3 we present a technique to process millions of malware sam-
ple submissions received by a malware analysis sandbox and we propose a
novel methodology to automatically identify malware developments. Our

8

Chapter 1. Introduction

v

v

v

v VMM

OS

APIs

SANDBO

INTERNET

MALWARE REPORTS

ANALYST

MEMORY ANALYSIS

SANDBOX

INFECTED MACHINES

REPORTS

Malware
Developement

1

 Repeatability
 and Isolation

2

 Hypervisor
 Analysis

3 ROP
Analysis

4

Figure 1.2 – Thesis Contributions

approach is based on the combination of static and dynamic analysis and
file submission features. We also use data mining and machine learning
techniques to acquire more insights about the dynamics of malware devel-
opment.

2. In Chapter 4 we investigate the use of protocol learning techniques to model
the traffic generated during the execution of malware samples in order to
automatically reply malware conversations. Using this technique, we de-
veloped a novel network containment system and we showed that, even
with some limitations, it is possible to achieve full containment and per-
form a repeatible analysis, also in cases in which the malware behavior
depends on external hosts like C&C servers.

3. In Chapter 5, we proposed the first memory forensic framework to analyze
hypervisor structures in physical memory dumps. In addition, we analyzed
nested configurations and developed a transparent mechanism to recognize
and support the address space of virtual machines. Our approach allows
to perform memory forensics to analyze malicious hypervisors, as well as
compromised virtual machines that are part of large virtualized environ-
ments.

4. In Chapter 6 we present a set of techniques to perform binary and memory
analysis of sophisticated attacks that do not rely on any injected code.

9

1.3. Memory Analysis

In particular, our approach identifies and discusses the main challenges
that complicate reverse engineering code implemented using return ori-
ented programming (ROP). In addition, we propose an emulation-based
framework to dissect, reconstruct, and simplify ROP chains directly from a
physical memory dump. We tested our tool with the most complex exam-
ple proposed so far: a rootkit made of several ROP chains, with a total of
215,913 gadgets.

10

Chapter 2

Related Work

Malware and memory analysis have been extensively studied in the literature.
Unfortunately, the industry is still struggling with many aspects of the analysis
of malicious software. Specifically, malware has evolved over the years and we
witnessed its evolution from a niche problem to a plague for our daily lives. In this
endless war, researchers try to chase malware writers and protect the users.

The first malicious programs were simple and designed to be a technical ex-
ercise. Smart and bored teenegers coded malicious programs to show their skills
to the world. In their creations there was not any profit intent. In some cases, the
payload was a text message. In other cases, the goal was cybervandalism. Ther
infection vectors were based on floppy disks and only later on the network. As
a consequence of these first virus samples, the first antivirus companies appeared
in 1987. The first engines were based on the concept of signature. Immediately,
the VX communities (virus writers groups) adapted their techniques and easily by-
passed this new countermeasure. It was 1989 when polymorphism appeared for
the first time [34] and it was the beginning of an arms race still in progress today.

The Internet revolution brought many users online. As a side effect, many
cyber-criminal groups appeared. In these years, the Internet changed considerably.
The cyberspace was no more a place for few and smart people and the underground
spirit faded away due to the lucrative business created by large corporations. On
the other side, miscreants realized malicious software might be used as a new mean
to make money. As a consequence, security companies had to evolve to fight orga-
nized and skilled groups of cyber-experts.

In the last decade, researchers proposed several techniques to make malware
analysis more efficient and effective. The first approaches were based on manual
analysis and, consequently, many advances have been proposed on static and pro-
gram analysis. Nevertheless, malware authors devised advanced forms of obfusca-
tion to hinder the manual analysis, and adopted polymorphism and metamorphism
to bypass naive signature approaches. As a consequence, security companies in-
vested resources on dynamic analysis and, as expected, miscreants started intro-

11

2.1. Dynamic Malware Analysis

ducing countermeasures to avoid the exectution on instrumented environments – in
an ongoing cat-and-mouse game.

The work in this thesis covers modern automated malware analysis. This ap-
proach is based on two technologies: sandboxes and memory analysis. In this
chapter we will summarize the main contributions to these fields. In particular,
in section 2.1 we will introduce related work on malware analysis and sandbox
technologies. In section 2.2 we will overview memory analysis.

2.1 Dynamic Malware Analysis

Dynamic malware analysis executes the sample and observes its behavior at
run-time. Both the logging and the analysis process may be achieved in several
ways and at different layers. Moreover, the instrumentation environment heavily
depends on the underneath operating system. For these reasons, over the years,
researchers proposed many environments leveraging different technologies. This
versatility and room for further customizations made sandboxes the most common
instance of dynamic analysis. In the last years, researchers significantly improved
these systems and, nowadays, they are an important component used actively by
security companies to combat malware.

This technology considerably evolved over the years. The first rudimentary
approaches logged only a subset of the events of interest. TTAnalyze [41] is the
first comprehensive framework to analyze malicious samples in a controlled en-
vironment. The evolution of this project is Anubis [19], the first public online
sandbox. Nowadays, there are several sandboxes worth mentioning. Some of them
are freely available online such as Malwr [25], ThreatExpert [26] and Anubis [19].
Others are open source and can be deployed internally such as Cuckoo [23] and
Zerowine [107]. Other sandboxes (e.g., Joebox [105], Fireeye [80], Bromium [50]
and Lastline [122]) are proprietary and a customer can have both an online access
and a private instance. All these solutions always provide a detailed report to the
analyst but the underlying technology and implementation may differ. The first
versions of these malware analysis systems supported only user-land threats and
the logging engine was implemented inside the guest operating system. Moreover,
the logging capability was simply a system calls/APIs tracer. Some sandboxes (for
example CWSandbox [20] and Cuckoo [23]) use their own hooking library while
others prefer to leverage existing systems like Detours [145]. Successively, secu-
rity experts refined the logging component to collect more information and show a
more accurate report. The kernel mode support has been added in a second phase.
Although, the number of ring0 samples is considerably smaller than the number
of user-land malware, kernel support is necessary to have an immediate idea about
the behavior of complex kernel rootkits. In the third phase of sandbox platforms,
the researchers coped with the intrumentation stealth. The widespread adoption
of all the aforementioned specific precautions forced the miscreants to introduce

12

Chapter 2. Related Work

anti-sandbox routines in the malware sample. In this way, malicious programs do
not disclose their behavior and remain unnoticed.

These anti-sandbox functionalities are designed to detect the virtual environ-
ment and the software underneath (tipically either a hypervisor or an emulator).
Specifically, the virtual environment may contain many evidences. For instance,
Windows operating systems on top of Virtualbox, a popular virtual machine moni-
tor, can be easily detected by looking at the Windows Guest VirtualBox devices
(\\Device\\VBoxGuest) or at the MAC address ranges. In addition, the
Windows registry is another source of evidences. Many keys contain VirtualBox
strings. Although the number of these possible checks may be endless, researchers
can easily patch the vast majority of them. However, public and online sandboxes
have to cope with other simple detection points. In particular, the instrumented
environment has to be randomized otherwise miscreants can easily detect the sand-
box. Avtracker [3] shows this problem and provides information to easily detect
public online sandboxes. The author of the website periodically interacts with the
online services and collect possible detection points such as the public IP, the user
and computer name.

Cybercriminals may exploit also other detection points. These points may be
more problematic to patch and fix and reside in defects of the underlying software.
Even worse, a small percentage is intrinsic and shows the limit of the technology
in use (virtualization or emulation). For example, the timing attacks exploit these
intrinsic limitations [39, 58, 68]. In this situation, a malware author can execute
the same instruction in an emulated environment and in a physical machine. As a
result, she would obtain two different timestamps. After a testing phase, she can
introduce the checking routine on her malware and detects the time discrepancy us-
ing the rdtsc assembly instruction on x86machines. This trick has been adopted
by several malware families and it is often observed in the wild.

The emulator bugs show the limitations of software approaches. For instance,
the Intel instructions set is complex and contains thousands of instructions. As a
result, the software implementation of these instructions may contain bugs. More-
over, the emulator authors may decide to implement only a subset of the instruc-
tions and ignore uncommon side effects. Therefore, in some cases, it is possible
that the execution of an assembly instruction on a virtual CPU may behave differ-
ently compared to a real one and this discrepancy can be used to detect the virtual
environment. In addition to exploiting software bugs, attackers may leverage un-
documented opcodes to complicate the analysis. Consequently, the emulator dis-
assembler may fail to decode the opcodes to a valid assembly instruction. Paleari
et al. [157] have developed an automated framework to detect these defects. In
particular, they have studied the implementation of the CPU in Qemu and Bochs to
build a set of reliable red-pills. The authors discovered 20,728 red-pills for detect-
ing Qemu and 2973 for detecting and Bochs. In this set of red-pills there is also the
original Rutkowska’s pill [168]. It is important to note that this technique is generic

13

2.1. Dynamic Malware Analysis

and can be applied to CPU virtualizer [143] as well as to other architectures. Again,
these tricks have been already observed in the wild.

Consequently, researchers removed the most common evidences of the virtual
environment and moved the logging technology in the hypervisors (or emulator)
to overcome any possible detection. Initial works, such as the one proposed by
Liston et al. [137], focused on removing specific artifacts in VMWare that are tar-
geted by well-known checks. Successively, practitioners moved the implants out
of the guest operating system. The first work in this direction and strictly related
to dynamic malware analysis is VMwatcher [102]. Ether [69] is the first successful
transparent instrumented analysis system and theoretically addressed all the detec-
tion points. However, Pek et al. [161] found implementation bugs and managed
to detect the virtual environment. Although Ether and similar systems are suc-
cessful in hiding their presence, they inevitably incur a performance penalty that
is prohibitive for the deployment on real large-scale automated malware analysis
environments. V2E [204] and DRAKVUF [129] aim at the ideal transparency and
optimal performance. Specifically, V2E combines transparency and efficiency for
an in-depth analysis. The tool comprises two phases: record and replay. The first
is based on KVM and is transparent while the second one is based on TEMU [46]
for further inspections. DRAKVUF solves technical challenges for the out-of-the-
box support also for kernel rootkits and leverages the advances in the virtualization
techology (e.g., Extended Page Tables) to have a low analysis overhead. Other
system-wide instrumentation frameworks similar to V2E and DRAKVUF are built
on top of emulators and a common choice is Qemu. The first comprehensive frame-
work is TEMU [46] from the BitBlaze team and its new and enhanced version DE-
CAF [91]. S2E [59] provides powerful symbolic execution functionality as well as
a component to translate the Qemu IR (TCG) to LLVM bitcode. Finally, Panda [74]
combines features from the aforementioned approaches to ease reverse engineer-
ing tasks. Moreover, it specifically focuses on the repeatability of dynamic analysis
and on the modularity of the framework, easily extendible through plugins.

Although dynamic analysis is a powerful weapon and a pillar in modern mal-
ware analysis, it is not perfect and can be improved considerably. In this disser-
tation, we propose two advances to dynamic malware analysis. The first is about
network containment in order to achieve a repeatable analysis. The second pro-
pose a set of techniques to monitor the samples submitted to a sandbox to discover
possible malware developments. For this reason, the remaining part of this section
focus on these two areas.

2.1.1 Network Containment

Several different strategies have been proposed to address the problem of net-
work containmnent and the quality of the dynamic analysis. In particular, the con-
cept of quality refers to both the need to allow connectivity to external hosts (to ex-

14

Chapter 2. Related Work

Approach Containment Quality
Full Internet access × ∼
Filter/redirect specific ports ∼ ∼
Common service emulation

√
∼

Full isolation
√

×

Table 2.1 – Network access strategies in dynamic analysis

pose the malware interesting behavior) and to the need to make the analysis process
repeatable. Table 8.1 summarizes the previous work in four different categories.

Full Internet access. The most straightforward approach consists in providing the
sandbox with full Internet access. A similar approach is however unaccept-
able from a containment standpoint: the malware sample is left free to
propagate to victims, or to participate into other types of malicious activ-
ities (e.g., DoS, spam). The quality of the analysis is also only partially
acceptable: the sample is left free to interact with external hosts upon ex-
ecution, but its behavior becomes dependent on the state of external hosts,
leading to the problems underlined in [125].

Filter/redirect specific ports. The containment problem associated to Full Inter-
net access is rarely discussed in Internet-connected sandboxes such as Anu-
bis [19], CWSandbox [20] and others. From informal discussions with the
maintainers, it appears to be common practice for the public deployment
of these sandboxes to employ simple filtering or redirection rules, in which
TCP ports commonly associated to malicious scans (e.g. port 139 and port
445) are either blocked or redirected towards honeypots. This partially
solves the containment problem: SMB vulnerabilities are a very common
propagation vector for self-propagating malware, that can be easily pre-
vented with such measures. However, this approach is not able to deal with
other types of activity whose nature cannot be easily discerned from the
TCP destination port. A similar attempt to perform containment through
redirection was implemented also in the context of honeyfarms such as
Potemkin [200] and GQ [64]. In such deployments, the authors investi-
gated the idea of reflecting outbound traffic generated by infected virtual
instances of the honeyfarm towards other instances of the same honeyfarm.
A similar approach proved to be valuable for the analysis of malware prop-
agation strategies, but was not effective at dealing with other types of traf-
fic such as C&C communication. In fact, redirecting a C&C connection
attempt towards a generic honeyfarm virtual machine is not likely to gen-
erate meaningful results. Kreibich et al. [117] have recently improved GQ
making it a real and versatile malware farm. They have addressed the con-
tainment problem with precise policies but their approach has not dealt with
the repeatability issue.

15

2.1. Dynamic Malware Analysis

Common service emulation. Sandboxes such as Norman Sandbox prevent the
executed malware from connecting to the Internet, and provide instead
generic service implementations for common protocols such as HTTP, FTP,
SMTP, DNS and IRC. A similar approach was revisited and enhanced by
Ionue et al. in [94], a two-pass malware analysis technique in which the
malware sample is allowed to interact with a “miniature network” gener-
ated by an Internet emulator able to provide a variety of dummy services to
the executed malware sample. All these approaches are however limited,
and rely on a-priori knowledge of the communication protocols employed
by the malware sample. Malware often uses variations of standard proto-
cols, or completely ad-hoc communication protocols that cannot be han-
dled through dummy services. Yoshioka et al. [205] have tried to tackle
this problem by incrementally refining the containment rules according to
the dynamic analysis results. While such an approach provided an elegant
solution to the containment problem, it did not address the quality of the
analysis and it did not attempt to remove dependencies between the mal-
ware behavior and the state of the external Internet hosts involved in the
analysis.

Full isolation. Completely preventing the malware sample from interacting with
Internent hosts ensures a perfect containment of its malicious activity. How-
ever, the complete inability to interact with C&C servers and repositories
of additional components is likely to severely bias the outcomes of the dy-
namic analysis process.

Table 8.1 underlines a partial trade-off between the containment problem and
that of ensuring the quality and repeatability of the analysis. On the one hand, run-
ning the malware sample in full emulation addresses all the containment concerns
but, by barring the malware sample from communicating with the external hosts it
depends on, it strongly biases the results of the dynamic analysis (i.e., the sample
may only go as far as trying to connect to the hosts but without exposing any real
malicious behavior). On the other hand, providing the sandbox with full Internet
connectivity increases the analysis quality but it does not solve the repeatability
problem, and it also raises important ethical and legal concerns.

In chapter 4 we address this problem by exploring the use of protocol learn-
ing techniques to automatically create network interaction models for the hosts
the malware depends on upon execution (even in presence of custom and undocu-
mented protocols), and using such models to provide the sandbox with an isolated,
yet rich network environment.

2.1.2 Malware Development

While there has been an extensive amount of research on malware analysis and
detection, very few works in the literature have studied the datasets collected by
public malware dynamic analysis sandboxes. The most comprehensive study in

16

Chapter 2. Related Work

this direction was conducted by Bayer et al. [40]. The authors looked at two years
of Anubis [19] reports and they provided several statistics about malware evolution
and about the prevalent types of malicious behaviors observed in their dataset.

Lindorfer et al. [135] conducted the first study in the area of malware devel-
opment by studying the evolution over time of eleven known malware families. In
particular, the authors documented the malware updating process and the changes
in the code for a number of different versions of each family. In our study we
look at the malware development process from a different angle. Instead of study-
ing different versions of the same well known malware, in chapter 3 we propose
a large-scale detection of the authors of the malware at the moment in which they
interact with the sandbox itself. In a different paper, Lindorfer et al. [136] pro-
posed a technique to detect environment sensitive malware. The idea is to execute
each malware sample multiple times on several sandboxes equipped with differ-
ent monitoring implementations and then compare the normalized reports to detect
behavior discrepancies.

A similar research area studies the phylogeny [89] of malware by using ap-
proaches taken from the biology field. Even if partially related to our contribution,
in our study we were not interested in understanding the relationship between dif-
ferent species of malware, but only to detect suspicious submissions that may be
part of a malware development activity.

In a paper closer to our work, Jang et al. [101] studied how to infer the soft-
ware evolution looking at program binaries. In particular, the authors used both
static and dynamic analysis features to recover the software lineage. While Jang’s
paper focused mostly on benign programs, some experiments were also conducted
on 114 malicious software with known lineage extracted from the Cyber Genome
Project [24]. Compared to our work, the authors used a smaller set of static and
dynamic features especially designed to infer the software lineage (e.g., the fact
that a linear development is characterized by a monotonically increasing file size).
Instead, we use a richer set of features to be able to distinguish malware develop-
ments from variations of the same samples collected on the wild and not submitted
by the author. While our approaches share some similarities, the goals are clearly
different.

Other approaches have been proposed in the literature to detect similarities
among binaries. Flake [81] proposed a technique to analyze binaries as graphs
of graphs, and we have been inspired by his work for the control flow analysis
described in chapter 3. Kruegel et al. [118] proposed a similar technique in which
they analyzed the control flow graphs of a number of worms and they used a graph
coloring technique to cope with the graph-isomorphism problem.

Finally, one step of our technique required to cluster together similar malware
samples. There are several papers in the area of malware clustering [92, 97, 100,
201]. However, their goal is to cluster together samples belonging to the same
malware family as fast as possible and with the highest accuracy. This is a crucial
task for all the Antivirus companies. However, our goal is different as we are
interested in clustering samples based only on binary similarity and we do not

17

2.2. Memory Analysis

have any interest in clustering together members of the same family based on their
behavior.

2.2 Memory Analysis

In the last decade, digital investigations have considerably evolved. Researchers
and practitioners have proposed efficient and effective methodologies to make digi-
tial forensics scientifically comparable to the traditional forensics in use by law
enforcement. An important role in this evolution is represented by the first Digi-
tial Forensic Research Workshop (DFRWS) in 2001 [158]. Thanks to DFRWS,
academics and forensics experts joined forces to create a community and system-
atically study the field to propose tools and methodologies as much rigorous as
possible. At the beginning, digital forensics assisted law enforcement investiga-
tions and, over the years, the collected evidences have been regulated and accepted
by the courts. Moreover, digital forensics become an active field of research.

Memory forensics is a branch of digital forensics and has been studied exten-
sively since 2004 when Carrier et al. [56] proposed Tribble, a PCI based acquisi-
tion device for physical memory. In 2005, the DFRWS launched a challenge on
memory analysis. The challenge comprised a physical memory dump from a com-
promised Windows operating systems and several questions about the breach. To
answer the questions, researchers had to create new tools and technique to ana-
lyze and extract information from the memory dump. The goal of the organizers
was to motivate researchers to investigate and improve this fascinating research
area. In the same year, Movall et al. [150] discussed a suite for the analysis of
Linux physical memory. In 2006, Petroni et al. [162] presented FATkit, a modular
framework for the inspection of the physical memory. FATKit supports Linux and
Windows operating systems, the reconstruction of the address space (e.g., IA-32)
and has been developed following the Carrier’s approach on the abstraction lay-
ers [55]. The evolution of FATkit is Volatility [12], currently the de-facto open
source memory forensics framework. Before Volatility and its predecessor FATkit,
many researchers released their own custom tools and techniques to extract single
artifacts (e.g., the process list). This is the case of PTfinder from Schuster [175],
Stewart’s pmodump [186], Kornblum’s studies [115,116] and Dolan-Gavitt’s pub-
lications [72, 73], just to name a few. Along the same line, researchers proposed
dumping tools [187, 188] to ease the acquistion of the physical memory for differ-
ent operating systems. In 2008, the DFRWS launched another memory analysis
challenge. This time the focus was on the creation of methodologies and tools
for the Linux operating system [60]. Again, the organizers goal was to foster re-
searchers and improve the field. Similarly, in 2010 SSTIC challenged the french
community to create tools for the analysis of the physical memory of a device run-

18

Chapter 2. Related Work

ning Android [10,82]. Successively, researchers continued to improve the memory
forensic field and added support for MAC OS X [12, 123] and FreeBSD [123].

In addition to open source solutions, many companies created their closed-
source memory forensics framework. This is the case for Mandiant (now Fireeye)
with Memoryze [141] and HBGary with Responder Professional [90]. This phe-
nomenon shows the interest of the private sector on memory forensics. Unfortu-
nately, at the moment, all the available frameworks can be easily defeated. These
weakeness have been already documented by academics [165] and indipendent re-
searchers [98,140,180] but the developers of the memory forensic frameworks did
not address these critical issues so far. More recently, Case et al. [84] analyzed
the new compressed RAM and extensively studied the swap files on Linux and
MAC OS X. Similarly, Cohen implemented and adapted Kornblum’s work [116]
in Rekall [86], a spinoff of Volatility proposed by Google, for a correct and in-
depth analysis of the Windows pagefile. In parallel, researchers have tested and
analyzed the memory to extract many artifacts not necessarily related to the op-
erating system components (e.g., processes, drivers and modules). For example,
Alex Halderman et al. [88], described several attacks where they exploited DRAM
remanence effects to recover cryptographic keys and other sensitive information.
More recently, the so-called cold boot attack has been tested on Android [151]
and its effectiveness has been confirmed while it did not work as expected [87]
on DDR3 chips. Additionally, memory forensics have been used to discover mali-
cious programs running unnoticed on the victim computer. For instance, Bianchi et
al. [44] proposed Blacksheep to identify machines infected by a rootkit on a cloud
infrastructure. The authors built a series of Volatility plugins to compare the snap-
shots of the different machines and implemented several heuristics to spot rootkit
evidences. KOP [54] and MAS [66] apply memory analysis techniques on a single
machine to locate malicious code running at kernel level but, unfortunately, they
both require the source code of the operating system. More recently, MACE [79]
extended KOP idea but using supervised learning techniques on pointers to build a
kernel objects graph and detect kernel rootkits without access to the source code.
Another interesting advance has been presented by Saltaformaggio et al. [173].
With DSCRETE, a system able to identify the information of interest in a memory
dump and properly render its content by using its own application logic. In this
way, the analyst does not need to know the memory layout of the data structures
containing the information she seeks.

The 2015 DFRWS challenge focused again on memory forensics, this time
on the analysis of GPU memory [4] in fact, researchers already proposed rootkits
GPU-based [120] and observed in the wild malware authors that leveraged GPU to
mine bitcoins [11]. Villani et al. [33] presented a detailed analysis of the GPU in-
ternals and described how a forensic examiners can cope with these threats. Along
the same line, in the future, forensic analysts have to face advanced threats and
create tools and techniques to dissect and analyze these new attacks. In this dis-

19

2.2. Memory Analysis

sertation, we will improve the field by adding the support to locate (potentially
malicious) hypervisors and virtual machines on physical memory dumps. In addi-
tion, we allow the transparent offline introspection of the guest operating systems
and detect nested configurations. In the literature, researchers have already pro-
posed malicious hypervisors [70, 103, 111] that from an host operating system can
take control of the entire machine. More recently, these threats have evolved and
are able to undermine the targeted computer directly from the BIOS [146]. Unfor-
tunately, up to the present, no memory forensics tools were able to cope with these
treats. The second contribution proposed in this thesis aims at detecting modern
and advanced attacks that do not inject any code in the victim operating system.
This class of attacks is called code reuse attacks and have many instances such as
ROP [178], JOP [48], BROP [47], SROP [49] and JIT-ROP [183]. In this thesis,
we propose a framework based on memory analysis and emulation to analyze and
dissect complex ROP payloads. We specifically focus on ROP because it is the
most commong instance observed in the wild of code reuse attacks.

2.2.1 Hypervisors and Virtual Machines

Several papers proposed systems to search kernel and user-space memory struc-
tures in memory with different methodologies. Dolan-Gavitt et al. [75] presented
a research work in which they automatically generated robust signatures for im-
portant operating system structures. Such signatures can then be used by forensic
tools to find the objects in a physical memory dump.

Other works focused on the generation of strong signatures for structures in
which there are no values invariant fields [130,133]. Even though these approaches
are more general and they could be used for our algorithm, they produce a signif-
icant number of false positives. The approach we present in chapter 5 is more
ad-hoc, in order to avoid false positives.

Another general approach was presented by Cozzie et al. in their system called
Laika [62], a tool to discover unknown data structures in memory. Laika is based
on probabilistic techniques, in particular on unsupervised Bayesian learning, and it
was proved to be very effective for malware detection. Laika is interesting because
it is able to infer the proper layout also for unknown structures. However, the
drawback is related to its accuracy and the non negligible amount of false positives
and false negatives. Lin et al. have developed DIMSUM [207] in which, given a set
of physical pages and a structure definition, their tool is able to find the structure
instances even if they have been unmapped.

Even though a lot of research have been done in the memory forensics field, to
the best of our knowledge there is no previous works on automatic virtualization
forensics. Our work is the first attempt to fill this gap.

Finally, it is important to note that several of the previously presented systems
have been implemented as a plugin for Volatility [13] - the standard the facto for
open source memory forensics. Due to the importance of Volatility, we also de-
cided to implement our techniques as a series of different plugins and as a patch to

20

Chapter 2. Related Work

the main core of this framework.

2.2.2 Advanced Threats

Return Oriented Programming has been extensively studied in the scientific
literature from several perspectives. However, very few works have presented novel
techniques dedicated to the analysis of ROP chains and in this section we will focus
only on those researches.

In this direction, the first study has been conducted by Lu et al. [139]. The au-
thors proposed DeRop, a tool to convert ROP payloads into normal shellcodes, so
that their analysis can be performed by common malware analysis tools. However,
the authors tested the effectiveness of their system only against standard exploits
containing really simple ROP chains. In chapter 6, we adopt some of the trans-
formations proposed by DeRop – which we complement by a number of novel
techniques required to deal with the large and complex chains of a ROP rootkits.
Our main goal is also more ambitious, as we want to achieve a full code coverage
of the ROP payload, also in the presence of dynamically generated chains.

In another paper similar to our work, Yadegari et al. [203] proposes a generic
approach to deobfuscate code, in which the authors considers ROP as a form of
obfuscation. Their system is based on bit-level taint analysis that is applied to
existing execution traces and can be used to deobfuscate the control flow graph.
In addition, the paper also adopts transformations similar to the ones proposed by
DeRop to handle ROP payloads. Even though Chuck had already been released at
the time, the authors claimed that no complex example of ROP chains was avail-
able, and they tested the system against small examples with a simple control flow
logic. Moreover, the proposed system does not emulate the ROP chain and does
not perform any code coverage. Instead, it focuses on the simplification of existing
execution traces.

Another interesting research direction focused on the problem of locating ROP
chains in memory and potentially profile their behavior [163, 185]. ROPMEMU
can leverage these techniques to identify the persistent ROP chains. The profiling
phase proposed in these papers were quite simple, and it may fail in presence of
complex ROP chains. To overcome these limitations, we adopted an approach
based on CPU and memory emulation. Finally, these techniques do not work in
presence of packed ROP chains [138] or chains which are dynamically generated
at runtime [199].

Up to today, all analysis and identification systems proposed in the literature
have focused on simple user-space exploits. Therefore, the technique presented in
chapter 6 is the only available solution that supports the analysis of a real kernel
rootkit implemented in ROP.

21

2.2. Memory Analysis

22

Chapter 3

Malware Developments on Online
Sandboxes

3.1 Introduction

In this chapter, we propose a novel methodology to automatically identify mal-
ware development cases from the samples submitted to a malware analysis sand-
box. The results of our experiments show that, by combining dynamic and static
analysis with features based on the file submission, it is possible to achieve a good
accuracy in automatically identifying cases of malware development. Our goal is to
raise awareness on this problem and on the importance of looking at these samples
from an intelligence and threat prevention point of view.

Two important and distinct observations motivate our work. First, it is rel-
atively common that malware samples used to carry out famous targeted attacks
were collected by antivirus companies or public sandboxes long before the attacks
were publicly discovered [45]. For instance, the binaries responsible for operation
Aurora, Red October, Regin, and even some of the new one part of the Equation
Group were submitted to the sandbox we used in our experiments several months
before the respective attacks appeared in the news [22, 27, 108, 119, 147, 193]. The
reasons behind this phenomenon are not always clear. It is possible that the files
were automatically collected as part of an automated network or host-based pro-
tection system. Or maybe a security analyst noticed something anomalous on a
computer and wanted to double-check if a suspicious file exhibited a potentially
malicious behavior. It is even possible that the malware developers themselves
submitted an early copy of their work to verify whether it triggered any alert on
the sandbox system. Whatever the reason, the important point is that no one paid
attention to those files until it was too late.

The second observation motivating our study is the constant arm race between
the researchers that put continuous effort to randomize their analysis environments,
and the criminals that try to fingerprint those systems to avoid being detected. As
a consequence of this hidden battle, malware and packers often include evasion

23

3.2. Overview and Terminology

techniques for popular sandboxes [28] and updated information about the internal
sandbox details are regularly posted on public websites [3]. These examples prove
that there must be a constant interaction between malware developers and popular
public malware analysis services. This interaction is driven by the need to collect
updated information as well as to make sure that new malware creation would
go undetected. Even though detecting this interaction might be very difficult, we
believe it would provide valuable information for malware triage.

Up to the present, malware analysis services have collected large volumes of
data. This data has been used both to enhance analysis techniques [37, 148] and
to extrapolate trends and statistics about the evolution of malware families [40].
Unfortunately, to the best of our knowledge, these datasets have never been used to
systematically study malware development and support malware intelligence on a
large scale. The only public exception is a research recently conducted by looking
at VirusTotal to track the activity of specific high-profile hacking groups involved
in APT campaigns [71, 206].

In this paper, we approach this objective by applying data-mining and machine
learning techniques to study the data collected by Anubis Sandbox [19], a popular
malware dynamic analysis service. At the time we performed our analysis, the
dataset contained the analysis reports for over 30 millions unique samples. Our
main goal is to automatically detect if miscreants submit their samples during the
malware development phase and, if this is the case, to acquire more insights about
the dynamics of malware development. By analyzing the metadata associated to
the sample submissions, it might be possible to determine the software provenance
and implement an early-warning system to flag suspicious submission behaviors.

It is important to understand that our objective is not to develop a full-fledged
system, but instead to explore a new direction and to show that by combining meta-
data with static and dynamic features it is possible to successfully detect many ex-
amples of malware development submitted to public sandboxes. In fact, our sim-
ple prototype was able to automatically identify thousands of development cases,
including botnets, keyloggers, backdoors, and over a thousand unique trojan appli-
cations.

3.2 Overview and Terminology

There are several reasons why criminals may want to interact with an online
malware sandbox. It could be just for curiosity, in order to better understand the
analysis environment and estimate its capabilities. Another reason could be to
try to escape from the sandbox isolation to perform some malicious activity, such
as scanning a network or attacking another machine. Finally, criminals may also
want to submit samples for testing purposes, to make sure that a certain evasion
technique works as expected in the sandbox environment, or that a certain malware
prototype does not raise any alarm.

24

Chapter 3. Malware Developments on Online Sandboxes

In this paper, we focus on the detection of what we call malware development.
We use the term “development” in a broad sense, to include anything that is sub-
mitted by the author of the file itself. In many cases the author has access to the
source code of the program – either because she wrote it herself or because she
acquired it from someone else. However, this is not always the case, e.g., when the
author of a sample uses a builder tool to automatically generate a binary according
to a number of optional configurations (see Section 3.6 for a practical example of
this scenario). Moreover, to keep things simple, we also use the word “malware”
as a generic term to model any suspicious program. This definition includes tradi-
tional malicious samples, but also attack tools, packers, and small probes written
with the only goal of exfiltrating information about the sandbox internals.

Our main goal is to automatically detect suspicious submissions that are likely
related to malware development or to a misuse of the public sandbox. We also
want to use the collected information for malware intelligence. In this context,
intelligence means a process, supported by data analysis, that helps an analyst to
infer the motivation, intent, and possibly the identity of the attacker.

Our analysis consists of five different phases. In the first phase, we filter out
the samples that are not interesting for our analysis. Since the rest of the analysis is
quite time-consuming, any sample that cannot be related to malware development
or that we cannot process with our current prototype is discarded at this phase. In
the second phase, we cluster the remaining samples based on their binary similar-
ity. Samples in each cluster are then compared using a more fine-grained static
analysis technique. Afterwards, we collect six sets of features, based respectively
on static characteristics of the submitted files, on the results of the dynamic exe-
cution of the samples in the cluster, and on the metadata associated to the samples
submissions. This features are finally provided to a classifier that we previously
trained to identify the malware development clusters.

3.3 Data reduction

The first phase of our study has the objective of reducing the amount of data by
filtering out all the samples that are not relevant for our analysis. We assume that
a certain file could be a candidate for malware development only if two conditions
are met. First, the sample must have been submitted to the public sandbox before it
was observed in the wild. Second, it has to be part of a manual submission done by
an individual user – and not, for example, originating from a batch submission of a
security company or from an automated malware collection or protection system.

We started by filtering out the large number of batch submissions Anubis Sand-
box receives from several researchers, security labs, companies, universities and
registered users that regularly submit large bulks of binaries. As summarized in
Table 1, with this step we managed to reduce the data from 32 million to around
6.6 million binaries. These samples have been collected by Anubis Sandbox from
2006 to 2013.

25

3.3. Data reduction

Dataset Submissions

Initial Dataset 32,294,094
Submitted by regular users 6,660,022
Not already part of large submissions 522,699
Previously unknown by Symantec 420,750
Previously unknown by VirusTotal 214,321
Proper executable files 184,548
Final (not packed binaries) 121,856

Table 3.1 – Number of submissions present in our dataset at each data reduction
step.

Then, to isolate the new files that were never observed in the wild, we applied
a two-step approach. First, we removed those submissions that, while performed
by single users, were already part of a previous batch submission. This reduced the
size of the dataset to half a million samples. In the second step, we removed the
files that were uploaded to the sandbox after they were observed by two very large
external data sources: Symantec’s Worldwide Intelligence Network (WINE), and
VirusTotal.

After removing corrupted or not executable files (e.g, Linux binaries submitted
to the Microsoft Windows sandbox), we remained with 184,548 files that match
our initial definition of candidates for malware development. Before sending them
to the following stages of our analysis, we applied one more filter to remove the
packed applications. The rationale behind this choice is very simple. As explained
in Section 3.4, the majority of our features work also on packed binaries, and,
therefore, some potential malware development can be identified also in this cat-
egory. However, it would be very hard for us to verify our results without having
access to the decompiled code of the application. Therefore, in this paper we de-
cided to focus on unpacked binaries, for which it is possible to double-check the
findings of our system. The packed executables were identified by leveraging the
SigBuster [112] signatures.

