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Abstract—A low-latency, parameter modulation-
estimation feedback protocol for wideband channels
is introduced for both pure line-of-sight and more
general fading channels with several degrees of freedom.
One round of the protocol consists of a data phase
and a control phase and uses non-coherent detection.
Asymptotic optimality in energy efficiency of the protocol
is analyzed and an upper bound on the distortion level
is derived for two-rounds. The proposed scheme as well
as known one-way schemes are compared with classical
and very recent lower-bounds. Both the lower-bounds
and performance evaluation of the feedback protocol
are extended to a multi-channel fading model. The
improvement of the feedback protocol over one-shot
transmission is shown to be very significant on both
line-of-sight and fading channels. 1

Index Terms—Joint source-channel coding, parameter
modulation-estimation, non-coherent detection, distor-
tion

I. INTRODUCTION

In this work, we consider simple parameter
modulation-estimation strategies applicable to future
wireless sensor networks. As an example, the sensor
could be sporadically sending samples of analog in-
formation (temperature, magnetic field, current, speed,
etc.) to a collecting node. The sensors could be seen
as analog-to-digital converters which are distributed in
space and use a wireless medium to relay their samples
to the network. Such traffic is very low-rate, practically
zero-rate, since in the majority of cases the sampling
rate is very low (a few samples per second) and
the available system bandwidth is very large (tens to
hundreds of megahertz). The communication link from
the samplers to the network often requires low-latency.
The latter could arise for two reasons, either reactivity
of an actuating element in the network or to minimize
energy consumption in the sensing node itself by using
discontinuous transmission and reception. Here the
latency of the transmission is directly related to the
“on”-time of communication circuitry of the sensing

1This paper was presented [in part] at EUSIPCO 2012, European
Signal Processing Conference, August, 27-31, 2012, Bucharest, and
SCC 2013, 9th International ITG Conference on Systems, Commu-
nications and Coding, January 21-24, 2013, Munich, Germany.

node. This example captures the essense of some so-
called machine-type communications, a term which
refers to machines including sensors interconnected
via cellular networks and exchanging information au-
tonomously. It is widely believed that this sort of traffic
will at least be shared with conventional voice and
data communications on current and evolving cellular
communication standards. Depending on the evolving
usage scenarios, the amount of traffic produced by
such low-rate devices could even vastly surpass that of
conventional human communications. The purpose of
this paper is to study modulation strategies for analog
samples applicable to the wireless medium.

Imagine the simplest scenario of one sensor node
tracking a slowly time-varying random sequence and
sending its observations to a receiver over a wireless
channel. The source is denoted by a random variable U
of zero mean and variance σ2

u = 1, representing a sin-
gle realization of the random sequence at a particular
time t. The sensor should be seen as a tiny device with
strict energy constraints. The communication channel
between the sender and the receiver is an additive
white Gaussian noise channel. An important question
is how to efficiently encode the random variable U for
transmission, and what performance can be achieved
upon reconstruction as a function of the energy used
to achieve this transmission.

For this scenario, the slowly time-varying charac-
teristic of the source has two main impacts on the
way the coding problem should be addressed: firstly,
the time between two observations is long, and the
sensor should not wait for a sequence of observations
to encode it. Therefore, the sensor will encode only
one observation before sending it through the channel.
Secondly, for each source realization the channel can
potentially be used over many signal dimensions, for
instance by encoding over a wide-bandwidth in the
frequency-domain. This corresponds to the case for
sensors connected directly to fourth-generation cellular
networks. Hence, we can reasonably assume that there
is no constraint on the dimensionality of the channel
codebook. The latter amounts to saying that very low-
rate codes should be used.
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Fig. 1. Single-source Problem

A. Addressed Problem and its Background

The single-source model as shown in Figure 1 is
described as follows. An encoder maps one realization
of the source U into Sm with a dimension of N
where m(U) represents the source message. We make
use of causal feedback so that the encoder may also
depend on past channel outputs. Sm is then sent
across the channel corrupted by a white Gaussian
noise sequence Z, and is received as Y. The receiver
is a mapping function which tries to construct an
estimate Û of U given Y. The fidelity criterion that
we wish to minimize is the MSE distortion defined as
D , E[(U − Û)2], under the mean energy constraint
E[||Sm||2] ≤ E .

It is well-known that the linear encoder (i.e. Sm =√
EU ) achieves the best performance under the mean

energy constraint for the special case N = 1 [1]–[3]
and normally-distributed U . In fact, a lower bound on
the distortion over all possible encoders and decoders,
both with and without a feedback link, is easily derived
in [1] using classical information theory, and given by

Dg ≥ e−2E/N0 (1)

where N0/2 is the channel noise per dimension. Note
that, the form of (1) is adapted to a discrete-time
complex Gaussian channel with noise variance N0/2
to make the comparisons easier with lower-bounds
to be introduced in the upcoming section. Goblick’s
information theoretic bound given above was derived
through defining the channel capacity and the rate-
distortion function in terms of the channel SNR, more
precisely the author obtained the minimum distortion
in estimating the source message as a function of the
channel SNR which leads to the output SNR in a
continuous-time channel with limited bandwidth. At
the end of the procedure the reconstruction error is
composed solely by the quantization process applied
to the source. The e−E/3N0 behaviour for Goblick’s
digital scheme was described in [4], [5]. Figure 2 is
a pictorial representation of Goblick’s scheme where
the B bit uniform quantization is followed by 2B-ary
orthogonal modulation to transmit the source U using
the energy E which achieves the same performance
with [6]. Several schemes can achieve e−E/3N0 both
with and without coherent detection and for both nor-
mally and uniformly distributed U . The importance of
Goblick’s work [1] comes from the method he chose.
To the best of our knowledge the first digital scheme

Fig. 2. Goblick’s Digital Scheme

for unlimited bandwidth based on scalar quantization
and orthogonal modulation was described by Goblick
in [1], which is also the quantization/modulation strat-
egy used in this paper, and the performance loss with
respect to (1) was heuristically argued to be on the
order of 6-9 dB. Unlike Goblick and the achievable
scheme proposed in this paper, Wozencraft-Jacobs use
[6, pg:623-624] pulse position modulation (PPM).

