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ABSTRACT

This paper addresses the problem of image features selec-
tion for pedestrian gender recognition. Hand-crafted fea-
tures (such as HOG) are compared with learned features
which are obtained by training convolutional neural net-
works. The comparison is performed on the recently cre-
ated collection of versatile pedestrian datasets which allows
us to evaluate the impact of dataset properties on the per-
formance of features. The study shows that hand-crafted
and learned features perform equally well on small-sized ho-
mogeneous datasets. However, learned features significantly
outperform hand-crafted ones in the case of heterogeneous
and unfamiliar (unseen) datasets. Our best model which is
based on learned features obtains 79% average recognition
rate on completely unseen datasets. We also show that a rel-
atively small convolutional neural network is able to produce
competitive features even with little training data.

Categories and Subject Descriptors

I.4.7 [Feature Measurement]: Feature representation.
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1. INTRODUCTION
An ability to profile people based on their gender is a

very important issue which has obvious applications in video
surveillance and multimedia retrieval systems. However,
quite often it is not possible to get a clear close-shot of a
person’s face and the gender should be estimated having
only a general silhouette of a body. In this work, we address
the problem of the gender recognition from still images of
pedestrians taken in adverse conditions.

The choice of features to describe an object is crucial in
computer vision. Existing image features can be roughly
divided into 2 categories: the hand-crafted and the learned
ones. By hand-crafted features we understand those which

are extracted from separate images according to a certain
manually predefined algorithm based on the expert knowl-
edge. LBP [16], SIFT [14] and HOG [4] features are com-
monly known examples of hand-crafted features. Contrary
to hand-crafted image features, the learned ones are derived
from an image dataset by a training procedure in order to
fulfill a certain task (e.g. gender recognition). Convolutional
Neural Networks (CNN) [13] are examples of deep neural
networks which can be used to extract learned features.

We consider 4 types of features in this study: 2 exam-
ples per each considered category. We choose person re-
identification [12] features and HOG as examples of hand-
crafted features. In order to obtain learned features, we
train 2 different CNN architectures.

The rest of the paper is organized as follows: the bib-
liography overview and motivations for the choice of fea-
tures to compare are presented in Section 2; the chosen fea-
tures are introduced in details in Section 3; the collection
of datasets which we have used for experiments is described
in Section 4; the performed experiments and obtained re-
sults are presented in Section 5 and the main conclusions
are highlighted in Section 6.

2. RELATED WORK
To the best of our knowledge, PETA datasets collection [5]

is the largest open-access collection of pedestrian images
with gender annotation. Authors of PETA propose a uni-
versal way to recognize a number of attributes in pedes-
trian images. Gender is one of the attributes they have
considered. In their algorithm, authors of PETA employ re-
identification features which were originally described in [12]
for the purpose of automatic re-identification of humans in
CCTV videos. We use PETA collection of datasets in our
experiments. Following the authors of PETA we also choose
re-identification features for comparison in our work.1

In numerous works, authors have found Histogram of Ori-
ented Gradients (HOG) features to be the most appropriate
for pedestrian gender recognition. In particular, in [1] au-
thors claim obtaining 76% recognition rate on MIT dataset,
while in [3] authors claim obtaining 80% recognition rate on
VIPeR dataset.2 Hence, we include HOG features in our
comparison as the 2nd example of hand-crafted features.

Due to their exceptional success in recent years, deep CNN
have become the first-choice solution for supervised learning

1We use the re-identification features implementation which
was kindly provided to us by authors of PETA.
2Both MIT and VIPeR datasets are included in PETA.



on image datasets [19, 6, 11]. In [15] authors employ a CNN
for gender recognition on a tiny MIT dataset having only
900 images. They claim obtaining 80% recognition rate. In
this work, we design a compact CNN architecture and cor-
responding learned features contribute to our comparison.