Table 1 summarizes the number of binaries that are filtered out after each step.
The filtering phase reduced the data to be analyzed from over 32 millions to just
above 121,000 candidate files, submitted by a total of 68,250 distinct IP addresses.
In the rest of this section we describe in more details the nature and role of the
Symantec and VirusTotal external sources.

Symantec Filter

Symantec Worldwide Intelligence Network Environment (WINE) is a platform
that allows researchers to perform data intensive analysis on a wide range of cyber
security relevant datasets, collected from over a hundred million hosts [76]. The

26

Chapter 3. Malware Developments on Online Sandboxes

data provided by WINE is very valuable for the research community, because these
hosts are computers that are actively used by real users which are potential victims
of various cyber threats. WINE adopts a 1:16 sampling on this large-scale data
such that all types of complex experiments can be held at scale.

To filter out from our analysis the binaries that are not good candidates to be-
long to malware development, we used two WINE datasets: the binary reputation
and the AntiVirus telemetry datasets. The binary reputation dataset contains in-
formation about all of the executables (both malicious and benign) downloaded by
Symantec customers over a period of approximately 5 years. To preserve the user
privacy, this data is collected only from the users that gave explicit consent for it.
At the time we performed our study, the binary reputation dataset included reports
for over 400 millions of distinct binaries. On the other hand, the AntiVirus teleme-
try dataset records only the detections of known files that triggered the Norton
Antivirus Engine on the users’ machines.

The use of binary reputation helps us locating the exact point in time in which
a binary was first disseminated in the wild. The AntiVirus telemetry data provided
instead the first time the security company deployed a signature to detect the mal-
ware. We combined these datasets to remove those files that had already been
observed by Symantec either before the submission to Anubis Sandbox, or within
24 hours from the time they were first submitted to the sandbox.

VirusTotal Filter

VirusTotal is a public service that provides virus scan results and additional
information about hundreds of millions of analyzed files. In particular, it incorpo-
rates the detection results of over 50 different AntiVirus engines – thus providing
a reliable estimation of whether a file is benign or malicious. Please note that we
fetched the VirusTotal results for each file in our dataset several months (and in
some cases even years) after the file was first submitted. This ensures that the
AV signatures were up to date, and files were not misclassified just because they
belonged to a new or emerging malware family.

Among all the information VirusTotal provides about binaries, the most im-
portant piece of information we incorporate in our study is the first submission
time of a certain file to the service. We believe that by combining the timestamps
obtained from the VirusTotal and Symantec datasets, we achieved an acceptable
approximation of the first time a certain malicious file was observed in the wild.

3.4 Sample Analysis

If a sample survived the data reduction phase, it means that (with a certain
approximation due to the coverage of Symantec and Virustotal datasets) it had
never been observed in the wild before it was submitted to the online malware
analysis sandbox. Although this might be a good indicator, it is still not sufficient

27

3.4. Sample Analysis

to flag the submission as part of a potential malware development. In fact, there
could be other possible explanations for this phenomenon, such as the fact that the
binary was just a new metamorphic variation of an already known malware family.

Therefore, to reduce the risk of mis-classification, in this paper we consider a
candidate for possible development only when we can observe at least two samples
that clearly show the changes introduced by the author in the software. In the rest of
this section we describe how we find these groups of samples by clustering similar
submissions together based on the sample similarity.

3.4.1 Sample Clustering

In the last decade, the problem of malware clustering has been widely studied
and various solutions have been proposed [92, 97, 100, 201]. Existing approaches
typically use behavioral features to group together samples that likely belong to
the same family, even when the binaries are quite different. Our work does not
aim at proposing a new clustering method for malware. In fact, our goal is quite
different and requires to group files together only when they are very similar (we
are looking for small changes between two versions of the same sample) and not
when they just belong to the same family. Therefore, we leverage a clustering
algorithm that simply groups samples together based on their binary similarity (as
computed by ssdeep [114]) and on a set of features we extract from the submission
metadata.

Moreover, we decided to put together similar binaries into the same cluster
only if they were submitted to our sandbox in a well defined time window. Again,
the assumption is that when a malware author is working on a new program, the
different samples would be submitted to the online sandbox in a short timeframe.
Therefore, to cluster similar binaries we compute the binary similarities among
all the samples submitted in a sliding window of seven days. We then shift the
sliding window ahead of one day and repeat this step. We employ this sliding
window approach in order (1) to limit the complexity of the computation and the
total number of binary comparisons, and (2) to ensure that only the binaries that
are similar and have been submitted within one week from each other are clustered
together. We also experimented with other window sizes (between 2 and 15 days)
but while we noticed a significant reduction of clusters for shorter thresholds, we
did not observed any advantage in increasing it over one week.

Similarities among binaries are computed using the ssdeep [114] tool which is
designed to detect similarities on binary data. ssdeep provides a light-weight so-
lution for comparing a large-number of files by relying solely on similarity digests
that can be easily stored in a database. As we already discarded packed binaries
in the data reduction phase, we are confident that the similarity score computed by
ssdeep is a very reliable way to group together binaries that share similar code snip-
pets. After computing the similarity metrics, we executed a simple agglomerative
clustering algorithm to group the binaries for which the similarity score is greater
than 70%. Note that this step is executed separately for each time window, but it

28

Chapter 3. Malware Developments on Online Sandboxes

preserves transitivity between binaries in different sliding windows. For example,
if file A is similar to B inside window1, and B is similar to file C inside the next
sliding window, at the end of the process A, B and C will be grouped into the same
cluster. As a result, a single cluster can model a malware development spanning
also several months.

Starting from the initial number of binaries, we identified 5972 clusters con-
taining an average of 4.5 elements each.

Inter-Cluster Relationships

The ssdeep algorithm summarizes the similarity using an index between 0
(completely different) and 100 (perfect match). Our clustering algorithm groups
together samples for which the difference between the fuzzy hashes is greater
than the 70% threshold. This threshold was chosen according to previous ex-
periments [114], which concluded that 70% similarity is enough to guarantee a
probability of misclassification close to zero.

However, if the malware author makes very large changes on a new version of
his program, our approach may not be able to find the association between the two
versions. Moreover, the final version of a malware development could be compiled
with different options, making a byte-level similarity too imprecise. To mitigate
these side effects, after the initial clustering step, we perform a refinement on its
output by adding inter-clusters edges whenever two samples in the same time win-
dow share the same submission origin (i.e., either from the same IP address or
using the same email address for the registration). These are “weak” connections
that do not model a real similarity between samples, and therefore they are more
prone to false positives. As a consequence, our system does not use them when per-
forming its automated analysis to report suspicious clusters. However, as explained
in Section 3.6, these extra connections can be very useful during the analysis of a
suspicious cluster to gain a more complete picture of a malware development.

After executing this refinement step, we were able to link to our clusters an ad-
ditional 10,811 previously isolated binaries. This procedure also connected several
clusters together, to form 225 macro groups of clusters.

3.4.2 Intra-cluster Analysis

Once our system had clustered the binaries that likely belong to the same mal-
ware development, we investigate each cluster to extract more information about its
characteristics. In particular, we perform a number of code-based analysis routines
to understand if the samples in the same cluster share similar code-based features.

Code Normalization

Code normalization is a technique that is widely used to transform binary code
to a canonical form [51]. In our study, we normalize the assembly code such that

29

3.4. Sample Analysis

the differences between two binaries can be determined more accurately. Under the
assumption that two consecutive variations of the same program are likely com-
piled with the same tool chain and the same options, code normalization can be
very useful to remove the noise introduced by small variations between two bina-
ries.

There are several approaches that have been proposed to normalize assem-
bly code [101, 109, 172]. Some of them normalize just the operands, some the
mnemonics, and some normalize both. In this paper, we chose to normalize only
the operands so that we can preserve the semantics of the instructions. In particular,
we implemented a set of IDA Pro plugins to identify all the functions in the code
and then replace, for each instruction, each operand with a corresponding place-
holder tag: reg for registers, mem for memory locations , val for constant values,
near for near call offsets, and ref for references to memory locations. These
IDA scripts were run in batch mode to pre-process all the samples in our clusters.

Programming Languages

The second step in our intra-cluster analysis phase consists in trying to iden-
tify the programming language used to develop the samples. The programming
language can provide some hints about the type of development. For example,
scripting languages are often used to develop tools or probes designed to exfiltrate
information from the sandbox. Moreover, it is likely that a malware author would
use the same programming language for all the intermediate versions of the same
malware. Therefore, if a cluster includes samples of a malware development, all
samples should typically share the same programming language. Exceptions, as
the one explained in Section 3.6, may point to interesting cases.

To detect the programming language of a binary we implemented a simple
set of heuristics that incorporate the information extracted by three tools: PEiD,
the pefile python library, and the Linux strings command. First, we use
pefile to parse the Import Address Table (IAT) and obtain the list of libraries
that are linked to the binary. Then, we search for programming language specific
keywords on the extracted list. For example, the “VB” keyword in the library
name is a good indicator of using Visual Basic, and including mscoree.dll in
the code can be linked to the usage of Microsoft .NET. In the second step of our
analysis, we analyze the strings and the output of PEiD to detect compiler specific
keywords (e.g., type_info and RTTI produced by C++ compilers, or “Delphi”
strings generated by the homonymous language).

With these simple heuristics, we identified the programming language of 14,022
samples. The most represented languages are Visual Basic (49%), C (21%), Delphi
(18%), Visual Basic .Net (7%), and C++ (3%). The large number of Visual Basic
binaries could be a consequence of the fact that a large number of available tools
that automatically create generic malware programs adopt this language.

30

Chapter 3. Malware Developments on Online Sandboxes

Fine-grained Sample Similarity

In this last phase, we look in more detail at the similarity among the samples in
the same cluster. In particular, we are interested to know why two binaries show a
certain similarity: Did the author add a new function to the code? Did she modify a
branch condition, or remove a basic block? Or maybe the code is exactly the same,
and the difference is limited to some data items (such as a domain name, or a file
path).

To answer these questions, we first extract the timeline of each cluster, i.e.,
the sequence in which each sample was submitted to the sandbox in chronological
order. Moving along the timeline, we compare each couple of samples using a
number of static analysis plugins we developed for IDA Pro.

The analysis starts by computing and comparing the call graph of the two
samples. In this phase we compare the normalized code of each function, to check
which functions of the second binary were present unchanged in the first binary.
The output is a list of additional function that were not present in the original
file, plus a list of functions that were likely modified by the author – i.e., those
function that share the same position in the call graph but whose code does not
perfectly match. However, at this level of granularity it is hard to say if something
was modified in the function or if the author just removed the function and added
another with the same callee.

Therefore, in these cases, we “zoom” into the function and repeat our analysis,
this time comparing their control flow graphs (CFGs). Using a similar graph-based
approach, this time we look for differences at the basic block level. If the two CFGs
are too different, we conclude that the two functions are not one the evolution of
the other. Otherwise, we automatically locate the different basic blocks and we
generate a similarity measure that summarize the percentage of basic blocks that
are shared by the two functions.

3.4.3 Feature Extraction

Based on the analysis described in the previous sections, our system automati-
cally extracts a set of 48 attributes that we believe are relevant to study the dynam-
ics of malware development.

This was done in two phases. First, we enriched each sample with 25 indi-
vidual features, divided in six categories (see the Appendix for a complete list of
individual features). The first class includes self-explanatory file features (such as
its name and size). The Timestamps features identify when the sample was likely
created, when it was submitted to Anubis Sandbox, and when it was later observed
in the wild. While the creation time of the binary (extracted from the PE headers)
could be manually faked by the author, we observed that this is seldom the case
in practice, in particular when the author submits a probe or an intermediate ver-
sion of a program. In fact, in these cases we often observed samples in which the
compilation time precedes the submission time by only few minutes.

31

3.4. Sample Analysis

The third category of features contain the output of the VirusTotal analysis on
the sample, including the set of labels associated by all AntiVirus software and
the number of AVs that flag the sample as malicious. We then collect a number
of features related to the user who submitted the sample. Since the samples are
submitted using a web browser, we were able to extract information regarding the
browser name and version, the language accepted by the system (sometime useful
to identify the nationality of the user) and the IP from which the client was con-
necting from. Two features in this set require more explanation. The email address
is an optional field that can be specified when submitting a sample to the sandbox
web interface. The proxy flag is instead an attempt to identify if the submitter is
using an anonymization service. We created a list of IP addresses related to these
services and we flagged the submissions in which the IP address of the submitter
appears in the blacklist. In the Binary features set we record the output of the fine-
grained binary analysis scripts, including the number of sections and functions, the
function coverage, and the metadata extracted by the PE files. Finally, in the last
feature category we summarize the results of the sandbox behavioral report, such
as the execution time, potential runtime errors, use of evasion techniques, and a
number of boolean flags that represent which behavior was observed at runtime
(e.g., HTTP traffic, TCP scans, etc.)

In the second phase of our analysis we extended the previous features from
a single sample to the cluster that contains it. Table 3.2 shows the final list of
aggregated attributes, most of which are obvious extensions of the values of each
sample in the cluster. Some deserve instead a better explanation. For instance,
the cluster shape (A3) describes how the samples are connected in the cluster:
in a tightly connected group, in a chain in which each node is only similar to
the next one, or in a mixed shape including a core group and a small tail. The
Functions diff (B13) summarized how many functions have been modified
in average between one sample and the next one. Dev time (B25) tells us how far
apart in time each samples were submitted to the sandbox, and Connect Back
(B24) counts how many samples in the cluster open a TCP connection toward
the same /24 subnetwork from which the sample was submitted. This is a very
common behavior for probes, as well as for testing the data exfiltration component
of a malicious program.

Finally, some features such as the number of crashes (C8) and the average VT
detection (D4) are not very interesting per se, but they become more relevant when
compared with the number of samples in the cluster. For example, imagine a cluster
containing three very similar files. Two of them run without errors, while the third
one crashes. Or two of them are not detected by AV signatures, but one is flagged
as malware by most of the existing antivirus software.

While we are aware of the fact that each feature could be easily evaded by
a motivated attacker, as described in Section 3.6 the combinations of all them is
usually sufficient to identify a large number of development clusters. Again, our
goal is to show the feasibility of this approach and draw attention to a new problem,
and not to propose its definitive solution.

32

Chapter 3. Malware Developments on Online Sandboxes

A: Cluster Features
A.1 Cluster_id The ID of the cluster
A.2 Num Elements The number of samples in the cluster
A.3 Shape An approximation of the cluster shape (GROUP|MIX|CHAIN)
B: Samples Features
B.1-4 Filesize stats Min, Max, Avg, and Variance of the samples filesize
B.5-8 Sections stats Min, Max, Avg, and Variance of the number of sections
B.9-12 Functions stats Min, Max, Avg, and Variance of the number of functions
B.13 Functions diff Average number of different functions
B.14 Sections diff Average number of different sections
B.15 Changes location One of: Data, Code, Both, None
B.16 Prog Languages List of programming languages used during the development
B.17 Filename Edit Distance The Average edit distance of the samples’s filenames
B.18 Avg Text Coverage Avg text coverage of the .text sections
B.19-22 CTS Time Min, Max, Avg, and Variance of the difference between compile and the submission time
B.23 Compile time Flags Booleans to flag NULL or constant compile times
B.24 Connect back True if any file in the cluster contacts back the submitter’s /24 network
B.25 Dev time Average time between each submission (in seconds)
C: Sandbox Features
C.1 Sandbox Only Numer of samples seen only by the sandbox (and not from external sources)
C.2 Short Exec Number of samples terminating the analysis in less than 60s
C.4-6 Exec Time Min, Max, and Avg execution time of the samples within the sandbox
C.7 Net Activity The number of samples with network activity
C.7 Time Window Time difference between first and last sample in the cluster (in days)
C.8 Num Crashes Number of samples crashing during their execution inside the sandbox
D: Antivirus Features
D.1-3 Malicious Events Min, Max, Avg numbers of behavioral flags exibited by the samples
D.4-5 VT detection Average and Variance of VirusTotal detection of the samples in the cluster
D.6 VT Confidence Confidence of the VirusTotal score
D.7 Min VT detection The score for the sample with the minimum VirusTotal Detection
D.8 Max VT detection The score for the sample with the maximum VirusTotal Detection
D.9 AV Labels All the AV labels for the identified pieces of malware in the cluster
E: Submitter Features
E.1 Num IPs Number of unique IP addresses used by the submitter
E.2 Num E-Mails Number of e-mail addresses used by the submitter
E.3 Accept Languages Accepted Languages from the submitter’s browser

Table 3.2 – List of Features associated to each cluster

3.5 Machine Learning

Machine learning provides a very powerful set of techniques to conduct auto-
mated data analysis. As the goal of this paper is to automatically distinguishing
malware developments from other submissions, we tested with a number of ma-
chine learning techniques applied to the set of features we presented in detail in the
previous section.

33

3.5. Machine Learning

AUC Det. Rate False Pos.

Full data 0.999 98.7% 0%
10-folds Cross-Validation 0.988 97.4% 3.7%
70% Percentage Split 0.998 100% 11.1%

Table 3.3 – Classification accuracy, including detection and false positive rates, and
the Area Under the ROC Curve (AUC)

Among the large number of machine learning algorithms we have tested our
training data with, we have obtained the best results by using the logistic model
tree (LMT). LMT combines the logistic regression and decision tree classifiers by
building a decision tree whose leaves have linear regression models [121].

Training Set

The most essential phase of machine learning is the training phase where the
algorithm learns how to distinguish the characteristics of different classes. The suc-
cess of the training phase strictly depends on a carefully prepared labeled data. If
the labeled data is not prepared carefully, the outcome of machine learning can be
misleading. To avoid this problem, we manually labeled a number of clusters that
were randomly chosen between the ones created at the end of our analysis phase.
Manual labeling was carried out by an expert that performed a manual static anal-
ysis of the binaries to identify the type and objective of each modification. With
this manual effort, we flagged 91 clusters as non-development and 66 as develop-
ment. To estimate the accuracy of the LMT classifier, we conducted a 10-fold cross
validation and a 70% percentage split evaluation on the training data.

Feature Selection

In the previous section, we have presented a comprehensive set of features that
we believe can be related to the evolution of samples and to distinguish malware
developments from ordinary malware samples. However, not all the features con-
tribute in the same way to the final classification, and some works well only when
used in combination with other classes.

To find the subset of features that achieves the optimal classification accuracy
while helping us to obtain the list of features that contribute the most to it, we
leveraged a number of features selection algorithms that are widely used in ma-
chine learning literature: Chi-Square, Gain Ratio and Relief-F attribute evaluation.
Chi-square attribute evaluation computes the chi-square statistics of each feature
with respect to the class, which in our case is the fact of being a malware devel-
opment or not. The Gain Ratio evaluation, on the other hand, evaluates the effect
of the feature by measuring its gain ratio. Finally, the Relief-F attribute evaluation
methodology assigns particular weights to each feature according to how much

34

Chapter 3. Malware Developments on Online Sandboxes

1	

2	

4	

8	

16	

32	

64	

128	

	 su
bm
i-e
r	 (s
ub
)	

sam
ple
	 (s
am
p)	

san
db
ox
	 (s
an
d)	

clu
ste
r	 (c
lus
)	

an
;v
iru
s	

sam
ple
+su
bm
i-e
r	

sam
ple
+sa
nd
bo
x	

sam
ple
+c
lus
ter
	

sam
ple
+a
v	

sam
ple
+c
lus
ter
+su
bm
i-e
r	

sam
ple
+c
lus
ter
+sa
nd
bo
x	

sam
ple
+c
lus
ter
+a
v	

sam
p+
clu
sr+
su
b+
av
	

sam
p+
clu
s+s
ub
+sa
nd
_se
lec
ted
	

Wrong	 Classifica;ons	

Detec;on	 Rate	

False	 Posi;ves	

Figure 3.1 – Classification success of different feature combinations.

they are successful to distinguish the classes from each other. This weight com-
putation is based on the comparison of the probabilities of two nearest neighbors
having the same class and the same feature value.

While the order slightly differs, the ten most effective features for the accu-
racy of the classifier for all three feature selection algorithms are the same. As
also the common sense suggests, the features we extract from the binary similarity
and the analysis of the samples are the most successful. For example, the connect
back feature that checks if the sample connects back to the same IP address of
the submitter, the average edit distance of the filenames of the samples, the binary
function similarity, and the sample compile time features are constantly ranked on
the top of the list. The submitter features and the sandbox features are following
the sample features in the list. All of the features except the number of sandbox
evasions, the VirusTotal results, and the features we extracted from the differences
on the file sizes in the clusters had a contribution to the accuracy. After remov-
ing those features, we performed a number of experiments on the training set to
visualize the contribution of the different feature sub-sets to the classification ac-
curacy. Figure 3.1 shows (in log-scale) the impact of each class and combination of
classes. Among all the classes the samples-based features produced the best com-
bination of detection and false positive rates (i.e. 88.2% detection rate with 7.4%
false positives). In particular, the ones based on the static and dynamic analysis of
the binaries seem to be the core of the detection ability of the system. Interestingly,
the cluster-based features alone are the worst between all sets, but they increase the
accuracy of the final results when combined with other features.

The results of the final classifier are reported in Table 3.3: 97.4% detection
with of 3.7% false positives, according to 10-folds cross validation experiment.

35

3.6. Results

Campaign Early Submission Time Before Public Disclosure Submitted by

Operation Aurora 3 4 months US
Red October 3 8 months Romania
APT1 3 43 months US
Stuxnet 3 1 months US
Beebus 3 22 months Germany
LuckyCat 3 3 months US
BrutePOS 3 5 months France
NetTraveller 3 14 months US
Pacific PlugX 3 12 months US
Pitty Tiger 3 42 months US
Regin 3 44 months UK
Equation 3 23 months US

Table 3.4 – Popular campaigns of targeted attacks in the sandbox database

Note that we decided to tune the classifier to favor detection over false positives,
since the goal of our system is only to tag suspicious submissions that would still
need to be manually verified by a malware analyst.

3.6 Results

Our prototype implementation was able to collect substantial evidences related
to a large number of malware developments.

In total, our system flagged as potential development 3038 clusters over a six
years period. While this number was too large for us to perform a manual verifi-
cation of each case, if such a system would be deployed we estimate between two
and three alerts generated per day. Therefore, we believe our tool could be used
as part of an early warning mechanism to automatically collect information about
suspicious submissions and report them to human experts for further investigation.

In addition to the 157 clusters already manually labeled to prepare the training
set for the machine learning component, we also manually verified 20 random
clusters automatically flagged as suspicious by our system. Although according to
the 10-fold cross validation experiments the false positive rate is 3.7%, we have
not found any false positives on the clusters we randomly selected for our manual
validation.

Our system automatically detected the development of a diversified group of
real-world malware, ranging from generic trojans to advanced rootkits. To better
understand the distribution of the different malware families, we verified the AV
labels assigned to each reported cluster. According to them, 1474 clusters were
classified as malicious, out of which our system detected the development of 45
botnets, 1082 trojans, 83 backdoors, 4 keyloggers, 65 worms, and 21 malware de-

36

Chapter 3. Malware Developments on Online Sandboxes

velopment tools (note that each development contained several different samples
modeling intermediate steps). A large fraction of the clusters that were not identi-
fied by the AV signatures contained the development of probes, i.e., small programs
whose goal is only to collect and transmit information about the system where they
run. Finally, some clusters also contained the development or testing of offensive
tools, such as packers and binders.

3.6.1 Targeted Attacks Campaigns

Before looking at some of the malware development cases detected by our
system, we wanted to verify our initial hypothesis that even very sophisticated
malware used in targeted attacks are often submitted to public sandboxes months
before the real attacks are discovered. For this reason, we created a list of hashes
of known and famous APT campaigns, such as the ones used in operation Aurora
and Red October. In total, we collected 1271 MD5s belonging to twelve different
campaigns. As summarized in Table 3.4, in all cases we found at least one sample
in our database before the campaign was publicly discovered (Early Submission
column). For example, for Red October the first sample was submitted in February
2012, while the campaign was later detected in October 2012. The sample of Regin
was collected a record 44 months before the public discovery.

Finally, we checked from whom those samples were submitted to the system.
Interestingly, several samples were first submitted by large US universities. A
possible explanation is that those samples were automatically collected as part of a
network-based monitoring infrastructure maintained by security researchers. Other
were instead first submitted by individual users (for whom we do not have much
information) from several different countries, including US, France, Germany, UK,
and Romania. Even more interesting, some were first submitted from DSL home
Internet connections. However, we cannot claim that we observed the development
phase of these large and popular targeted attacks campaigns as in all cases the
samples were already observed in the wild (even though undetected and no one
was publicly aware of their existence) before they were submitted to our sandbox.
It is important to note that for this experiment we considered the entire dataset,
without applying any filtering and clustering strategy. In fact, in this case we did
not want to spot the development of the APT samples, but simply the fact that those
samples were submitted and available to researchers long before they were publicly
discovered.

We believe the sad message to take away from this experiment is that all those
samples went unnoticed. As a community, there is a need for some kind of early
warning system to report suspicious samples to security researches. This could
prevent these threats from flying under the radar and could save months (or even
years) of damage to the companies targeted by these attacks.

37

3.6. Results

16:59:13

16:59:33

17:05:21

17:06:06

17:13:26

17:14:16

t

Submission time

Compile time

Sample 1Sample 1 Sample 2 Sample 3

Figure 3.2 – Anti-sandbox check - Timeline

First Sample Second Sample

Figure 3.3 – Anti-sandbox check - Start function comparison

3.6.2 Case studies

In the rest of this section we describe in more details three development sce-
narios. While our system identified many more interesting cases, due to space
limitation we believe the following brief overview provides a valuable insight on
the different ways in which attackers use (and misuse) public sandboxes. More-
over, it also shows how a security analyst can use the information collected by our
system to investigate each case, and reconstruct both the author behavior and his
final goal.

In the first example, the malware author introduced an anti-sandbox functional-
ity to a Trojan application. In this case the analyst gathers intelligence information
about the modus operandi of the attacker and about all the development phases.

In the second scenario, we describe a step by step development in which the
attacker tries to collect information from the sandbox. This information is later
used to detect the environment and prevent the execution of a future malware in
the sandbox. In the last example, we show how an attacker uses the sandbox as
a testbed to verify the behavior of the malware. In this case, the author gener-
ated the binary using one of the many dedicated builder applications that can be
downloaded from the Internet or bought on the black market.

Example I: Anti-sandbox Malware
The cluster related to this example contains three samples. The timeline (sum-

marized in Figure 3.2) already suggests a possible development. In fact, the differ-
ence between the submission time and the compile time is very small.

38

Chapter 3. Malware Developments on Online Sandboxes

A quick look at the static features of the cluster shows that the three samples
are very similar, and share the same strings as well as the same imphash (the import
hash [29, 30] recently introduced also by VirusTotal). However, the first sample is
composed of 21 functions, while the last two samples have 22 functions. Our report
also shows how the first and the second samples differ for two functions: the author
modified the function start, and introduced a new function CloseHandle.
This information (so far extracted completely automatically by our system) is a
good starting point for a closer analysis.

We opened the two executables in IDA Pro, and quickly identified the two
aforementioned functions (snippet in Figure 3.3). It was immediately clear that the
start function was modified to add an additional basic block and a call to the new
CloseHandle function. The new basic block uses the rdtsc x86 instruction
to read the value of the Timestamp Counter Register (TSC), which contains the
number of CPU cycles since the last reset. The same snippet of assembly is called
two times to check the time difference. After the first rdtsc instruction there
is a call to CloseHandle, using the timestamp as handler (probably an invalid
handler). These two well known tricks are here combined to detect the Anubis
Sandbox environment – due to the delay introduced by its checks during program
execution. The Anubis Sandbox’s core is slower in looking up the handlers table,
and this time discrepancy is the key to detect the analysis environment. In this case
the difference has to be less than 0E0000h, or the program would immediately
terminate by calling the ExitProcess function.

The last sample in the cluster was submitted only to tune the threshold and
for this reason there were no important differences with the second sample. The
control flow graph analysis performed automatically by our system report a very
high similarity between the first two samples, in line with the little modifications
we found in the disassembled code. Finally, the behavioral features extracted by
our system confirm our hypothesis: the first sample was executed until the analysis
timeout, but the execution of the second one terminated after only five seconds.

The behavior described so far suggest malicious intents. This is also confirmed
by other cluster metadata. For instance, while the first sample in the cluster was
unknown to VirusTotal, the last one was clearly identified as a common Trojan
application. This suggests that the original sample, without the timing check, has
never been used in the wild. Once more, the fact that all three samples have been
submitted days before the trojan was first observed in the wild strongly supports
the fact that the person who submitted them was indeed the malware author.

Example II: Testing a Trojan Dropper
The second cluster we want to describe is composed of five samples. Our

report indicates that the first four are written in Delphi and the last one is written in
Visual Basic. This is already a strange fact, since the two programming languages
are quite different and it is unlikely that they could generate similar binaries.

In this case the cluster timeline does not provide useful information as all the
Delphi samples share exactly the same compilation time: 20th of June, 1992. Only

39

3.6. Results

the Visual Basic sample had a compilation time consistent with the submission.
On the contrary, the submission times provide an interesting perspective. All the
samples have been submitted in few hours and this might indicate a possible devel-
opment. In addition, there are two IP addresses involved: one for the four Delphi
samples and one for the final Visual Basic version. The static features of the first
four samples show very little differences, suggesting that these are likely just small
variations of the same program. In average, they share 169 out of 172 functions
and 7 out of 8 PE sections. By inspecting the changes, we notice that the attacker
was adding some threads synchronization code to a function responsible for in-
jecting code into a different process. The control flow graph similarity reported
by our tool was over 98%, confirming the small differences we observed between
each versions. Once the author was happy with the result, she submitted one more
sample, this time completely different from the previous ones. Despite the obvious
differences in most of the static analysis features, the fuzzyhash similarity with
sample 4 was 100%. A rapid analysis showed that this perfect match was due to
the fact that the Visual Basic application literally embedded the entire binary of
the fourth Delphi program. In addition, the behavior report confirmed that, once
executed, the Visual Basic Trojan dropped the embedded executable that was later
injected inside a target process. None of the Antivirus software used by VirusTotal
recognized the first four samples as malicious. However, the last one was flagged
by 37 out of 50 AVs as a trojan dropper malware.

It is important to stress that a clear advantage of our system is that it was able
to automatically reconstruct the entire picture despite the fact that not all samples
were submitted from the same IP address (even though all located in the same ge-
ographical area). Moreover, we were able to propagate certain metadata extracted
by our system (for example the username of the author extracted from the binary
compiled with Visual Studio) from one sample to the others in which that informa-
tion was missing. This ability to retrieve and propagate metadata between different
samples can be very useful during an investigation.

Another very interesting aspect of this malware development is the fact that
after the process injection, the program used a well known dynamic DNS service
(no-ip) to resolve a domain name. The IP address returned by the DNS query
pointed exactly to the same machine that was used by the author to submit the sam-
ple. This suggests that the attacker was indeed testing his attack before releasing
it, and this information could be used to locate the attacker machine.

We identified a similar connect-back behavior in other 1817 clusters. We also
noticed how most of these clusters contain samples generated by known trojan
builders, like Bifrost [16] or PoisonIvy [18]. While this may seem to prove that
these are mostly unsophisticated attacks, FireEye [31] recently observed how the
Xtremerat builder [14] (which appeared in 28 of our clusters) was used to prepare
samples used in several targeted attacks.

Example III: Probe Development

40

Chapter 3. Malware Developments on Online Sandboxes

In this last example we show an attacker fingerprinting the analysis environ-
ment and how, at the end, she manages to create her own successful antisandbox
check. The cluster consists of two samples, both submitted from France in a time
span of 23 hours by the same IP address. The two samples have the same size, the
same number of functions (164), and of sections (4). There is only one function
(_start) and two sections (.text and .rdata) presenting some differences.
The two programs perform the same actions, they create an empty text file and
then they retrieve the file attributes through the API GetFileAttributes. The
only differences are on the API version they use (GetFileAttributesA or
GetFileAttributesW) and on the file name to open.

At a first look, this cluster did not seem very interesting. However the inter-
cluster connections pointed to other six loosely correlated samples submitted by
the same author in the same week. As explained in Section 3.4, these files have
not been included in the core cluster because the binary similarity was below our
threshold. In this case, these samples were all designed either to collect information
or to test anti-virtualization/emulation tricks. For instance, one binary implemented
all the known techniques based on idt, gdt and ldt to detect a virtual machine
monitor [131, 166, 169]. Another one simply retrieved the computer name, and
another one was designed to detect the presence of inline hooking. Putting all the
pieces together, it is clear that the author was preparing a number of probes to
assess various aspects of the sandbox environment.

This example shows how valuable the inter-clusters edges can be to better un-
derstand and link together different submissions that, while different between each
other at a binary level, are likely part of the same organized “campaign”.

3.6.3 Malware Samples in the Wild

As we already mentioned at the beginning of the section, out of 3038 clusters
reported as malware development candidates by our machine learning classifier,
1474 (48%) contained binaries that were detected by the antivirus signatures as
malicious (according to VirusTotal).

A total of 228 of the files contained in these clusters were later detected in the
wild by the Symantec’s antivirus engine. The average time between the submission
to our sandbox and the time the malware was observed in the wild was 135 days
– i.e., it took between four and five months for the antivirus company to develop a
signature and for the file to appear on the end-users machines. Interestingly, some
of these binaries were later detected on more than 1000 different computers in 13
different countries all around the world (obviously a lower bound, based on the
alerts triggered on a subset of the Symantec’s customers). This proves that, while
these may not be very sophisticated malware, they certainly have a negative impact
on thousands of normal users.

41

3.7. Limitations

3.7 Limitations

We are aware of the fact that once this research is published, malware authors
can react and take countermeasures to sidestep this type of analysis systems. For
instance, they may decide to use “private” malware checkers, and avoid interacting
with public sandboxes altogether. First of all, this is a problem that applies to
many analysis techniques ranging from botnet detection, to intrusion prevention,
to malware analysis. Despite that, we believe that it is important to describe our
findings so that other researchers can work in this area and propose more robust
methodologies in the future.

Moreover, as we mentioned in the introduction, after we completed our study
someone noticed that some known malware development groups were testing their
creation on VirusTotal [71, 206]. This confirms that what we have found is not
an isolated case but a widespread phenomenon that also affects other online anal-
ysis systems. Second, now that the interaction between malware developers and
public sandboxes is not a secret anymore, there is no reason that prevents us from
publishing our findings as well.

We are aware of the fact that our methodology is not perfect, that it can be
evaded, and that cannot catch all development cases. However, we believe the
key message of the paper is that malware authors are abusing public sandboxes to
test their code, and at the moment we do not need a very sophisticated analysis to
find them. Since this is the first paper that tries to identify these cases, we found
that our approach was already sufficient to detect thousands of them. Certainly
more research is needed in this area to develop more precise monitoring and early
warning system to analyze the large amounts of data automatically collected by
public services on a daily basis.