A comparison in [5] with best-known joint medium-
resolution source-channel codes [7] for high channel
to source bandwidth ratios shows that simple hybrid
yet separated joint-source channel techniques can out-
perform non-linear mappings. Such optimization for a
different power constraint can be found in the literature
for example in [8] and [9], where the authors try to
bound the optimal number of quantization bits that
minimizes distortion.

For the case of a point-to-point channel without
feedback, the most recent and significant studies are
presented by Merhav in [10], [11] for AWGN chan-
nels and discrete-memoryless channels, respectively.
In [10], [12] the best-known lower bound for the
reconstruction fidelity without feedback, with coherent
detection and unlimited channel bandwidth behaves as
e−E/2N0 for uniformly-distributed U where E is the
energy used for transmission of U . In fact, the author
achieves this lower-bound on the MSE through the
threshold he defines on the maximum exponential rate
of error probability decay in estimating |U − Û | rather
than concentrating on the MSE as the performance
criterion itself. In order to prove this threshold on
the error probability of |U − Û |, he adapts the well-
known Ziv-Zakai bound [13] to the case with M
hypotheses instead of 2 and the derivation proceeds
as the Chazan-Zakai bound [14]. In a quite recent
study [11], the author provides both upper and lower
bounds for the best achievable exponential decay of
E|Û − U |m, m ≥ 0 in a discrete memoryless
channel.

In feedback systems, for example cellular networks,
we could clearly imagine the use of reliable feedback
from the down-link, with vanishing probability of
error, i.e. perfect feedback. The main drawback is the
requirement of energy for receiver which impacts the
overall energy budget of the sensing node. Although it
is difficult to model, protocol latency becomes an issue
for overall energy consumption. Some of the earliest
work in analog transmission of low-bandwidth sources
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assumed feedback with the presence of the feedback
signal f(Y). Through communication in the presence
of feedback, stochastic control approaches [15], [16]
can achieve, at least asymptotically, the lower bound
on distortion in (1). This comes at the expense of
delay, since, as in many adaptive systems, the feedback
system must converge to minimize distortion. It is
reasonable to assume that both can be extended to
non-coherent detection and even broadband frequency-
selective channels for diversity. However, the under-
lying estimation strategies will quickly become quite
involved.

As mentioned above following Goblick’s original
work, with an addition of a noiseless feedback link
to the system, using coherent detection and unlimited
channel bandwidth, the classical closed-loop schemes
described in [15] asymptotically achieves (1). In com-
parison to [1], the proposed scheme is differentiated
by not being quantized neither coded. It should be
noted that both [1] and [15] consider unlimited channel
bandwidth for a normally distributed source and coher-
ent detection but unlike Goblick’s digital scheme non-
coherent detection is not applicable to [15]. As a sec-
ond drawback, the scheme requires perfect feedback
to achieve (1). The paper differs from Schalkwijk’s
previous work [17] with respect to the source statistics
where the author uses uniform distribution with band-
limited signals and feedback.

An example of a modern feedback-scheme for
transmitting small amounts of sporadic information
is the random-access procedure [18] in LTE systems,
where a 6-bit message is conveyed using an orthogo-
nal signal set occupying a large physical bandwidth
(PRACH physical random access channel). The so-
called random-access response contains the message
hypothesized by the decoder, among other informa-
tion, which serves either as an acknowledgment or
an indication to retransmit. Although simplified, such
a scheme was originally studied in [19] by Ya-
mamoto which is an adaptation of the earlier work by
Schalkwijk-Barron [20]. Note that, in these works the
analysis with non-coherent detection is not provided.

B. Contributions and Outline
One of the main contributions of this work is to

analyze the use of such a retransmission protocol for
the transmission of scalar quantized analog samples
in terms of the energy-efficiency as a function of
the reconstruction fidelity. It is shown that there is
a very significant benefit at the expense of feedback
in comparison to a one-shot transmission of the pa-
rameter. The efficient use of such a protocol calls for
joint optimization of the parameter quantization and
modulation. It is important to note that in our scenario
we are driven to assume unknown channels, i.e. non-
coherent reception, in the formulation of the problem.

Since the information content is very small, additional
overhead for channel estimation is not warranted and
thus, it is unreasonable to assume the channel state
(i.e. channel amplitude and phase) be known to either
the transmitter or receiver. The analysis is carried
out for line-of-sight and non line-of-sight channels
and we consider both cases of perfect and imperfect
feedback. We furthermore provide new lower-bounds
on the performance of such feedback-based schemes as
well as numerical evaluation of recent bounds [10] for
one-shot transmission. These bounds allow us to assess
how close the proposed schemes are to fundamental
limits.

In the upcoming section, we describe the system
model of the addressed problem. In Section III, we
introduce a low-latency feedback protocol for a single
source transmitting analog information over a non-
coherent AWGN channel. In spirit, this is very similar
to the first phase of the LTE random-access procedure
described above. The analytical exponential behavior
of the protocol with respect to the reconstruction error
for estimating the source-message is observed and
discussed subject to the energy used by the protocol.
This is followed by the discussion regarding the effect
of the feedback error on the distortion-energy trade-
off made in Subsection III-B. Additionally, for the
case of one-shot transmission without feedback, in
Subsection III-C we extend Merhav’s recent lower-
bounds derived in [10] for the problem addressed
here, in order to provide the tightest numerical lower-
bounds on performance. We proceed with the nu-
merical analysis for a more general wireless channel
model in Section IV. In Subsection IV-A, we provide
adaptations of Goblick’s and Merhav’s lower-bounds
for the more general fading channel models. The
numerical analysis results for a chosen configuration
of the fading channel model are given in Section V
together with the results of the non-coherent AWGN
channel. The numerical results are also contrasted
with the best-known theoretical lower-bounds on the
reconstruction fidelity. Comparisons between the two
channel models are provided in Section VI for both
single-round transmission without feedback in addition
to the improvement achieved with two rounds of the
novel protocol.