There are more and more examples ([2, 17]) where a CNN
trained on a huge general-purpose dataset is successfully
fine-tuned for a very specific classification task with little
extra data. Some authors even claim that today fine-tuning
of a pre-trained CNN is a must-try method in all image
classification tasks [17]. In our work we fine-tune the model
which was trained by Krizhevsky et al. [11] on the ILSVRC
dataset [18] containing about 1.3 million images.

Contrary to previous works, we do not focus on a single
dataset, we rather compare considered features on a ver-
satile collection of pedestrian datasets. Moreover, besides
evaluating performance of features on separate datasets, we
also compare how well they generalize by applying them on
unfamiliar (i.e. completely unseen) datasets.

3. FEATURE REPRESENTATIONS
Below we present features that are compared in this study.

3.1 Person re-identification features
Person re-identification features of an image [12] is a 2784-

dimensional vector which contains low-level colour and tex-
ture information. The complete vector is composed of six
464-dimensional vectors each of which is extracted from 6
equal sized horizontal strips from the image. Each strip uses
8 colour channels (RGB, HSV and YCbCr) and 21 texture
filters (Gabor, Schmid) derived from the luminance channel.
We use a bin size of 16 to describe each channel.

3.2 HOG features
In order to extract HOG features, we use 8-by-8 square

cells which are organized in 2-by-2 blocks. The number of
histogram bins is set to 9. When an image of 50 pixels width
and of 150 height is given as input (which is the case in our
experiments), the resulting HOG features vector with the
described parameters has the dimension 2448.

3.3 Features learned by Mini-CNN
In order to avoid ambiguity, in this section and below, we

refer to the CNN which is designed by ourselves as Mini-

CNN, whereas the term AlexNet-CNN is employed to refer
to the CNN which is designed by Alex Krizhevsky.

The architecture of Mini-CNN is presented in Figure 1.
Mini-CNN has 2 convolutional layers (C1 and C2) with 5x5
kernels, each of which is followed by max-pooling with a
stride of 2 pixels (P1 and P2) and Rectified Linear Unit
(ReLU) activations.3 Mini-CNN is ended by 2 fully con-
nected layers (F1 and F2). The F2 layer has 2 neurons
(corresponding to the number of classes). The loss is com-
puted by a softmax loss function. As it is depicted in Fig-
ure 1, Mini-CNN takes 3 (50, 150)-dimensional feature maps
(red, green and blue channels of an image) as an input.4 The
1st and 2nd convolutional layers C1 and C2 have n1 and n2
feature maps respectively. Values of n1 and n2 depend on

3We have also tried using sigmoid activations but ReLU ac-
tivations proved to be much faster.
4Before being treated by Mini-CNN, all input images are
rescaled to (50, 150) size.

Figure 2: Examples of images from PETA.

the experiment: in the 1st experiment in Section 5.1 we use
n1 = n2 = 10, while in the 2nd experiment in Section 5.2
we use a slightly bigger architecture with n1 = n2 = 20
(because in the 2nd experiment we have more training im-
ages). The number of neurons n3 in the last but one fully
connected layer F1 also varies depending on the experiment:
we have n3 = 25 and n3 = 100 for the 1st and for the 2nd
experiments respectively. In order to augment the training
data, we use each training image alongside with its mirrored
copy. Parameters of Mini-CNN have been chosen by trying
several architectures and by choosing the most possibly com-
pact one so that performance is not sacrificed.

After training Mini-CNN, we use the obtained weights to
calculate the values of neurons in the F1 layer for all testing
images. These neuron values serve as Mini-CNN features for
the testing images. Thus, Mini-CNN represents an image
by either 25- or 100-dimensional vector (depending on the
experiment), which is more than 100 times smaller than sizes
of corresponding person re-identification or HOG vectors.

