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Abstract

Embedded devices are relevant for all aspects of our lives, and their security
is a growing concern. Therefore it is highly important to perform analysis of
embedded software, even when the source code or hardware documentation is
not available. However, research in this �eld is hindered by a lack of dedicated
tools. Advanced dynamic analysis, one of the principal methods of security
analysis, is di�cult to apply due to a lack of hardware support. Emulation, the
obvious alternative to analysis on hardware, requires an accurate model of the
hardware platform, and is in practice infeasible without a signi�cant amount of
reverse engineering.

To address these issues, we present Avatar , a dynamic binary analysis framework
for �rmware of embedded devices. Instead of emulating peripherals, Avatar
orchestrates the execution of the �rmware in an emulator and the physical device,
forwarding peripheral accesses when needed. We describe several techniques to
improve the performance of this approach, e.g., by optimizing the distribution
of code and data between the two environments. To show the versatility of our
framework to perform di�erent security analyses, we also present the experiments
we conducted in three use cases.

In the second part of this document, we demonstrate Avatar 's reverse engineering
capacities on a commercial o�-the-shelf hard disk drive. Using this knowledge, we
then developed a prototype rootkit capable of replacing arbitrary blocks of data
while they are written to disk. We further show how an attacker can establish a
communication channel with the implanted backdoor of a compromised disk. No
code modi�cation of the server containing the disk is performed. Through this
channel, any data stored on disk can be ex�ltrated, e.g., the password database.

Last, we extended Avatar with a peripheral identi�cation system to address some
of the challenges of whole-system analysis. Avatar works well for the analysis
of isolated code parts, but exhibits shortcomings when time-critical code, or
symbolic execution with access to physical peripherals is involved. Our system
generates a �ngerprint of peripheral device interactions and then suggests similar
peripherals from a database of collected �ngerprints. Hence, a platform descrip-
tion can be recovered, which then serves to instantiate a custom emulator.
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Abstract en framçais

Les systèmes embarqués sont pertinents dans tous les aspects de notre vie, et
leur sécurité est une préoccupation croissante. En conséquence, l'analyse des
logiciels embarqués est d'une grande importance, même quand le code source
ou la documentation du matériel n'est pas disponible. Néanmoins, la recherche
dans ce domaine est freiné par le manque d'outils dédiés. L'analyse dynamique
avancée, une des méthodes principales d'analyse de sécurité, est di�cile à appli-
quer à cause de l'assistance manquante du matériel. L'émulation, une alternative
évidente à l'analyse sur le matériel, requiert un modèle exact de la plate-forme
physique, et est peu pratique en réalité sans un grand e�ort de rétro-conception.

Pour répondre a ces manques, nous présentons Avatar , un système d'analyse
dynamique binaire des logiciel de systèmes embarqués. Au lieu d'émuler des pé-
riphériques, Avatar orchestre l'exécution du logiciel embarqué dans un émulateur
et le matériel physique en relayant des accès au périphériques lorsque nécessaire.
Nous décrivons plusieurs techniques pour améliorer la performance de cette ap-
proche, par exemple, en optimisant la distribution du code et des données entre
les deux environnements. Pour démontrer la capacité de notre système d'assister
dans des scénarios d'analyse de sécurité di�érents, nous présentons en outre les
expériences que nous avons menés dans trois cas.

Dans la deuxième partie de ce document, nous démontrons les capacités de
rétro-conception dans le cas d'un disque dur du marché consommateur. Avec
les informations obtenues, nous avons développé un root-kit prototype capable
de remplacer des blocs de données arbitraires au moment où ils sont écrits au
disque. En plus, nous démontrons comment un attaquant peut établir un canal
de communication en exploitant une porte dérobée d'un logiciel embarqué d'un
disque dur infecté. Aucune modi�cation du code du serveur contenant le disque
est entreprise. Par ce canal, toutes les données stockées sur le disque peuvent
être ex�ltrées, par exemple, la base de données contenant les mots de passe.