II. SYSTEM MODEL

In this paper, we consider a general multi-channel
wireless model where the channel amplitude and phase
correspond to that of a multi-dimensional Ricean chan-
nel with a ratio of the non-line-of-sight amplitude
total signal amplitude α. As explained in the previous
section, the goal is to bound the reconstruction error
in estimating the analog source message sent over a
wireless channel exploiting a feedback link between
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the decoder and encoder. A source sample quantized
to B bits is encoded into one of 2B N -dimensional
messages Sm, with m = 1, 2, · · · , 2B and each mes-
sage is transmitted with equal energy E . The output
signal is given for this channel as

Y′l =
√
E/L′

(√
(1− α)ejΦl +

√
αhl

)
Sm + Zl,

(2)
for l = 0, · · · , L − 1 where h ∼ NC(0, 1) which
have the desired statistics in both the frequency and
time dimensions and α is a constant defined in the
range [0, 1]. The random phase sequence Φ is assumed
to be i.i.d. with a uniform distribution defined on
[0, 2π). The N -dimensional vector noise sequence Z
is complex, circularly symmetric with zero-mean and
autocorrelation N0IN×N . Here L represents the total
number of statistically independent observations or
diversity order of the transmitted signals and L′ ≤ L
denotes the number of observations over which the
average received energy is spread. To a first-order
approximation, L′ represents the number of coherence
bandwidths and L/L′ would represent the number
of receive antennas. For example, L = 4, L′ = 2
would correspond to a dual-antenna receiver with
two coherence bandwidths. Clearly, the channel model
given above by (2) boils down to an AWGN channel
for α = 0 and L′ = 1 with the N -dimensional channel
observation given by

Y =
√
EejΦSm + Z (3)

Throughout the paper, the general model given by
(2) and the second model (3) will be referred as the
fading channel and the AWGN channel, respectively.
The following section will introduce a retransmission
feedback protocol based on the AWGN channel and
provide an analytical evaluation of its asymptotic per-
formance. Due to its complexity the performance of
the fading channel will be provided in the following
Section IV only through numerical analysis.

III. ASYMPTOTIC PERFORMANCE OF A NOVEL
FEEDBACK PROTOCOL WITH NON-COHERENT
DETECTION ON LINE-OF-SIGHT CHANNELS

A. Reliable feedback without energy cost

Let us consider now a protocol applied to the trans-
mission of isolated analog samples with non-coherent
reception. This will serve as a motivating example
for the use of feedback with low-latency achieving
asymptotically near-optimal distortion performance. In
the analysis, we first focus on a simple non-coherent
AWGN channel (3) with a one dimensional source
letter.

The protocol consists of two phases, a data phase
and a control phase and proceeds as shown in Figure
3. In our adaptation the two phases compose one

Fig. 3. Pictorial representation of the retransmission protocol.

round of the protocol.During the data phase, the source
message is quantized, transmitted and its estimate is
fed back from the receiver. The channel observation
(3) becomes

YD =
√
ED,iejΦiSm + ZD (4)

where the subscripts D and i represent the data phase
and the ith round of the protocol, respectively. This
type of transmission can exactly model any low-rate
transmission strategy based on orthogonal modulation.
For instance, to further put this in the context of the
random-access procedure LTE systems, the Sm can
represent the so-called PRACH preamble [21], where
m = 0, 1, · · · , 63, and conveys the 6-bit message
(MSG1) described in Section I. The preamble in LTE
is a Zadoff-Chu roots-of-unity sequence which usually
occupies N = 839 signaling dimensions for B = 6
information bits. Orthogonality over time-dispersive
channels is guaranteed through up to 64 cyclic time-
shifts of Sm coupled with the use of a cyclic extension.
For very dispersive channels (i.e. with delay-spreads
longer than the cyclic-shift between preambles), fewer
than 64 (and hence longer) cyclic time-shifts can
be used at the expense of using multiple preamble
sequences which are quasi-orthogonal.

After the transmission of the source message, the
receiver feeds m̂ back to the encoder via the noiseless
feedback link. Let the corresponding error event be
denoted by Ei. Square-law detection of the received
signal produces the two possible decision variables
assuming m is transmitted as

Um′ = |〈Y1,Sm〉|2

= |
√
ED,1 +Nm|2 + |Nm′ |2. (5)

Here 〈., .〉 denotes the inner product and Nm and Nm′
are defined as complex-valued zero-mean Gaussian
random variables with a variance of N0. |

√
ED,1 +

Nm|2 and |Nm′ |2 are random variables with non-
central chi-square distribution (noncentrality parame-
ter ED,1) and central chi-square distribution, respec-
tively. According to (5), the receiver chooses m̂ =
argmaxm̂′ Um′ .
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After the data phase, the encoder enters the control
phase and informs the receiver whether or not its
decision was correct via a signal

√
EC,iSC of energy

EC,i if the decision is incorrect and 0 if the decision
was correct. EC,i here denotes the energy of the control
phase in the ith round since during the control phase
the receiver observes YC =