42

Chapter 4

Network Containment in
Malware Analysis Systems

4.1 Introduction

The approach proposed in this chapter addresses the repeatability and the con-
tainment of malware execution by exploring the use of protocol learning techniques
for the emulation of the external network environment required by malware sam-
ples.

In particular, we address two problems. The first is the poor repeatability of
malware analysis experiments. Malware analysts often execute samples inside a
sandbox, in order to observe and collect their malicious behavior. However, the ex-
hibited behavior may depend on external factors, such as the commands received
by a C&C server or the content of a given URL. For example, consider a classic
scenario common to many security companies. Collected samples are automati-
cally analyzed by a malware analysis system, and their behavior (e.g., filesystem
operations, process creations, and modification to the Windows registry) is stored
in a database. When a program requires a closer look, an analyst can run it again
in a separate, better instrumented environment, for example by using a debug-
ger or by collecting all the system calls. Unfortunately, it is often the case that
these “secondary inspections” are performed several days, or even weeks after the
samples were initially collected, with the risk of studying dead samples for which
the required infrastructure is not available anymore. In fact, the remote machines
contacted by malware are volatile by nature, often hosted on other compromised
computers, or taken down by providers and law enforcement when the malicious
activity is detected. Therefore, the malware infrastructure required to properly run
the sample is normally available for only a limited amount of time.

The second problem we address in this paper is related to malware contain-
ment, i.e., to the ability of properly execute a given sample in an isolated envi-
ronment, where it cannot cause any harm to the rest of the world. In general, full
containment of a new, previously unknown, sample is impossible. However, we

43

4.2. Protocol Inference

can identify two scenarios in which such result could be achieved: the execution of
a polymorphic variation of an already analyzed malware, and the re-execution of a
previously studied sample. In both cases, the sample (or a behaviorally equivalent
variation of it) has already been analyzed by the system and, therefore, the problem
of full containment can be reduced to the previous problem of repeatable execu-
tion. The idea is that if we can “mimic” the behavior of the network to match the
one observed in a previous execution, we can obtain at the same time a repeatable
experiment and a containment of the malware execution.

To mitigate these issues, in this chapter we want to study to which extent it
is possible to enrich the information collected during malware execution to make
the experiments repeatable and achieve full network containment. In particular, we
experiment with a protocol-agnostic technique [128] previously adopted to model
the attack traffic in high-interaction honeypots [124, 126]. The idea consists in
building a finite state machine (FSM) of the network activity generated by each
malware sample. The extracted FSM can be stored alongside the other collected
information, and can then be used to properly “simulate” all the required endpoints
whenever the sample needs to be analyzed again in the future.

It is important to note that we only address network repeatability: Our goal is
to ensure that the malware finds all the remote components it needs to properly
execute. On the contrary, we do not address full process repeatability, i.e., the
problem of forcing two executions of a malicious executable to behave exactly the
same from an operating system point of view. Balzarotti et al. [38] studied the
problem of full repeatability in the context of the detection of split personalities in
malware. Their prototype works at the system-call level and has several technical
limitations, making it hard to deploy on current malware sandboxes.

To summarize, we make the following contributions:
— We discuss how protocol learning techniques can be used to model the

traffic generated during the execution of malware samples. In particular,
we describe the limitations of protocol-agnostic approaches and show that,
if properly setup and configured, they can be used to successfully replay
real malware conversations.

— We describe the implementation of Mozzie, a network containment system
that can be easily applied to all the existing sandbox environments. Ac-
cording to our experiments, an average of 14 network traces are required
by Mozzie to model the traffic and achieve full containment for real mal-
ware samples.

4.2 Protocol Inference

A common problem when looking at the network interaction generated by a
malware sample is associated to the interpretation of application-level protocols.
Malware samples often propagate by exploiting vulnerabilities in poorly docu-
mented protocols (such as SMB), and rely on custom protocols for their coordi-

44

Chapter 4. Network Containment in Malware Analysis Systems

Conversa)on*head* Conversa)on*tail*

Unknown**
request*

MAIL FROM: <da ve@gmail .com> !
MAIL FROM: <steve@y ahoo.com> !
MAIL FROM: <yahoo@ msn .com> !

fixed*region* muta)ng**
region*

seman)c*clustering*

region*analysis*

Figure 4.1 – Simplified diagram of the ScriptGen operation

nation with the C&C servers [190–192]. The execution of the sample in isolation
requires us to trick the malware sample in interacting with replicas of the real Inter-
net hosts the malware interacts with (victims, C&C servers, ...), but without being
able to assume a-priori knowledge of the application-level protocol implemented
in such services.

This challenge is addressed in this paper by resorting to protocol learning tech-
niques. Techniques such as ScriptGen [127,128], RolePlayer [65], Discoverer [63]
and Netzob [21] aim at partially reconstructing the protocol message syntax and,
in some cases, the protocol Finite State Automata [21, 127] from network interac-
tions. The inference is performed by looking at network traces generated by clients
and servers while minimizing the number of assumptions on the protocol charac-
teristics. Differently from other approaches such as [53, 132, 134, 202], that factor
into the protocol analysis also host-based information obtained through execution
monitoring or memory tainting, the above methods focus on the extraction of the
protocol format solely from network traces and are therefore particularly suitable
to our task, where we are unable to control the remote endpoints contacted by mal-
ware.

While any of the previouly mentioned tools would be suitable for this task, in
this paper we focus on ScriptGen [127, 128] because of its limited amount of as-
sumptions on the protocol characteristics and its support to the inference not only
of single protocol messages, but also of their structure within the protocol flow.
ScriptGen is an algorithm that generates an approximation of a protocol language
by means of a “server-side” Finite State Machine whose scope corresponds to a
specific TCP connection or UDP flow: the FSM root corresponds to the establish-
ment of the connection, while any of the FSM leaves corresponds to the point in
which the connection is successfully closed. In the FSM representation each transi-
tion is labelled with a regular expression matching a possible client request, while
each state is labelled with the server answer to be sent back to the client when
reaching that specific state.

45

4.2. Protocol Inference

ScriptGen performs this task through two subsequent processes, as illustrated
in Figure 4.1:

1. Semantic clustering. Initially introduced in [127], the semantic clustering
algorithm aims at grouping together protocol messages likely to be seman-
tically similar. Any new conversation to be added to an existing protocol
model will consist of two parts: an initial part (head) composed of mes-
sages already modeled in the current version of the FSM, and a final part
(tail) composed of messages that do not match the current model. A 0-
length head represents a conversation whose first message already differs
from the current protocol model, while a 0-length tail models a conversa-
tion that already fully matches the existing protocol knowledge. Semantic
clustering aims at grouping together messages sharing the same head (by
matching the head messages against the current FSM model) and likely to
be sharing the same tail (by clustering conversations sharing the same head
according to the length of the tail messages).

2. Region analysis. Semantic clustering leads to the identification of proto-
col messages that are very likely to be associated to a specific semantic
context. The process that generalizes the specific protocol messages into a
set of regular expressions able to correctly recognize future messages shar-
ing the same semantic value is called region analysis and was introduced
in [128]. Through the analysis of multiple versions of a semantically simi-
lar message, the region analysis algorithm aims at identifying regions with
similar characteristics. Through the subsequent application of global align-
ment algorithms (Needleman-Wunsch [152]), ScriptGen refines the cluster-
ing of the messages separating those exposing major structural differences
(macroclustering) while correctly dealing with variable length fields. The
final result consists in a global alignment of each identified group. The sta-
tistical analysis of each byte of the alignment outcome is used to identify
protocol regions, i.e., portions of protocol message likely to have a specific
semantic value. The distribution of the content of each region over the dif-
ferent samples gives us information on their semantic nature: regions with
random content throughout the set of samples are likely to be nonce values,
regions with fixed content are likely to be separators or semantically reach
protocol fields, and regions mutating through a limited amount of possible
values are likely to be associated to more subtle protocol semantics, whose
preservation is decided through a microclustering threshold. The final out-
come of this semantic evaluation is a set of regular expressions, each of
which will lead to the generation of a new subtree in the FSM object.

Most of the ScriptGen operation is driven by thresholds, that regulate for in-
stance the different clustering steps. A simple approach for tuning the thresholds
to the best configuration was introduced in [128] and consisted in brute-forcing
all the possible combinations of thresholds to identify the global optimum. While
this is an computationally expensive process, the computed thresholds proved to

46

Chapter 4. Network Containment in Malware Analysis Systems

be sufficiently robust to handle protocols with “similar” characteristics in terms of
amount of variability in their structure.

It is important to understand that ScriptGen avoids any assumption on the na-
ture of the protocol separators or on the possible representation of semantically
relevant fields, and performs a partial reconstruction of the protocol semantics by
analyzing at the same time multiple samples of the same type of protocol exchange
(conversation). The higher the number of conversations available to the algorithm,
the more precise the protocol inference process will be. Intuitively, if we consider
two message instances of a protocol containing a random cookie value, their cookie
value could be aabd and awed. ScriptGen would have no way to consider such pro-
tocol section as a mutating region of 4 characters, since (by accident) both values
start with ‘a’ and end with ‘d’. These accidental false inferences can be filtered out
only by considering a sufficiently large number of conversation samples.

ScriptGen has been successfully used in the past to automatically generate
models of network behavior for the emulation of vulnerable services in exploits.
This emulation was included in a distributed honeypot [124, 126] deployment, in
order to emulate 0-day exploits and collect information on the propagation vec-
tor of self-propagating malware. This paper investigates the use of ScriptGen in
a different context, that of malware analysis, and tries to leverage its properties to
automatically generate network models for the remote endpoints involved in the
execution of a malware sample in a sandboxed environment.

4.3 System Overview

Our approach to achieve repeatability and containment in malware analysis
experiments can be summarized in four steps:

1. Traffic Collection - In this phase the system collects a number of network
traces associated with the execution of a certain malware sample. This can
be done by running the malware in a sandbox, or by extracting existing
traces generated by past analyses.

2. Endpoint Analysis - This is a cleaning and normalization process applied
to all the collected traces. Its main goal consists in removing anomalous
traces that could affect the results and the associated conclusions. Each
trace is then normalized to remove endpoint randomization, such as the
one introduced by IP fluxing techniques.

3. Traffic Modeling - This phase aims at the automated generation of models
starting from the collected traffic samples and at their subsequent storage in
a compact representation. The modeling can be performed in two different
ways: in an online fashion (from now on called incremental learning), in
which the model is initially very simple and it is subsequently refined at
every new execution of the sample, or in an offline fashion, more suitable
for the analysis of previously collected network dumps. The actual logic

47

4.3. System Overview

Figure 4.2 – Creation of a Traffic Model

used to model the traffic is implemented in a separate component of our
system. As we already explained in Section 4.2, the current implementation
is based on the ScriptGen approach, but other unsupervised algorithms can
be easily plugged into our system to achieve the same result.

4. Traffic Containment - In this last phase, we use the model extracted in the
previous step to mimic the network environment required by the malware
sample. The containment system is implemented as a transparent proxy.
When the model is sufficiently precise, the proxy is able to mimic the ex-
ternal world, effectively achieving “full containment”. When the model is
incomplete, the proxy redirects the requests it cannot handle to the real tar-
gets. In this case, the system also collects the forwarded traffic to improve
the training set, effectively closing the loop back to Step 1.

In the rest of the section, we introduce each phase in details, and we describe
how each of them have been implemented in our system.

4.3.1 Traffic Collection

Collecting the malware traffic is as simple as running a network sniffer while
the sample is running in the sandbox. For instance, several online systems (e.g.,
Anubis [19], and CWSandbox [20]) allow users to download the pcap file recorded
during the analysis phase.

As explained in Section 6.5, we used two different datasets for our experi-
ments, one extracted from old Anubis reports, and one collected live by running
the samples inside a Cuckoo’s sandbox. Finally, in order to be consistent with the
data collected in the past, also in our experiments we limited the malware analysis
and the network collection time to five minutes per sample.

48

Chapter 4. Network Containment in Malware Analysis Systems

4.3.2 Endpoint Analysis

The second phase of our process consists in cleaning and normalizing the col-
lected traffic to remove spurious traces and improve the effectiveness of the proto-
col learning phase when facing network-level randomization.

The cleaning phase mainly consists in grouping together traces that exhibit
a comparable network behavior. The intuition underneath this cleaning process is
that the traces may have been generated at different points in time, and may capture
different “states” of the remote endpoints. Most of the traces are likely to have been
generated when the malware was indeed fully active, but we may still have to deal
with a minority of traces that may have been generated, for example, when the
C&C server was temporarily not reachable. It should be noted that the semantic
clustering process explained in Section 4.2 allows ScriptGen to correctly deal with
these cases. However, in this paper we are interested in evaluating the efficiency
of our method at correctly leveraging useful traces to generate usable models, and
thus we choose to clean the dataset from these spurious traces. In practice, this
is achieved by clustering together traces according to each involved destination
endpoint, where endpoint is defined as an (IP, port) tuple. We consider the cluster
with the highest amount of traces having similar high-level network behavior as the
one representing the state of interest for our experiments.

While the cleaning process succeeds in most of the cases, in some of our ex-
periments we noted that the clustering algorithm failed to identify a predominant
network behavior for a specific sample. Closer investigation revealed that this fail-
ure is associated to the introduction of randomization in the network behavior of
the sample. The most common example of this phenomenon is associated to mal-
ware using IP fluxing techniques. IP flux, also known as fast-flux, is a DNS-based
technology used by malware writers to improve the resilience of their (often botnet)
architecture. The idea is to rapidly swap the IP address associated to a particular
domain name, to avoid having a single-point of failure and reducing the effect of
IP blacklisting.

When a malware uses IP fluxing, most of the collected network traces will in-
volve different endpoints. In other words, instead of having ten samples of conver-
sations associated to a single endpoint, we will have ten different targets associated
to one conversatione each. As we will see in the discussion of the Traffic Modeling
component, this situation plays against our choice of creating protocol models on
a per-endpoint basis: each endpoint will not be associated to a sufficient amount
of samples to generate a meaningful model. However, this phenomenon is easy to
detect because our endpoint clustering component would return an unusual result
composed of many clusters containing a single trace each. In this case we auto-
matically “normalize” the endpoints by identifying the DNS request that returned
different IP addresses and by forcing it to return always the same value. In these
cases, our system automatically replaces each fluxed IP with the normalized IP in
all the subsequent network flows. By performing this simple step we can obtain an
uniform learning dataset, ready to be analyzed by the next stage of our system.

49

4.3. System Overview

Figure 4.3 – Replaying Architecture

4.3.3 Traffic Modeling

Starting from the set of network traces obtained from the previous phase, the
Traffic Modeling phase leverages the protocol learning algorithm (in our case,
ScriptGen) to generate models for the network interaction with each endpoint in-
volved in the malware execution. The models are maintained in the form of a
dictionary, where each encoutered destination IP address and destination port is
associated to its corresponding model (see Figure 4.2). This dictionary is later
used to mimic the whole network environment, with the goal of containing all the
requests generated by the malware.

4.3.4 Containment Phase

The goal of the containment phase is to “trick” the malware sample into be-
lieving that it is connected to the Internet, while in fact all the traffic is artificially
generated by leveraging the information contained in the current protocol model.

The main component of the containment phase is the FSM player. The player
is responsible for analyzing the incoming packets looking for new connections
attempts, and checking if the contacted endpoint is present in the dictionary of
FSMs. If so, the corresponding model is loaded and associated to the connection.
Then, for each message, the player analyzes the current state and computes the next
state. This is done by finding the best transition that matches the incoming content
and by extracting the corresponding list of possible answers.

Figure 4.3 shows the operation of our system over two possible operation
modes: full and partial containment.

In the full containment case, the protocol model is accurate enough to allow our
system to correctly generate a response for every network interaction generated by
the malware upon execution.

In the partial containment case, instead, the protocol model is inaccurate or
incomplete: some of the network interactions created by the malware are not mod-
elled in the associated FSM. Whenever a message cannot be matched with the
current FSM, the system is unable to further emulate the associated remote end-

50

Chapter 4. Network Containment in Malware Analysis Systems

point. In such case, the system enters in replay mode for that specific endpoint,
and replays all the traffic generated so far towards the real Internet host associated
to it. By replaying all the traffic generated so far, we are able to handle possible
authentication steps that the malware may have already performed in its interac-
tion with the FSM. The answer to the unknown request is eventually delivered by
the real endpoint, and all the subsequent interaction is then relayed by the system
(proxy mode).

This process needs to be carried out without affecting the malware execution.
For instance, consider the example in Figure 4.4 in which the malware sends three
messages {Msg1,Msg2,Msg3} over a TCP connection. The player is able to
follow the first two messages on the FSM, thus returning the corresponding re-
sponses {Resp1, Resp2}. However, the third message is different from what it
was expecting, and it does not know what to answer. Therefore, Mozzie opens a
new TCP connection to the original target, and quickly replay the messages 1 and
2 in chronological order to bring the new connection to the same state of the one
it is simulating with the malware. Then it sends the Msg3 and switches to proxy
mode. In proxy mode, the system acts like a transparent proxy, forwarding each
packet back and forth from the malware to the endpoint on the Internet. When the
connection is terminated, the data is used to incrementally improve the model, so
that it could handle the same conversation in the future.

By executing a malware sample multiple times, we are therefore able to gradu-
ally and automatically move from partial containment (in case in which part of the
generated interacton is still unknown) to full containment, where all the malware
network behavior is fully modeled and emulated by the system. However, it should
be noted that the full learning of the network behavior of the malware is different
from the full knowledge of the protocol. It is possible to follow a malware without
contacting the external server in all its executions within the sandbox, but this does
not mean all the commands of the protocols have been discovered.

4.3.5 System Implementation

In the previous sections we explained the architecture of the system. Now we
can describe how Mozzie, our prototype implementation, is realized.

Mozzie is based on iptables. In particular it uses the NFQUEUE userspace
packet handler with the Python nfqueue-bindings [17]. This allows our user-space
component to accept, drop, or modify each incoming packet. To decode the packets
that are in the queue, we used the Scapy [15] library.

Our current prototype handles three different IP protocols: ICMP, UDP and
TCP. ScriptGen cannot model the ICMP protocol, because it lacks the concept of
port that is required to build the Finite State Machine. Therefore, Mozzie inter-
cepts all the ICMP ECHO request messages and always answers with an ECHO
reply. Beside that, the system mainly works as a userspace NAT, changing the des-
tination IP and port for each TCP or UDP packet, to redirect them to the emulator
responsible for that endpoint. The emulator runs an implementation of the Script-

51

4.4. Evaluation

MALWARE PROXY TARGET

msg1

resp1

msg2

resp2

msg3

msg1

resp1

msg2

resp2

msg3

resp3

resp3

msg4

msg4

resp4

resp4

Figure 4.4 – Sequence of messages during traffic replay

Gen algorithm and one instance of the FSM Player for each endpoint contacted by
the malware. For example, if the malware opens a new TCP connection toward
(IP, Port), Mozzie checks if a FSM exists for that endpoint. If it finds one, it
starts one FSM Player process to handle the connection and start redirecting the
packets toward it. If not, it let the packets pass through so they can reach the real
destination on the Internet.

Finally, the endpoint analysis is implemented as a series of Python scripts. One
is responsible to process the available network traces and to cluster them together
according to the contacted endpoints. The normalization is implemented by a sep-
arate tool that dissects the packets, changes the answer of the DNS requests, and
replaces the corresponding IPs in the rest of the network traffic.

4.4 Evaluation

In this section we describe the experiments we performed to evaluate Mozzie’s
ability to model real malware traffic. All the experiments were performed on an
Ubuntu 10.10 machine running ScriptGen, Mozzie, and iptables v1.4.4. To per-
form the live experiments, we ran all samples in a Cuckoo Sandbox [23] running a
Windows XP SP3 virtual machine.

4.4.1 System Setup

The goal of our evaluation is to automatically find the minimum number of
network traces required to generate a finite state machine that can be used to fully
contain the network traffic generated by a given malware sample.

52

Chapter 4. Network Containment in Malware Analysis Systems

Sample Category Containment Endpoint Normalization Traces
W32/Virut IRC Botnet FULL NO 15
PHP/Pbot.AN IRC Botnet FULL NO 12
W32/Koobface.EXT HTTP Botnet 72% YES 9
W32/Agent.VCRE Dropper FULL NO 23
W32/Agent.XIMX Dropper FULL YES 10

Table 4.1 – Results of the Offline learning Experiments

To reach this goal, the first step of our experiments consisted in testing Script-
Gen and properly tuning its parameters for the protocols we wanted to model. In
fact, in our system we use ScriptGen to model the network behavior of a generic
program, but this is not the scenario for which the learning protocol tool was de-
signed in the first place. As we already explained in Section 4.2, the best thresholds
of ScriptGen’s learning algorithm were experimentally set to the values that were
observed to work well (in average) for network worms and remote exploits. How-
ever, those thresholds need to be re-computed for different protocols, in particular
when moving from a text-based (e.g., HTTP) to a binary format (e.g., RPC).

In the first part of our experiments, we performed a number of tests to learn the
optimal parameters for a number of protocols that are commonly used by several
malware samples, namely HTTP, IRC, DNS, and SMTP. This step requires the
algorithm to be executed several times on the same protocol traces, each time with
different parameters ∗. Once the optimal setup was reached, we reused the same
values for all the malware samples that used the same protocol. However, in one
of the experiments, we discovered that the malware under analysis implemented a
custom binary protocol. Since we did not have the ScriptGen configuration for that
protocol, we had to re-apply the learning phase for that particular sample traffic.

Even though this operation can take several hours, it is important to note that
if the thresholds are not set to their optimal values our technique would still be
able to model unknown protocols, even though the system would require an higher
number of traces to reach the full containment.

4.4.2 Experiments

Our experiments with real malware can be divided in two groups. In the first
case, that we label “offline” learning, we use our system to model old traces col-
lected in the past for polymorphic samples. Malware sandboxes normally avoid
executing the same sample multiple times, returning the previously computed re-
sults when they recognize (usually from the MD5) that a file was already analyzed
in the past. However, in case of polymorphic variations, it is possible that the same
malware family gets executed several times. Based on this observation, we ex-

∗. Please refer to [127, 128] for a description of the procedure required to set the thresholds

53

4.4. Evaluation

tracted from the Anubis [19] database the network traffic dumps associated to five
polymorphic samples that adopted cleartext protocols in their communication.

Our goal was to show that, by using these traces, we can model the network
behavior of the malware, and use the extracted FSM to replay and contain the
execution of any other polymorphic variation of the same sample.

The results of this first experiment are reported in Table 4.1. The first two
columns report the antivirus label and the malware category associated to each
sample. The next column reports the success of the experiment, where a FULL
(100%) value means that full containment was achieved and all the packets were
properly replayed. In only one case, for the Koobface malware, our system was
not able to successfully model the entire network traffic. The reason is the fast
flux approach adopted by Koobface in which both the domain names and the IP
addresses rotate. This makes it impossible for Mozzie to correctly model the DNS
protocol, since there are not two sequences of request/response that look the same
in the dataset.

Column 4 shows whether the normalization step was applied to the traffic. As
we already explained in Section 4.3, clustering is required to deal with noise in
the network traces, most of the time introduced by an anomalous execution of
the malware (e.g., due to a network timeout on a web request). On top of that,
certain malwares require a normalization phase to properly sanitize the traces from
randomization introduced by IP or domain flux techniques.

Finally, the last column of the table shows the number of input traces required
to successfully model the traffic. We started the experiment by running Mozzie on
a single network trace. We then loaded the extracted model in a virtual machine
and used it to try to contain five consecutive executions of another polymorphic
variation of the same malware. The reason behind the five runs is that we wanted
to be sure that ScriptGen did not return the right message by chance, and that the
experiment can be reliably repeated multiple times. If the extracted model was
not sufficient to properly “replay” the network conversation, we added one more
network trace to the learning pool and repeated the experiment. The number in the
fifth column represents the number of network traces required to create a Finite
State Machine that achieved full containment (or its best approximation in the case
of Koobface) of the malware sample. The results vary between 9 and 23 traces.
These numbers may seem large, but it is important to remember that ScriptGen
is completely protocol agnostic and that each experiment was performed starting
with an empty protocol model. For example, we discovered that 6 traces is the
minimum amount required to properly model a DNS request/response exchange
(due to the fact that the response has to contain the same request ID field used in
the request).

Table 4.2 reports the result of our second group of tests. In this second exper-
iment, we focused on incremental learning, i.e., on analyzing current malware in
a sandbox environment each time refining our model of the network traffic. We
started by executing the samples 3 times, without attempting to replay the traffic.

54

Chapter 4. Network Containment in Malware Analysis Systems

Sample Category Runs Containment Endpoint Normalization
W32/Banload.BFHV Dropper 23 FULL NO
W32/Downloader Dropper 25 FULL NO
W32/Troj_Generic.AUULE Ransomware 4 FULL NO
W32/Obfuscated.X!genr Backdoor 6 FULL NO
SCKeylog.ANMB Keylogger 14 FULL YES

Table 4.2 – Results of the Incremental learning Experiments

Then we created our first model, and started executing the sample in the sandbox
with Mozzie acting as a proxy. Whenever the system was not able to contain the
traffic, the requests were forwarded to the real servers, and the FSM updated with
the new information. The third column reports the number of time each malware
has to be analyzed before the model can achieve full containment for five conse-
quent runs.

Overall, we tested 2 IRC botnets, 1 HTTP botnet, 4 droppers, 1 ransomware,
1 backdoor and 1 keylogger. For these samples, we needed a number of network
traces ranging from 4 to 25. The first number seems in contradiction with the lower
bound we have previously found. The truth is that this particular sample does
not use DNS and thus contact the C&C servers directly by using an hardcoded
IP address. For all the other malware that generate DNS traffic the number is
definitively higher than the lower bound. On average we need 14 traces to be able
to build a good traffic model.

Certainly, large malware analysis systems forced to analyze tens or hundreds
of thousand of samples per day cannot afford to repeat the tests 14 times. However,
such a high number of new samples collected every day is largely due to the com-
mon use of polymorphism and packing techniques by malware writers. Therefore,
once a FSM is available for one of the samples in the family, any further variation
that preserves the behavior of the program does not require any additional training.
Our system could help analyzing polymorphic samples for which the required net-
work infrastructure is not available any more, and that nowadays cannot be tested
at all. This, as we already described in the introduction, can improve the result
of clustering, and can help malware analysts to properly label those samples that
do not work anymore at the time of the analysis. Even better, our system could
be used to replicate a specific network scenario that is targeted by a malware in-
fection. Recent years have seen the rise of sophisticated attacks targeting specific
environments, such as Stuxnet and Duqu [190, 191]. In these cases, the network
traces obtained from the targeted network infrastructure (e.g. traces of interaction
in a DCS system in a power generation control system) could be used to build a
model of the targeted network environment, allowing the analysis of the malware
to be successfully performed inside traditional, and safe, sandboxes.

55

4.5. Limitations

4.5 Limitations

The current prototype of our containment system has several limitations. Some
are specific to the way the system has been implemented and some are related to
the self-imposed constraints associated to the chosen methodology.

More specifically, we can group the current limitations into three main families:
— The method adopted in this paper is completely protocol-agnostic. While

its nature allows us to guarantee our ability to handle custom, undocu-
mented protocols that can be adopted by future malware, it also imposes
unnecessary constraints when dealing with simpler and well known pro-
tocols such as DNS. We have already seen that our system requires six
samples of network interaction to learn how to properly replay a DNS re-
quest. The same result could be easily achieved by analyzing only one
request, parsing the DNS fields, and extracting the required information in
an ad-hoc fashion. However, the goal of this paper was to show how far it is
possible to go with a completely generic system. Therefore, our results can
be considered as a upper bound, as the system could be easily improved by
adding ad-hoc handlers for common and well known protocol interactions.

— Our current prototype is implemented as a network proxy. Even though
this approach has some advantages (e.g., it can be easily plugged into any
existing sandbox), it makes the analysis of encrypted protocols impossible.
However, this is mostly a technical limitation. The same approach could
be implemented at the API level, where most of the network traffic is still
available in clear text. Most of the malware sandbox environments already
hook into the Windows API to extract information about the malware be-
havior. By adding our system to the hooked network and cryptographic
APIs, we could intercept the communication on the host side and achieve
full containment also for some encrypted protocols (e.g., the ones based on
SSL).

— Our approach is very inefficient when a malware sample exhibits different
behaviors independently of the input it receives from the network. For
example, if a sample randomly selects the action to perform out of many
possible options, Mozzie would require a lot of traces to properly model all
possible behaviors. As an extreme case, domain flux techniques (or large
pools of domain names like the one described in Section 6.5) cannot be
modeled by our system without requiring protocol-aware heuristics, such
as handling the DNS interaction by using a custom DNS service.

56

Chapter 5

Hypervisor Memory Forensics

5.1 Introduction

In this chapter, we present a set of techniques to extend the field of memory
forensics toward the analysis of hypervisors and virtual machines. With the in-
creasing adoption of virtualization techniques (both as part of the cloud and in
normal desktop environments), we believe that memory forensics will soon play a
very important role in many investigations that involve virtual environments.

In some way, the problem of finding a hypervisor is similar to the one of being
able to automatically reconstruct information about an operating system in mem-
ory, even though that operating system may be completely unknown. The number
of commodity hypervisors is limited and, given enough time, it would be possible
to analyze all of them and reverse engineer their most relevant data structures, fol-
lowing the same approach used to perform memory forensics of known operating
systems. However, custom hypervisors are easy to develop and they are already
adopted by many security-related tools [78, 142, 177, 181]. Moreover, malicious
hypervisors (so far only proposed as research prototypes [67,110,170,208]) could
soon become a reality - thus increasing the urgency of developing the area of vir-
tualization memory forensics.

The main idea behind our approach is that, even though the code and internals
of the hypervisors may be unknown, there is still one important piece of infor-
mation that we can use to pinpoint the presence of a hypervisor. In fact, in order
to exploit the virtualization support provided by most of the modern hardware ar-
chitectures, the processor requires the use of particular data structures to store the
information about the execution of each virtual environment. By first finding these
data structures and then analyzing their content, we can reconstruct a precise rep-
resentation of what was running in the system under test.

Starting from this observation, this contribution outlines three main goals. First,
we want to extend traditional memory forensic techniques to list the hypervisors
present in a physical memory image. As it is the case for traditional operating
systems, we also want to extract as much information as possible regarding those

57

5.2. Background

hypervisors, such as their type, location, and the conditions that trigger their behav-
iors. Second, we want to use the extracted information to reconstruct the address
space of each virtual machine. The objective is to be able to transparently support
existing memory analysis techniques. For example, if a Windows user is running a
second Windows OS inside a virtual machine, thanks to our techniques a memory
forensic tool to list the running processes should be able to apply its analysis to ei-
ther one or the other operating system. Finally, we want to be able to detect cases of
nested virtualization, and to properly reconstruct the hierarchy of the hypervisors
running in the system.

To summarize, we make the following contributions:
— We are the first to design a forensics framework to analyze hypervisor struc-

tures in physical memory dumps.
— We implemented our framework in a tool named Actaeon, consisting of

a Volatility plugin, a patch to the Volatility core, and a standalone tool
to dump the layout of the Virtual Machine Control Structure (VMCS) in
different environments.

— We evaluate our framework on several open source and commercial hyper-
visors installed in different nested configurations. The results show that our
system is able to properly recognize the hypervisors in all the configuration
we tested.

5.2 Background

Before presenting our approach for hypervisor memory forensics we need to
introduce the Intel virtualization technology and present some background infor-
mation on the main concepts we will use in the rest of the paper.

5.2.1 Intel VT-x Technology

In 2005, Intel introduced the VT-x Virtualization Technology [95], a set of
processor-level features to support virtualization on the x86 architecture. The main
goal of VT-x was to reduce the virtualization overhead by moving the implemen-
tation of different tasks from software to hardware.

VT-x introduces a new instruction set, called Virtual Machine eXtension (VMX)
and it distinguishes two modes of operation: VMX root and VMX non root. The
VMX root operation is intended to run the hypervisor and it is therefore located
below “ring 0”. The non root operation is instead used to run the guest operating
systems and it is therefore limited in the way it can access hardware resources.
Transitions between non root and root modes are called VMEXIT, while the transi-
tion in the opposite direction are called VMENTRY. As part of the VT-x technology,
Intel introduced a set of new instructions that are available when the processor is
operating in VMX root operation, and modified some of the existing instructions
to trap (e.g., to cause a VMEXIT) when executed inside a guest OS.

58

Chapter 5. Hypervisor Memory Forensics

5.2.2 VMCS Layout

VMX transitions are controlled by a data structure called Virtual Machine Con-
trol Structure (VMCS). This structure manages the transitions from and to VMX
non root operation as well as the processor behavior in VMX non root operation.
Each logical processor reserves a special region in memory to contain the VMCS,
known as the VMCS region. The hypervisor can directly reference the VMCS
through a 64 bit, 4k-aligned physical address stored inside the VMCS pointer. This
pointer can be accessed using two special instructions (VMPTRST and VMPTRLD)
and the VMCS fields can be configured by the hypervisor through the VMREAD,
VMWRITE and VMCLEAR commands.

Theoretically, an hypervisor can maintain multiple VMCSs for each virtual
machine, but in practice the number of VMCSs normally matches the number of
virtual processors used by the guest VM. The first word of the VMCS region con-
tains a revision identifier that is used to specify which format is used in the rest of
the data structure. The second word is the VMX_ABORT_INDICATOR, and it is
always set to zero unless a VMX abort is generated during a VMEXIT operation
and the logical processor is switched to shutdown state. The rest of the struc-
ture contains the actual VMCS data. Unfortunately, the memory layout (order and
offset) of the VMCS fields is not documented and different processors store the
information in a different way.

Every field in the VMCS is associated with a 32 bit value, called its encoding,
that needs to be provided to the VMREAD/VMWRITE instructions to specify how
the values has to be stored. For this reason, the hypervisor has to use these two
instructions and should never access or modify the VMCS data using ordinary
memory operations.

The VMCS data is organized into six logical groups: 1) a guest state area to
store the guest processor state when the hypervisor is executing; 2) a host state area
to store the processor state of the hypervisor when the guest is executing; 3) a VM
Execution Control Fields containing information to control the processor behavior
in VMX non root operation; 4) VM Exit Control Fields that control the VMEXITs;
5) a VM Entry Control Fields to control the VMENTRIES; and 6) a VM Exit Info
Fields that describe the cause and the nature of a VMEXIT.

Each group contains many different fields, but the offset and the alignment of
each field is not documented and it is not constant between different Intel processor
families ∗.