3.4 Features learned by AlexNet-CNN
The architecture of AlexNet-CNN is described in details

in [11]. AlexNet-CNN is already a trained model. In our
work, we only fine-tune it to recognize genders of pedestri-
ans. After fine-tuning of AlexNet-CNN we use the weights
from the last but one fully connected layer (which contains
4096 neurons) as features for input images. Thus, in the
case of AlexNet-CNN, a features vector dimension is 4096.5

4. DATASETS
Originally, the PETA collection consists of 10 datasets of

different sizes with a total amount of 19, 000 images. Ap-
pearances of images hugely vary between different datasets
of PETA in terms of image resolutions (from 17x39 to 169x365
pixels), camera angles (pictures are taken either by ground-
based cameras or by surveillance cameras which are set at
a certain height) and environments (indoors or outdoors).
Examples of PETA images are presented in Figure 2.

Authors of PETA perform series of experiments on predic-
tion of gender on the whole collection of 19, 000 images [5]
using re-identification features. They randomly split the to-
tal collection of images into 9, 500 for training, 1, 900 for
validation and 7, 600 for testing. They report obtaining be-

5Training and fine-tuning of all CNNs in this work is per-
formed using Caffe deep learning framework [9].



Figure 1: Architecture of Mini-CNN.

Dataset Train size (♂+ ♀) Test size (♂+ ♀)

CUHK 3432 = (2420 + 1012) 377 = (189 + 188)
PRID 942 = (449 + 493) 101 = (50 + 51)
GRID 928 = (531 + 397) 100 = (50 + 50)
MIT 792 = (532 + 260) 84 = (42 + 42)
VIPeR 1138 = (556 + 582) 120 = (60 + 60)
3DPeS 0 100 = (50 + 50)
CAVIAR 0 68 = (34 + 34)
i-LIDS 0 100 = (50 + 50)
SARC3D 0 41 = (21 + 20)
TownCentre 0 42 = (21 + 21)

Table 1: Training and testing parts per dataset.

tween 79.7% and 81.4% of male gender prediction rate (the
results vary depending on the used classifier). We have suc-
cessfully reproduced this result using several random splits
of 19, 000 images in the same proportions as it has been done
by authors of PETA. However, the number of unique persons
in the PETA collection is much smaller than 19, 000 because
PETA contains many images of the same persons which are
taken few seconds away from each other by surveillance cam-
eras. Images like that are almost identical and they can
considerably bias the resulting prediction rates. After re-
moval of all quasi-identical images from PETA the resulting
prediction rates drop down to 63-65%.

This drastic drop in performance proves the importance of
the manual filtering of PETA collection. Apart from filtering
out images of the same people, we have also removed images
with a very low resolution (height is less than 120 pixels or
width is less than 40 pixels) and images where a person of
interest is not clearly distinguishable (i.e. images of babies
in strollers or images of several persons). Finally, we have
been left with 8, 365 images (see Table 1) which is less than
half as many as the initial size of PETA.

5. EXPERIMENTS
In order to objectively compare the usefulness of consid-

ered features for the gender recognition problem and not to
take into account a possible impact of a classifier on result-
ing prediction rates, we always use the same classifier for all
considered features: the SVM classifier with a linear kernel.6

Classification results are compared using Mean Average Pre-
cision (MAP) and Area Under ROC Curve (AUC) [7].7

6In particular, we use the publicly available SVM-light im-
plementation of SVM [10].
7AUC is an important measure for us because of its invari-
ance to the chosen decision threshold by an SVM-classifier.

Features
MAP AUC

µ σ µ σ

AlexNet-CNN 0.82 0.05 0.90 0.05
Mini-CNN 0.79 0.04 0.86 0.03
HOG 0.80 0.04 0.88 0.04
Re-identification 0.59 0.07 0.63 0.09

Table 2: Exp. 1: Results on 5 separate datasets
(CUHK, PRID, GRID, MIT and VIPeR).

Features
Familiar Unfamiliar

MAP AUC MAP AUC

AlexNet-CNN 0.85 0.91 0.79 0.85
Mini-CNN 0.80 0.88 0.75 0.80
HOG 0.72 0.84 0.56 0.64
Re-identification 0.58 0.60 0.61 0.69

Table 3: Exp. 2: Results on “familiar” and “unfa-
miliar” datasets.