√
EC,iAejΦiSC + ZC

where A takes the value 0 for an ACK and 1 for a
NACK. Let YC = YC

HSC and assume a detector
of the form Â = I

(
|YC |2 > λEc,i

)
. Here YH

C , I(·)
and λ denote the complex conjugate of YC , the
indicator function and a threshold to be optimized
that is confined to an interval [0, 1), respectively.
Ee→c,i corresponds to an uncorrectable error since
it acknowledges an error as correct decoding and
Ec→e,i represents a mis-detected acknowledged error
declaring correct decoding as incorrect. If the receiver
correctly decodes the control signal and it signals that
the data phase was correct after the completion of the
first round, with probability Pr(Ec1)(1−Pr(Ec→e,1)),
the protocol halts, otherwise another identical round
is initiated by the receiver. The retransmission prob-
ability, i.e. the probability of going on for a second
round, is Pr(E1)(1 − Pr(Ee→c,1)). This on-off sig-
naling guarantees that with probability Pr(Ec1)(1 −
Pr(Ec→e,1)) the transmitter will not expend more than
ED,1 joules, which should be close to one. After each
data phase, the receiver computes the ML or MAP
message m̂i(Y1, · · · ,Yi) based on all observations
up to round i with error event Ei. The same control
phase is repeated and the protocol is terminated after
two rounds.

The error probability at the end of the second round
is defined and consequently bounded by

Pe = Pr(E1) Pr(Ee→c,1)+

Pr(E1)(1− Pr(Ee→c,1)) Pr(E2|E1)+

(1− Pr(E1)) Pr(Ec→e,1) Pr(E2|Ec1)

(a)

≤ Pr(E1) Pr(Ee→c,1) + Pr(E2). (6)

In step (a) the conclusive expression is obtained
through bounding Pr(Ec→e,1) and (1 − Pr(Ee→c,1))
by 1. The probability of an uncorrectable error in round
i, which is defined as Pr

(
|
√
EC,i + Zc|2 ≤ λEc,i

)
, is

obtained as

Pr(Ee→c,i) = 1−Q1

(√
2EC,i
N0

,

√
2λEC,i
N0

)
, (7)

where Q1(α, β) is the first-order Marcum-Q function
and ZC = SHCZ is a circularly-symmetric Gaussian
zero-mean random variable with variance N0. Fur-
thermore, we have the recent bound on the Q1(α, β)
for α > β from [22, eq:4] which is very useful for

bounding (7) as

Pr(Ee→c,i) ≤ 1/2 exp

(
− (
√
λ− 1)2EC,i
N0

)
. (8)

The probability of a mis-detected acknowledged error
is obtained as

Pr(Ec→e,i) = Pr
(
|ZC |2 > λEC,i

)
= e−

λEC,i
N0 . (9)

Let Y(2) denote the output signal observed in the
second round, the second round decision variables can
be obtained cumulatively through

U
(2)
m′ = Um′ + | < Y(2),Sm > |2. (10)

The receiver chooses m̂ = argmaxm̂′ U
(2)
m′ over all

possible sequences as in the first round. The probabil-
ity of error for binary orthogonal signaling is defined
in [23, eq:12.1-24] as

P2(j) ≤ 1

22j−1
e−γ/2

j−1∑
n=0

cn

(γ
2

)n
(11)

where cn = 1/n!
∑j−1−n
k=0

(
2j − 1

k

)
and γ represents

the signal to noise ratio. The probability of making an
error on a particular round j, Pr(Ej) ≤ 2BP2(j) can
be derived using (11) and given for the first and the
second rounds by

Pr(E1) ≤ 2B−1e−
ED,1
2N0 , (12)

Pr(E2) ≤ 2B−3

(
1 + 3

ED,1 + ED,2
N0

)
e−
ED,1+ED,2

2N0 .

(13)
Naturally, (12) and (13) are obtained using the first
round decision variables (5) and the second round
decision variables (10), respectively.

The reconstruction error of the source message
is obtained by calculating the mean squared error
distortion through D = Dq(1 − Pe) + DePe where
Pe, Dq and De represent the total probability of error,
the quantization distortion and the MSE distortion for
the case where an error was made, respectively. For a
uniform source U on (−

√
3,
√

3) (i.e. a source with
zero mean and unit variance) the distortion is bounded
by

D (E , N0, N, λ) ≤ 2−2B(1− Pe) + 2Pe. (14)

A detailed derivation of the distortion terms in (14)
is provided in Appendix VII-A. The following sub-
sections III-A1 and III-A2 discuss the asymptotic
performance of the bound given above by (14) in the
absence and presence of a feedback link in the system,
respectively.
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1) The performance of the protocol without feed-
back : For the case of N = 1, i.e. the protocol ter-
minates without retransmission, we obtain the bound
on the reconstruction error in estimating the message
of U as given in the following. The error probability
defined by (6) consists of the probability of making an
error in the first round Pr(E1) solely, since there is no
use of the control phase given that there will not be a
second round to retransmit the message. Thus, through

substitution of Pe ≤ 2B−1e−
ED,1
2N0 into the distortion

bound given by (14), we get the following bound

D (E , N0, 1, λ) ≤ e−2B ln 2 + eB ln 2−
ED,1
2N0 . (15)

By setting the two exponentials in (15) equal, it can

be seen that 2−B is in the same order of e−
ED,1
6N0 .

In other words, the upper bound (15) is obtained as

D (E , N0, 1, λ) ≤ 2e−
ED,1
3N0 for a single round.

2) The performance of the protocol exploiting feed-
back : At the end of the second round the resulting
distortion is given by

D (E , N0, 2, λ) ≤

e−2B ln 2 + e(B−1) ln 2−
ED,1
2N0
−(1+λ−2

√
λ)
EC,1
N0

+

(
1 + 3

ED,1 + ED,2
N0

)
e(B−2) ln 2−

ED,1+ED,2
2N0 (16)

through substituting (6) with (12), (13) and (8) for
i = 1 into the distortion (14). By equating the three
exponentials of (16) we have that EC,1 =

ED,2
2(1+λ−2

√
λ)

.
In order for Pr(E1) to be exponentially bounded away
from zero so that E can be made arbitrarily close to
ED,1, we define ED,2 = (2 − µ)ED,1 where µ is an
arbitrary constant satisfying µ ∈ (0, 2). Finally, we
obtain the bound on the distortion at the end of the
second round as given by

D (E , N0, 2, λ) ≤ e−
ED,1(1−µ/3)

N0

(
3 + 3

ED,1 + ED,2
N0

)
.