5.2.3 Nested Virtualization

Nested virtualization has been first defined by Popek and Goldberg [83, 164]
in 1973. Since then, several implementation has been proposed. In a nested vir-
tualization setting, a guest virtual machine can run another hypervisor that in turn

∗. For more information on each VMCS section please refer to the Intel Manual Vol 3B Chapter
20

59

5.2. Background

HYPERVISOR / HOST (L0)HYPERVISOR / HOST (L0)

GUEST OS / NESTED HYPERVISOR (L1)GUEST OS / NESTED HYPERVISOR (L1)

NESTED OS (L2)NESTED OS (L2)

HARDWAREHARDWARE

VMCS02

VMCS01

VMCS12

Figure 5.1 – VMCS structures in a Turtle-based nested virtualization setup

can run other virtual machines, thus achieving some form of recursive virtualiza-
tion. However, since the x86 architecture provides only a single-level architectural
support for virtualization, there can only be one and only one hypervisor mode and
all the traps, at any given nested level, need to be handled by this hypervisor (the
“top” one in the hierarchy). The main consequence is that only a single hypervi-
sor is running at ring -1 and has access to the VMX instructions. For all the other
nested hypervisors the VMX instructions have to be emulated by the top hypervisor
to provide to the nested hypervisors the illusion of running in root mode.

Because of these limitations, the support for nested virtualization needs to be
implemented in the top hypervisor. KVM has been the first x86 virtual machine
monitor to fully support nested virtualization using the Turtle technology [43]. For
this reason, in the rest of this paper we will use the KVM/Turtle nomenclature
when we refer to nested hypervisors. Recent versions of Xen also adopted the
same concepts and it is reasonable to think that also proprietary hypervisors (such
as VMware and Hyper-V) use similar implementations.

The Turtle architecture is depicted in Figure 5.1. In the example, the top hy-
pervisor (L0) runs a guest operating system inside which a second hypervisor (L1)
is installed. Finally, this second hypervisor runs a nested guest operating system
(L2). In this case the CPU uses a first VMCS (VMCS01) to control the top hy-
pervisor and its guest. The nested hypervisor has a “fake” VMCS (VMCS12) to
mange the interaction with its nested OS (L2). Since this VMCS is not real but it
is emulated by the top hypervisor, its layout is not decided by the processor, but
can be freely chosen by the hypervisor developers. The two VMCSs are obviously
related to each other. For example, in our experiments, we observed that for KVM
the VMCS12 Host State Area corresponds to the VMCS01 Guest State Area.

The Turtle approach also adds one more VMCS (VMCS02), that is used by the
top hypervisor (L0) to manage the nested OS (L2). In theory, nested virtualization
could be implemented without using this additional memory structure. However,
all the hypervisors we analyzed in our tests adopted this approach.

Another important aspect that complicates the nested virtualization setup is the
memory virtualization. Without nested virtualization, the guest operating system
has its own page tables to translate the Guest Virtual Addresses (GVAs) to the
Guest Physical Addresses (GPAs). The GPA are then translated by the hypervisor

60

Chapter 5. Hypervisor Memory Forensics

Figure 5.2 – EPT-based Address Translation

to Host Physical Addresses (HPAs) that are pointing to the actual physical pages
containing the data. This additional translation can be done either in software
(e.g., using shadow page tables [182]) or in hardware (e.g., using the Extended
Page Tables (EPT) described later in this section). The introduction of the nested
virtualization adds one more layer of translation. In fact, the two dimensional
support is no longer enough to handle the translation for nested operating systems.
For this reason, Turtle introduced a new technique called multidimensional-paging
in which the nested translations (from L2 to L1 in Figure 5.1) are multiplexed into
the two available layers.

5.2.4 Extended Page Table

Since the introduction of the Nehalem microarchitecture [9], Intel processors
adopted an hardware feature, called Extended Page Tables (EPT), to support ad-
dress translation between GPAs and HPAs. Since the use of this technology greatly
alleviated the overhead introduced by memory translation, it quickly replaced the
old and slow approach based on shadow pages tables.

When the EPT is enabled, it is marked with a dedicated flag in the Secondary
Based Execution Control Field in the VMCS structure. This tells the CPU that
the EPT mechanism is active and it has to be used to translate the guest physical
addresses.

The translation happens through different stages involving four EPT paging
structures (namely PML4, PDPT, PD, and PT). These structures are very similar
to the ones used for the normal IA-32e address mode translation. If the paging is
enabled in the guest operating system the translation starts from the guest paging
structures. The PML4 table can be reached by following the corresponding pointer
in the VMCS. Then, the GPA is split and used as offset to choose the proper entry at
each stage of the walk. The EPT translation process is summarized in Figure 5.2. †

†. For more detail about EPT look at Vol 3B, Chapter 25 Intel Manuals.

61

5.3. Objectives and Motivations

5.3 Objectives and Motivations

Our goal is to bring the memory forensic area to the virtualization world. This
requires the introduction of new techniques to detect, recognize, and analyze the
footprint of hypervisors inside the physical memory. It also requires to support pre-
vious techniques, so that existing tools to investigate operating systems and user-
space programs could be easily applied to each virtual machine inside a memory
image.

Locate Hypervisors in Memory

If an hypervisor is known, locating it in memory could be as simple as looking
for a certain pattern of bytes (e.g., by using a code-based signature). Unfortu-
nately, this approach have some practical limitations. In fact, given a snapshot of
the physical memory collected during an investigation, one of the main question
we want to ask is “Is there any hypervisor running on the system?”. Even though a
signature database could be a fast way to detect well-known products, custom hy-
pervisors are nowadays developed and used in many environments. Moreover, thin
hypervisor could also be used for malicious purposes, such as the one described by
Rutkowska [170], that is able to install itself in the system and intercept critical op-
erations. Detecting this kind of advanced threats is also going to become a priority
for computer forensics in the near future.

For these reasons, we decided to design a generic hypervisor detector. In order
to be generic, it needs to rely on some specific features that are required by all
hypervisors to run. As explained in the previous section, to provide hardware vir-
tualization support, the processor requires certain data structures to be maintained
by the hypervisor. For Intel, this structure is called VMCS, while the equivalent
for AMD is called VMCB. If we can detect and analyze those structures we could
use them as entry points to find all the other components: hypervisors, hosts, and
guest virtual machines.

To show the feasibility of our approach, we decided to focus our effort on the
Intel architecture. There are two reasons behind this choice. First, Intel largely
dominates the market share (83% vs 16% in the second quarter of 2012 [1]). Sec-
ond, the AMD virtualization structures are fixed and well documented, while Intel
adopts a proprietary API to hide the implementation details. Even worse, those
details vary between different processor families. Therefore, it provided a much
harder scenario to test our techniques.

A limitation of our choice is that our approach can only be applied to hardware
assisted hypervisors. Old solutions based on para-virtualization are not supported,
since in this case the virtualization is completely implemented in software. How-
ever, these solution are becoming less and less popular because of their limitations
in terms of performance.

62

Chapter 5. Hypervisor Memory Forensics

Analysis of Nested Virtualization

Finding the top hypervisor, i.e. the one with full control over the machine,
is certainly the main objective of a forensic analysis. But since now most of the
commodity hypervisors support nested virtualization, extracting also the hierarchy
of nested hypervisors and virtual machines could help an analyst to gain a better
understanding of what is running inside the system.

Unfortunately, developing a completely generic and automated algorithm to
forensically analyze nested virtualization environments is - in the general case -
impossible. In fact, while the top hypervisor has to follow specific architectural
constraints, the way it supports nested hypervisors is completely implementation
specific. In a nested setup, the top hypervisor has to emulate the VMX instructions,
but there are no constraints regarding the location and the format in which it has
to store the fields of the nested VMCS. In the best-case scenario, the fields are
recorded in a custom VMCS-like structure, that we can reverse engineer in an
automated way by using the same technique we use to analyze the layouts of the
different Intel processor families. In the worse case, the fields could be stored in
complex data structures (such as hash tables) or saved in an encoded form, thus
greatly complicating the task of locating them in the memory dump.

Not every hypervisor support nested virtualization (e.g. VirtualBox does not).
KVM and Xen implement it using the Turtle [43] approach, and a similar technique
to multiplex the inner hypervisors VT-x/EPT into the underlying physical CPU is
also used by VMware [32].

By looking for the nested VMCS structure (if known) or by recognizing the
VMCS02 of a Turtle-like environment (as presented in Figure 5.1 and explained
in details in Section 6.4), we can provide an extensible support to reconstruct the
hierarchy of nested virtualization.

Virtual Machine Forensic Introspection

Once a forensic analyst is able to list the hypervisors and virtual machines in
a memory dump, the next step is to allow her to run all her memory forensic tools
on each virtual machine. For example, the Volatility memory forensic framework
ships with over 60 commands implementing different kinds of analysis - and many
more are available through third-party plugins. Unfortunately, in presence of vir-
tualization, all these commands can only be applied to the host virtual machine.
In fact, the address spaces of the other VMs require to be extracted and translated
from guest to host physical addresses.

The goal of our introspection analysis is to parse the hypervisor information,
locate the tables used by the EPT, and use them to provide a transparent mechanism
to translate the address space of each VM.

63

5.4. System Design

5.4 System Design

Our hypervisor analysis technique consists of three different phases: memory
scanning, data structure validation, and hierarchy analysis. The Memory Scan-
ner takes as input a memory dump and the database of the known VMCS layouts
(i.e., the offset of each field in the VMCS memory area) and outputs a number of
candidate VMCS. Since the checks performed by the scanner can produce false
positives, in the second phase each structure is validated by analyzing the corre-
sponding page table. The final phase of our approach is the hierarchy analysis,
in which the validated VMCSs are analyzed to find the relationships among the
different hypervisors running on the machine.

In the following sections we will describe in details the algorithms that we
designed to perform each phase of our analysis.

5.4.1 Memory Scanner

The goal of the memory scanner is to scan a physical memory image looking
for data structures that can represent a VMCS. In order to do that, we need two
types of information: the memory layout of the structure, and a set of constraints on
the values of its fields that we can use to identify possible candidates. The VMCS
contains over 140 different fields, most of which can assume arbitrary values or
they can be easily obfuscated by a malicious hypervisors. The memory scanner
can tolerate false positives (that are later removed by the validation routine) but we
want to avoid any false negative that could result in a missed hypervisor. Therefore
we designed our scanner to focus only on few selected fields:

— Revision ID: It is the identifier that determines the layout of the rest
of the structure. For the VMCS of the top hypervisor, this field has to
match the value of the IA32_VMX_BASIC MSR register of the machine
on which the image was acquired (and that changes between different micro-
architecture). In case of nested virtualization, the revision ID of the VMCS12
is chosen by the top hypervisor. The Revision ID is always the first
word of the VMCS data structure.

— VMX ABORT INDICATOR: This is the VMX abort indicator and its value
has to be zero. The field is the second entry of the VMCS area.

— VmcsLinkPointerCheck: The values of this field consists of two con-
secutive words that, according to the Intel manual, should always be set to
0xffffffff. The position of this field is not fixed.

— Host_CR4: This field contains the host CR4 register. Its 13th bit indicates
if the VMX is enabled or not. The position of this field is not fixed.

To be sure that our choice is robust against evasions, we implemented a simple
hypervisor in which we tried to obfuscate those fields during the guest operation
and re-store them only when the hypervisor is running, a similar approach is de-
scribed in [75]. This would simulate what a malicious hypervisor could do in
order to hide the VMCS and avoid being detected by our forensic technique. In

64

Chapter 5. Hypervisor Memory Forensics

Figure 5.3 – Self-referential Validation Technique

our experiments, any change on the values of the previous five fields produced a
system crash, with the only exception of the Revision ID itself. For this reason, we
keep the revision ID only as a key in the VMCS database, but we do not check its
value in the scanning phase.

The memory scanner first extracts the known VMCS layouts from the database
and then it scans the memory looking for pages containing the aforementioned val-
ues at the offsets defined by the layout. Whenever a match is found, the candidate
VMCS is passed over to the validation step.

5.4.2 VMCS Validation

Our validation algorithm is based on a simple observation. Since the HOST_CR3
field needs to point to the page table that is used by the processor to translate the
hypervisor addresses, that table should also contain the mapping from virtual to
physical address for the page containing the VMCS itself. We call this mechanism
self-referential validation.

For every candidate VMCS, we first extract the HOST_CR3 field and we as-
sume that it points to a valid page table structure. Unfortunately, a page table can
be traversed only by starting from a virtual address to find the corresponding physi-
cal one, but not vice-versa. In our case, since we only know the physical address of
the candidate VMCS, we need to perform the opposite operation. For this reason,
our validator walks the entire page tables (i.e., it tries to follow every entry listed
in them) and creates a tree representation where the leaves represent the mapped
physical memory pages and the different levels of the tree represent the intermedi-
ate points of the translation algorithm (i.e., the page directory, and the page tables).

This structure has a double purpose. First, it serves as a way to validate a
candidate VMCS, by checking that one of the leaves points to the VMCS itself (see
Figure 5.3). If this check fails, the VMCS is discarded as a false positive. Second,
if the validation succeeded, the tree can be used to map all the memory pages

65

5.4. System Design

that were reserved by the hypervisor. This could be useful in case of malicious
hypervisors that need an in-depth analysis after being discovered.

It is important to note that the accuracy of our validation technique leverages on
the assumption that is extremely unlikely that such circular relationship can appear
by chance in a memory image.

5.4.3 Reverse Engineering The VMCS Layout

The previous analysis steps are based on the assumption that our database con-
tains the required VMCS layout information. However, as we already mentioned
in the previous sections, the Intel architecture does not specify a fix layout, but pro-
vides instead an API to read and write each value, independently from its position.

In our study we noticed that each processor micro-architecture defines different
offsets for the VMCS fields. Since we need these offsets to perform our analysis,
we design and implement a small hypervisor-based tool to extract them from a live
system.

More in detail, our algorithm considers the processors microcode as a black
box and it works as follows. In the first step, we allocate a VMCS memory region
and we fill the corresponding page with a 16 bit-long incremental counter. At this
point the VMCS region contains a sequence of progressive numbers ranging from
0 to 2048, each representing its own offset into the VMCS area. Then, we perform
a sequence of VMREAD operations, one for each field in the VMCS. As a result,
the processor retrieves the field from the right offset inside the VMCS page and
returns its value (in our case the counter that specifies the field location).

The same technique can also be used to dump the layout of nested VMCSs.
However, since in this case our tool would run as a nested hypervisor, the top
hypervisor could implement a protection mechanism to prevent write access to the
VMCS region (as done by VMware), thus preventing our technique to work. In
this case we adopt the opposite, but much slower, approach of writing each field
with a VMWRITE and then scan the memory for the written value.

5.4.4 Virtualization Hierarchy Analysis

If our previous techniques detect and validate more then one VMCS, we need to
distinguish between several possibilities, depending whether the VMCS represent
parallel guests (i.e., a single hypervisor running multiple virtual machines), nested
guests (i.e, an hypervisor running a machine the runs another hypervisor), or a
combination of the previous ones.

Moreover, if we assume one virtual CPU per virtual machine, we can have
three different nested virtualization scenarios: Turtle approach and known nested
VMCS layout (three VMCSs found), Turtle approach and unknown nested layout
(two VMCSs found), and non-Turtle approach and known layout (two or more
VMCSs found).

66

Chapter 5. Hypervisor Memory Forensics

Figure 5.4 – Comparison between different VMCS fields in nested and parallel
configurations

In the first two cases (the only ones we could test in our experiments since all
the hypervisors in our tests adopted the Turtle approach), we can infer the hier-
archy between the hypervisors and distinguish between parallel and nested VMs
by comparing the values of three fields: the GUEST CR3, the HOST CR3, and
the HOST RIP. The first two fields represent the CR3 for the guest and for the
hypervisor. The third is the pointer to the hypervisor entry point, i.e., to the first
instruction to execute when the CPU transfer control to the hypervisor.

Figure 5.4 show a comparison of the values of these three fields in a parallel and
nested configurations. As the diagram shows, in a nested setup we have two differ-
ent hypervisors (represented by the two different HOST RIP addresses) while for
parallel virtual machine the hypervisor is the same (same value of HOST RIP).
Moreover, by comparing the GUEST CR3 and HOST CR3 values we can distin-
guish among VMCS01, VMCS02, and VMCS12 in a nested virtualization setup.
More precisely, the VMCS01 and VMCS02 share the same HOST CR3, while the
HOST CR3 of the VMCS12 has to match the GUEST CR3 of the VMCS01.

Finally, in the third scenario in which the nested virtualization is not imple-
mented following the Turtle approach (possible in theory but something we never
observed in our experiments), the previous heuristics may not work. However, also
in this case we can still tell that a VMCS belongs to a nested hypervisor if its layout
matches the one of a known nested VMCS (e.g., the one emulated by KVM).

5.4.5 Virtual Machine Introspection

The last component of our system is the algorithm to extract the EPT tables
and to provide support for the memory analysis of virtual machines. In this case
the algorithm is straightforward. First, we extract the pointer to the EPT from the
VMCS of the machine we want to analyze (see Figure 5.2). Then, we simulate the
EPT translation by programmatically walking through the PML4, PDPT, PD, and
PT tables for each address that need to be translated.

67

5.4. System Design

5.4.6 System Implementation

We implemented the previously described techniques in an open source tool
called Actaeon. Actaeon consists of three components: a standalone VMCS layout
Extractor derived from HyperDbg [78], an hypervisor Memory Analysis plugin for
the Volatility framework, and a patch for the Volatility core to provide a transparent
mechanism to analyze the virtual machines address spaces. The tool, along with a
number of datasets and usage examples, can be downloaded from
http://s3.eurecom.fr/tools/actaeon.

VMCS Layout Extractor

This component is designed to extract and save into a database the exact layout
of a VMCS, by implementing the reverse engineering algorithm described above.
The tool is implemented as a small custom hypervisor that re-uses the initialization
code of HyperDbg, to which it adds around 200 lines of C code to implement the
custom checks to identify the layout of the VMCS.

Hyper-ls

This component is implemented as a Python plugin for the Volatility frame-
work, and it consists of around 1,300 lines of code. Its goal is to scan the memory
image to extract the candidate VMCSs, run our validation algorithm to filter out
the false positives, and analyze the remaining structures to extract the details about
the corresponding hypervisors.

The tool is currently able to parse all the fields of the VMCS and to properly
interpret them and print them in a readable form. For example, our plugin can show
which physical devices and which events are trapped by the hypervisor, the pointer
to the hypervisor code, the Host and Guest CR3, and all the saved CPU registers
for the host and guest systems.

The hyperls plugin can also print a summary of the hierarchy between the
different hypervisors and virtual machines. For each VM, it also reports the pointer
to the corresponding EPT, required to further inspect their content.

Virtual Machine Introspection Patch

An important functionality performed by Acteon is to provide a transparent
mechanism for the Volatility framework to analyze each Virtual Machine address
space. In order to provide such functionality, Acteon provides a patch for the
Volatility core to add one command-line parameter (that the user can use to specify
in which virtual machine he wants to run the analysis) and to modify the APIs used
for address translations by inserting an additional layer based on the EPT tables.
The patch is currently implemented in 250 lines of Python code.

68

Chapter 5. Hypervisor Memory Forensics

5.5 Evaluation

The goal of our experiments is to evaluate the accuracy and reliability of our
techniques in locating hypervisors inside physical memory dumps, access their pri-
vate data, reconstruct the hierarchy in case of nested virtualization, and provide the
support for other memory forensic techniques to inspect the guest operating sys-
tems. All the experiments have been performed on an Intel Core 2 Duo P8600 and
an Intel Core i5-2500 machines running the Ubuntu Linux 12.10 32bit operating
system and with one virtual processor per guest.

5.5.1 Forensic Memory Acquisition

The first step of our experiments consisted in the acquisition of complete snap-
shots of the physical memory on a computer running a number of different hyper-
visor configurations.

As we already mentioned in Section 5.1, this turned out to be a challenging
task. In fact, even though a large number of memory imaging solution exists on the
market, the vast majority adopt software-based techniques that uses kernel mod-
ules to acquire the memory from the operating system point of view. These ap-
proaches have not been designed to work in a virtualization environment where the
OS does not have a complete view of the system memory. In fact, if the virtual
machine monitor is protecting its own pages, the memory image collected from the
host operating system does not contain the pages of the hypervisor. To overcome
this limitation, whenever a software approach was not able to properly capture the
memory, we resorted to a hardware-based solution. In particular, we used a PCI
Firewire card with a Texas Instrument Chipset, and the Inception [5] tool to dump
the memory through a DMA attack [160]. In this case, we had to disable the In-
tel VT-d support from the BIOS, to prevent the IOMMU from blocking the DMA
attack.

The main drawback of using the Firewire acquisition is that in our experiments
it was quite unstable, often requiring several consecutive attempts before we could
obtain a correct dump. Moreover, it is worth noting that in theory even a DMA-
based approach is not completely reliable. In 2007 Joanna Rutkowska showed the
feasibility of attacks against hardware-based RAM acquistion [171]. The presented
attacks are based on the modification of the processor’s NorthBridge memory map
to denial of service the acquisition tool or to hide some portions of the physical
memory. However, we are not aware of any hypervisor that uses these techniques
to tamper with the memory acquisition process.

Today, the best solution to acquire a complete system memory in presence of an
hypervisor would be to use an acquisition tool implemented in the SMM (therefore
running at higher privileges than the hypervisor itself), as proposed by A. Reina et
al. [167]. Unfortunately, we were not able to find any tool of this kind available on
the Internet.

69

5.5. Evaluation

Hypervisor Guests Candidate VMCS Validated VMCS
HyperDbg 1 1 1
KVM 2 4 2
Xen 2 3 2
VirtualBox 1 2 1
VMware 3 3 3

Table 5.1 – Single Hypervisor Detection

5.5.2 System Validation

The first step of our experiments was to perform a number of checks to ensure
that our memory acquisition process was correct and that our memory forensic
techniques were properly implemented.

In the first test, we wrote a simple program that stored a set of variables with
known values and we run it in the system under test. We also added a small kernel
driver to translate the program host virtual addresses to host physical addresses and
we used these physical addresses as offset in the memory image to read the variable
and verify their values.

The second test was designed to assess the correctness of the VMCS layout. In
this case we instrumented three open source hypervisors to intercept every VMCS
allocation and print both its virtual and physical addresses. These values were then
compared with the output of our Volatility plugin to verify its correctness. We also
used our instrumented hypervisors to print the content of all the VMCS fields and
verify that their values matched the ones we extracted from the memory image
using our tool.

Our final test was designed to test the virtual machine address space recon-
struction through the EPT memory structures. The test was implemented by in-
strumenting existing hypervisors code and by installing a kernel debugger in the
guest operating systems to follow every step of the address translation process.
The goal was to verify that our introspection module was able to properly walk the
EPT table and translate every address.

Once we verify the accuracy of our acquisition and implementation we started
the real experiments.

5.5.3 Single-Hypervisor Detection

In this experiment we ran the hyperls plugin to analyze a memory image
containing a single hypervisor.

We tested our plugin on three open source hypervisors (KVM 3.6.0, Xen 4.2.0,
and VirtualBox 4.2.6), one commercial hypervisor (VMware Workstation 9.0), and
one ad-hoc hypervisor realized for debugging purposes (HyperDbg). The results
are summarized on Table 5.1. We run the different hypervisors with a variable
number of guests (between 1 and 4 virtual machines). The number of candidate

70

Chapter 5. Hypervisor Memory Forensics

Top Hypervisor Nested Hypervisor VMCS Detection Hierarchy Inference

KVM
HyperDbg 3 3

KVM 3 3

XEN
KVM 3 3

XEN 3 3

VMware
HyperDbg 3 3

KVM 3 3

VirtualBox 3 3

VMware 3 3

Table 5.2 – Detection of Nested Virtualization

VMCS found by the memory scanner algorithm is reported in the third column,
while the number of validated ones is reported in the last column. In all the ex-
periments our tool was able to detect the running hypervisors and all the virtual
machines with no false positives.

The performance of our system are comparable with other offline memory
forensic tools. In our experiment, the average time to scan a 4GB memory im-
age to find the candidate VMCS structures was 13.83 seconds. The validation time
largely depends on the number of matches, with an average of 51.36 seconds in our
tests (all offline analysis performed on an Intel Xeon L5420 (2.50Ghz) with 4GB
RAM).

In the second experiment, we chose a sample of virtual machines from the
previous test and we manually inspect them by running several Volatility com-
mands (e.g., to list processes and kernel drivers). In all cases, our patch was able
to transparently extract the EPT tables and provide the address translation required
to access the virtual machine address space.

5.5.4 Nested Virtualization Detection

In the final set of experiments we tested our techniques on memory images
containing cases of nested virtualization. This task is more complex due to the im-
plementation specific nature of the nested virtualization. First of all, only three of
the five hypervisors we tested supported this technology. Moreover, not all combi-
nations were possible because of the way the VMX instructions were emulated by
the top hypervisor. This turned out to be crucial for the nested hypervisor to work
properly, since an imperfect implementation would break the equivalence principle
and allow the nested hypervisor to detect that it is not running on bare metal. For
example, VMware refuses to run under KVM, while Xen and VirtualBox under
KVM start but without any hardware virtualization support.

Because of these limitations we were able to set up eight different nested vir-
tualization installations (summarized in Table 5.2). In all the cases, hyperls was

71

5.5. Evaluation

able to detect and validate all the three VMCS structures (VMCS01, VMCS02, and
VMCS12) and to infer the correct hierarchy between the different hypervisors.

72

Chapter 6

Analysis of ROP Chains

6.1 Introduction

In this chapter, we present a set of techniques to analyze complex ROP chains.
First, we identify and discuss the main challenges that make it very difficult to
reverse engineer code implemented using ROP. Second, we propose an emulation-
based framework to dissect, reconstruct, and simplify ROP chains. Finally, we test
our tool on the most complex example available to date: a ROP rookit containing
four separate chains, two of them dynamically generated at runtime.

Traditional reverse engineering relies on a wide range of tools that have been
perfected over the years, such as debuggers, disassemblers, and decompilers. Un-
fortunately, all these products were designed for “EIP-based” programming and
are of very little use to analyze stack-based return oriented programming payloads.
This is the problem we address in this chapter. Specifically, two main observations
motivate our work: the lack of public tools to analyze in-depth ROP payloads and
the fact that ROP chains are growing both in size and in complexity. Moreover,
all the memory forensic techniques proposed so far try to identify injected code
and do not consider code reuse strategies. This myopia considerably weaken the
analyses.

To tackle these problems, we propose ROPMEMU – a framework for the au-
tomated analysis of ROP chains. We assume that, using existing techniques [163,
185], a forensic investigator discovers a ROP chain in system memory and she
needs to investigate its behavior. At first glance, the problem may seem trivial: it
would be enough to dump the memory region containing the ROP chain, recon-
struct the entire code by appending the instructions contained in each gadget, and
then analyze it like any other sequence of assembly instructions. However, in prac-
tice, things are not simple and in this paper we show that this procedure is in fact
very complex and requires a number of dedicated tools and techniques.

ROPMEMU leverages techniques from the fields of memory forensics, em-
ulation, multi-path execution, and compiler transformations to analyze complex
ROP chains and recover their precise control flow graph. Moreover, by using a

73

6.2. Background

novel multi-path emulation, our system is also able to reconstruct chains which are
dynamically-generated at runtime, allowing an analyst to capture the behavior of
the most complex ROP that can be encountered in the wild.

To summarize, we present the following contribution:
— We discuss a number of challenges that need to be addressed to reverse

engineer code implemented using return oriented programming. This goes
far beyond what was observed in the past in simple exploits and what was
discussed in previous papers.

— We present the first framework to dissect, reconstruct, and simplify com-
plex ROP chains.

— We tested our tool with the most complex case proposed so far: a ROP
rootkit containing chains with a total of 215913 gadgets.

6.2 Background

In this section, we provide the technical background required to understand the
remaining part of the paper. We first introduce the return oriented programming
paradigm, both from the point of view of exploitation and of the available analysis
techniques. We then provide an overview of the current trends and evolution of
rootkit technologies as well as the recently-proposed concept of an ROP rootkit.
Finally, we introduce in more detail a real example of ROP rootkit (proposed by
Vogl et al. [199]) that we will use as a case study throughout the rest of the paper.

6.2.1 ROP

Security countermeasures introduced in the last decade in modern operating
systems forced attackers to adapt and find new ways to exploit programs. To over-
come hardware defenses – such as the no-execute bit (NX) in PAE and IA-32e
modes on Intel processors, software protections trying to emulate the NX bit be-
havior [184,195,196], and code signing [2,7,8] techniques – offensive researchers
proposed several forms of the so-called code reuse attack [153, 176, 179]. Over
the years, code reuse attacks have been ported to different architectures [52, 113]
and have evolved in a multitude of different techniques, such as return oriented
programming without returns [57], jump return oriented programming [48], blind
ROP [47], and sigreturn oriented programming [49].

In particular, ROP is one of the most prevalent and widespread techniques
adopted in the majority of the exploits observed in the wild. It is a particular in-
stance of code reuse attack in which the attacker uses instructions already present
in memory and chains them together to perform arbitrary computation. A single
block of assembly instructions terminated by a ret (in its most traditional form)
is called a gadget. A sequence of gadgets is then connected to form a ROP chain
by putting their addresses on the stack and leveraging the ret instruction to return
from one gadget to the next one.

74

Chapter 6. Analysis of ROP Chains

ROP Analysis

So far, ROP was mainly used by exploits to disable the protection enforced by the
NX bit and then execute normal shellcode. In these cases, the ROP chain is gener-
ally very short, as its only goal is to invoke functions (e.g., VirtualProtect or
mprotect) to change the page permissions of the memory containing the shell-
code. As a result, the vast majority of ROP chains are straight sequences of in-
structions without any branch or complex control flow.

There exists a countless number of offensive tools to simplify the creation of
ROP chains – ranging from simple tools [36, 61, 106, 174] able to disassemble
binaries, find gadgets and group them together – to more advanced tools [35, 154,
156] that use constraint solvers, intermediate languages and even emulators [155]
to automate the chain creation as much as possible. Unfortunately, because of the
simple form of the existing ROP chains, to date there are no public tools to analyze
ROP payloads. In fact, the analysis of ROP payloads was so far purely a manual
process in which the analyst dissects the binary to find the chain and then manually
de-obfuscates it to understand its behavior.

More recently, researchers and malware writers discovered that return oriented
programming is not only a useful technique to run exploits, but it also provides a
very effective way to hide the execution of malicious functionality. In fact, since
ROP allows the implementation of new functionality by reusing existing sequences
of instructions, it makes the malicious code much more complex to identify, isolate
and analyze. As part of this emerging phenomenon, chains have started to contain
complex application logic, therefore becoming much longer and much more com-
plex. As a first example, malware samples have adopted ROP payloads during
the first stage of the infection. For instance, immediately after the exploitation, the
ROP payload was used to implement a simple dropper/downloader that fetches and
runs the second stage [99]. Even more worrying, in 2014 Vogl et al. [199] presented
the first complete example of a rootkit implemented in ROP. This opens a new era
for malicious code execution, and calls for a new set of tools and techniques to
perform its analysis.

6.2.2 Rootkits

Rootkits are malicious software designed to gain persistent, stealth access to a
compromised machine. In the last few years, rootkit technology has been rapidly
evolving and increasing in sophistication. In order to conceal their presence and
information, modern rootkits typically run at ring 0. This places the attacker at the
same level as the OS kernel, so that the rootkit can undermine the security of the
operating system and, potentially, remain undetectable for a long time. Several de-
fensive mechanisms have been proposed to address this issue, but, unfortunately,
ring 0 rootkits are still a severe threat. Offensive researchers have also investi-
gated further possible ways to subvert the operating system security model moving

75

6.2. Background

deeper in the execution stack: prototypes exist for virtualization rootkits (ring -
1) [70,103,111], SMM rootkits (ring -2) [77] and Intel ME rootkits (ring -3) [159].
The trend is to be a level lower than the defensive monitor in order to lie hidden on
the compromised system.

Fortunately, all rootkits share a common weakness: they need to load their code
into the running system. Modern countermeasures, such as secure boot and code
signing, significantly hinder this process and make traditional attacker techniques
no more effective against recent systems. To bypass these protection mechanisms,
malware authors can use the same techniques adopted by exploit writers. Return
Oriented Programming (ROP) is a well-known data-only exploitation technique
and can be used by the rootkit authors to bypass all the modern protections. A
completely ROP rootkit was first theorized by Hund et al [93] in 2009. They pro-
posed a proof of concept with several limitations. First of all, the malware has to
exploit the kernel vulnerability repeatedly to execute arbitrary ROP payloads (e.g.,
to hide system processes). Second, this initial rootkit had no persistence at all –
making it of little use in practice. In 2014, Vogl et al. [199] succeeded in making
a ROP rootkit persistent and presented an open-source POC of their creation. In
particular, the authors have shown how it is possible to perform hooking without
injecting a single line of code in the kernel. In this case, the malware has to exploit
the vulnerability only once to escalate privileges and trigger the persistent ROP
payload.

6.2.3 Chuck

Chuck is the name of the persistent ROP rootkit proposed by Vogl et al [199],
the only public example of this kind to date.

It comprises four ROP chains: one persistent in memory and the other three
dynamically generated at runtime. The first chain is the initialization chain and it
is executed only once, the first time the kernel vulnerability is exploited (in this par-
ticular case CVE-2013-2094 [104]). This chain sets the hooks in the system, sets
up the switching mechanism based on the sysenter instruction using the MSR
registers 0x175 (IA32_SYSENTER_ESP) and 0x176 (IA32_SYSENTER_EIP),
the global state of the rootkit, a memory region to deal with multiple invocations,
and finally it copies the second chain – the so-called copy chain. The copy chain
is the persistent ROP chain, and it is invoked every time a hook is triggered. First,
it saves all the general purpose registers in the global state. Second, it creates and
copies in memory a dynamic chain for each invocation of the hook. This third
chain is called the dispatcher chain. The dispatcher chain is necessary to deal with
hook invocations by multiple threads. The goal of this chain is to create a final,
ad-hoc payload. The payload chain contains the core functionality of the rootkit
and, at the end of its execution, it restores the original registers to continue normal
kernel execution.

The complexity of these ROP chains is considerably high for several reasons.
First, the size of a single chain is huge compared to the chains shipped with or-

76

Chapter 6. Analysis of ROP Chains

dinary exploits. For instance the copy chain contains over 180k gadgets. Second,
these chains have a non-linear control flow logic – making their analysis very com-
plex. Third, the presence of dynamically generated chains make this example sim-
ilar to a multi-stage packed malware, limiting the applicability of static analysis.
Finally, the four chains compose a real kernel rootkit and thus the analyst has to
deal with kernel issues such as privileged instructions and interrupts.

6.3 ROP Analysis

To date, the complexity of ROP analysis has been completely underestimated.
Few studies have focused on this problem, mainly taking simplistic approaches
applied only to small examples. The first issue that an analyst may encounter when
dealing with ROP chains is the fact that they are hard to locate in the first place.
Since no code is injected in a ROP-based attack, finding the entry point of the
chain can be difficult – especially when the input is the entire system memory. Two
previous studies have proposed solutions for this problem [163, 185] and therefore
we will build on top of them for the rest of our paper. Focusing more on the real
analysis (i.e., on what needs to be done after a chain has been located) we identify
seven main challenges:

[C1] Verbosity – the majority of ROP gadgets contain spurious instructions. For
example, a gadget intended to increment eax may also pop a value from the stack
before hitting the ret instruction that triggers the next gadget in the chain. More-
over, the code of a ROP chain contains a large percentage of return or other indirect
control flow instructions, whose only goal is to connect together all the other gad-
gets. These are only few examples of why ROP code is very verbose and contains
a large fraction of dead code that makes it harder for analysts to understand it.
However, this is probably the simplest problem to solve as many transformations
proposed in the compiler literature already exist to simplify the code.