5.1 Exp. 1: evaluation on separate datasets
In the 1st experiment, we compare the performance of

considered features on 5 separate datasets: CUHK, PRID,
GRID, MIT and VIPeR. Sizes of training (which is used to
train an SVM classifier) and testing parts for each of these
datasets are given in Table 1. In the cases of Mini-CNN

and AlexNet-CNN the features (i.e. CNN) are learned on
the training images as well.

Results of the 1st experiment are summarized in Table 2.
Mean values and standard deviations for 2 considered met-
rics are calculated over 5 datasets. Based on this exper-
iment, we can conclude that re-identification features are
hardly applicable for our problem. Successful results ob-
tained by re-identification features in [5] might be explained
by a significant number of quasi-identical images between
training and testing datasets (as it is explained in Section 4).
The other 3 features show very close performances and none
of them can be favoured based only on the 1st experiment.

5.2 Exp. 2: evaluation of generalization
In the 2nd experiment, we evaluate the capability of com-

pared features to generalize on heterogeneous and even com-
pletely unseen datasets.

Firstly, we train SVM classifiers with different features on
the dataset which is composed of training parts of CUHK,
PRID, GRID, MIT and VIPeR taken together. Then we test
classifiers on the testing parts of the same datasets which are
also taken together. Thus, we compare features on a single



big dataset which is composed of non-homogeneous images
(different camera angles, environments, etc.)

Results of this experiment are presented in Table 3 (in
its “familiar” part). On one hand, we see that for learned
features (i.e. AlexNet-CNN and Mini-CNN ) both MAP and
AUC metrics practically coincide with corresponding results
in Table 2 (with respect to standard deviations). On the
other hand, there is a significant drop of performance for
HOG features. These results perfectly make sense because
learned features have a possibility to adapt to the hetero-
geneity of the input data during the training phase, whereas
HOG features are not trained and, therefore, less flexible.
We do not consider re-identification features in the 2nd ex-
periment due to their poor performance in the 1st one.

In the 2nd part of the 2nd experiment, we use the same
SVM classifiers which have been trained on the collection of
training images from CUHK, PRID, GRID, MIT and VIPeR
but this time we apply them on the collection of images
from completely unseen datasets: 3DPeS, CAVIAR, i-LIDS,
SARC3D and TownCentre (see Table 1). In other words,
classifiers are compared on “unfamiliar” datasets and, thus,
we evaluate if they generalize well.

Results of this experiment are presented in Table 3 (in its
“unfamiliar” part). AlexNet-CNN performs almost equally
well as in Table 2 (with respect to standard deviations).
Mini-CNN experiences a subtle drop in performance with
respect to the 1st experiment. However, it still shows quite
satisfactory recognition rate of 75% despite having only 100
features. The SVM-classifier learned on HOG features per-
forms poorly on “unfamiliar” datasets showing results which
are not so far away from random guessing.

6. CONCLUSIONS
In this work, we have compared 2 hand-crafted features

(HOG and re-identification) and 2 learned features (obtained
by Mini-CNN and by AlexNet-CNN ) in the frame of pedes-
trian gender recognition problem. Our findings are:

1. On small-sized homogeneous datasets, HOG and learned
features perform equally well. It complies with previ-
ous works ([1, 3, 15]) on pedestrian gender recognition.

2. Learned features significantly outperform HOG fea-
tures in the case of heterogeneous data.

3. Contrary to hand-crafted features, Mini-CNN and
AlexNet-CNN features generalize well to completely
unseen datasets: MAPs of 75% and 79% respectively.

4. Even a relatively small CNN (like Mini-CNN ) trained
on little data is able to produce compact features which
generalize almost as good as features produced by much
bigger pre-trained networks (like AlexNet-CNN ).

In our future work, different learned features will be tried
in order to recognize other important attributes of soft bio-
metrics (like age, clothing details etc.). Moreover, we would
like to verify if our findings about learned and hand-crafted
features hold in other domains of computer vision. Being en-
couraged by the results of this paper and by the recent work
presented in [8], we are also planning to further investigate
the possibility of approaching the expressiveness of complex
models using architectures of moderate complexity.
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