(17)
Note that, at the end of the second round, 2−B is in
the same order of e−

ED,1(1−µ/3)
2N0 .

The average energy used by the protocol after two
rounds is

E = ED,1 + Pr(E1)EC,1 + (Pr(E1)(1− Pr(Ee→c,1))

+ (1− Pr(E1)) Pr(Ec→e,1))ED,2. (18)

ED,2 here denotes the required energy for retransmis-
sion, which is the energy to be used in the data phase
of the second round. Clearly if Pr(E1) is small, then
the protocol achieves marginally more than ED,1 joules
per source symbol. It is worth mentioning that (1) and
the limiting expression in [15, eq.15] is achieved to
within a factor of 1/2 in the energy using only two
rounds and, moreover, with non-coherent reception.

Even though it is possible to obtain e−
2ED,1
N0 (i.e. twice

better than the performance in (17)) by changing the
relationship between the energies used in the different
rounds, this causes the average energy used by the
protocol to exceed ED,1, the energy used in the data
phase of the first round. As a result, the proposed
protocol cannot achieve the error exponent in (1).

In Section III-B, we investigate the case when
the feedback link from the decoder to the encoder
is not perfect and discuss the effect of a possible
error in feedback on the exponential behavior of the
reconstruction error. Note that, for modeling systems
where both the transmitter and receiver are subject to
the constraints on energy usage, one would have to
consider the energy consumption of the feedback link,
and we also shed some light on this issue in Section
III-B.

B. Unreliable feedback with and without energy cost
One might consider the case of an imperfect feed-

back link in the system described and analyzed
above. Let Pfb,1 denote the following error probability
Pr( ˆ̂m = m|m̂ 6= m) whereas Pfb,2 = Pr( ˆ̂m 6=
m|m̂ = m). Here m denotes the transmitted message,
m̂ and ˆ̂m denote the messages decoded at the receiver
and transmitter (after the feedback phase) respectively.
The overall energy used by the protocol in this scenario
becomes

E = ED,1 + EC,1 Pr(E1) (1− Pfb,1)

+ ED,2 [Pr(E1)(1− Pfb,1) + (1− Pr(E1))Pfb,2]
(19)

whereas the error probability at the end of the second
round yields (20) as given on the top of the next page.
In step (a) of (20), (1 − Pfb,1), (1 − Pr(Ee→c,1))
and Pr(Ec→e,1) is upper bounded by 1. Clearly, if
Pfb,1 = Pfb,2 = 0 this case boils down to the perfect
feedback scenario studied above and the expressions
on average energy (19) given above and the error
probability (20) yield (18) and (6), respectively. Now,
we apply the modified error probability given above to
the overall distortion term (14). In order to obtain the
same exponential behavior of e−ED,1/N0 like in (17),
Pfb,1 should be upper-bounded by the uncorrectable

error 1
2e−

(
√
λ−1)2EC,1
N0 given earlier by (7). With respect

to the energy consumption, we can say that in addition
to the error probability in the first round, vanishing
Pfb,2 guarantees the energy consumed by two rounds
of the protocol to be upper bounded by the energy
which is used by the data phase of the first round.

In order to characterize the amount energy required
for feedback we consider an explicit scheme for feed-
back. The receiver uses waveform Sm̂ on the feedback
link with energy Efb so that the received signal is

Yfb =
√
EfbejΦSm̂ + Z (21)
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Pe = Pr(E1)(1− Pfb,1) Pr(Ee→c,1) + Pr(E1)Pfb,1 + Pr(E1)(1− Pfb,1)(1− Pr(Ee→c,1)) Pr(E2|E1)

+ [(1− Pr(E1))(1− Pfb,2) Pr(Ec→e,1) + (1− Pr(E1))Pfb,2(1− Pr(Ee→c,1)] Pr(E2|Ec1)
(a)

≤ Pr(E1) (Pr(Ee→c,1) + Pfb,1) + Pr(E2). (20)

In order to determine if message m was received
correctly, the transmitter projects on waveform Sm
and computes the statistic U = |〈Yfb,Sm|2 which is
compared to a threshold λfbEfb where λfb ∈ [0, 1)s.
The important feedback probability is then

Pfb,1 = Pr
(
|〈Yfb,Sm〉|2 ≥ λfbEfb

)
= e−

λfbEfb
N0 .

(22)
As a result, in order for Pfb,1 to be on the same
exponential order as Pr(Ee→c,1) we require that Efb =
1−µ/2
λfb
Ed,1 and that the energy used by the protocol

approaches λfb+1−µ/2
λfb

Ed,1. The main conclusion is
that when we account for the energy consumption
required by the feedback link, it reduces the recon-
struction fidelity in a non-negligible manner under
a total energy constraint. In the primary application
scenario considered here, namely energy-constrained
sensors transmitting to cellular basestations, we be-
lieve that this does not pose a significant problem.
Basestations are power constrained and not short-
term energy constrained and if the aggregate downlink
traffic dedicated to feedback for sensors is an order
of magnitude less than other downlink services, this
energy consumption is insigificant. If such schemes
were to be used for transmission between energy-
constrained devices, the benefits may be significantly
reduced.