[C2] Stack-Based Instruction Chaining – the most obvious difference between
a ROP chain and a normal program is that in a chain the instructions are not con-
secutive in memory, rather they are grouped in small gadgets connected together
by indirect control flow instructions. So, what in a normal program could be a sin-
gle block of 50 instructions, in a ROP chain can be split into more than 40 blocks
chained by ret instructions.

At a first glance, this problem may seem trivial to solve. Since the addresses
of each gadget in the chain are saved on the stack, one might think that it would
be easy to automatically retrieve them, collect the corresponding pieces of code,
and replace the entire chain with a single sequence of instructions. However, the
stack-based instruction chaining can introduce subtle side effects that are hard to
identify with a simple static analysis approach. For instance, since the sequence
of gadgets is saved on the stack, but the code of each gadget also interacts with
the stack (to retrieve parameters or just because of spurious instructions), in order

77

6.3. ROP Analysis

to correctly identify the addresses of each gadget it is necessary to emulate every
single instruction in the code.

[C3] Lack of Immediate Values – another difference between normal code and
ROP chains is the fact that chains are typically constructed with “generic” gadgets
(such as “store an arbitrary value in the rax register”) that operate on parameters
which are also stored on the stack. As a result, the vast majority of immediate
values that are assigned to registers are interleaved on the stack with the gadget
addresses. Being able to restore them back in their original position also requires
an emulator.

[C4] Conditional Branches – in a ROP chain, a branch condition implies a change
in the stack pointer instead of a more traditional change in the instruction pointer.
This means that a simple conditional jump may be encoded with dozens of differ-
ent instructions spanning multiple gadgets (e.g., to set the flag register according
to the required condition, test its value, and conditionally increment the esp reg-
ister). To translate the chain into more readable code, it is therefore necessary to
identifying these patterns based on their semantics and replace them with single
branch instructions.

[C5] Return to Functions – function calls are typically implemented in ROP as
simple return to the functions entry point. However, since normal gadgets are also
often extracted from code located inside libraries, it is hard to distinguish a function
call from another gadget. As it is in the case of statically linked binaries, the lack
of information on external library calls can make the reverse engineering process
much more tedious and complicated.

[C6] Dynamically Generated Chains – the instructions of normal programs are
typically located in a read-only section of the executable. Dynamically modified
code is common in malware (e.g., as a result of packing) and, in fact, this severely
limits the ability to perform static analysis on malicious code and considerably
slows down the reverse engineering process. On the contrary, ROP chains are lo-
cated on the stack, and it is therefore simple to use gadgets to prepare the execution
of other gadgets in the future. This dynamicity results in the fact that it is not nec-
essary for the entire chain to reside in memory at the same time.

[C7] Stop Condition – in this paper we assume that the analyst is able to locate
the beginning of a ROP chain in memory. However, since an emulator is needed
to analyze its content, it is important to also have a termination condition to decide
when all the gadgets have been extracted and the emulation process can be stopped.
The fact that complex ROP chains can invoke functions (which in turn may invoke
other functions) interleaved with normal gadgets, and the fact that a chain can
dynamically generate another chain in a different part of the memory, make this
problem very hard to solve in the general case.

78

Chapter 6. Analysis of ROP Chains

Figure 6.1 – ROPMEMU Framework Architecture

6.3.1 Implications

The previous seven challenges have several important implications for the anal-
ysis of ROP chains. Previous works only proposed partial solutions. For instance,
Lu et al. [139] and Yadegari et al. [203] identified a number of code transforma-
tions to handle [C1]. Moreover, Stancill et al. [185] and Lu et al. [139] used simple
heuristics to follow the value of the stack pointer, thus partially addressing [C2]
and [C3]. However, previous heuristics only applied to ret-based ROP chains,
and were unable to follow indirect calls and jump instructions. Sadly, [C4-7] have
never been mentioned before, probably because only in the past two years ROP
chains have become complex enough to raise these points.

As it is better explained in Section 6.4, to fully address [C2],[C3], and [C6] it
is necessary to emulate all the instructions and keep a shadow copy of the memory
content. Moreover, a solution based on multi-path emulation is required to explore
each path in the chain and retrieve its entire code. In turn, this approach requires
the system to implement heuristics to detect the presence of branch instructions
([C4]). Finally, while recognizing the functions ([C5]) can be addressed by using
symbols information extracted from libraries and kernel functions, the presence of
system calls is a major obstacle for an emulator because their return values cannot
be predicted with static analysis. Functions are not the only issue when using an
emulator: precise heuristics for the stopping condition (C7) are also required and
(as better explained in the next section) hard to implement.

This short discussion emphasizes how ROP analysis is in fact a multi-faced
problem whose solution requires a combination of sophisticated techniques.

6.4 Design

The ROPMEMU framework adopts a set of different techniques to analyze
ROP chains and reconstruct their equivalent code in a form that can be analyzed by
traditional reverse engineering tools. In particular, it is based on memory forensics
(as its input is a physical memory dump), code emulation (to faithfully rebuild
the original ROP chain), multi-path execution (to extract the ROP chain payload),

79

6.4. Design

CFG recovery (to rebuild the original control flow), and a number of compiler
transformations (to simplify the final instructions of the ROP chain).

The framework is divided in different components that interact as shown in
Figure 6.1 in five main analysis phases:

— Multipath Emulation - This step emulates the assembly instructions that
compose the ROP chain. This is the only way to rebuild the exact instance
of the running chain at the time of the dump. All the possible branches are
explored and an independent trace (annotated with the values of registers
and memory) is generated for each execution path (C2 and C6). The emu-
lator is also designed to recognize a number of returns-to-library functions,
skip over their body, and simulate their execution by generating dummy
data and return values (C4).

— Trace Splitting - This phase consists of analyzing all the traces generated
by the emulator, remove the repetitions, and extract the unique blocks of
code.

— Unchaining - This phase applies a number of assembly transformations
to simplify each ROP trace by removing the connections between gadgets
and merging the content of consecutive gadgets in a single basic block.
This step is also responsible to remove immediate values from the stack
and assign them to the corresponding registers (C2 and C3).

— CFG recovery - This pass merges all the code blocks in a single program,
recovering the original control flow graph of the ROP chain. This phase
comprises two steps. In the first one, the traces are merged in a single
graph-based representation. The second step translates the graph into a real
x86 program by identifying the instructions associated to the branch con-
ditions and by replacing them with more traditional EIP-based conditional
jumps (C4). At the end of this phase, the program is saved in an ELF file,
to allow traditional reverse engineering tools (e.g., IDA Pro) to operate on
it.

— Binary optimization - In the final step, we apply known compiler transfor-
mations to further simplify the assembly code in the ELF file. For instance,
this phase removes dead instructions in the gadgets and generates a clean
and higly optimized version of the payload (C1).

In the rest of the section, we introduce each phase in detail and we describe
how each of them have been implemented in our system.

6.4.1 Chain Discovery

Finding ROP chains in a physical memory dump is not a trivial task. However,
two solutions have already been proposed in the literature [163, 185] for this prob-
lem. Therefore, for the sake of simplicity, in this paper we assume that the analyst
is provided with an image of the memory and an entry point of the first ROP chain.

Our case study was complicated by the fact that only one of the chains is per-
sistent (the Copy Chain), while the other ones are generated on the fly depending

80

Chapter 6. Analysis of ROP Chains

on the system’s state and therefore their content is only available in memory for
few milliseconds. As a consequence, it is unrealistic to require a snapshot of the
memory containing all ROP chains – and therefore their content needs to be recon-
structed by our system.

6.4.2 Emulation

The emulation phase is the core of our analysis framework. Its role is to “fol-
low” the execution of each gadget to keep an updated position of the stack pointer
and of the content of the memory.

A Turing complete ROP chain can be obtained by re-using a limited number of
gadgets [179]. Therefore, also very complex ROP programs often include a very
small number of unique assembly instructions. For instance, the ROP rootkit we
used for our experiments contained only 16 mnemonics. For this reason, in our
prototype we decided to implement a small custom emulator from scratch. Our
emulator supports both x86-32 and x86-64 architectures and updates the state
of the CPU (registers and flags) and of the memory after each instruction. For
a more comprehensive approach, S2E [59] can be used to provide a full system
emulation on top of Qemu [42]. However, this would considerably complicate the
setup and deployment required by the system. Therefore, we opted for a custom
solution that gave us more flexibility and a smaller footprint.

At the beginning of the emulation phase, the initial state of the virtual CPU is
set to zero by resetting the content of all registers except for the instruction pointer
and the stack pointer (whose initial values need to be provided as input for our
analysis). The emulator is then implemented as a Volatility [12] plugin to simplify
the interaction with the memory dump by leveraging the Volatility APIs.

Execution Modes

At the end of the emulation a JSON trace is generated containing the CPU state
for each assembly instruction. Depending on the complexity of the ROP chain, the
size and the time required to generated this trace can be considerable.

For these reasons, we designed our emulator to support three execution modes:
full, incremental and replay. In full emulation mode, the emulator executes the
chain from scratch, starting from the provided entry point. The replay mode is
completely based on an existing JSON trace and therefore it does not require any
memory dump. This makes the rest of the analysis repeatable, and allows re-
searchers to share traces without the need to transfer the content of the system
memory (which may contain sensitive information and may be difficult to share
for privacy reasons). Finally, the incremental mode is a combination of the previ-
ous two: it uses an input JSON trace (previously generated during a full emulation)
and, once the last gadget in the trace is reached, it switches to full mode. This mode
makes incremental analysis possible – a considerable advantage when dealing with
very complex ROP chains.

81

6.4. Design

Shadow Memory

The emulator initially reads the content of the memory from the memory dump.
However, all write operations are redirected to a shadow memory area kept inter-
nally by the emulator. Subsequent read operations fetch data from the shadow
memory (if the address has been previously written) or from the memory image.

Chain Boundary

Although the analyst knows the starting address of the first ROP chain, it is
unclear where the chain ends. This problem is very important because we do not
want to keep emulating instructions beyond the end of a chain, thus polluting the
analysis with unrelated code.

Our framework solves the problem by using a number of heuristics. To start
with, the emulator detects large increments or decrements of the stack pointer. Typ-
ically, during the execution of a single ROP chain, these deltas are small. Based
on this locality principle, it is possible to find the exact moment in which the chain
under analysis is terminated. This simple rule needed to be refined to take into
account long jumps that may occur inside a single, very long chain (see, for in-
stance, the case described in Section 6.5). By including heuristics based on the
length of a gadget, and excluding the detected function invocations, our prototype
was able to correctly stop the emulation process at the last gadget in our experi-
ments. In case our heuristics fail, the analyst only needs to restart the emulator in
incremental mode to continue the analysis of the chain from the point in which it
was suspended.

Once the termination condition is triggered, the emulator stops and both the
content of the shadow memory and the trace are saved to disk and are inspected to
detect the presence of new ROP chains. If new stages are found, the emulator is
re-started to analyze the next chain, and the process is repeated multiple times until
all dynamically generated chains have been discovered and analyzed.

Syscalls and APIs

Complex ROP chains can invoke several system calls and library APIs, whose
emulation is very complex (impossible in many cases) and goes beyond the scope
of this paper. Our emulator recognizes when the execution is transferred to a sys-
tem or API function, it saves its name in the trace, and then steps over its body to
resume the emulation from the next gadget in the ROP chain.

This approach requires two types of information. First, the emulator needs
to know the location and name of each API functions and system call routines.
Luckily, this information can be easily retrieved by Volatility. Second, the emulator
needs to know a valid output for each function. For instance, if the ROP chain
allocates memory by calling kmalloc, the emulator needs to assign a valid (and
not used) memory address to the function return value. Section 6.5 explains how

82

Chapter 6. Analysis of ROP Chains

we handled, on a case-by-case basis, more complex cases that require complex
buffers or data structures.

Multi-Path Exploration

In presence of long ROP chains with a complex control flow, a simple approach
based on emulation is not enough to retrieve the entire ROP payload. The coverage
is limited and takes into account only the executed branches – which often depend
on the dummy return values generated by the emulator when the chain invokes
system functions. This point is crucial for the analysis, as researchers need the
entire chain to understand all the features and components of the ROP code. A
simple emulation approach would likely miss important parts and thus some core
functionalities may remain hidden.

We address this problem by introducing a multi-path emulation. Although this
approach has its roots in the well-known multi-path exploration work proposed by
Moser et al. [149], the original algorithm has been adapted to deal with ROP gad-
gets. In particular, our emulator is designed to recognize when the stack pointer is
conditionally modified based on the content of the flag register. This pattern, how-
ever it is implemented, corresponds to a branch in the ROP chain. At the end of the
emulation process, the JSON trace is analyzed to list all the branch points together
with the value of the flags that was used in each of them by the emulator. The
emulator is then re-started, this time providing an additional command-line param-
eter that specifies to complement the flag register at the required branch point, so
that the execution can follow a different path. The exploration is terminated when
all the branches have been explored. At the end, the analyst obtains several JSON
traces containing different parts of the control flow graph.

However, in presence of loops in the ROP chain, the emulator could get trapped
inside an endless execution path. The solution in this case is to keep track of
the number of occurrences of the stack pointer during the execution of branch-
related instructions. If this number is above a certain threshold (set to 10 in our
experiments) the emulator automatically flips the flag bits to force the loop to end
and explore the rest of the control flow graph.

6.4.3 Chain Splitting

The multi-path emulator generates a separate JSON trace file for each path in
the ROP chain. The next step of our approach is in charge of splitting those traces,
and removing duplicates parts that are in common between different traces. This
part is divided in two passes. In the first step, every trace is cut at each branch
point, and a new block is generated and saved in a separate JSON trace. During
this operation the framework also records additional information describing the
relationships among the different blocks.

Since conditional branch instructions are based on the value of the flag register,
our system uses tests on the flags content or pushf operations as indicators of a

83

6.4. Design

branch point. In particular, Chuck always pushes the flags on the stack to later re-
trieve them and isolate the ZF flag, whose values indicates which side of the branch
needs to be taken. In the second pass, the chain splitter compares the individual
blocks to detect overlapping footer instructions (i.e., gadgets in common at the end
of different blocks) and isolate them in separate files.

The output of this phase is again a set of JSON trace file, this time not anymore
associated to each individual path, but instead associated to each “basic block” in
the chain. The chain splitter is implemented as a standalone python script.

6.4.4 Unchaining Phase

This phase transforms each JSON file into a sequence of instructions in the tar-
get architecture. This is obtained by applying a number of simple transformations.
First, all the ret, call, and unconditional jmp instructions are removed from the
trace. Then, mov instructions are simplified by computing their operands. In fact,
due to the fact that immediate values are stored on the stack, ROP chains often con-
tain expressions involving several registers (e.g., mov rax, [rsp+0x30]) that
at this stage are replaced with their actual value. Similarly, we transform pop into
mov instructions, by fetching the required values from the corresponding location
on the stack.

6.4.5 Control Flow Recovery

The input of the control flow recovery is the set of x86 binary blobs gener-
ated by the unchaining phase, plus some additional information specifying the way
these blocks were connected in the traces generated by the emulator. The goal of
this phase is to replace all the code that belongs to the gadgets used to implement
ROP branches with more traditional and more compact conditional jumps.

This step is not trivial because it is necessary to switch from the stack pointer
domain to the instruction pointer one. At every branch point, we need to create
the instruction pointer logic from scratch to properly connect the two targets of a
branch condition. In the case study, a simple conditional jump is implemented by
19 gadgets and 41 instructions. The proposed framework is able to recognize the
condition and generate an equivalent assembly code in the instruction pointer do-
main. 19 gadgets are translated into two assembly instructions: a conditional jump
– in our case represented by either jz or jnz instructions – and an unconditional
jump (jmp).

The second task of the CFG recovery component is to detect and re-roll loops.
ROP chains can contain both return oriented loops and unrolled loops that are
programmatically generated when the chain is constructed. In the first case, the
ROP instructions are used to conditionally repeat the same block of stack pointers,
the same way a normal loop repeats the same sequence of EIP values. Unrolled
loops repeat instead the same hard-coded sequence of gadgets over and over, for a
pre-determined number of times.

84

Chapter 6. Analysis of ROP Chains

For instance, Chuck uses unrolled loops to copy the dynamically generated
chains to their final memory location. In fact, in the original source code of the
rootkit (written in C), this is implemented as a short FOR loop that generates the
appropriate gadgets. In the rootkit itself, it becomes a long sequence containing
five gadgets repeated thousands of times. A simplified version of the gadgets looks
like this:

pop rdx
mov [rax], rdx
pop rdi
add rdi, rax
mov rax, rdi

The value of the rdx register is taken from the stack, and then copied to a
memory location pointed by the register rax. Finally rax is incremented by eight
(the value of rdi taken from the stack).

Our tool is able to automatically identify these recurrent patterns and replace
the entire sequence of instructions with a more compact snippet of assembly code
representing a real loop with the same semantics. The resulting code is then
wrapped withing a valid function prologue and epilogue and then embedded in
a self-contained ELF file. It is important to note that it is not guaranteed that the
file can actually be executed. If the original chain was part of a userspace shellcode,
the ELF would probably contain all the instructions required to run the code. How-
ever, if the ROP chain is part of a kernel rootkit (as it is in our example), its code
was initially designed to run in a very specific context in the kernel memory and
therefore cannot be executed in a user-space program. However, our goal is just to
generate a file that can be opened and analyzed by traditional reverse engineering
tools such as IDA Pro.

6.4.6 Binary Optimization

The final step of our analysis consists of applying standard compiler transfor-
mations to optimize and simplify the generated code. For examples, dead code
removal, simplifications of redundant mathematical operations, or global value
numbering can greatly simplify the binary and makes it easier to understand for
an analyst. However, these transformations have already been discussed in pre-
vious works [139, 203] and they are not the focus of our paper. Therefore, we
implemented the most relevant and left further optimization to future work.

6.5 Evaluation

In this section we describe the experiments we conducted to evaluate ROP-
MEMU on the most complex ROP-based payload publicly available. All the ex-

85

6.5. Evaluation

Chain Instructions Gadgets Blocks Branches Functions Calls
Copy 414,275 184,126 1 - - -
Dispatcher 63,515 28,874 7 3 1 5
Payload 6320 2913 34 26 9 17

Table 6.1 – Statistics on the emulated ROP chains in terms of number of instruc-
tions, gadgets, basic blocks, branches, unique functions, and total number of in-
voked functions.

periments have been performed on an Ubuntu 14.04 x86-64 running Python 2.7
and Volatility 2.4. The virtual machine containing the rootkit has been provided
kindly by Chuck’s author and runs Ubuntu Server 13.04 64-bit with UEFI BIOS.

6.5.1 Chains Extraction

In the first experiment we tested the ability of the multipath emulator of ropmemu
to correctly extract the persistent chain (the copy chain), and the two dynamically
generated chains (the dispatcher chain and the payload chain). The last two are
volatile and they are only created in memory when the right conditions are trig-
gered. The results are summarized in Table 6.1.

The emulator has been able to automatically retrieve the entire code of the three
chains. The copy chain is the longest with 414,275 instructions, but it is composed
of only a single basic block. The lack of a control flow logic makes this chain
similar to a classic ROP shellcode, with the only difference of being composed of
over 180K gadgets. This is a consequence of its main task: the creation and the
copy in memory of the first dynamic component (dispatcher chain).

On the contrary, the dispatcher chain and payload chain have a lower number
of gadgets and but they have a more complex control flow graph. In particular,
the dispatcher chain has three branches and seven blocks. To recover the entire
code, the emulator generated seven distinct JSON traces. The payload chain com-
prises instead 34 unique blocks and 26 branch points. This means the control flow
graph has a more complex logic. It uses nine unique functions (find_get_pid,
kstrtou16, kfree, __memcpy, printk, strncmp, strrchr, sys_getdents,
and sys_read – the last two hooked by the rootkit) for a total of 17 function calls
by exploring all the possible paths.

This experiment proves that ropemu can explore and dump complex ROP
chains, impossible to analyze manually. We believe these chains show the limits of
the current malware analysis to cope with return oriented programming payloads
and the effectiveness of the proposed framework.

86

Chapter 6. Analysis of ROP Chains

Chain Initial State Unchain Phase CFG Recovery Phase
Copy 414,275 276,178 75
Dispatcher 63,515 40,499 16,332
Payload 6320 3331 2677

Table 6.2 – Number of instructions in each chain after each analysis phase

6.5.2 Transformations

In this experiment we show the effect of the other phases of our analysis on the
extracted ROP chains. In particular, since it is impossible to show the entire code,
we present the effect of the transformations on the payload size. The results are
summarized on table 6.2. As shown in the third column, the unchain pass reduces
considerably the ROP chain size (on average 39%). The CFG recovery pass filters
out the instructions implementing the conditional statements, translates the chain
from the stack pointer domain to the instruction pointer one, and finally applies
the loop compression step. This transformations reduce the copy chain to only 75
instructions (starting from over 414K). The payload chain is less affected by these
transformations because it contained ROP loops, but not any unrolled loop.

6.5.3 CFG Recovery

In the final experiment, we tested the ROPMEMU capability to retrieve and
refine the control flow graph of a ROP chain as explained in section 6.4. Figure 6.2
and 6.3 illustrate the first phase on the dispatcher chain. In particular, Figure 6.2
represents the first version of the CFG, without any transformation. On Figure 6.3
we can observe the effects of the refinement steps. In these two figures every node
represents a long stream of assembly instructions while the edges show the branch
conditions.

The second step works on the binaries blobs and generates an ELF file. This
ELF file connects all the blocks by leveraging the metadata information as ex-
plained in section 6.4 and can be inspected by ordinary reverse engineering tools.
To test this functionality we opened the resulting file with IDA Pro. In Figure 6.4
we can observe the ELF representing the copy chain completely converted into
the classic “EIP-based" programming paradigm. The graph is simple, there are no
branches and the core functionalities are represented by the main loop highlighted
in the picture. Figure 6.5 illustrates instead the dispatcher chain view on IDA Pro
(for the sake of clarity every node is collapsed to have a cleaner view). The graph
is similar to Figure 6.3, with just few additional nodes due to how the basic blocks
are connected together. As expected, the shape of the graph is the same.

The control flow graph of the payload chain comprises 34 blocks and for space
constraints its figure is not included in the paper.

87

6.5. Evaluation

Figure 6.2 – Dispatcher - Raw CFG
Figure 6.3 – Dispatcher - Final CFG

6.5.4 Results Assessment

An assessment system is fundamental to verify the results of the experiments.
However, since it is not possible to run the final ELF to compare its behavior with
the original rootkit, we needed to develop a number of dedicated verification tools.

We debugged the KVM virtual machine using GDB, that we extended with a
set of Python plugins to extract information and compare them with the results of
our framework. The assessment framework is working on the live virtual machine
while ROPMEMU is working on a memory dump. The GDB plugins collect the
state of the guest VM (memory and CPU) and the trace of all the executed in-
structions. These information are compared with the JSON traces generated by
ROPMEMU.

We relied on this testing setup during development (to detect bugs in our code)
and at the end of the experiments to verify that both the emulation of individual
instructions and the entire lists of instructions in each ROP chain was correctly
reconstructed by ROPMEMU. As a result, all the results presented in this paper
match those found using the live GDB scripts.

6.5.5 Performance

The performance of our system largely depends on the emulation phase. The
emulator is built on top of Volatility and the time required to perform the multipath
emulation is linear in the number of instructions and the number of paths to emu-

88

Chapter 6. Analysis of ROP Chains

Figure 6.4 – Copy Chain - IDA
Pro

Figure 6.5 – Dispatcher Chain - IDA Pro

late. In average, our prototype emulates 133 instructions per second. For instance,
the entire copy chain can be emulated in 52 minutes, while the dispatcher chain
required 32 minutes to generate the three traces containing all the possible paths.

The performance of the unchain component depends instead on the size of the
blocks to analyze. It ranges from the worst case of 61 minutes for copy chain
(where everything is in a single huge block), to 3 minutes per block for the dis-
patcher chain (that is composed of smaller blocks). The payload chain traces have
been generated on average in eight minutes while the unchain phase parsed each
block in one minute. Overall, the entire analysis of the rootkit from the emulation
to the final ELF binary took four hours.

All measurements have been recorded on a 16-Core Intel E5-2630 (2.3GHz)
with 24GB RAM.

89

6.5. Evaluation

90

Chapter 7

Conclusions and Future Work

In this thesis, we presented a number of significant improvements to the current
state of the art of modern malware and memory analysis. In the last years, these
fields faced many challenges. Specifically, the increasing number of malicious
samples forced the security community to devise more efficient and effective ways
to automate the analyses. In particular, dynamic analysis with its most common
deployed instance, sandboxes, redefined the whole industry. In the cases in which
dynamic analysis shows its intrinsic limitations or is not enough for a real investiga-
tion, the sandboxes report may be complemented by memory analysis techniques.
The combination of these two fields significanly eases the analyst tasks and is a
step forward for both the industry and the academia.

The current state of the art addresses many problems of both fields. In par-
ticular, while malware and memory analyses have been improved from different
angles, security companies still struggle to cope with the increasing number of
malicious code. More importantly, these problems complicate the life of the final
Internet users. We, as a community, need to investigate and research more in de-
tail these critical topics in order to propose effective solutions able to eradicate the
problem from the root. This dissertation is an attempt in this direction. The four
contributions presented in this thesis advance the areas disccussed throughout this
work: malware and memory analysis. Specifically, the first two aim at simplifying
the analyst job and enhance key components of dynamic analysis. The last two
shed light on advanced threats and propose memory forensics solutions to cope
with these infections.

In chapter 3, we discussed the importance of looking at sample submissions
from an intelligence and threat prevention point of view. We show that several
binaries used in the most famous targeted attack campaigns had been submitted
to our sandbox months before the attack was first reported. In this chapter, we
propose a first attempt to mine the database of a popular sandbox, looking for
signs of malware development. Our experiments show promising results: we were
able to automatically identify thousands of developments, and to show how the

91

authors modify their programs to test their functionalities or to evade detections
from known sandboxes.

Chapter 4 addresses the problem of network containment and repeatability in
the context of dynamic analysis tools sandboxes. To tackle these problems, we
described the implementation of Mozzie, a network containment system that can
be easily adapted to all the existing sandbox environments. According to our ex-
periments, an average of 14 network traces are required by Mozzie to model the
traffic by approaching the problem of sandbox network emulation in a completely
generic, protocol-agnostic way that can be applied to real-world malware samples.
The benefits of the large-scale application of similar techniques are significant: old
malware samples whose C&C infrastructure has been shut down can be analyzed in
the same network conditions observed when they were active, in-depth analyses of
samples of interest can be carried out in complete isolation, and malware targeting
specific network environments (e.g. industrial control systems) can be analyzed in
a replica of the expected network layout.

In chapter 5, we presented a first step toward the memory forensics analysis of
hypervisors. In particular we discussed the design of a new forensic technique that
starts from a physical memory image and is able to achieve three important goals:
locate hypervisors in memory, analyze nested virtualization setups and show the
relationships among different hypervisors running on the same machine, and pro-
vide a transparent mechanism to recognize and support the address space of the
virtual machines. The solution we propose is integrated in the Volatility frame-
work and allows forensics analysts to apply all the previous analysis tools to the
virtual machine address space. Our experimental evaluation shows that Actaeon is
able to achieve the aforementioned goals, allowing for a real-world deployment of
hypervisor digital forensic analysis. In particular, the research presented in chap-
ter 5 won the first Volatility plugin contest and has been integrated by Google in its
Rekall suite [85].

Finally, chapter 6 represents the first attempt to automate the analysis of com-
plex code implemented entirely using ROP. In particular, we discussed the chal-
lenges to reverse engineer programs implemented using return oriented program-
ming and we proposed a comprehensive framework to dissect, recostruct and sim-
plify ROP chains. Finally, we tested the framework with the most complex case
proposed so far: a persistent ROP rootkit. The solution we described is ROP-
MEMU, and comprises a combination of Volatility plugins and additional stan-
dalone scripts. Our framework can extract the entire code of both persistent and
dynamically generated ROP chains through a novel multipath emulation approach,
simplify the output traces, extract the control flow graph and generate a final bi-
nary representing a cleaner version of the original ROP chain. The analysts can
then operate on this binary with traditional reversing engineering tools like IDA
Pro.

Although malware and memory analysis are two well studied fields and the
contributions proposed in this thesis addressed some of their problems, there is still
room for further improvements. Malicious programs afflict the life of users and the

92

Chapter 7. Conclusions and Future Work

business of companies. It is clear the solutions adopted so far are not effective. As
a result, cybercriminals can compromise millions of machines, install implants and
silently steal credentials. Unsurprisingly, the existing defense solutions prevent
and detect only a small percentage of these ongoing attacks. I believe that in the
future, the academic community has to work together with industrial partners. Only
this synergy can make the Internet a safer place. Additionally, both sides have
to raise awareness about the current cyber threats, their infection vectors and the
importance of software updates. In this way, trivial infections such as phishing and
breaches via exploit-kits may be contained.

Along the same line of this thesis, researchers should investigate more in detail
the submissions received by online sandboxes. The work presented in Chapter 3
is meant to be just the first step in this direction. Security companies can use
the collected information to detect new evasion techniques. It is also possible to
directly link a new evasion technique to a malware family. In this way, researchers
may fingerprint groups of malware authors from their peculiar probes. Regarding
the containment phase, researchers should start sharing the finite state machines
and create a common repository. Additionally, it is also necessary to publically
release the source code of the protocol learning components and more research is
needed to make these approaches more robust. In this way, external people can
compare the different learning engines and adapt the core to their needs.

In the future, memory analysis researchers have to be ready to cope with ad-
vanced threats. In this direction, we proposed techniques to analyze hypervisors
and return oriented programming codes. Similar approaches may be adapted for
the analysis of other form of code reuse attacks such as sigreturn programming
(SROP) and jump oriented programming (JOP). It is also necessary to have tools
and techniques to acquire and analyze the physical memory segments in use by
hardware devices such as graphics cards, network cards and the system BIOS. The
protections in place on modern operating systems are forcing the attackers to in-
stall their stealthy components at lower levels. This is also confirmed by the recent
Hacking Team documents leak with their UEFI persistent rootkit [96]. In addition,
embedded systems are becoming more and more important in our lives, but the
current memory analysis techniques are still at their early stages and do not fit well
for the variaty of architectures and operating systems diversity. More in general,
at the moment, the forensic community is not ready to face this variety of emerg-
ing threats and environments and this may compromise many ongoing and future
investigations.

In conclusion, in this thesis we discussed four contributions to the fields of
malware and memory analysis. The ideas presented in chapter 3 and chapter 4 can
be adopted by security companies to improve their current systems. The contribu-
tions discussed in chapter 5 and chapter 6 reinforce the memory analysis fields. In
particular, we added the support to cope with two advanced threats and provided
forensic examiners with new techniques and a full-fledged system to use.

93

94

Chapter 8

Résumé

Au cours du temps, les cybercriminels ayant reconnu l’intérêt majeur de l’usage
de l’Internet dans l’économie moderne, ont réalisé des activités lucratives au détri-
ment des services en ligne. Pour conséquence, 317 millions de nouvelles variantes
de logiciels malveillants ont été découverts en 2014. Ces logiciels malicieux ou
“malware” ont causé des pertes financières significatives pour les entreprises et les
particuliers. Une estimation des coûts est de l’ordre de 400 milliards de dollars pour
l’année 2014. Les analyses modernes de logiciels malicieux sont très souvent effec-
tuées de manière automatique; une minorité des malwares collectés sont analysés
manuellement par des experts en rétro ingénierie. Ces logiciels malveillants sont
surveillés dans des mécanismes de bacs à sable (Sandboxing). Ces bacs à sable sont
des outils très pratiques et efficaces pour les analystes. Malheureusement ce pro-
cédé d’analyse offre bien souvent des limites dans l’étude de logiciel malveillant
évolués. Pour cette raison, les analyses de logiciel malveillant sophistiqués sont
souvent effectuées à partir d’éléments recueillis sur des ordinateurs infectés, au
travers de capture ou "dump" mémoire. Cette thèse propose des améliorations pour
l’analyse mémoire et l’étude des logiciels malveillants modernes. Bien que ces
champs de recherches aient déjà été abordées au travers de perspectives différentes
ces dernières années, il existe toujours plusieurs aspects qui peuvent être améliorés
de manière significative. En particulier les bacs à sable ou ’Sandboxing’ peuvent
être plus efficaces en utilisant des techniques de contention réseau plus granulaires.
Ainsi les chercheurs peuvent surveiller les soumissions de logiciel malveillants
dans les systèmes de bacs à sable en ligne, et prioritiser les analyses manuelles.
Dans le même esprit, l’analyse mémoire reste un domaine de recherche ouvert aux
améliorations. Pour cela, nous proposons le premier framework logiciel permet-
tant d’analyser des machines virtuelles et des hyperviseurs pour des configurations
imbriquées. De plus, nous nous sommes appuyés sur des analyses mémoires pour
faire face aux menaces avancées n’utilisant pas de technique d’injection de code.

95

8.1. Introduction

8.1 Introduction

Il a été estimé que trois milliards de personnes ont été connectés à l’Internet en
2015 [6], et cela chiffre augmente chaque année que des régions entières dans les
marchés émergents sont branché au cyberespace par les entreprises de télécommu-
nication. L’Internet, et en particulier le World Wide Web (WWW), a simplifié la vie
de millions de personnes et les entreprises. Aujourd’hui, de nombreuses familles
ont une connexion Internet et propres plusieurs dispositifs tels que les ordinateurs,
ordinateurs portables, et smartphones qui sont en mesure de se connecter au réseau.
En conséquence, dans la dernière décennie de nombreuses activités d’affaires en
ligne et même déplacés les gouvernements des institutions d’accueil de déplacer
leurs services sur le Web.

Ce procédé offre plusieurs avantages aux utilisateurs finaux. Pour exemple,
les gens peut acheter des produits en ligne et de faire des virements bancaires de
leurs salons, webcams aident les gens à interagir avec leurs familles à l’étranger, et
instantanée les programmes de messagerie permet une communication asynchrone
libre. Dans générale, ces services réduisent les coûts et de gagner du temps pour
les utilisateurs finaux.

Malheureusement, la révolution de l’Internet et de ses transformations ont aussi
activités criminelles attirées. Miscreants réalisé l’activité lucrative derrière les ser-
vices en ligne et a reconnu le rôle joué par Internet comme un pilier fondamental
dans les économies modernes. En conséquence, plus de 317 millions de nouvelles
variantes de logiciels malveillants ont été découverts dans 2,014 [189]. Dans la
dernière décennie, les logiciels malveillants a été développé par groupes organisés
pour le gain financier. Leur activité est basée sur le vol références et d’informa-
tions. Dans le cas où la machine ne contient pas des informations précieuses, il
peut être loué à un tiers et utilisé pour envoyer du spam ou déni de service distribué
(DDoS).