Finalement, nous avons supplémenté Avatar avec un système d'identi�cation
des périphériques pour répondre à quelques dé�s d'émulation d'un système en-
tier. Avatar fonctionne très bien pour l'analyse des parties de code isolées,
mais démontre des faiblesses quant au code ayant des contraintes de temps réel,
ou quand des périphériques physiques sont accédées durant l'exécution sym-
bolique. Notre système génère une empreinte digitale des interactions avec le
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matériel périphérique, puis suggère des périphériques similaires à partir d'une
base d'empreintes digitales préalablement recueillies. Par conséquent, une de-
scription de la plate-forme peut être récupérée, ce qui sert ensuite à créer un
émulateur personnalisé.

Development of novel dynamic binary analysis techniques for the security analysis
of embedded devices
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Chapter 1

Introduction

Embedded systems have become ever more pervasive throughout our lives. In-
dustrial systems cannot be thought of without computerized control, cars con-
tain tens of electronic control units and millions of lines of code, and even home
automation is getting increasingly popular.

While a compromise of a personal computer or server can cause signi�cant prob-
lems and �nancial losses, hacked embedded systems can have an even more
severe impact. Embedded systems are typically deployed to monitor and con-
trol processes in the physical world, where they can cause real, physical harm
to humans and equipment. A good example is the Stuxnet worm, which in-
fected workstations in a uranium enrichment facility in Iran in 2010. By insert-
ing malicious commands in the centrifuges' control program, the worm likely
destroyed hundreds of centrifuges and delayed the Iranian nuclear program sig-
ni�cantly [NFC11, Lan13].

Until recently, embedded systems had mostly been decoupled from the Internet.
However, this is now changing and so-called smart embedded devices, which do
not only process local sensory input, but also receive data from other systems,
are on the rise. The power grid would not be able to handle huge sudden
changes of electricity production, as they happen with solar power, without
weather forecasts. Industrial processes are predicted to gain in e�ciency with
what is termed �Industry 4.0� or �Industrial Internet of Things (IIoT)� [PD15].
And even in our homes, heating, light and door locks will be interconnected in
the �Internet of Things (IoT)�.

The real number of attacks against embedded systems is di�cult to estimate.
Reports of spectacular hacks in the media, like Stuxnet or a maliciously induced
meltdown of a blast furnace in a German steel mill [bsi15], cast a spotlight on
individual events. But embedded systems' exploits, for example for credit card
terminals [NB14], Programmable Logic Controllers (PLCs) used for control in
factories [Ber11], and switchable power outlets for home automation [Dav14],
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2 1. INTRODUCTION

are frequently discovered and presented at hacker conferences. The National
Institute of Standards and Technology (NIST) vulnerability database contained
only 190 entries concerning embedded device software in 2010, while the number
increased almost ten-fold to about 1700 in 2014.

All these points illustrate that interconnected embedded devices can cause phys-
ical harm when not secured properly. As a result, governments show a raising
awareness for the security of embedded devices, especially when they are em-
ployed in �critical infrastructure�, like electricity, fuel and water supply [nis14,
bsi15, ftc15].

A lack of security in embedded devices

Embedded devices currently do not exhibit the same resilience against attacks
as, for example, Personal Computer based systems do. First, embedded de-
vices are typically long-running systems. During their lifetime, attack techniques
and threats evolve signi�cantly, while the device's embedded software, called
�rmware, is seldom or never updated. For example, a lot of consumer devices
connected to the Internet are running outdated Linux kernels with known vul-
nerabilities [CZFB14].

Second, interconnectivity is sometimes added on top of existing, secure designs,
leading to unintended security issues. While the solution of extending older,
existing interfaces is an easy way to connect to older devices still running in the
same system, the example of Modbus illustrates the dangers of this approach.
Modbus [spe12] is an industry bus that was designed to connect local equipment
in a factory. In 1999, it was extended to be used over TCP, without adding
any provisions for security or authentication. As a consequence, a scan of the
routable IPv4 address space revealed more than 12,000 Modbus devices which
are directly connected to the Internet and accessible to anybody [Lal15].