C. Lower-bounds on Distortion

The first set of bounds all rely on channel state
knowledge at the receiving end which clearly is also
a bound for the case where the channel phases are
unknown. The simplest bound is Goblick’s bound
which in our case of a uniform random variable on
[−
√

3,
√

3) is given by

DG(E , N0) ≥ 6

πe
e−

2E
N0 . (23)

For the case of a single round without feedback
we use the recent bounds from Merhav in [10]
which are adaptations of the Ziv-Zakai lower-bound
[13] on mean-squared error for parameter modulation-
estimation. We consider only the case of zero-rate
transmission in the context of [10] and adapt the results
to the normalized uniform distribution considered here.
We have the following bound on the distribution of

distortion

Pr

(
|U − Û | >

√
3

M

)
≥
√

3

M
Q

(√
E
N0

M

M − 2

)
.

(24)
The right-hand side of (24) is the weakest version of
Shannon’s lower-bound on M -ary transmission over
an AWGN channel [24, eq. 82]. Through the use of
the Chebyshev inequality, this results in the following
lower-bound on the distortion

DM1(E , N0) ≥ max
M

3
√

3

M3
Q

(√
E
N0

M

M − 2

)
. (25)

A tighter version makes use of Shannon’s best bound
[24, eq. 81] yielding

DM2(E , N0) ≥ max
M

6
√

3

M4

M∑
n=2

Q

(√
E
N0

n

n− 1

)
.

(26)
As suggested in [10, eq.23] an even tighter version
based on [24, eq. 81] is derived using (27) as given
on the top of the current page for any suitably large
M . All of the lower-bounds introduced above are
numerically evaluated in comparison to the proposed
transmission strategies in Section V.

1) Relationships with classical conjectures on opti-
mal signal sets: It is worth pointing out that certain
classical and more recent results on the validity of
conjectures on optimal signal sets are strongly related
to the problem at hand and could provide tighter
numerical lower-bounds on the reconstruction fidelity.
In Merhav’s bounding technique for the parameter
modulation-estimation problem he relies on zero-rate
lower-bounds on the probability of error (e.g. in [10,
eq. 21]) in characterizing the tail-function of the
estimation error at discrete values of its argument.
For coherent detection on AWGN channels, it was
long conjectured that the regular simplex was an
optimal signal set for M -ary signaling in M − 1
dimensions (i.e. without a bandwidth constraint). This
was disproved by Steiner in [25] for the so-called
Strong Simplex Conjecture which corresponds to the
average energy constraint used here. The so-called
Weak Simplex Conjecture is the classical conjecture
[26] for equal-energy signaling which still has not
been disproved and is valid for M = 2, 3. It is
largely considered to be true for all M , and from
a numerical perspective, was shown to be valid for
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DM3(E ,M,N0) = 2

∫ 2
√

3

0

d∆ ·∆(2
√

3− (
⌊
2
√

3/∆
⌋
− 1)∆) · Pr

(
|U − Û | > ∆

)
≥ 2

(∫ √3/M

0

d∆ ·∆(2
√

3− (M − 1)∆) Pr
(
|U − Û | >

√
3/M

)
+

M∑
i=3

∫ √3/(i−1)

√
3/i

d∆ ·∆(2
√

3− (i− 1)∆) Pr
(
|U − Û | >

√
3/(i− 1)

))

=

√
3

M4
(5M + 1)

M∑
n=2

Q

(√
E
N0

n

n− 1

)
+
√

3

M−1∑
i=2

(
5i− 4

(i− 1)4
− 5i+ 1

i4

) i∑
n=2

Q

(√
E
N0

n

n− 1

)
. (27)

M ≤ 8 in [27]. From a numerical perspective, the
use of the constructive techniques in [27] for finding
optimal signal sets could be used instead of Shannon’s
lower bound in (27). Although this will not provide an
asymptotic difference, it could lead to tighter bounds
for low signal-to-noise ratios. For the equal-energy
case, it may be sufficient to use the error probability
of the regular simplex in (27), at least if we limit the
sum to M ≤ 8. Even if the Weak Simplex Conjecture
is false, it is highly unlikely that any other signal set
will provide a noticeable numerical difference in (27).

The equivalent equal-energy conjecture for non-
coherent detection [28] also remains unproven. But
it is reasonable for numerical purposes to use the
error probability of orthogonal modulation with non-
coherent detection as an approximate lower-bound.
Using [28, eq. 28] instead of Shannon’s lower bound
in (27) we obtain

DM4(E ,M,N0) ≥
√

3

M3
(5M + 1)PM

+
√

3

M−1∑
i=2

(
5i− 4

(i− 1)3
− 5i+ 1

i3

)
Pi (28)

where

Pi =

i−1∑
n=1

(−1)n+1

(
i− 1

n

)
1

n+ 1
exp

[
− n

n+ 1

E
N0

]
(29)

which, strictly speaking, is only a true bound for equal-
energy signaling and M = 2, subject to the validity of
the classical conjecture. Note that (28) will have the
same asymptotic behavior as (27).

2) Comments on variable-energy signaling: It is
reasonable to expect that the use of variable-energy
signaling (even orthogonal) can help close the 1.76dB
asymptotic gap between (15) and (27) and the 3dB
gap between (16) and (23). This is because with
equal-energy signaling, erroneous decisions can lead
to distortions at the peak or on the order of a bit with
equal probability. A more judicious choice of energy
distribution across the signal set would choose the

energy difference between points according to their
pairwise distortion. High distortion error events would
then be less likely than low distortion error events.