Plus récemment, les logiciels malveillants et les violations ont également été
perpétrés par des puissants les gouvernements et les sociétés privées. Une guerre
cachée est combattu avec les exploits et les rootkits afin d’exfiltrer information et
à acquérir un avantage contre des adversaires. Dans ces cas, la ennemi peut varier
de groupes de terroristes vers des pays légitimes, à partir de entreprises privées aux
dissidents. Ces attaques sont silencieuses appelés menaces persistantes avancées
(APT) et sont le composant central des campagnes de cyber-espionnage.

Le montant d’argent perdu par les citoyens et les entreprises privées en raison
de cyberattaques ont atteint 400 milliards de dollars en 2014 [144]. Ceci est juste un
rude estimation et ne prend pas en compte les dommages à la réputation, indirecte
les coûts, les entreprises et compromis (comme Sony [194] Home Depot [197])
qui ne concernent pas divulguer publiquement leurs pertes financières. Par consé-
quent, les gens ordinaires et des entreprises privées dans les pays industrialisés
exigent une protection pour leur comptes et la propriété intellectuelle. Les entre-
prises de sécurité jouent un rôle important et le rôle actif dans cette guerre sans fin.
Ils offrent des solutions personnalisées à le secteur privé et public. Par exemple, les

96

Chapter 8. Résumé

ordinateurs flambant neufs sont expédiées avec un logiciel pré-installé antivirus,
de nouvelles start-ups promettent d’éradiquer APT, les gouvernements forcé direc-
tives strictes ainsi que des certifications à garantir un niveau minimum de sécurité,
les entreprises spécialisées vendent zero-day les exploits et les rootkits furtifs pour
les interceptions légales, et les gouvernements paient formations avancées pour
leur armée cyber.

Dans certaines opérations, les entreprises de sécurité ont uni leurs forces pour
reprendre botnets et d’arrêter les auteurs de logiciels malveillants. En outre, ils
ont créé d’immenses infrastructures pour collecter automatiquement et d’analyser
le nombre croissant d’échantillons suspects. En fait, principalement en raison de
l’emballage et le polymorphisme, les entreprises modernes anti-malware recueillir
un nombre impressionnant de nouveaux échantillons par jour, par exemple une
société connue comme Virustotal [198] recueille chaque jour plus d’un million
d’échantillons.

8.1.1 Modern Malware Analysis

L’analyse des logiciels malveillants moderne est en grande partie automatisé, et
seul un petit sous-ensemble des échantillons prélevés sont analysés manuellement
par ingénierie inverse experts. Dans les dernières années, les entreprises de sécu-
rité déployé un complexe infrastructures pour collecter des échantillons de leurs
clients et de ad hoc machines vulnérables (honeypots). Ces infrastructures, sou-
vent hébergés sur le nuage, analyser en temps réel le trafic des clients, et extraire
des documents exécutables, et de les analyser à l’intérieur d’un environnement ins-
trumentée (normalement appelé sandbox). Le système applique ensuite plusieurs
heuristiques sur le rapports générés et une alarme est déclenchée dans le cas où le
fichier est considéré comme mal intentionné.

Malheureusement, ce procédé présente plusieurs limites qui peuvent être ex-
ploitées par des logiciels malveillants de pointe. Par exemple, les échantillons
peuvent être conçues pour détecter le environnement instrumenté et cacher leur
comportement malveillant réel ou ils peuvent être programmé pour fonctionner
uniquement sur une machine cible spécifique. Pour cette raison, l’analyse des lo-
giciels malveillants sophistiqués implique souvent des informations d’exécution
recueillies sur les systèmes infectés, généralement sous la forme d’un dépotoir de
la mémoire physique. En fait, à partir de la mémoire de la machine infectée, il
est possible d’extraire des objets importants et de recueillir des informations sup-
plémentaires tandis que le malware fonctionne dans son environnement cible. La
combinaison de ces deux approches est résumé dans la figure 8.1. L’analyste met à
profit les deux approches, l’analyse dynamique binaire et analyse de la mémoire, à
avoir une vue plus large sur une menace spécifique.

Cette thèse propose des améliorations au malware moderne et de la mémoire
une analyse. Bien que ces domaines ont été étudiés à partir de différents points de
vue dans les dernières années, il ya encore plusieurs aspects qui peut être consi-
dérablement améliorée. En particulier, les bacs à sable peuvent être optimisée de

97

8.1. Introduction

v

v

v

v VMM

OS

APIs

SANDBOX

INTERNET

MALWARE REPORTS

ANALYST

MEMORY ANALYSIS

SANDBOX

INFECTED MACHINES

REPORTS

FIGURE 8.1 – Thesis overview

disposer de techniques de confinement de réseau plus granulaires. De plus, les cher-
cheurs peuvent surveiller exécutables soumis à repérer des malwares actifs l’évo-
lution de ces systèmes en ligne et de hiérarchiser les échantillons assigné pour une
analyse manuelle.

Dans le même sens, l’analyse de la mémoire est encore un jeune champ avec
une salle pour améliorations. Dans ce cas, nous avons proposé le premier cadre en
mesure d’analyser les machines virtuelles et les hyperviseurs aussi quand configu-
rations imbriquées sont en endroit. En outre, nous nous sommes appuyés analyse
de la mémoire pour faire face aux menaces avancées qui ne nécessitent pas de
techniques d’injection de code.

8.1.2 Sandboxing Technology

Solutions Sandbox sont un élément clé de l’analyse des logiciels malveillants
moderne comme la nombre écrasant d’échantillons recueillis par jour fait d’autres
solutions pas pratique. Par exemple, l’analyse manuelle ne échelle et exige des
experts pour disséquer binaires malveillants. Deuxièmement, un système auto-
matisé est nécessaire pour filtrer les échantillons non pertinentes et de recueillir
de précieuses informations dans un laps de temps raisonnable. Troisièmement,
les techniques d’analyse statiques sont souvent pas efficaces contre les fichiers
malveillants. Pour aborder ces questions, les chercheurs en sécurité ont conçu un
certain nombre de bac à sable environnements. Ces environnements instrumentés
peuvent être exécutés en parallèle et peuvent être personnalisés par échantillon. Par

98

Chapter 8. Résumé

exemple, il est possible d’exécuter le même échantillon à la fois sur Windows XP
et Windows 8. En outre, les analystes peut brancher des plugins supplémentaires
pour étendre fonctionnalité de bac à sable (par exemple de simulation de l’activité
de l’utilisateur).

Sandbox Design

Sandboxes sont conçus pour recueillir comportement des programmes mal-
veillants. Malheureusement, échantillons de logiciels malveillants sont évasives et
très complexe à analyser. Les chercheurs ont d’isoler et de surveiller activement
les événements pertinents tels que le trafic réseau, Windows registre, des modifi-
cations du système de fichiers, la création de nouveaux processus, et opérations
de mémoire suspicous. Afin de recueillir ces informations, les chercheurs peuvent
décider de déployer un agent de surveillance invité en ce que recueille les infor-
mations en utilisant des techniques d’accrochage. Cet agent peut travailler à la fois
comme un composante kernel- et espace utilisateur. La surveillance du noyau est
nécessaire au moins en cas de noyau analyse de rootkit. Cette catégorie de logi-
ciels malveillants travaille directement au ring 0 et altère la le noyau de système
d’exploitation. Une autre approche consiste à déployer l’agent de moniteur out-of-
invité. Dans ce cas, l’agent est mis en œuvre à l’intérieur de l’hyperviseur (ou ému-
lateur) et la machine virtuelle introspection techniques sont utilisées. Malgré le fait
que l’analyse dynamique des malwares a plusieurs avantages, dans la dernière an-
née malware auteurs ont introduit une fonctionnalité anti-sandbox d’entraver l’ana-
lyse. Pour cette raison, les chercheurs en sécurité doivent soigneusement mettent
en œuvre instrumenté environnements d’être aussi discret que possible. Sandboxes
peuvent être construits sur le dessus de soit hyperviseurs ou émulateurs. Les deux
approches ont avantages et les inconvénients et nous nous efforçons pour le même
résultat.

Les solutions de virtualisation complète code instrument de l’hyperviseur. De
cette façon, des chercheurs peuvent étendre les fonctionnalités du moniteur de ma-
chine virtuelle et introduire le nécessaire modules pour enregistrer l’activité des
logiciels malveillants. Le composant du moniteur est en dehors du système d’ex-
ploitation invité, il devrait donc être impossible pour le malware à détecter le code
d’instrumentation. En outre, la plupart des instructions sont exécutées directement
sur le processeur, la surcharge supplémentaire est introduite seulement pour sur-
veiller les événements d’intérêt particulier. Dans ces cas, les pièges de l’hypervi-
seur et exécute la routine propre à fiche information. Malheureusement, cette phase
est pas anodin et il est compliquée par la soi-disant semantic gap. À ce stade,
l’hyperviseur doit analyser la mémoire physique pour reconstruire le structures de
données d’intérêt du système d’exploitation invité courante. C’est vraiment diffi-
cile et nécessite une profonde connaissance du système d’exploitation internes. Par
exemple, les systèmes Windows ont trois points de vue différents sur le processus:
EPROCESS, KPROCESS et PEB. Les deux premières structures de données garder
une trace des informations vitales pour l’exécutif et les sous-systèmes du noyau

99

8.1. Introduction

tandis que le dernier représente le processus en espace utilisateur. En outre, l’hy-
perviseur n’a pas de informations d’état de sorte que le mécanisme de distinguer
les processus est en utilisant le CR3 inscrire sur x86 systèmes. Ce registre contient
un physique l’adresse et les points directement à l’adresse de base de la première
structure de données la mise en oeuvre de l’unité de gestion de mémoire (MMU).
Tout événement est associé à un processus en inspectant ce inscrivez-vous et des
informations supplémentaires sont récupérées grâce à des données correspondant
structures (par exemple, EPROCESS). Cependant, il est pas trivial pour localiser
et suivez ces structures de données. Le système doit heuristiques pour trouver le
structures d’intérêt dans la mémoire physique et puis mettre en œuvre la traduction
mécanisme (du virtuel au adresses physiques) à suivre indications intéressantes.
Plus généralement, les chercheurs se réfèrent à cet ensemble de techniques que
machine virtuelle introspection (VMI).

Communément, la virtualisation est utilisée comme technologie sous-jacente
de démarrer exploitation guest operating systems Dans ces cas, le code de l’hy-
perviseur est pas instrumenté et le moniteur composant est implanté à l’intérieur
de l’environnement virtuel. Dans ce scénario, ce composant peut être soit un pi-
lote du noyau ou une bibliothèque dynamique (DLL) conçu se connecter fonctions
d’intérêt ainsi que l’activité du réseau. Cette option nécessite des précautions parti-
culières. Par défaut, les nouvelles machines virtuelles de marque installés sur haut
de moniteurs les plus courants de la machine virtuelle, tels que VMWare, Virtual-
Box, Xen, KVM contient de nombreux témoignages à propos de l’environnement
virtuel ainsi que sur le sous-jacent hyperviseur. Les chercheurs ont pour configurer
ces machines et retirer trivial points de détection.

L’émulation est une technologie capable de simuler des instructions de mon-
tage via le logiciel. En conséquence, les émulateurs peuvent simuler des programmes
complexes, tels que exploitation systèmes. Cette approche est flexible, l’émulateur
peut mettre en œuvre ensemble des instructions de plusieurs architectures. De cette
manière, il est possible d’observer programmes en cours d’exécution sur ARM sur
le dessus de x86 systèmes. Emulateurs fournissent environnements facile à utiliser
instrumenté. En particulier, des solutions comme Qemu peuvent être prolongés par
aux chercheurs d’enregistrer l’activité des malwares. Les approches d’émulation
les plus courantes sont: émulation de système et le système complet émulation.

Émulation de système tente d’émuler via le logiciel le comportement de la sys-
tème d’exploitation. Plus généralement, cette approche est en mesure de fournir
le résultat de fonctions communes. Dans l’analyse des malwares et du système
d’exploitation en place sur sandbox est Windows (allant de XP à la dernière ver-
sion stable) - la système d’exploitation le plus touché par les logiciels malveillants.
Ces OS communiqués sont généralement déployés avec service packs différents,
certains logiciels malveillants peuvent montrer leur vraie nature que dans un en-
vironnement très spécifique. Dans cette configuration, les chercheurs doivent dé-
cider les fonctions d’intérêt. De manière générale, ils décident de surveiller sus-
pecte appels, des fonctions comme LoadLibrary, CreateRemoteThread,
WriteProcessMemory, etc sont correctement émulés. Sur les systèmes Win-

100

Chapter 8. Résumé

dows, il existe deux familles de fonctions: API Win32 et fonctions natives. Malheu-
reusement, seulement les API Win32 sont bien documentés et considéré comme
stable. Au contraire, les fonctions natives ont aucune documentation et peuvent
être modifiées à n’importe quand. Les développeurs de Sandbox soutiennent API
Win32 les plus courantes, mais ceux-ci fonctions sont un wrapper autour de natifs
qui peuvent parler directement à la noyau. Les auteurs de malwares connaissent
cette limitation et soustraire l’analyse basé sur une émulation de système en invo-
quant des API natives.

L’émulation du système complet est une technique capable d’émuler l’ensemble
du fonctionnement système, cela est possible en soutenant périphériques matériels.
Dans cette configuration, l’émulateur est en mesure de collecter toutes les instruc-
tions exécutée par le malware intérieur d’un système d’exploitation cible. Le com-
posant du moniteur peut suivre toute la mémoire lecture et d’écriture. Toute cette
information est vraiment utile au cours d’une analyse détaillée. En outre, le rap-
port a plus d’idées et, générale, il est plus facile pour un analyste de comprendre la
nature de l’échantillon. Dans cette configuration, les instructions plus l’émulateur
supporte, plus précise et furtive est l’analyse.

Émulation et de virtualisation approches sont flexible et facile à déployer. Les
chercheurs en sécurité mis en place la machine, prendre un instantané et peut exé-
cuter des milliers des échantillons sur le même hôte. Une fois que l’analyse est ter-
minée, l’instantané est restaurée et le système est de nouveau propre. Malgré la li-
mitation et l’possibile techniques d’évasion, ces deux solutions offrent un bon com-
promis. Dans des cas très spécifiques, l’analyste peut décider d’exécuter l’exemple
sur un métal nu système. Le composant du moniteur peut être directement installé
sur l’exploitation de l’hôte système. Dans ce cas, l’analyse est exacte, il n’y a pas de
composants virtuels. Malheureusement, cette approche ne échelle. Une fois que la
machine est infectée, le chercheur a à nouveau d’installer le système d’exploitation
complet.

Problem Statement

L’analyse dynamique est une approche puissante pour découvrir comportement
des programmes malveillants, et bacs à sable sont l’exemple le plus commun de
cette technique. Ces instrumentées et environnements virtuels peuvent exécuter du
code non sécurisé dans un isolé environnement et peut fournir à l’analyste une très
souple et cadre d’analyse personnalisable. Sandbox Malheureusement, encore ac-
tuelles souffrent de plusieurs limitations. Dans cette thèse, nous nous concentrons
sur deux problèmes dans le domaine de l’analyse dynamique des malwares.

Premièrement, l’analyse des logiciels malveillants est pas repeatible. En parti-
culier, la comportement des programmes malveillants dépend souvent du contexte
de réseau. Cela signifie que de nombreux échantillons d’interagir avec des serveurs
en ligne et si ces serveurs ne sont pas disponibles le comportement (et donc le rap-
port d’analyse) est affectée. De plus, certains échantillons ne sont conçus pour
fonctionner dans des environnements cibles spécifiques et échouerait lorsqu’il est

101

8.1. Introduction

exécuté ailleurs. Malheureusement, la répétabilité est un très aspect important de
l’analyse des logiciels malveillants et il est souhaitable dans de nombreux scéna-
rios. Par exemple, les chercheurs peuvent vouloir analyser de nouveau le même
échantillon après mois avec une nouvelle technique, afin de recueillir plus d’in-
formations. Dans un infrastructures complètement automatisé basé sur des bacs à
sable parallèles ce limitation peut entraver et de polluer l’analyse et les rapports.

Deuxièmement, l’emballage et le polymorphisme sont devenus très courants
dans les logiciels malveillants et Aujourd’hui, il est courant d’avoir de nombreux
échantillons différents pour la même famille. En conséquence, les bacs à sable
sont surchargés par des binaires qui sont toutes équivalentes d’un point de vue du
comportement. Ce phénomène complique la tâche de analystes de la sécurité. En
particulier, la tâche de distinctif nouvelle et les logiciels malveillants importante
du bruit de fond et polymorphe inintéressants échantillons est un problème ouvert
très difficile dans le domaine.

8.1.3 Memory Analysis

L’analyse de la mémoire comprend un ensemble de techniques pour analyser
le contenu des la mémoire de système (RAM). Dans la dernière décennie, il a ga-
gné en popularité et il est maintenant une étape importante dans de nombreuses
enquêtes réelles. Des chercheurs proposé techniques stables pour inspecter la mé-
moire physique, de localiser des données structures d’intérêt, et d’extraire les in-
formations nécessaires. La popularité de cette approche réside dans le rôle central
de la mémoire dans un système. En outre, les attaques avancées existent mainte-
nant qui se trouvent uniquement dans la mémoire et ne laisser aucune empreinte à
l’intérieur du système de fichiers.

L’analyse de la mémoire est un domaine de recherche actif qui a rapidement
évolué au fil des ans. Elle peut être réalisée à la fois hors ligne (forensics mémoire)
et dans un mode en ligne - mais les deux adopter des approches typiquement les
mêmes techniques. Criminalistique mémoire est basées sur l’analyse des vidages
de mémoire physiques, collectées par les outils et les dispositifs d’acquisition. En
revanche, les systèmes d’analyse en ligne inspectent le système de mémoire vive.
Ceci est possible en utilisant des programmes capables d’exporter un dispositif
spécial qui permet un accès direct à la mémoire physique.

Les pratiquants doivent faire face à plusieurs défis. Le fossé sémantique est un
problème commun. L’information est stockée dans la mémoire comme un flux brut
d’octets et les experts ont besoin d’une profonde connaissance du système d’ex-
ploitation internes à extraire et reconstruire les artefacts nécessaires. Il ya plusieurs
disponibles outils (comme la volatilité, Rekall, et de mémoriser) qui sont conçu
pour faire face à ce problème. Ils commencent tous par la localisation importante
structures de données. Ces structures de données peuvent résider dans la mémoire
physique à un décalage fixe. Malheureusement, l’adoption croissante de techniques
ASLR en espace noyau d’utilisateur et rend cette approche moins efficace contre
le dernier OS de presse. Une approche plus fiable est basé sur la marche à travers

102

Chapter 8. Résumé

un nombre de structures de données intermédiaires (à partir de symboles globaux)
dans afin d’atteindre les données cibles. Enfin, il est possible de créer une forte
signatures pour balayer linéairement la mémoire physique et de découvrir tout oc-
currences d’un objet particulier. Cette phase est encore compliquée par la diversité
du système d’exploitation, étant donné que la mise en mémoire des structures de
données ne sont pas constante sur différents systèmes d’exploitation de presse. Par
conséquent, les analystes besoin d’un profil dans lequel chaque structure de don-
nées est décrit en détail.

Un autre problème commun d’analyse de la mémoire est la traduction d’adresse.
Une seul fois la phase de localisation est terminée, l’analyste a un objet conte-
nant plusieurs domaines. Cependant, tout pointeur est une des adresses virtuelles
et la mémoire cadre d’analyse fonctionne uniquement avec la mémoire physique.
En particulier, la cadre doit mettre en œuvre sa propre unité de gestion mémoire
(MMU). Ce implique la connaissance de l’architecture, généralement contenu dans
le profil. Heureusement, les outils disponibles sont en mesure de répondre à toutes
ces des défis.

Outre ces problèmes connus et faciles à résoudre, analyse de la mémoire, comme
complémentaires approche, offre un unique, point de vue. Cette nouvelle perspec-
tive accélère considérablement l’analyse temps. Par exemple, les analystes peuvent
immédiatement isoler les processus cachés. Plugins de volatilité comme psxview
comparer la sortie de six différentes techniques pour la liste des processus en
cours. De cette façon, les analystes peuvent facilement repérer les processus mal-
veillants. En outre, dans le dernier années, l’analyse statique ont montré ses fai-
blesses. Plus précisément, les attaquants peuvent obscurcir leur code et entravent
de manière significative l’analyse. La évolution de ces techniques a fait l’analyse
statique presque inefficace. Par conséquent, les chercheurs ont adopté de nouvelles
approches. En particulier, la mémoire criminalistique peuvent offrir de nouvelles
perspectives pour l’analyste et, dans la plupart des les cas simples, est en mesure de
vaincre les formes légères de l’obscurcissement telles que emballage. Un autre cas
d’utilisation commune est l’analyse en profondeur d’une infection. Par exemple,
les logiciels malveillants injecte communément code et DLL, même entières dans
un autre espace d’adressage du processus, ceci est connu comme l’injection de
code. Mémoire criminalistique propose des approches pour détecter automatique-
ment ces menaces (par exemple, malfind Volatility plugin).

Problem Statement

L’analyse de la mémoire est une approche complémentaire dans l’analyse de lo-
giciels malveillants moderne. Ce est un domaine en croissance rapide qui a prouvé
pour être utile dans de nombreux enquêtes - mais il a encore plusieurs limites. En
particulier, dans cette thèse, nous explorons la façon dont les techniques d’analyse
de la mémoire peut être étendue d’étudier deux formes de menaces avancées.

Tout d’abord, la médecine légale de mémoire est actuellement incapable de
détecter et de faire face à toute forme de moniteur de machine virtuelle. Par consé-

103

8.1. Introduction

v

v

v

v VMM

OS

APIs

SANDBO

INTERNET

MALWARE REPORTS

ANALYST

MEMORY ANALYSIS

SANDBOX

INFECTED MACHINES

REPORTS

Malware
Developement

1

 Repeatability
 and Isolation

2

 Hypervisor
 Analysis

3 ROP
Analysis

4

FIGURE 8.2 – Thesis Contributions

quent, tous les outils disponibles ne peut pas détecter et introspection transparente
les systèmes d’exploitation invités. La situation est encore pire en présence des
configurations imbriquées comme le malware analyste a pas d’outil pour détecter
et de disséquer les hyperviseurs malveillants. En fait, sandbox ne prennent pas en
charge la virtualisation imbriquée et, dans le meilleur de notre connaissance, il n’y
a pas des outils et des techniques pour surveiller ces possibles menaces avancées.

Deuxièmement, les approches actuelles en médecine légale de mémoire visent
à trouver des intrusions évidences dans les décharges de la mémoire physique. Gé-
néralement, ces preuves impliquent artefacts qui ont été créés ou injectés dans la
mémoire par le malveillants Composants. Plugins de volatilité comme psxview et
malfind sommes bon exemple d’outils qui effectuent cette tâche. Malheureuse-
ment, il est maintenant une tendance émergente des menaces avancées qui adoptent
des techniques de réutilisation de code (tels que le rendement de la programmation
orientée) en tant que moyen de brouillage, à effectuer calcul malveillants sans code
injecté. Dans ces cas, à la fois outils de mémoire et d’analyse binaire sont totale-
ment inefficaces pour localiser et disséquer cas de réutilisation de code, laissant
ainsi l’analyste aveugles à cette nouveau type de menaces.

8.1.4 Contributions

Dans cette thèse, nous proposons un certain nombre de techniques permettant
de résoudre non résolus problèmes dans les domaines de logiciels malveillants mo-
derne et analyse de la mémoire. Dans notamment, la recherche présentée dans ce

104

Chapter 8. Résumé

document fait quatre individuelle Contributions: deux sur le domaine de l’analyse
dynamique des malwares, et deux à améliorer la criminalistique de mémoire pour
appuyer l’analyse des menaces avancées. Figure 8.2 montre les quatre contribu-
tions et comment ils sont situé par rapport à l’image générale.

Dans l’ensemble, nous avons fait les contributions suivantes:

1. Dans le chapitre 3 nous présentons une technique pour traiter des millions
de demandes d’échantillons de malwares reçus par une analyse des pro-
grammes malveillants bac à sable et nous proposons une nouvelle métho-
dologie pour identifier automatiquement développements de logiciels mal-
veillants. Notre approche est basée sur la combinaison d’analyse et de sou-
mission de fichiers caractéristiques statiques et dynamiques. Nous aussi
utiliser des techniques de data mining et d’apprentissage de la machine
d’acquérir plus un aperçu sur la dynamique du développement des logiciels
malveillants.

2. Dans le chapitre 4 nous étudions l’utilisation de l’apprentissage de pro-
tocole techniques pour modéliser le trafic généré pendant l’exécution de
échantillons de logiciels malveillants pour répondre automatiquement les
conversations de logiciels malveillants. En utilisant cette technique, nous
avons développé un nouveau système de confinement de réseau et nous
avons montré que, même avec certaines limites, il est possible de atteindre
confinement complet et d’effectuer une repeatible analyse, également dans
les cas où le comportement des programmes malveillants dépend hôtes ex-
ternes comme C&C serveurs.

3. Dans le chapitre 5, nous avons proposé le cadre médico-légale première de
mémoire à analyser les structures de l’hyperviseur de vidages de mémoire
physique. De plus, nous avons analysé les configurations imbriquées et dé-
veloppé un mécanisme transparent de reconnaître et de soutenir l’espace
d’adressage des machines virtuelles. Notre approche permet d’effectuer la
criminalistique de mémoire pour analyser les hyperviseurs malveillants,
comme ainsi que les machines virtuelles compromis qui font partie du
grand virtualisé environnements.

4. Dans le chapitre 6 nous présentons un ensemble de techniques pour effec-
tuer binaire et l’analyse de la mémoire des attaques sophistiquées qui ne
reposent pas sur une injectée code. En particulier, notre approche identi-
fie et discute de la principale défis qui compliquent code ingénierie inverse
mis en œuvre à l’aide retourner programmation orientée (ROP). En outre,
nous proposons une basée émulation cadre de disséquer, de reconstruire, et
de simplifier ROP chaînes directement à partir d’un vidage de la mémoire
physique. Nous avons testé notre outil avec l’exemple le plus complexe
proposé à ce jour: un rootkit faite de plusieurs ROP chaînes, avec un total
de 215,913 gadgets.

105

8.2. Related Works

8.2 Related Works

Malware et l’analyse de la mémoire ont été largement étudiés dans la littérature.
Malheureusement, l’industrie est encore aux prises avec de nombreux aspects de
la analyse des logiciels malveillants. Plus précisément, les logiciels malveillants a
évolué au fil des ans et nous avons assisté à son évolution d’un problème de niche
à un fléau pour notre vie quotidienne. Dans cette guerre sans fin, les chercheurs
tentent de chasser les auteurs de malwares et de protéger les utilisateurs.

Les premiers programmes malveillants étaient simples et conçus pour être un
exercice technique. Teenegers intelligents et ennuyé codés programmes malveillants
de montrer leurs compétences à la monde. Dans leurs créations n’y avait aucune
intention de profit. Dans certains cas, la charge utile était un message texte. Dans
d’autres cas, l’objectif était cybervandalism. Ther vecteurs d’infection étaient fon-
dées sur des disquettes et que plus tard sur le réseau. En conséquence de ces pre-
miers échantillons de virus, les premiers éditeurs de logiciels antivirus paru en
1987. Les premiers moteurs ont été basées sur le concept de signature. Immédiate-
ment, les communautés de VX (groupes d’auteurs de virus) adapté leurs techniques
et facilement contourné cette nouvelle contre-mesure. Il était 1989, lorsque le po-
lymorphisme est apparu pour la première fois [34] et ce fut le début d’une course
aux armements toujours en cours aujourd’hui.

La révolution de l’Internet a apporté de nombreux utilisateurs en ligne. Comme
effet secondaire, beaucoup groupes de cyber-criminels sont apparus. Dans ces an-
nées, l’Internet a changé considérablement. Le cyberespace ne fut plus une place
pour quelques personnes et intelligents et l’esprit underground disparu en raison de
l’activité lucrative créée par les grandes sociétés. De l’autre côté, mécréants réalisé
logiciels malveillants pourrait être utilisé comme un nouveau moyen de faire de
l’argent. En conséquence, les entreprises de sécurité ont dû évoluer pour combattre
organisée et des groupes qualifiés de cyber-experts.

Dans la dernière décennie, les chercheurs ont proposé plusieurs techniques
pour faire l’analyse des programmes malveillants plus efficiente et efficace. Les
premières approches ont été fondées sur une analyse manuelle et, par conséquent,
de nombreuses avancées ont été proposées sur l’analyse statique et programme.
Néanmoins, les auteurs de malwares conçus des formes avancées de dissimulation
à entraver, l’analyse manuelle, et polymorphisme adoptée et le métamorphisme de
contourner les approches de signature naïfs. Comme un Par conséquent, les en-
treprises de sécurité a investi des ressources sur l’analyse dynamique et, comme
prévu, mécréants commencé à introduire des contre-mesures pour éviter le exectu-
tion sur les environnements instrumentés - dans un jeu permanent du chat et de la
souris.

Le travail dans cette thèse couvre l’analyse des programmes malveillants mo-
dernes et automatisés. Cette approche est basée sur deux technologies: les bacs à
sable et analyse de la mémoire. Dans ce chapitre, nous allons résumer les princi-
pales contributions à ces domaines. En particulier, dans la section 8.2.1 nous allons
introduire les travaux connexes sur l’analyse des logiciels malveillants et techno-

106

Chapter 8. Résumé

logies de bac à sable. Dans la section 8.2.2 nous allons sommaire analyse de la
mémoire.

8.2.1 Dynamic Malware Analysis

L’analyse dynamique des malwares exécute l’échantillon et observe son com-
portement au run-time. Tant l’exploitation forestière et le processus d’analyse peuvent
être réalisés dans plusieurs façons et à différentes couches. En outre, l’environne-
ment d’instrumentation dépend fortement sur le système d’exploitation en dessous.
Pour ces raisons, au fil des ans, chercheurs ont proposé de nombreux environne-
ments tirant parti des technologies différentes. Cette polyvalence et une salle pour
d’autres personnalisations apportées sandbox le plus instance commune de l’ana-
lyse dynamique. À la fin années, les chercheurs ont amélioré de manière significa-
tive ces systèmes et, de nos jours, ils sont une composante importante activement
utilisé par des entreprises de sécurité pour lutter contre les logiciels malveillants.

Cette technologie a évolué considérablement au fil des ans. Le premier ru-
dimentaire approches consignés uniquement un sous-ensemble des événements
d’intérêt. TTAnalyze [41] est le premier cadre global pour analyser des échan-
tillons malveillants dans un environnement contrôlé environnement. L’évolution
de ce projet est Anubis [19], le premier sandbox public en ligne. Aujourd’hui, il ya
plusieurs bacs à sable dignes de mention. Certains d’entre eux sont disponibles gra-
tuitement en ligne tels que Malwr [25], ThreatExpert [26] et Anubis [19]. D’autres
sont ouverts source et peut être déployé en interne tels que Cuckoo [23] et Ze-
rowine [107]. Autres bacs à sable (par exemple, Joebox [105], fireeye [80], Bro-
mium [50] et Lastline [122]) sont propriétaires et un client peut avoir à la fois un
accès en ligne et d’une instance privée. Toutes ces solutions permettent toujours
rapport détaillé à l’analyste, mais la technologie sous-jacente et la mise en œuvre
peuvent différer. Les premières versions de ces systèmes d’analyse de malwares
pris en charge que les menaces de l’espace utilisateur et le moteur de l’exploita-
tion forestière a été mis en œuvre à l’intérieur de l’invité système d’exploitation.
En outre, la capacité d’enregistrement était tout simplement un système appels /
API traceur. Certains sandboxes (par exemple CWSandbox [20] et Cuckoo [23])
utilisent leur propre bibliothèque d’accrochage tandis que d’autres préfèrent tirer
parti des systèmes existants comme Detours [145]. Successivement, les experts
en sécurité ont amélioré la composante de l’exploitation forestière à recueillir da-
vantage d’informations et de montrer un rapport plus précis. Le support en mode
noyau a été ajouté dans une deuxième phase. Bien que le nombre de ring0 échan-
tillons est considérablement plus petit que le nombre de logiciels malveillants es-
pace utilisateur, support du noyau est nécessaire d’avoir une idée immédiate sur
le comportement du noyau complexe rootkits. Dans la troisième phase de plates-
formes de sandbox, les chercheurs ont fait face à la intrumentation furtivité. La
l’adoption généralisée de toutes les précautions spécifiques mentionnés ci-dessus
a forcé les mécréants d’introduire routines anti-sandbox de l’échantillon logiciels

107

8.2. Related Works

malveillants. De cette façon, les programmes malveillants ne divulguez pas leur
comportement et passer inaperçu.

Ces fonctionnalités anti-sandbox sont conçus pour détecter l’environnement
virtuel et la logiciel dessous (typiquement soit un hyperviseur ou un émulateur).
Plus précisément, l’environnement virtuel peut contenir de nombreuses preuves.
Par exemple, d’exploitation Windows systèmes sur le dessus de VirtualBox, un mo-
niteur populaire de la machine virtuelle, peut être facilement détecté en regardant
les appareils Windows Guest VirtualBox (\\périphérique\\VBoxGuest)
ou les plages d’adresses MAC. En outre, le Registre de Windows est une autre
source de preuves. Beaucoup de clés contiennent VirtualBox cordes. Bien que le
nombre de ces contrôles possibles peut être sans fin, des chercheurs peut facile-
ment patcher la grande majorité d’entre eux. Toutefois, les bacs à sable publics et
en ligne doivent faire face avec d’autres points de détection simples. En particu-
lier, l’environnement instrumenté a être randomisés contraire mécréants peuvent
facilement détecter le bac à sable. Avtracker [3] montre ce problème et fournit des
informations à facilement détecter les bacs à sable publics en ligne. L’auteur du site
interagit régulièrement avec les services en ligne et accumuler des points possibles
de détection tels que la IP publique, le nom d’utilisateur et l’ordinateur.

Les cybercriminels peuvent exploiter aussi d’autres points de détection. Ces
points peuvent être plus problématique de patcher et de fixer et de résider dans les
défauts du logiciel sous-jacent. Pire encore, un faible pourcentage est intrinsèque
et montre la limite de la technologie utilisée (virtualisation ou l’émulation). Par
exemple, le attaques de synchronisation exploiter ces intrinsèque limitations [39,
58, 68]. Dans cette situation, un auteur de logiciels malveillants peuvent exécuter
la même instruction dans un environnement émulé et dans une machine physique.
En conséquence, elle obtiendraient deux horodateurs différents. Après une phase
de test, elle peut introduire la routine sur son malware contrôle et détecte l’écart de
temps à l’aide rdtsc instructions de montage sur x86 des machines. Cette astuce
a été adopté par plusieurs familles de logiciels malveillants et il est souvent observé
à l’état sauvage.