IV. MORE GENERAL WIRELESS CHANNELS

We consider now the fading channel introduced in
Section II by (2) and adapt this system to our re-
transmission feedback protocol proposed and analyzed
in the previous section. In this fading channel model
the output signal (2) in the data phase of round i on
channel l becomes

Y′D,l =
√
ED,i/L′

(√
(1− α)ejΦi,l +

√
αhi,l

)
Sm+Zl,

(30)
where hi ∼ NC(0, 1). For this model, only the
statistics of the mis-detected acknowledged error event
is unchanged and is as given by (9). The probability
of an uncorrectable error is given by (31) on the top
of the next page. The error probabilities Pr(E1) and
Pr(E2) corresponding to the first and second rounds,
respectively are derived using an adaptation of [23,
eq:12.1-22], which is given by (32) where j is the
round index, In is the modified Bessel function of
order n, v = u

2E(N0+αE) and γ = E/L′N0. u is the
first decision variable with a non-central chi-square
distribution having 2L degrees of freedom and non-
centrality parameter s2 = E(1 − α). Note that above
probability reduces to [23, eq:12.1-22] for α = 0. In
the fading channel case, the protocol provides a more
significant improvement when going from one to two
rounds, due to the added diversity. Here it should be
expected that the use of more than two rounds could be
even more beneficial, unlike the AWGN case. The use
of many rounds, however, will incur a non-coherent
combining loss, despite the added diversity.

The upper bound on the reconstruction error given in
Section III by (14) is adapted to the current model and
by substituting (32) and (31) we obtain the following
bound on the distortion at the end of the second round.

D (E , N0, 2, λ) ≤ 2−2B(1− Pe) + 2Pe

≤ 2−2B + 2 [PM (1) Pr(Ee→c,1) + PM (2)] (33)

8



Pr(Ee→c,i) = Pr

(
L−1∑
l=0

|
√

(1− α)EC,i/L′ejΦi,l +
√
αEC,i/L′hi,l + zc,l|2 ≤ λLEC,i/L′

)

= 1−QL

(√
2L(1− α)EC,i
αEC,i + L′N0

,

√
2Lλ(1− α)EC,i
αEC,i + L′N0

)
. (31)

PM (j) = 1−
∫ ∞

0

(
1− e−v(1+αγ)

jL−1∑
k=0

(v(1 + αγ))k

k!

)M−1

[
v

(
1 + αγ

γ(1− α)

)] jL−1
2

e−v−
γ(1−α)
(1+αγ) IjL−1

(
2

√
vγ(1− α)

1 + αγ

)
(32)

In the upcoming section, we provide numerical evalu-
ation results of the upper bound given above for differ-
ent values of α for 0.5 and 0.1 since it is not possible to
give an analytical result and discuss the improvement
to be gained in two rounds through comparing (33)
versus the distortion to be achieved in a single round
without feedback, i.e. D ≤ 2−2B + 2PM (1).

A. Lower-bounds on Distortion

We consider the same two lower bounds on perfor-
mance considered in the previous sections. Merhav’s
bounding technique must be computed numerically in
this case, as the upper bound introduced above and
the other one is presented in an analytical form. Mer-
hav’s results were derived for Rayleigh fading which
is generalized here to channels with a line-of-sight
component and more degrees-of-freedom. Secondly
we adapt the classical bound from Goblick [1] for a
fading channel. Both of these techniques assume that
the channel is known to the receiver and the distortion
is averaged over all realizations of the random channel
coefficients.

Merhav’s bound (27) is

DM3(E ,M,N0) ≥ EaDM3(aE ,M,N0) (34)

where a =
∑L−1
i=0 |

√
1− α+

√
αhi,l|2 is a non-central

chi-square distributed random variable with the non-
centrality parameter (1−α)L, 2L degrees of freedom
and with the variance of the 2L underlying Gaussian
random variables given by σ2 = α/2. Its p.d.f. is given
below.

f(a) =
1

α

(
a

(1− α)L

)L−1
2

exp

(
−a+ (1− α)L

α

)
IL−1

(
2

√
a(1− α)L

α

)
. (35)

The behavior of the lower-bound (34) will be presented
numerically in the upcoming section.

The wireless adaptation of the Goblick bound given
by (1) tries to capture the scenario considered in the

achievable scheme above, namely that a finite number
of channel of realizations (or block-fading model) is
exploited by the transmission strategy. To this end,
we consider observations comprising N signaling di-
mensions split into R blocks of size N/R. Let xi be
the codeword in block i and constrain its energy as
E||xi||2 ≤ E/R. Each block witnesses an independent
and identically distributed fading amplitude. We show
in Appendix VII-B that the distortion is bounded below
by

D ≥ (1 + 4αE/RN0)
−LR

exp

{
−2(1− α)LE/N0

1 + 4αE/RN0

}
.

(36)

V. NUMERICAL EVALUATION

In this section, we provide numerical evaluation
results for the bounds introduced in Sections III and
IV. In Figure (4) we show the bound given by (16)
for two rounds and different values of B from 2 to 10.
The convex hull of these curves should be compared
with the Goblick-bound given by (23) which is valid
for systems with feedback. The curves labeled as the
single-round scheme without feedback represent (15).
The convex hull of these curves should be compared
with the Merhav bounds which are valid only without
feedback. Note that, in Figure (4) Merhav bound 1, 2
and 3 represent the lower bounds given by equations
(25), (26) and (27) , respectively. Firstly we see the
significant effect of using the novel feedback protocol
with respect to the reconstruction fidelity. The latter
clearly provides an improvement in terms of distortion
or approximately 3 dB in energy efficiency. We do
not quite see the predicted 3dB gap (around 4.5 dB
for 14-bits) in energy-efficiency with respect to the
outer-bound with a known channel, even with a very
high-resolution quantization level. Tighter bounding
techniques for the case with feedback in addition
to variable-energy schemes should therefore be con-
sidered for future work. The tightest of the Merhav
bounds is clearly (27) but also does not quite predict
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the 1.7 dB asymptotic gap. Although not shown, nu-
merical analysis also confirmed the asymptotic result
given in Section III by (17) regarding the use of twice
as much energy in the second round in comparison to
the first.