Le bugs de l’émulateur montrent les limites des approches de logiciels. Par
exemple, les instructions Intel fixés est complexe et contient des milliers d’instruc-
tions. En conséquence, la la mise en oeuvre du logiciel de ces instructions peuvent
contenir des bogues. En outre, le auteurs de l’émulateur peuvent décider de mettre
en œuvre une partie seulement des les instructions et ignorer les effets secondaires
rares. Par conséquent, dans certains cas, il est possible que l’exécution d’une ins-
tructions de montage sur un processeur virtuel peut se comporter différemment par
rapport à un véritable et une cet écart peut être utilisé pour détecter l’environnement
virtuel. En plus d’exploiter les bogues logiciels, les attaquants peuvent exploiter
sans-papiers opcodes pour compliquer l’analyse. Par conséquent, le désassembleur
de l’émulateur peut échouer à décoder les opcodes à une instruction de montage va-
lide. Paleari et al. [157] ont élaboré un cadre automatisé pour détecter ces défauts.
En particulier, ils ont étudié la mise en œuvre de la CPU dans Qemu et Bochs pour
construire un ensemble de pilules rouges fiables. Les auteurs ont découvert 20,728

108

Chapter 8. Résumé

rouges pilules pour détecter Qemu et 2,973 pour la détection et Bochs. Dans cet
ensemble de pilules rouges il ya aussi la pilule de l’origine Rutkowska [168]. Ce est
important de noter que cette technique est générique et peut être appliquée à CPU
virtualizer [143] ainsi que sur d’autres architectures. Encore une fois, ces tours ont
déjà été observé à l’état sauvage.

Par conséquent, les chercheurs ont retiré les preuves les plus ordinaires de la
virtuelle environnement et déplacé la technologie de l’exploitation forestière dans
les hyperviseurs (ou émulateur) pour surmonter toute détection possible. Œuvres
initiales, telles que celle proposée par Liston et al. [137], axées sur la suppression
spécifique artefacts dans VMWare qui sont ciblés par des contrôles bien connus.
Successivement, les praticiens ont déplacé les implants du système d’exploitation
invité. Le premier travail dans cette direction et strictement liée à dynamique des
malwares analyse est VMwatcher [102]. Ether [69] est le premier système d’ana-
lyse instrumentée transparente succès et théoriquement adressée tous les points de
détection. Cependant, Pek et al. [161] trouvés et a réussi à détecter la environne-
ment virtuel. Bien que l’éther et de systèmes similaires ont réussi à cacher leur
présence, ils encourra inévitablement une pénalité de performance qui est prohi-
bitif pour le déploiement sur les environnements automatisés d’analyse des logi-
ciels malveillants réel à grande échelle. V2E [204] et DRAKVUF [129] visent à
la transparence idéale et une performance optimale. Plus précisément, V2E com-
bine transparence et d’efficacité pour une analyse en profondeur. L’outil comprend
deux phases: enregistrer et rejouer. La première est basée sur KVM et est trans-
parent tandis que le second est basé sur TEMU [46] pour d’autres inspections.
DRAKVUF résout les défis techniques pour le soutien également out-of-the-box
pour les rootkits noyau et met à profit les progrès dans le techology de virtualisa-
tion (par exemple, Extended Page Tables) d’avoir une faible surcharge d’analyse.
Autres instrumentation cadres de l’ensemble du système et semblables à V2E et
DRAKVUF sont construits sur des émulateurs et une commune choix est Qemu.
Le premier cadre global est TEMU [46] de l’équipe BitBlaze et sa nouvelle et
améliorée version DECAF [91]. S2E [59] fournit de puissants exécution symbo-
lique fonctionnalité ainsi qu’une composante de traduire les Qemu IR (TCG) pour
LLVM code binaire. Enfin, Panda [74] combine les caractéristiques de la précitée
approches pour faciliter les tâches d’ingénierie inverse. En outre, il se concentre
spécifiquement sur la répétabilité des analyses dynamiques et de la modularité du
cadre, facilement étendre à travers plugins.

Bien que l’analyse dynamique est une arme puissante et un pilier dans l’analyse
de logiciels malveillants moderne, il est pas parfait et peut être considérablement
améliorée. Dans cette thèse, nous proposons deux avances à l’analyse dynamique
des malwares. Le premier concerne le confinement de réseau afin d’obtenir une
analyse reproductible. La seconde propose un ensemble de techniques pour sur-
veiller les échantillons soumis à un sandbox de découvrir possibles développe-

109

8.2. Related Works

Approach Containment Quality
Full Internet access × ∼
Filter/redirect specific ports ∼ ∼
Common service emulation

√
∼

Full isolation
√

×

TABLE 8.1 – Network access strategies in dynamic analysis

ments de logiciels malveillants. Pour cette raison, la partie restante de cette section
se concentrer sur ces deux domaines.

Network Containment

Plusieurs stratégies ont été proposées pour résoudre le problème de containmnent
du réseau et la qualité de la dynamique une analyse. En particulier, la notion de qua-
lité se réfère à la fois à la nécessité de permettre la connectivité à des hôtes externes
(pour exposer le comportement intéressant malware) et à la nécessité de rendre le
processus d’analyse reproductible. Tableau 8.1 résume les travaux antérieurs dans
quatre catégories différentes.

Full Internet access. L’approche la plus simple consiste à fournir la sandbox avec
accès complet à Internet. Une approche similaire est toutefois inacceptable
du point de vue de confinement: le malware est laissée libre pour propager
aux victimes, ou de participer à d’autres types d’activités malveillantes (par
exemple, DoS, spam). La qualité de l’analyse est aussi que partiellement
acceptable: l’échantillon est laissé libre d’interagir avec des hôtes externes
sur l’exécution, mais son comportement devient dépendante de l’état des
hôtes externes, conduisant à la problèmes soulignés dans [125].

Filter/Redirect specific ports. Le problème de confinement associée à l’accès com-
plet à Internet est rarement discutée dans des sandbox connectés à Internet
tels comme Anubis [19], CWSandbox [20] et d’autres. De informelle dis-
cussions avec les responsables, il semble être une pratique courante pour
le déploiement public de ces bacs à sable d’employer simple filtrage ou
redirection règles, dans lequel les ports TCP communément associés aux
analyses malveillants (par exemple le port 139 et le port 445) sont soit
bloqué ou redirigé vers honeypots. Ce résout partiellement le problème de
confinement: vulnérabilités de SMB sont très commune vecteur de propa-
gation des logiciels malveillants d’auto-propagation, qui peut être facile-
ment évitée avec de telles mesures. Cependant, cette approche ne sont pas
en mesure de traiter avec d’autres types d’activités dont la nature ne peut
pas être facilement discerné du TCP le port de destination. Une tentative
similaire pour effectuer confinement par redirection également été mis en
œuvre dans le cadre de honeyfarms tels que Potemkin [200] et GQ [64].
Dans de tels déploiements, la auteurs ont étudié l’idée de refléter le trafic

110

Chapter 8. Résumé

sortant généré par instances virtuelles infectés de la miellerie vers d’autres
instances de la même miellerie. Une approche similaire avéré être utile pour
l’analyse des programmes malveillants stratégies de propagation, mais n’a
pas été efficace à traiter avec d’autres types de le trafic tel que C&C com-
munication. En fait, redirigeant une tentative de connexion C&C miellerie
générique vers une machine virtuelle est pas susceptible de générer des ré-
sultats significatifs. Kreibich et al. [117] ont récemment amélioré GQ qui
en fait un réel et ferme malware polyvalent. Ils ont abordé le problème de
confinement avec précision politiques, mais leur approche n’a pas abordé
la question de répétabilité.

Common service emulation. Sandboxes tels que Norman Sandbox éviter le mal-
ware exécuté à partir de la connexion à Internet, et de fournir à la place
implémentations de services génériques pour les protocoles courants tels
que HTTP, FTP, SMTP, DNS et IRC. Une approche similaire a été revisité
et amélioré par Ionue et al. dans [94], un deux-passer technique d’analyse
des logiciels malveillants dans lequel l’échantillon malware est autorisé à
interagir avec un “réseau miniature” générée par un émulateur en mesure
de fournir une variété de mannequin Internet services à l’échantillon mal-
ware exécuté. Toutes ces approches sont toutefois Limited, et compter sur
une connaissance a priori des protocoles de communication employé par le
malware. Malware utilise souvent des variations de la norme protocoles ou
complètement protocoles de communication ad hoc à-pas qui peut être trai-
tées par les services factices. Yoshioka et al. [205]. Avoir tenté de résoudre
ce problème par le raffinage de manière incrémentielle le confinement les
règles en fonction des résultats d’analyse dynamique. Si une telle approche
fourni une solution élégante au problème de confinement, il n’a pas abordé
la qualité de l’analyse et il n’a pas tenté de supprimer les dépendances entre
le comportement des programmes malveillants et l’état des hôtes Internet
externes impliqués dans l’analyse.

Full Isolation. Empêcher complètement le malware d’interagir avec des hôtes In-
ternent assure une parfaite maîtrise de son activité malveillante. Cepen-
dant, l’incapacité totale d’interagir avec C&C serveurs et les référentiels
des composants supplémentaires est susceptible de fausser gravement les
résultats de la dynamique processus d’analyse.

Tableau 8.1 souligne un compromis entre la partielle problème de confinement
et de garantir la qualité et la répétabilité de la une analyse. D’une part, l’exécution
du malware en pleine émulation traite de toutes les préoccupations, mais confine-
ment, en interdisant l’échantillon de malware communiquer avec les hôtes externes
dont il dépend, elle polarise fortement le résultats de l’analyse dynamique (par
exemple, l’échantillon ne peuvent aller aussi loin que d’essayer pour se connecter
aux hôtes mais sans exposer tout comportement malveillant réel). Sur d’autre part,
fournir le bac à sable avec une connectivité Internet complète augmente la qualité

111

8.2. Related Works

de l’analyse, mais il ne résout pas le problème de reproductibilité, et il soulève
également des préoccupations éthiques et juridiques importants.

Dans le chapitre 4 nous abordons ce problème en explorant l’utilisation du pro-
tocole techniques pour créer automatiquement des modèles d’interaction de réseau
pour l’apprentissage accueille le malware dépend lors de l’exécution (même en
présence de la coutume et protocoles sans-papiers), et l’utilisation de ces modèles
pour fournir le bac à sable avec un isolé mais riche environnement, de réseau.

Malware Development

Alors qu’il ya eu une grande quantité de recherche sur l’analyse des programmes
malveillants et la détection, très peu de travaux dans la littérature ont étudié les en-
sembles de données recueillies par les logiciels malveillants sandbox d’analyse dy-
namique publics. Le plus étude approfondie dans ce sens a été menée par Bayer et
al. [40]. Les auteurs ont examiné deux ans de Anubis [19] rapports et ils ont fourni
des statistiques sur plusieurs l’évolution des logiciels malveillants et sur les types
de comportements malveillants répandus observé dans leur ensemble de données.

Lindorfer et al. [135]. Mené la première étude dans le domaine de le dévelop-
pement de logiciels malveillants par l’étude de l’évolution dans le temps de onze
connu familles de logiciels malveillants. En particulier, les auteurs ont documenté
le malware processus de mise à jour et les changements dans le code pour un certain
nombre de différent versions de chaque famille. Dans notre étude, nous observons
le développement des logiciels malveillants processus sous un angle différent. Au
lieu d’étudier les différentes versions de même les logiciels malveillants connus,
dans le chapitre 3 nous proposons une détection à grande échelle de les auteurs du
malware au moment où ils interagissent avec la sandbox lui-même.

Dans un papier différent, Lindorfer et al. [136]. Proposé une technique pour
détecter les malwares sensibles environnement. L’idée est d’exécuter chacun plu-
sieurs fois sur plusieurs échantillons de logiciels malveillants sandbox équipés dif-
férentes implémentations de surveillance et ensuite comparer les rapports normali-
sés de détecter les anomalies de comportement.

Étudie un domaine de recherche similaire, le phylogénie [89] des logiciels mal-
veillants en utilisant des approches prises de le domaine de la biologie. Même si
elle est partiellement liée à notre contribution, nous dans notre étude ne sont pas
intéressés à comprendre la relation entre les différents espèces de malwares, mais
seulement de détecter les soumissions suspectes qui pourraient être cadre d’une
activité de développement de logiciels malveillants.

Dans un document de plus près à notre travail, Jang et al. [101] étudié com-
ment déduire l’évolution du logiciel en regardant les binaires du programme. Dans
notamment, les auteurs ont utilisé les deux fonctions d’analyse statiques et dyna-
miques pour récupérer la lignée de logiciels. Bien que le document de Jang a porté
principalement sur bénigne programmes, certaines expériences ont également été
menées sur 114 logiciels malveillants avec la lignée connue extraite de la Cyber
Génome Projet [24]. Par rapport à notre travail, les auteurs ont utilisé un plus petit

112

Chapter 8. Résumé

un ensemble de caractéristiques statiques et dynamiques spécialement conçus pour
déduire la lignée de logiciel (par exemple, le fait qu’un développement linéaire est
caractérisé par une taille monotone croissante de fichier). Au lieu de cela, nous
utilisons un ensemble plus riche de caractéristiques pour être en mesure de dis-
tinguer les développements de logiciels malveillants à partir des variations de les
mêmes échantillons prélevés sur la nature et non soumis par l’auteur. Alors que nos
approches partagent certaines similitudes, les objectifs sont clairement différent.

D’autres approches ont été proposées dans la littérature pour détecter simili-
tudes entre les binaires. Flake [81] proposé une technique d’analyser les binaires
sous forme de graphiques de graphiques, et nous avons été inspirés par son tra-
vailler pour le d’analyse de flux de contrôle décrit dans chapitre 3. Kruegel et
al. [118] a proposé une technique similaire dans laquelle ils ont analysé les graphes
de flux de commande d’un nombre de vers et ils ont utilisé une technique de colo-
ration de graphe pour faire face à la problème graphique-isomorphisme.

Enfin, une étape de notre technique nécessaire pour regrouper similaire échan-
tillons de logiciels malveillants. Il ya plusieurs articles dans le domaine de la classi-
fication des programmes malveillants [92, 97, 100, 201]. Cependant, leur but est de
regrouper des échantillons appartenant à la même famille de logiciels malveillants
aussi vite que possible et avec la plus grande précision. Ce est une tâche cruciale
pour tous les éditeurs de logiciels antivirus. Cependant, notre objectif est différents
que nous sommes intéressés à des échantillons de clustering basé uniquement sur
binaire similitude et nous ne disposons pas de l’intérêt pour le clustering réuni des
membres de la même famille sur la base de leur comportement.

8.2.2 Memory Analysis

Dans la dernière décennie, les investigations numériques ont considérablement
évolué. Les chercheurs et les praticiens ont proposé efficiente et efficace métho-
dologies pour faire la criminalistique digitial scientifiquement comparable à la cri-
minalistique traditionnels utilisés par les forces de l’ordre. Un rôle important dans
cette évolution est représenté par la première Digitial Forensic atelier de recherche
(DFRWS) en 2001 [158]. Merci à DFRWS, des universitaires et des experts en mé-
decine légale ont uni leurs forces pour créer une communauté et systématiquement
étudier le champ de proposer des outils et des méthodologies autant rigoureuse que
possible. Au début, la criminalistique numérique assistés enquêtes de l’application
des lois et, au fil des ans, les preuves recueillies ont été réglementées et accepté par
le les tribunaux. En outre, la criminalistique numérique deviennent un domaine de
recherche actif.

Criminalistique de mémoire est une branche de la criminalistique numérique et
a été étudié intensivement depuis 2004, quand Carrier et al. [56] proposé Tribble,
un dispositif d’acquisition de PCI à base de mémoire physique. En 2005, le DFRWS
lancé une contester sur l’analyse de la mémoire. Comprend un vidage de la mé-
moire physique Le défi partir d’un Windows compromise systèmes et plusieurs
questions au sujet de la violation d’exploitation. Répondre les questions, les cher-

113

8.2. Related Works

cheurs ont dû créer de nouveaux outils et la technique pour analyser et extraire
des informations du vidage de la mémoire. L’objectif des organisateurs était de
motiver les chercheurs à étudier et d’améliorer cette recherche fascinante région.
Dans la même année, et Movall al. [150] discuté une suite pour l’analyse de Linux
physique mémoire. En 2006, Petroni et al. [162] présenté FATkit, un système mo-
dulaire cadre de l’inspection de la mémoire physique. FATKit supporte Linux et
Systèmes d’exploitation Windows, la reconstruction de l’espace d’adressage (par
exemple, IA-32) et a été développé suivant l’approche du transporteur sur l’abs-
traction couches [55]. L’évolution de FATkit est Volatilité [12], actuellement open
source judiciaire de facto de mémoire cadre. Avant de volatilité et son FATkit pré-
décesseur, de nombreux chercheurs publié leurs propres outils personnalisés et des
techniques pour extraire des objets simples (par exemple, la liste des processus).
Tel est le cas de PTfinder de Schuster [175], la pmodump Stewart [186], les études
de Kornblum [115, 116] et les publications de Dolan-Gavitt [72, 73], juste pour en
nommer quelques-uns. Dans la même ligne, les chercheurs ont proposé outils de
dumping [187,188] pour soulager la acquistion de la physique mémoire pour diffé-
rents systèmes d’exploitation. En 2008, le DFRWS lancé un autre défi de l’analyse
de la mémoire. Cette fois, la accent a été mis sur la création de méthodologies et
d’outils pour l’exploitation Linux système [60]. Encore une fois, l’objectif des or-
ganisateurs était de favoriser les chercheurs et améliorer la champ. De même, en
2010 SSTIC contesté la communauté française de créer des outils pour l’analyse
de la mémoire physique d’un dispositif en cours d’exécution Android [10,82]. Suc-
cessivement, les chercheurs ont continué à améliorer le domaine médico-légal de
la mémoire et a ajouté le support pour Mac OS X [12, 123] et FreeBSD [123].

En plus de solutions open source, de nombreuses entreprises ont créé leurs cri-
minalistique de mémoire closed-source cadre. Ceci est le cas pour Mandiant (main-
tenant fireeye) avec Memoryze [141] et HBGary Responder Professional [90].
Ce phénomène montre l’intérêt du privé secteur sur la médecine légale de mé-
moire. Malheureusement, à l’heure actuelle, tous les cadres disponibles peut être
facilement vaincu. Ceux-ci ont déjà été weakeness documentée par des universi-
taires [165] et indépendent chercheurs [98, 140, 180] mais les développeurs de la
médecine légale de mémoire cadres ne traitent pas ces questions cruciales pour
autant. Plus récemment, Case et al. [84] a analysé le cas nouveau les fichiers
d’échange sur Linux et Mac OS X. comprimé RAM et largement étudiée De même,
Cohen mis en œuvre et adapté le travail de Kornblum [116] dans Rekall [86], un
spin-off de la volatilité proposé par Google, pour une analyse correcte et appro-
fondie de le fichier d’échange Windows. En parallèle, les chercheurs ont testé et
analysé la mémoire pour extraire beaucoup artefacts pas nécessairement liés aux
composants du système d’exploitation (par exemple, les processus, les pilotes et les
modules). Par exemple, Alex Halderman et al. [88], décrit plusieurs attaques où ils
exploités DRAM effets de rémanence à récupérer clés cryptographiques et d’autres
informations sensibles. Plus récemment, la soi-disant attaque de démarrage à froid

114

Chapter 8. Résumé

a été testé sur Android [151] et son efficacité a été confirmé tout cela n’a pas fonc-
tionné comme prévu [87] sur des puces DDR3. En outre, la médecine légale de
la mémoire ont été utilisées pour découvrir les programmes malveillants courir
inaperçu sur l’ordinateur de la victime. Par exemple, Bianchi et al. [44] proposé
Blacksheep d’identifier les machines infectées par un rootkit sur un infrastructure
de cloud. Les auteurs ont construit une série de plugins de volatilité de comparer
la des instantanés des machines différentes et mis en œuvre plusieurs heuristiques
pour repérer évidences de rootkit. KOP [54] et MAS [66] appliquer des techniques
d’analyse de la mémoire sur un seul machine pour localiser code malveillant courir
au niveau du noyau, mais, malheureusement, ils ont besoin à la fois le code source
du système d’exploitation. Plus récemment, MACE [79] étendu idée KOP mais en
utilisant techniques d’apprentissage supervisé sur des pointeurs pour construire un
noyau objets graphiques et détecter les rootkits noyau sans accès à la source code.
Un autre avance intéressante a été présentée par Saltaformaggio et al. [173]. Avec
DSCRETE, un système capable d’identifier l’information d’intérêt dans une dé-
charge de la mémoire et restituer correctement son contenu à l’aide de sa propre
logique de l’application. De cette manière, la analyste n’a pas besoin de connaître
la configuration de la mémoire de structures de données contenant les renseigne-
ments qu’elle cherche.

2015 DFRWS défi axé nouveau sur la médecine légale de la mémoire, cette
fois sur l’analyse des GPU mémoire [4] en fait, les chercheurs déjà proposées root-
kits GPU à base [120] et observé dans les auteurs de logiciels malveillants sau-
vages mises à profit GPU à la mienne bitcoins [11]. Villani et al. [33] présenté
un détaillée analyse des internes de GPU et décrit comment un médecins légistes
peuvent faire face à ces des menaces. Dans la même ligne, à l’avenir, les analystes
légistes ont à face menaces avancées et créer des outils et des techniques de dissé-
quer et analyser ces nouvelles attaques. Dans cette thèse, nous allons améliorer le
domaine en ajoutant le support pour localiser hyperviseurs (potentiellement mal-
veillants) et les machines virtuelles sur les haldes de mémoire physique. Dans De
plus, nous permettons à l’introspection déconnecté transparente de l’exploitation
invité systèmes et de détecter les configurations imbriquées. Dans la littérature, les
chercheurs ont hyperviseurs malveillants déjà proposés [70, 103, 111] que de un
système d’exploitation hôte peut prendre le contrôle de l’ensemble de la machine.
Plus récemment, ces menaces ont évolué et sont en mesure de porter atteinte à
l’ordinateur ciblé directement à partir du BIOS [146]. Malheureusement, jusqu’à
présent, aucune outils de médecine légale de la mémoire ont été en mesure de faire
face à ces friandises. La deuxième contribution proposée dans cette thèse vise à
détecter les attaques modernes et avancées qui ne injectez pas de code dans la vic-
time système d’exploitation. Cette classe d’attaques est appelé code reuse attacks
et ont de nombreux cas tels que ROP [178], JOP [48],BROP [47], SROP [49] et
JIT-ROP [183]. Dans cette thèse, nous proposons une cadre fondé sur l’analyse de
la mémoire et de l’émulation pour analyser et disséquer complexe Charges utiles
ROP. Nous nous concentrons particulièrement sur ROP, car il est le plus commong
par exemple observé dans la nature des attaques de réutilisation de code.

115

8.2. Related Works

Hypervisors and Virtual Machines

Plusieurs documents ont proposé des systèmes à la recherche structures du
noyau et de la mémoire utilisateur de l’espace dans la mémoire avec des méthodo-
logies différentes. Dolan-Gavitt et al. [75]. Présenté un travail de recherche dans
lequel ils ont généré automatiquement signatures robustes pour système d’exploita-
tion importante structures. Ces signatures peuvent ensuite être utilisés par les outils
d’analyse pour trouver la objets dans un vidage de la mémoire physique.

D’autres travaux ont porté sur la génération de fortes signatures pour les struc-
tures dans lequel il n’y a pas de valeurs invariant champs [130, 133]. Bien que
ces approches sont plus générales et elles pourraient être utilisées pour notre algo-
rithme, ils produisent un nombre important de faux positifs. L’approche que nous
présentons dans chapitre 5 est plus ad-hoc, afin d’éviter les faux positifs.

Une autre approche générale a été présenté par Cozzie et al. dans leur système
appelé Laika [62], un outil pour découvrir des structures de données inconnues
en mémoire. Laika est basé sur des techniques probabilistes, en particulier sur ap-
prentissage bayésien sans surveillance, et il a été prouvé être très efficace pour
détection des malwares. Laika est intéressant car il est capable de déduire la bonne
mise en page aussi pour les structures inconnues. Cependant, l’inconvénient est lié
à l’exactitude et la quantité non négligeable de faux positifs et faux négatifs. Lin et
al. ont développé DIMSUM [207] dans lequel, une donnée un ensemble de pages
physiques et une définition de structure, de leur outil est capable de trouver les
instances de structure, même si elles ont été unmapped.

Même si beaucoup de recherches ont été faites dans la médecine légale de mé-
moire terrain, au mieux de notre connaissance, il n’y a pas de travaux antérieurs sur
criminalistique automatiques de virtualisation. Notre travail est le premier tenter de
combler cette lacune.

Enfin, il est important de noter que plusieurs des auparavant systèmes présen-
tés ont été mis en œuvre comme un plugin pour Volatility [13] - la norme de facto
pour l’open criminalistique de mémoire source. En raison de l’importance de la
volatilité, nous avons également décidé de mettre en œuvre nos techniques comme
une série de différents plugins et comme un patch pour le noyau principal de ce
cadre.

Advanced Threats

Return Oriented Programming (ROP) a été largement étudié dans le domaine
scientifique la littérature à partir de plusieurs points de vue. Cependant, très peu de
travaux ont nouvelles techniques présentées dédiés à l’analyse des chaînes ROP et
dans cette section nous allons nous concentrer uniquement sur les recherches.

En ce sens, la première étude a été menée par Lu et al. [139]. Les auteurs
proposés DeRop, un outil pour convertir ROP des charges utiles dans shellcodes
normales, de sorte que leur analyse peut être effectuée par des outils d’analyse de

116

Chapter 8. Résumé

logiciels malveillants communs. Toutefois, les auteurs ont testé la efficacité de leur
système que contre les exploits standard contenant chaînes ROP vraiment simple.
Dans le chapitre 6, nous adoptons une partie de la transformations proposées par
DeRop - que l’on se complètent par un certain nombre de nouvelles techniques
nécessaires pour traiter avec les grandes et complexes chaînes d’un Rootkits ROP.
Notre objectif principal est aussi plus ambitieux, que nous voulons parvenir à un
couverture de code complet de la charge utile de ROP, également en présence d’dy-
namiquement chaînes générés.

Dans un autre document semblable à notre travail, Yadegari et al. [203] propose
une approche générique de Code deobfuscate, dans lequel les auteurs considère
ROP comme une forme de faux-fuyants. Leur système est basé sur l’analyse de
souillure niveau bits que l’on applique aux traces d’exécution existants et peut
être utilisé pour deobfuscate le graphe de flot de contrôle. En outre, le document
adopte également des transformations similaires à la celles proposées par DeRop à
manipuler des charges utiles ROP. Même si Chuck avait déjà été publié à l’époque,
les auteurs ont fait valoir qu’aucun complexe par exemple des chaînes ROP était
disponible, et ils ont testé le système contre les petits exemples avec une logique de
flux de contrôle simple. En outre, le système proposé fait à ne pas émuler la chaîne
de ROP et ne pas effectuer de couverture de code. Au lieu de cela, il met l’accent
sur la simplification des traces d’exécution existants.

Une autre direction de recherche intéressante axée sur le problème de la lo-
calisation Chaînes de ROP en mémoire et potentiellement leur profil comporte-
ment [163, 185]. ROPMEMU peut tirer parti de ces techniques à identifier les
chaînes ROP persistants. La phase de profilage proposé dans ces papiers étaient
assez simple, et il peut échouer dans présence de chaînes de ROP complexes. Pour
surmonter ces limitations, nous avons adopté une approche basée sur le proces-
seur et l’émulation de la mémoire. Enfin, ces techniques ne fonctionnent pas en
présence de chaînes de ROP emballés [138] ou des chaînes qui sont générées dy-
namiquement à runtime [199].

Jusqu’à aujourd’hui, tous les systèmes d’analyse et d’identification proposée
dans le la littérature ont porté sur de simples exploits de l’espace utilisateur. Par
conséquent, la technique présenté dans le chapitre 6 est la seule solution disponible
qui supports l’analyse d’un véritable rootkit noyau mis en œuvre en ROP.

8.3 Conclusions and Future Work

Dans cette thèse, nous avons présenté un certain nombre d’améliorations signi-
ficatives à l’état actuel de la l’art de logiciels malveillants moderne et analyse de
la mémoire. Dans les dernières années, ces domaines confrontés à de nombreux
défis. Plus précisément, le nombre croissant d’échantillons malveillants forcé la
communauté de sécurité pour concevoir des moyens plus efficaces pour automati-
ser les analyses. En particulier, l’analyse dynamique avec son instance déployé le
plus commun, sandboxes, redéfinir l’ensemble du secteur. Dans les cas dans les-

117

8.3. Conclusions and Future Work

quels analyse dynamique montre ses limites intrinsèques ou ne suffit pas pour un
vrai enquête, le rapport des bacs à sable peut être complétées par des techniques
d’analyse de la mémoire. La combinaison de ces deux champs significanly facilite
les tâches des analystes et constitue un pas en avant à la fois pour l’industrie et le
milieu universitaire.

L’état actuel de l’art traite de nombreux problèmes de ces deux domaines. Dans
particulier, alors que les logiciels malveillants et la mémoire des analyses ont été
améliorées sous des angles différents, sociétés de sécurité ont encore du mal à
faire face à l’augmentation du nombre de codes malveillants. Plus important, ces
problèmes compliquent la vie des utilisateurs finaux d’Internet. Nous, en tant que
communauté, besoin d’enquêter et de recherche plus en détail ces critiques sujets
afin de proposer des solutions efficaces capables d’éradiquer le problème à la ra-
cine. Cette thèse est une tentative dans cette direction. Les quatre contributions
présenté dans cette thèse avancer les zones disccussed long de ce travail: les logi-
ciels malveillants et d’analyse de la mémoire. Deux Plus précisément, la première
visent à simplifier le travail de l’analyste et de renforcer les éléments clés de l’ana-
lyse dynamique. Les deux derniers lumière de hangar sur les menaces avancées et
proposer des solutions médico-légales de mémoire pour faire face à ces infections.

Dans le chapitre 3, nous avons discuté de l’importance d’examiner des échan-
tillons soumis à partir d’un renseignement et le point de vue de la prévention de la
menace. Nous montrons que plusieurs binaires utilisés dans le plus célèbre attaque
ciblée campagnes avaient été soumis à nos mois de sandbox avant l’attaque était
premier rapporté. Dans ce chapitre, nous proposons une première tentative pour
exploiter la base de données d’un bac à sable populaire, à la recherche de signes de
développement des logiciels malveillants. Notre expériences montrent des résultats
prometteurs: nous avons pu identifier automatiquement des milliers de développe-
ments, et de montrer comment les auteurs modifient leur programmes de tester
leurs fonctionnalités ou de se soustraire à des détections de connue sandboxes.

Chapitre 4 aborde le problème de confinement du réseau et répétabilité le
contexte de la dynamique des outils d’analyse des sandboxes. Pour résoudre ces
problèmes, nous avons décrit la mise en œuvre de Mozzie, un système de confine-
ment de réseau qui peut être facilement adapté à tous les environnements de sand-
box existants. Selon à nos expériences, une moyenne de 14 traces de réseau sont
tenus par la Mozzie à modéliser le trafic en abordant le problème de l’émulation de
réseau dans un bac à sable façon complètement générique, le protocole agnostique
qui peut être appliqué à du monde réel échantillons de logiciels malveillants. Les
avantages de l’application à grande échelle de techniques similaires sont impor-
tants: vieux échantillons de logiciels malveillants dont C&C infrastructures a été
arrêté peuvent être analysés dans les mêmes conditions de réseau observées quand
ils étaient actifs, des analyses approfondies d’échantillons d’intérêt peut être effec-
tuée en complète isolement, et les environnements de réseau spécifiques de logi-
ciels malveillants ciblant (par exemple, les systèmes de contrôle industriel) peuvent
être analysés en une réplique de la configuration du réseau attendu.

118

Chapter 8. Résumé

Dans le chapitre 5, nous avons présenté une première étape vers l’analyse
médico-légale de la mémoire de hyperviseurs. En particulier, nous avons discuté
de la conception d’une nouvelle médecine légale technique qui commence à par-
tir d’une image physique de la mémoire et est capable d’atteindre trois objectifs
importants: localiser hyperviseurs dans la mémoire, analyser nichée configurations
de virtualisation et de montrer les relations entre les différents hyperviseurs cours
d’exécution sur la même machine, et de fournir une transparence mécanisme pour
reconnaître et appuyer l’espace d’adressage des machines virtuelles. La solution
que nous proposons est intégré dans le cadre de la volatilité et de permet crimi-
nalistique analystes d’appliquer tous les outils d’analyse précédents à la virtuelle
espace d’adressage de la machine. Notre évaluation expérimentale montre que Ac-
téon est en mesure d’atteindre les objectifs mentionnés ci-dessus, permettant une
déploiement réel de l’analyse médico-légale numérique de l’hyperviseur. En par-
ticulier, la recherche présentée dans chapitre 5 a remporté le concours de plugin
premier volatilité et a été intégré par Google dans sa suite Rekall [85].

Enfin, le chapitre 6 représente la première tentative d’automatiser l’analyse de
code complexe entièrement mis en oeuvre en utilisant ROP. En particulier, nous
avons discuté les défis pour inverser programmes de génie mis en œuvre en uti-
lisant le retour programmation orientée et nous avons proposé un cadre global à
disséquer, recostruct et simplifier les chaînes ROP. Enfin, nous avons testé la cadre
avec le cas le plus complexe proposé à ce jour: un ROP persistante rootkit. La solu-
tion que nous avons décrit est ROPMEMU, et comprend une combinaison de Vo-
latility plugins et des scripts autonomes supplémentaires. Notre cadre peut extraire
la totalité du code des deux ROP persistante et généré dynamiquement chaînes à
travers une approche d’émulation roman de trajets multiples, simplifient la sortie
traces, extraire le graphe de flot de contrôle et génèrent un binaire final représen-
tant une version propre de la chaîne de ROP originale. Les analystes peuvent alors
fonctionner sur ce binaire avec des outils traditionnels d’ingénierie de recul comme
IDA Pro.

Bien que les logiciels malveillants et d’analyse de la mémoire sont deux do-
maines bien étudiés et la contributions proposées dans cette thèse adressées certains
de leurs problèmes, il ya encore de la place pour d’autres améliorations. Les pro-
grammes malveillants touchent la vie des utilisateurs et la affaires des entreprises.
Il est clair que les solutions adoptées jusqu’à présent ne sont pas efficaces. En
conséquence, les cybercriminels peuvent compromettre des millions de machines,
installer et implants voler silencieusement pouvoirs. Sans surprise, les solutions
de défense existants prévenir et à détecter seulement une petit pourcentage de ces
attaques en cours. Je crois que, dans l’avenir, la communauté universitaire a à tra-
vailler ensemble avec des partenaires industriels. Seulement cette synergie peut
faire d’Internet un endroit plus sûr. En outre, les deux parties doivent sensibili-
ser sur les cyber-menaces actuelles, de leurs vecteurs d’infection et l’importance

119

8.3. Conclusions and Future Work

des mises à jour de logiciels. De cette façon, les infections banales telles que le
phishing et les infractions via exploiter kits peuvent être contenues.

Le long de la même ligne de cette thèse, les chercheurs devraient étudier plus
en détail les soumissions reçues par des bacs à sable en ligne. Le travail présenté
dans le chapitre 3 est destiné à être juste la première étape dans cette direction. Les
entreprises de sécurité peuvent utiliser les informations recueillies pour détecter
les nouvelles techniques d’évasion. Il est également possible de relier directement
une nouvelle technique d’évasion à une famille de logiciels malveillants. De cette
façon, les chercheurs peuvent les empreintes digitales des groupes d’auteurs de
logiciels malveillants à partir de leurs propres sondes. En ce qui concerne la phase
de confinement, les chercheurs devraient commencer à partager le fini machines
d’état et de créer un référentiel commun. En outre, il est également nécessaire pour
libérer publiquement le code source de l’apprentissage de protocole composants
et d’autres recherches sont nécessaires pour rendre ces approches plus robuste.
De cette façon, les gens externes peuvent comparer les différents apprentissage
moteurs et adapter le noyau à leurs besoins.

Dans l’avenir, les chercheurs de l’analyse de la mémoire doivent être prêts
à faire face à menaces avancées. En ce sens, nous avons proposé des techniques
pour analyser hyperviseurs et des codes de programmation de retour orientée. Des
approches similaires peuvent être adapté pour l’analyse des formes d’attaques de
réutilisation de code tels que sigreturn programmation (SROP) et saut program-
mation orientée (JOP). Il est également nécessaire de disposer d’outils et de tech-
niques visant à acquérir et analyser les segments de mémoire physique utiliser par
des périphériques matériels tels que les cartes graphiques, les cartes réseau et le
système BIOS. La protections en place sur les systèmes d’exploitation modernes
forcent les assaillants à installer leurs composants furtifs aux niveaux inférieurs.
Ceci est également confirmé par le récent Hacking documents de l’équipe de fuite
avec leur UEFI persistante rootkit [96]. En outre, les systèmes embarqués sont de
plus en plus important nos vies, mais les techniques d’analyse de la mémoire en
cours sont encore à leur début étapes et ne cadrent bien pour le targuer d’archi-
tectures et de fonctionnement la diversité des systèmes. Plus en général, à l’heure
actuelle, la communauté légale est pas prêt à faire face à cette variété de menaces et
environnements émergents et cela pourrait compromettre de nombreuses enquêtes
en cours et futurs.

En conclusion, dans cette thèse, nous avons discuté quatre contributions aux
domaines de programmes malveillants et analyse de la mémoire. Les idées présen-
tées dans le chapitre 3 et chapitre 4 peut être adopté par la sécurité les entreprises à
améliorer leurs systèmes actuels. Les contributions examinées au chapitre 5 et cha-
pitre 6 renforcer les champs d’analyse de la mémoire. En particulier, nous avons
ajouté le soutien pour faire face à deux menaces avancées et fourni les médecins
légistes de nouvelles techniques et un système à part entière à utiliser.

120

Bibliography

[1] Amd’s market share drops. http://www.cpu-wars.com/2012/11/
amds-market-share-drops-below-17-due-to.html.

[2] Apple code signing. https://developer.apple.com/
library/mac/documentation/Security/Conceptual/
CodeSigningGuide/Introduction/Introduction.html.

[3] AV Tracker. http://avtracker.info/.

[4] Dfrws 2015 forensics challenge. http://www.dfrws.org/2015/
challenge/index.shtml.

[5] Inception memory acquisition tool. http://www.breaknenter.
org/projects/inception/.

[6] Internet live stats. http://www.internetlivestats.com/
internet-users/.

[7] Microsoft Code Signing. https://msdn.microsoft.com/en-us/
library/ms537361.aspx.

[8] Microsoft Driver Signing. https://msdn.microsoft.com/
en-us/library/windows/hardware/ff544865\%28v=vs.
85\%29.aspx.

[9] Nehalem architecture. http://www.intel.com/pressroom/
archive/reference/whitepaper_Nehalem.pdf.

[10] Sstic 2010 challenge. http://communaute.sstic.org/
ChallengeSSTIC2010.

[11] Trojan.badminer. https://www.symantec.com/security_
response/writeup.jsp?docid=2011-081115-5847-99&
tabid=2.

[12] Volatility framework: Volatile memory artifact extraction utility framework.
http://www.volatilityfoundation.org/.

[13] Volatility framework: Volatile memory artifact extraction utility frame-
work. https://www.volatilesystems.com/default/
volatility.

[14] Xtreme RAT. https://sites.google.com/site/
xxtremerat/.

121

Bibliography

[15] Scapy. http://www.secdev.org/projects/scapy/, 2003.

[16] Bifrost Builder. http://www.megasecurity.org/trojans/b/
bifrost/Bifrost2.0special.html, 2008.

[17] nfqueue-bindings. ://www.wzdftpd.net/redmine/projects/
nfqueue-bindings/wiki/, 2008.

[18] Poison Ivy RAT. http://www.poisonivy-rat.com, 2008.

[19] Anubis. http://anubis.iseclab.org, 2009.

[20] Cwsandbox. http://www.mwanalysis.org, 2009.

[21] Netzob. http://www.netzob.org, 2009.

[22] A new approach to China. http://googleblog.blogspot.fr/
2010/01/new-approach-to-china.html, 2010.

[23] Cuckoo Sandbox. http://www.cuckoosandbox.org, 2010.

[24] Darpa Cyber Genome Project. https://www.fbo.
gov/index?s=opportunity\&mode=form\&id=
c34caee99a41eb14d4ca81949d4f2fde, 2010.

[25] Malwr. https://malwr.com, 2010.

[26] ThreatExpert. http://www.threatexpert.com/, 2010.

[27] The Red October Campaign - An Advanced Cyber Espionage Net-
work Targeting Diplomatic and Government Agencies. https://www.
securelist.com/en/blog/785/, 2013.

[28] RDG Tejon Crypter. http://blackshop.freeforums.org/
rdg-tejon-crypter-2014-t743.html, 2014.

[29] Tracking Malware with Import Hashing. https://www.mandiant.
com/blog/tracking-malware-import-hashing/, 2014.

[30] VirusTotal += imphash. http://blog.virustotal.com/2014/
02/virustotal-imphash.html, 2014.

[31] XtremeRAT: Nuisance or Threat? http://
www.fireeye.com/blog/technical/2014/02/
xtremerat-nuisance-or-threat.html, 2014.

[32] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon. Software techniques for
avoiding hardware virtualization exits. In Proceedings of the 2012 USENIX
conference on Annual Technical Conference, USENIX ATC’12, pages 35–
35, Berkeley, CA, USA, 2012. USENIX Association.

[33] R. d. P. Antonio Villani, Davide Balzarotti. The Impact of GPU-Assisted
Malware on Memory Forensics: A Case Study. August 2015.

[34] ArticleWorld. 1260. http://www.articleworld.org/index.
php?title=1260_(computer_virus)&printable=yes.

[35] Aurelien Wailly. nROP. http://aurelien.wail.ly/nrop/.

122

Bibliography

[36] Axel “0vercl0k" Souchet. rp. https://github.com/0vercl0k/rp.

[37] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna.
Efficient Detection of Split Personalities in Malware. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), NDSS 10,
San Diego, CA, February 2010.

[38] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel, E. Kirda, and G. Vigna.
Efficient Detection of Split Personalities in Malware. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), San Diego,
CA, February 2010.

[39] E. Barbosa. Detecting virtualized hardware rootkits, 2007.

[40] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A view on
current malware behaviors. In USENIX workshop on large-scale exploits
and emergent threats (LEET), LEET 09, April 2009.

[41] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A Tool for Analyzing Mal-
ware. In 15th European Institute for Computer Antivirus Research (EICAR
2006) Annual Conference, April 2006.

[42] F. Bellard. Qemu a fast and portable dynamic translator. In Proceedings of
the Annual Conference on USENIX Annual Technical Conference. USENIX
Association, 2005.

[43] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gor-
don, A. Liguori, O. Wasserman, and B.-A. Yassour. The turtles project:
design and implementation of nested virtualization. In Proceedings of the
9th USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[44] A. Bianchi, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Blacksheep: De-
tecting compromised hosts in homogeneous crowds. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, CCS
’12, 2012.

[45] L. Bilge and T. Dumitras. Before we knew it: An empirical study of zero-
day attacks in the real world. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages 833–844, New
York, NY, USA, 2012. ACM.

[46] BitBlaze Group. Temu. http://bitblaze.cs.berkeley.edu/
temu.html.

[47] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh. Hacking
blind. In Proceedings of the 2014 IEEE Symposium on Security and Privacy,
SP ’14, 2014.

[48] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented program-
ming: A new class of code-reuse attack. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASI-
ACCS ’11, 2011.

123

Bibliography

[49] E. Bosman and H. Bos. We got signal. a return to portable exploits. In
Security & Privacy (Oakland), 2014.

[50] Bromium. Lava. http://www.bromium.com/products/lava.
html.

[51] D. Bruschi, L. Martignoni, and M. Monga. Using Code Normalization for
Fighting Self-Mutating Malware. In Proceedings of the International Sym-
posium of Secure Software Engineering (ISSSE). IEEE Computer Society,
Mar. 2006. Arlington, VA, USA.

[52] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good in-
structions go bad: Generalizing return-oriented programming to RISC. In
P. Syverson and S. Jha, editors, Proceedings of CCS 2008, Oct. 2008.

[53] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: automatic extrac-
tion of protocol message format using dynamic binary analysis. In 14th
ACM conference on Computer and Communications Security, pages 317–
329. ACM New York, NY, USA, 2007.

[54] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. Mapping
kernel objects to enable systematic integrity checking. In Proceedings of the
16th ACM conference on Computer and communications security, CCS ’09,
pages 555–565, New York, NY, USA, 2009. ACM.

[55] B. Carrier. Defining digital forensic examination and analysis tools using
abstraction layers. International Journal of Digital Evidence, 1:2003, 2002.

[56] B. D. Carrier and J. Grand. A hardware-based memory acquisition proce-
dure for digital investigations. Digit. Investig., 2004.

[57] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy. Return-oriented programming without returns. In
A. Keromytis and V. Shmatikov, editors, Proceedings of CCS 2010, pages
559–72. ACM Press, Oct. 2010.

[58] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards
an Understanding of Anti-Virtualization and Anti-Debugging Behavior in
Modern Malware. In Proceedings of the 38th Annual IEEE International
Conference on Dependable Systems and Networks (DSN ’08), pages 177–
186, Anchorage, Alaska, USA, June 2008.

[59] V. Chipounov, V. Georgescu, C. Zamfir, and G. C. Selective symbolic exe-
cution. In In Workshop on Hot Topics in Dependable Systems, 2009.

[60] M. Cohen and D. Collett. Pyflag. https://code.google.com/p/
pyflag/.

[61] Corelan. Mona. https://github.com/corelan/mona.

[62] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for data structures.
In Proceedings of the 8th USENIX conference on Operating systems design
and implementation, OSDI’08, pages 255–266, Berkeley, CA, USA, 2008.
USENIX Association.

124

Bibliography

[63] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic protocol reverse
engineering from network traces. In 16th USENIX Security Symposium,
2007.

[64] W. Cui, V. Paxson, and N. Weaver. GQ: Realizing a system to catch worms
in a quarter million places. Technical report, ICSI Tech Report TR-06-004,
September 2006.

[65] W. Cui, V. Paxson, N. Weaver, and R. H. Katz. Protocol-independent adap-
tive replay of application dialog. In The 13th Annual Network and Dis-
tributed System Security Symposium (NDSS), February 2006.

[66] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking rootkit footprints with a
practical memory analysis system. In Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12), pages 601–615, Bellevue, WA,
2012. USENIX.

[67] A. Desnos, E. Filiol, and I. Lefou. Detecting (and creating !) a hvm rootkit
(aka bluepill-like). Journal in Computer Virology, 7(1):23–49, 2011.

[68] A. Desnos, É. Filiol, and I. Lefou. Detecting (and creating!) a hvm rootkit
(aka bluepill-like). Journal in computer virology, 7(1):23–49, 2011.

[69] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis
via hardware virtualization extensions. In Proceedings of the 15th ACM
Conference on Computer and Communications Security, CCS ’08, pages
51–62, New York, NY, USA, 2008. ACM.

[70] Dino Dai Zovi. Hardware Virtualization Rootkits. https:
//www.blackhat.com/presentations/bh-usa-06/
BH-US-06-Zovi.pdf.

[71] B. Dixon. Watching attackers through virustotal. http://blog.
9bplus.com/watching-attackers-through-virustotal/,
2014.

[72] B. Dolan-Gavitt. The VAD tree: A process-eye view of physical memory.
Digital Investigation, 4, 2007.

[73] B. Dolan-Gavitt. Forensic analysis of the windows registry in memory. Dig-
ital Investigation, 5, 2008.

[74] B. Dolan-Gavitt, J. Hodosh, P. Hullin, T. Leek, and R. Whelan. Repeatable
reverse engineering for the greater good with panda. In Technical Report -
Columbia University, 2014.

[75] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin. Robust signa-
tures for kernel data structures. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages 566–577, New
York, NY, USA, 2009. ACM.

[76] T. Dumitras and D. Shou. Toward a standard benchmark for computer se-
curity research: The worldwide intelligence network environment (wine).

125

Bibliography

In Proceedings of the First Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security, BADGERS ’11, 2011.

[77] S. Embleton, S. Sparks, and C. Zou. Smm rootkits: A new breed of os
independent malware. In Proceedings of the 4th International Conference
on Security and Privacy in Communication Netowrks, SecureComm ’08,
2008.

[78] A. Fattori, R. Paleari, L. Martignoni, and M. Monga. Dynamic and transpar-
ent analysis of commodity production systems. In Proceedings of the 25th

International Conference on Automated Software Engineering (ASE), pages
417–426, September 2010.

[79] Q. Feng, A. Prakash, H. Yin, and Z. Lin. Mace: High-coverage and ro-
bust memory analysis for commodity operating systems. In Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC ’14,
2014.

[80] FireEye. Fireeye as a service. https://www.fireeye.com/
products/fireeye-mssp-services.html.

[81] H. Flake. Structural comparison of executable objects. In In Proceedings
of the IEEE Conference on Detection of Intrusions and Malware & Vulner-
ability Assessment (DIMVA, pages 161–173, 2004.

[82] E. Girault. Volatilitux. http://
www.segmentationfault.fr/projets/
volatilitux-physical-memory-analysis-linux-systems/,
2010.

[83] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the
workshop on virtual computer systems, pages 74–112, New York, NY, USA,
1973. ACM.

[84] A. C. Golden G. Richard III. In Lieu of Swap: Analyzing Compressed RAM
in Mac OS X and Linux. August 2014.

[85] Google - Rekall. Vm discovery and introspection with rekall. http://
www.rekall-forensic.com/posts/2014-10-03-vms.html.

[86] Google - Rekall. Windows virtual address translation and the
pagefile. http://rekall-forensic.blogspot.ch/2014/10/
windows-virtual-address-translation-and.html.

[87] M. Gruhn and T. Muller. On the practicability of cold boot attacks. In Avail-
ability, Reliability and Security (ARES), 2013 Eighth International Confer-
ence on, pages 390–397. IEEE, 2013.

[88] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Ca-
landrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remem-
ber: cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–98,
May 2009.

126

Bibliography

[89] M. Hayes, A. Walenstein, and A. Lakhotia. Evaluation of malware phy-
logeny modelling systems using automated variant generation, 2009.

[90] HBGary. Responder professional. http://forensicswiki.org/
wiki/HBGary_Responder_Professional.

[91] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and H. Yin.
Make it work, make it right, make it fast: Building a platform-neutral whole-
system dynamic binary analysis platform. In Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis, ISSTA 2014, 2014.

[92] X. Hu, S. Bhatkar, K. Griffin, and K. G. Shin. Mutantx-s: Scalable malware
clustering based on static features. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, USENIX ATC’13, pages 187–
198, Berkeley, CA, USA, 2013. USENIX Association.

[93] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits: Bypassing
kernel code integrity protection mechanisms. In Proceedings of the 18th
Conference on USENIX Security Symposium, 2009.

[94] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and K. Nakao. Malware be-
havior analysis in isolated miniature network for revealing malware‘s net-
work activity. In Proceedings of IEEE International Conference on Com-
munications, ICC 2008, Beijing, China, 19-23 May 2008, pages 1715–1721.
IEEE, 2008.

[95] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual -
Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C, Aug 2012.

[96] Intel Security. Hacking team’s "bad bios": A commercial rootkit
for uefi firmware? http://www.intelsecurity.com/
advanced-threat-research/blog.html.

[97] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and G. Vi-
gna. A static, packer-agnostic filter to detect similar malware samples. In
Proceedings of the 9th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, DIMVA’12, pages 102–122,
Berlin, Heidelberg, 2013. Springer-Verlag.

[98] Jake Williams and Alissa Torres. Add: Attention-deficit-disorder. https:
//code.google.com/p/attention-deficit-disorder/.

[99] James T. Bennett - FireEye. The Number of the Beast. https:
//www.fireeye.com/blog/threat-research/2013/02/
the-number-of-the-beast.html.

[100] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: Feature hashing mal-
ware for scalable triage and semantic analysis. In Proceedings of the 18th
ACM Conference on Computer and Communications Security, CCS ’11,
pages 309–320, New York, NY, USA, 2011.

[101] J. Jang, M. Woo, and D. Brumley. Towards automatic software lineage
inference. In Proceedings of the 22Nd USENIX Conference on Security,
SEC’13, pages 81–96, Berkeley, CA, USA, 2013. USENIX Association.

127

Bibliography

[102] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-
based "out-of-the-box" semantic view reconstruction. In Proceedings of the
14th ACM Conference on Computer and Communications Security, CCS
’07, 2007.

[103] Joanna Rutkowska. Bluepill. http://web.archive.org/web/
20080418123748/http://www.bluepillproject.org/.

[104] Joe Damato. A closer look at a recent privilege escalation bug
in Linux (CVE-2013-2094). http://timetobleed.com/
a-closer-look-at-a-recent-privilege-escalation-bug-in-linux-cve-2013-2094/.

[105] Joe Security LCC. Joebox. http://www.joesecurity.org/
joe-sandbox-technology.

[106] Jonathan Salwan. ROPgadget - Gadgets finder and auto-roper. http://
shell-storm.org/project/ROPgadget/.

[107] Joxean Koret. Zerowine. http://zerowine.sourceforge.net/.

[108] Kaspersky GReAT Team. Equation: The death star of malware
galaxy. http://securelist.com/blog/research/68750/
equation-the-death-star-of-malware-galaxy/, 2015.

[109] W. M. Khoo and P. Lio. Unity in diversity: Phylogenetic-inspired tech-
niques for reverse engineering and detection of malware families. SysSec
Workshop, pages 3–10, 2011.

[110] S. T. King, P. M. Chen, Y. min Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. Subvirt: Implementing malware with virtual machines. In In IEEE
Symposium on Security and Privacy, pages 314–327, 2006.

[111] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. Subvirt: Implementing malware with virtual machines. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, Oakland, CA,
May 2006.

[112] T. Koivunen. Sigbuster. http://www.teamfurry.com", 2009.

[113] T. Kornau. Return oriented programming for the arm architecture. In Mas-
ter’s Thesis - Ruhr-Universitat Bochum, 2009.

[114] J. Kornblum. Identifying almost identical files using context triggered piece-
wise hashing. Digital Investigation, 3, Supplement(0):91 – 97, 2006.

[115] J. D. Kornblum. Exploiting the rootkit paradox with windows memory anal-
ysis. International Journal of Digital Evidence, 5(1), Fall 2006.

[116] J. D. Kornblum. Using every part of the buffalo in windows memory analy-
sis. Digital Investigation, 4(1):24–29, March 2007.

[117] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson. Gq: Practical
containment for measuring modern malware systems. In Proceedings of the
ACM Internet Measurement Conference (IMC), Berlin, Germany, November
2011.

128

Bibliography

[118] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic
worm detection using structural information of executables. In Proceedings
of the 8th International Conference on Recent Advances in Intrusion Detec-
tion, RAID’05, pages 207–226, Berlin, Heidelberg, 2006. Springer-Verlag.

[119] G. Kurtz. Operation Aurora hit Google, Others. http://web.
archive.org/web/20100327181927/http://siblog.
mcafee.com/cto/operation-\%E2\%80\%9Caurora\%E2\
%80\%9D-hit-google-others, 2010.

[120] E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis, and S. Ioannidis.
You Can Type, but You Can’t Hide: A Stealthy GPU-based Keylogger. In
Proceedings of the 6th European Workshop on System Security. EuroSec,
Prague, Czech Republic, April 2013.

[121] N. Landwehr, M. Hall, and E. Frank. Logistic model trees. In Machine
Learning: ECML 2003, pages 241–252. Springer Berlin Heidelberg, 2003.

[122] Lastline. Lastline. https://www.lastline.com/platform/
security-breach-detection.

[123] K.-S. Lee. Volafox. ://github.com/n0fate/volafox.

[124] C. Leita. SGNET: automated protocol learning for the observation of ma-
licious threats. PhD thesis, University of Nice-Sophia Antipolis, December
2008.

[125] C. Leita, U. Bayer, and E. Kirda. Exploiting diverse observation perspec-
tives to get insights on the malware landscape. In DSN 2010, 40th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks,
June 2010.

[126] C. Leita and M. Dacier. SGNET: a worldwide deployable framework to
support the analysis of malware threat models. In 7th European Dependable
Computing Conference (EDCC 2008), May 2008.

[127] C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol
dependencies and reaction to 0-day attacks with ScriptGen based honeypots.
In 9th International Symposium on Recent Advances in Intrusion Detection
(RAID), September 2006.

[128] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an automated script gen-
eration tool for honeyd. In 21st Annual Computer Security Applications
Conference, December 2005.

[129] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Ki-
ayias. Scalability, fidelity and stealth in the drakvuf dynamic malware anal-
ysis system. In Proceedings of the 30th Annual Computer Security Applica-
tions Conference, 2014.

[130] B. Liang, W. You, W. Shi, and Z. Liang. Detecting stealthy malware with
inter-structure and imported signatures. In Proceedings of the 6th ACM

129

Bibliography

Symposium on Information, Computer and Communications Security, ASI-
ACCS ’11, pages 217–227, New York, NY, USA, 2011. ACM.

[131] M. Ligh. Using IDT for VMM Detection. http://www.mnin.org/
?page=vmmdetect.

[132] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic Protocol Format Re-
verse Engineering through Context-Aware Monitored Execution. In 15th
Annual Network and Distributed System Security Symposium, San Diego,
CA, February 2008.

[133] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph: Brute force
scanning of kernel data structure instances using graph-based signatures. In
NDSS, 2011.

[134] Z. Lin and X. Zhang. Deriving input syntactic structure from execution. In
16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Atlanta, GA, USA, November 2008.

[135] M. Lindorfer, A. Di Federico, F. Maggi, P. Milani Comparetti, and
S. Zanero. Lines of Malicious Code: Insights Into the Malicious Software
Industry. In Proceedings of the 28th Annual Computer Security Applications
Conference (ACSAC), 2012.

[136] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. Detecting
Environment-Sensitive Malware. In Proceedings of the 14th International
Conference on Recent Advances in Intrusion Detection (RAID), 2011.

[137] T. Liston and E. Skoudis. On the cutting edge: Thwarting vir-
tual machine detection. http://handlers.sans.org/tliston/
ThwartingVMDetection_Liston_Skoudis.pdf, 2006.

[138] K. Lu, D. Zou, W. Wen, and D. Gao. Packed, printable, and polymorphic
return-oriented programming. In Recent Advances in Intrusion Detection -
14th International Symposium, RAID 2011.

[139] K. Lu, D. Zou, W. Wen, and D. Gao. derop: Removing return-oriented
programming from malware. In Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, 2011.

[140] Luka Milkovic. Dementia. https://code.google.com/p/
dementia-forensics/.

[141] Mandiant. Memoryze. https://www.mandiant.com/resources/
download/memoryze.

[142] L. Martignoni, A. Fattori, R. Paleari, and L. Cavallaro. Live and Trustworthy
Forensic Analysis of Commodity Production Systems. In Proceedings of the
13th International Symposium on Recent Advances in Intrusion Detection
(RAID), Sept. 2010.

[143] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi. Testing system
virtual machines. In Proceedings of the 19th international symposium on

130

Bibliography

Software testing and analysis, ISSTA ’10, pages 171–182, New York, NY,
USA, 2010. ACM.

[144] McAfee. Net losses: Estimating the global cost of cybercrime.
http://www.mcafee.com/mx/resources/reports/
rp-economic-impact-cybercrime2.pdf.

[145] Microsoft. Detorus. http://research.microsoft.com/en-us/
projects/detours/.

[146] Mikhail Utin. A myth or reality bios-based hy-
pervisor threat. http://blog.deepsec.net/
deepsec-2014-talk-a-myth-or-reality-bios-based-hypervisor-threat/.

[147] MORGAN MARQUIS-BOIRE, CLAUDIO GUARNIERI,
AND RYAN GALLAGHER. Secret malware in euro-
pean union attack linked to u.s. and british intelligence.
https://firstlook.org/theintercept/2014/11/24/
secret-regin-malware-belgacom-nsa-gchq/, 2014.

[148] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for
malware analysis. In Proceedings of the 2007 IEEE Symposium on Security
and Privacy, SP ’07, pages 231–245, Washington, DC, USA, 2007. IEEE
Computer Society.

[149] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for
malware analysis. In Proceedings of the 2007 IEEE Symposium on Security
and Privacy, SP ’07, 2007.

[150] P. Movall, W. Nelson, and S. Wetzstein. Linux physical memory analy-
sis. In Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ATEC ’05, 2005.

[151] T. Müller and M. Spreitzenbarth. Frost: Forensic recovery of scrambled
telephones. In Proceedings of the 11th International Conference on Applied
Cryptography and Network Security, ACNS’13.

[152] S. Needleman and C. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol.
48(3):443-53, 1970.

[153] Nergal. Advanced return-into-lib(c) exploits. http://phrack.org/
issues/58/4.html.

[154] Nguyen Anh Quynh. OptiROP: the art of hunting ROP
gadgets. https://media.blackhat.com/us-13/
US-13-Quynh-OptiROP-Hunting-for-ROP-Gadgets-in-Style-WP.
pdf.

[155] Nicolas Economou - CoreSecurity. Agafi (Advanced Gadget Finder).
http://www.coresecurity.com/corelabs-research/
publications/agafi-advanced-gadget-finder.

131

Bibliography

[156] pakt. ropc. https://gdtr.wordpress.com/2013/12/13/
ropc-turing-complete-rop-compiler-part-1/.

[157] R. Paleari, L. Martignoni, G. Fresi Roglia, and D. Bruschi. A fistful of
red-pills: How to automatically generate procedures to detect CPU emula-
tors. In Proceedings of the 3rd USENIX Workshop on Offensive Technologies
(WOOT), Montreal, Canada. ACM.

[158] G. Palmer. A road map for digital forensic research. In Report From the
First Digital Forensic Research Workshop (DFRWS), 2001.

[159] Patrick Stewin and Iurii Bystrov. Understanding DMA Malware. In Pro-
ceedings of the 9th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment.

[160] Patrick Stewin and Iurii Bystrov. Understanding DMA Malware. In Pro-
ceedings of the 9th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, 2012.

[161] G. Pék, B. Bencsáth, and L. Buttyán. nether: In-guest detection of out-
of-the-guest malware analyzers. In Proceedings of the Fourth European
Workshop on System Security, EUROSEC ’11, 2011.

[162] N. L. Petroni, J. Aaron, W. Timothy, F. William, and A. Arbaugh. Fatkit:
A framework for the extraction and analysis of digital forensic data from
volatile system memory. Digital Investigation, 3, 2006.

[163] M. Polychronakis and A. D. Keromytis. Rop payload detection using specu-
lative code execution. 2013 8th International Conference on Malicious and
Unwanted Software: "The Americas" (MALWARE), 2011.

[164] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7):412–421, July 1974.

[165] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin. Manipulating semantic
values in kernel data structures: Attack assessments and implications. 2013.

[166] D. Quist and V. Smith. Detecting the Presence of Virtualmachines Using
the Local Data Table. http://www.offensivecomputing.net/
files/active/0/vm.pdf.

[167] A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi. When Hard-
ware Meets Software: a Bulletproof Solution to Forensic Memory Acqui-
sition. In Proceedings of the 28th Annual Computer Security Applications
Conference (ACSAC), Orlando, Florida, USA, December 2012.

[168] J. Rutkowaska. Red pill... or how to detect vmm using (almost) one
cpu instruction. http://www.invisiblethings.org/papers/
redpill.html, 2004.

[169] J. Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU
instruction. http://web.archive.org/web/20070911024318/
http://invisiblethings.org/papers/redpill.html,
2004.

132

Bibliography

[170] J. Rutkowska. Subverting Vista Kernel for Fun and Profit. Black Hat USA,
aug 2006.

[171] J. Rutkowska. Beyond The CPU: Defeating Hardware Based RAM acquisi-
tion. Black Hat USA, 2007.

[172] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code
clones in binary executables. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis, ISSTA ’09, 2009.

[173] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu. Dscrete: Automatic ren-
dering of forensic information from memory images via application logic
reuse. In 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, Aug. 2014.

[174] sashs. ropper. https://scoding.de/ropper/.

[175] A. Schuster. Ptfinder. http://computer.forensikblog.de/en/
2007/11/ptfinder-version-0305.html.

[176] Sebastian Krahmer. x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique. http://users.suse.com/
~krahmer/no-nx.pdf.

[177] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervisor to
provide lifetime kernel code integrity for commodity oses. In Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles,
SOSP ’07, pages 335–350, New York, NY, USA, 2007. ACM.

[178] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of CCS 2007, Oct. 2007.

[179] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of CCS 2007, 2007.

[180] Sherri Sparks and Jamie Butler. Shadow walker: Raising the bar for win-
dows rootkit detection, 2005. http://phrack.org/issues/63/8.
html.

[181] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie,
M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,
and K. Kato. Bitvisor: a thin hypervisor for enforcing i/o device security. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’09, pages 121–130, New York,
NY, USA, 2009. ACM.

[182] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and
Processes (The Morgan Kaufmann Series in Computer Architecture and De-
sign). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

[183] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained ad-
dress space layout randomization. In Proceedings of the 2013 IEEE Sympo-
sium on Security and Privacy, SP ’13, 2013.

133

Bibliography

[184] Solar Designer. Openwall. http://www.openwall.com/linux/
README.shtml.

[185] B. Stancill, K. Z. Snow, N. Otterness, F. Monrose, L. Davi, and A.-R.
Sadeghi. Check my profile: Leveraging static analysis for fast and accu-
rate detection of rop gadgets. In 16th Research in Attacks, Intrusions and
Defenses (RAID) Symposium, Oct. 2013.

[186] J. Stewart. pmodump - truman project. http://www.secureworks.
com/cyber-threat-intelligence/tools/truman/.

[187] M. Suiche. Moonsols windows memory toolkit. http://www.
moonsols.com/windows-memory-toolkit.

[188] J. Sylve. Lime - linux memory extractor. https://github.com/
504ensicslabs/lime.

[189] Symantec. Internet security threat report - april 2015. https://www4.
symantec.com/mktginfo/whitepaper/ISTR/21347932_
GA-internet-security-threat-report-volume-20-2015-social_
v2.pdf.

[190] Symantec. The Stuxnet worm. http://go.symantec.com/
stuxnet.

[191] Symantec. W32.Duqu, the precursor to the next Stuxnet.
http://go.symantec.com/duqu.

[192] Symantec. W32.Koobface. http://www.symantec.
com/security_response/writeup.jsp?docid=
2008-080315-0217-99.

[193] Symantec Security Response. Regin: Top-tier espionage tool enables
stealthy surveillance. http://www.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/
regin-analysis.pdf, 2014.

[194] The Guardian. Sony hack: sacked employees could be to blame, researchers
claim. http://www.theguardian.com/film/2014/dec/30/
sony-hack-researchers-claim-sacked-employees-could-be-to-blame.

[195] The PaX Team. Pageexec. https://pax.grsecurity.net/docs/
pageexec.txt.

[196] The PaX Team. Segmexec. https://pax.grsecurity.net/docs/
segmexec.txt.

[197] The Wall Street Journal. Home depot hackers exposed 53 mil-
lion email addresses. http://www.wsj.com/articles/
home-depot-hackers-used-password-stolen-from-vendor-1415309282.

[198] VirusTotal - Google. Virustotal file statistics. https://www.
virustotal.com/en/statistics/.

134

Bibliography

[199] S. Vogl, J. Pfoh, T. Kittel, and C. Eckert. Persistent data-only malware:
Function hooks without code. In Proceedings of the 21th Annual Network
& Distributed System Security Symposium (NDSS), Feb. 2014.

[200] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage. Scalability, fidelity, and containment in
the Potemkin virtual honeyfarm. ACM SIGOPS Operating Systems Review,
39(5):148–162, 2005.

[201] G. Wicherski. pehash: A novel approach to fast malware clustering. In
Proceedings of the 2Nd USENIX Conference on Large-scale Exploits and
Emergent Threats: Botnets, Spyware, Worms, and More, LEET’09, pages
1–1, Berkeley, CA, USA, 2009. USENIX Association.

[202] G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirda. Automatic
network protocol analysis. In 15th Annual Network and Distributed System
Security Symposium (NDSS’08), 2008.

[203] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A Generic Ap-
proach to Automatic Deobfuscation of Executable Code. In Proceedings of
the IEEE Symposium on Security and Privacy, May 2015.

[204] Yan, Lok Kwong and Jayachandra, Manjukumar and Zhang, Mu and Yin,
Heng. V2E: Combining Hardware Virtualization and Softwareemulation
for Transparent and Extensible Malware Analysis. In Proceedings of the 8th
ACM SIGPLAN SIGOPS Conference on Virtual Execution Environments,
VEE12, New York, NY, USA, 2012. ACM.

[205] K. Yoshioka, T. Kasama, and T. Matsumoto. Sandbox analysis with con-
trolled internet connection for observing temporal changes of malware be-
havior. In 2009 Joint Workshop on Information Security (JWIS 2009), 2009.

[206] K. Zetter. A google site meant to protect you is helping
hackers attack you. http://www.wired.com/2014/09/
how-hackers-use-virustotal/, 2014.

[207] L. Zhiqiang, R. Junghwan, W. Chao, Z. Xiangyu, and X. Dongyan. Discov-
ering semantic data of interest from un-mappable memory with confidence.
In Proceedings of the 19th Network and Distributed System Security Sym-
posium, NDSS’12, 2012.

[208] D. A. D. Zovi. Hardware Virtualization Rootkits. Black Hat USA, aug 2006.

135