The upper-bound in (33) is depicted in Figures (5),
(6) and (7) for several values of B for the cases
α = 0.1 and α = 0.5 and both high (L = 4) and
low diversity orders L = 1. In all cases we see a
very significant effect (≥10dB in energy-efficiency) in
using a two-round feedback protocol compared to a
one-shot transmission, and this even in the case of
a strong line-of-sight component (α = 0.1). Bound
types of lower-bounds are looser in the case of the
fading channels, and especially in the high-diversity
case (Figure (7)). This can be attributed to the non-
coherent combining loss which is not captured by the
bounds which assume known channels. This motivates
the search for better lower-bounds assuming unknown
channels in their formulation.

Fig. 4. Numerical evaluation of the upper and lower bounds on
distortion for different values of B in an AWGN channel.

Fig. 5. Numerical evaluation of the distortion for B from 3 to 6 in
a wireless channel for α = 0.1, Lp = 1, L = 1

Fig. 6. Numerical evaluation of the distortion for B from 3 to 6 in
a wireless channel for α = 0.5, Lp = 1, L = 1

Fig. 7. Numerical evaluation of the derived bounds for B from 3
to 6 in a wireless channel for α = 0.5, Lp = 2, L = 4

VI. CONCLUSION

We introduced a low-latency feedback protocol for
the transmission of a single random variable over
a wide-band channel and analyzed its asymptotic
behavior with non-coherent detection on both pure
line-of-sight and more general fading channels. The
protocol and transmission strategy can be used for
future energy-limited sensors making use of broadband
cellular networks. We showed that the improvement
over a one-shot transmission is on the order of 3-
4 dB and asymptotically 4.7 dB. We have also in-
cluded a discussion regarding the case of imperfect
feedback and its effect on the trade-off between the
required energy for the protocol and the reconstruction
error in estimating the source message. We showed
that in this case, if the energy consumption required
by the feedback link is accounted, this reduces the
reconstruction fidelity. Additionally, numerical evalu-
ation of Merhav’s recent lower-bounds for one-shot
transmission are included and the tightest variant using
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his techniques is determined. Both the bounds and
performance evaluation of the feedback protocol have
been extended to a multi-channel fading model. The
improvement of the feedback protocol over one-shot
transmission is even more significant than in the line-
of-sight case. We further suggest that tighter bounding
techniques which rely on unknown channels should be
found for the fading channel. Furthermore, schemes
using variable-energy transmission should be consid-
ered to close the gap with the lower-bounds.

VII. APPENDIX

A. Derivation of the Distortion De

De = E[u− û]2 is bounded as follows

E[u− û]2 = E[u2] + E[û]2 − 2E[uû]

= E[u2] + E[û]2

= 1 + 21−B
2B−1−1∑
i=0

(
i
√

3

2B−1
+

√
3

2B−2

)2

≤ 2 (37)

On the other hand, the quantization distortion Dq is
simply the variance within a single bin which is

(
1

2B

)2
.

B. Wireless Adaptation of the Goblick Bound

In order to derive a lower bound the distortion
level of the wireless channel with feedback, we be-
gin with the model Yr,i =

√
hrXr,i + Zr,i, i =

1, · · · , N/R, r = 1, · · · , R where Yr,i, Xr,i, hr and
Zr,i are the channel output, input, complex fadig am-
plitude and the noise terms, respectively. We start with
two different expansions of the mutual information
I(U;Y| {Hr = hr, r = 1, · · · , R}) which are equated
and given as follows.

I(U;Y| {Hr = hr}) = h(U|{Hr = hr})
− h(U− Û ({Hr = hr}) |Y, {Hr = hr})
(a)
= h(U)− h(U− Û ({Hr = hr}) |Y, {Hr = hr},

Û ({Hr = hr}))
≥ h(U)− h(U− Û ({Hr = hr}))

=
1

2
log 2πe− 1

2
log(2πeD(h))

=
1

2
log(1/D(h)) (38)

where D(h) represents D ({Hr = hr}). For the sec-
ond expansion we have

I(U;Y| {Hr = hr}) = h(Y| {Hr = hr})
− h(Y|U, {Hr = hr})

=

R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N1 , · · · , Y Nr−1, {Hr = hr})

−
R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N1 , · · · , Y Nr−1,U, {Hr = hr})

=

R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N1 , · · · , Y Nr−1, {Hr = hr})

−
R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N1 , · · · , Y Nr−1,U,X, {Hr = hr})

=
R∑
r=1

N/R∑
i=1

h(Xr,i

√
hr + Zr,i|Y i−1

r , Y N1 , · · · , Y Nr−1,

{Hr = hr})−
R∑
r=1

N/R∑
i=1

h(Zr,i)

≤
R∑
r=1

N/R∑
i=1

log 2πe
(
N0 + Er,i|hr|2

)
−

R∑
r=1

N/R∑
i=1

log 2πeN0

(b)
=

R∑
r=1

N

R
log

(
1 +

R

N

Er|hr|2

N0

)

≤
R∑
r=1

Er|hr|2

N0
. (39)

In step (a) given the independence between U and
{Hr = hr}, the conditional entropy equals the entropy
of the source. And in step (b) we used the following
property log(1 +x) ≤ x. Equating the two expansions
(38) and (39) yields

D(h) ≥ e−2
∑R
r=1 Er|hr|

2/N0 (40)

which can be re-written as D(h) ≥ e−2 E
RN0

∑R
r=1 |hr|

2

with Er = E/R ∀r. Let us define the right-hand side
of the inequality as the moment generating function of
|h|2 with t = −2E/N0.

M|h|2(t) =
R∏
r=1

(1 + 4αE/RN0)
−L

exp

{
−2(1− α)LE/RN0

1 + 4αE/RN0

}
(41)

The final form of the lower bound (40) is given in
Section IV-A by (36).
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