Third, embedded device manufacturers had not received much pressure from
their clients to provide secure systems, and had put the main development e�orts
in features and safety instead. Consumer devices like a television, where a new
feature is likely more in�uential for a buying decision than a security certi�cate,
are an example.

Fourth and most important, development of embedded devices is driven by cost
considerations and time-to-market. Hardware security features invariably will
need more silicon surface for their implementation, which translates to higher
costs. Software security mechanisms usually require more memory or CPU power,
which in turn translates to a more expensive chip. Devices which are running on
limited power, like battery-driven sensor network nodes, might therefore sacri�ce
security for less power consumption. Finally, a robust security design necessitates
additional development e�ort. Especially for bulk and consumer products, where

Ph.D. Thesis — Jonas Zaddach



3

a low price is an important factor in the buying decision, manufacturers are
tempted to forgo security.

Embedded device are attractive attack targets

Embedded devices constitute an attractive target for attackers. Due to a lack of
software management, they rarely receive updates as timely as Personal Com-
puter (PC) systems do [CZFB14]. In addition, especially older devices are fre-
quently shipped with insecure default con�gurations (e.g., easy-to-guess default
passwords), which are hardened only by few users afterwards. Even worse, once
an embedded device has been infected with malware, it is very hard today to
detect the infection � as long as no deterioration in the original functionality of
the device is visible, hardly any user will suspect malicious activity. Even if a
malware is found, little can be done for most embedded devices to remove it
reliably.

The lack of up-to-date, resilient code coupled with the fact that embedded
devices, unlike PCs, are always-on, make them an attractive target for cyber-
criminals. While the heterogeneity of platforms still poses challenges to malware
writers, exploit kits ease the development of malicious code by providing plat-
form identi�cation scripts and abstractions. A wave of exploits and worms for
home routers illustrate this point: either the �rmware or its con�guration are
changed to inject ads into websites [Fra15], steal banking credentials [cym14],
or become part of a botnet [GAZ15, Car13].

Industrial embedded systems, which typically are separated from the Internet by
network segregation, nevertheless face the same challenges of software manage-
ment and malware detection. Hence, the more likely attack scenario for industrial
systems are Advanced Persistent Threats (APTs), as the penetration of a cor-
porate network requires more dedicated skills and e�ort. In these attacks, high-
pro�le attackers (e.g., nation-states or a terrorist organizations) focus their ma-
licious e�orts against a particular system (e.g., a power plant) [NFC11, Lan13].

Testing and reverse engineering assistance for embedded devices
is needed

In summary, the previous points highlight the need for tools and techniques
to improve the security of embedded devices. Even when parts or the whole
source code of a �rmware is available, binary analysis might be the only viable
option for a third party, since the toolchain to build the �rmware might not be
provided. Moreover, when the source code does not build to exactly the same
binary, which can happen due to di�erent compiler versions or build environment
con�gurations, it is very hard to prove that the source code corresponds to the
original binary �rmware. Thus, it may be easier to simply analyze the binary

Development of novel dynamic binary analysis techniques for the security analysis
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4 1. INTRODUCTION

�rmware in the �rst place. In general, binary �rmware analysis plays a very
important role in several scenarios.

First, after a security incident happened, a post-mortem analysis is required to
understand the breach and improve security practices accordingly. This work is
typically done by investigators who do not have access to a �rmware's source
code. Any automated analysis assistance could speed up the process signi�cantly.

Second, manufacturers and clients sometimes need to perform penetration tests.
In this case, a device is typically tested as a black box. Interfaces are tested with
invalid or corner-case values for known protocols, but no knowledge about the
�rmware itself is used in the process. By leveraging approaches like guided
fuzzing, where knowledge about the �rmware is used in the process, penetration
testing could be made more e�cient.

Third, proper testing of embedded devices is especially important for integration
vendors. When several embedded devices are integrated into a larger system,
white-box testing becomes especially important, as in addition to �aws of an
individual device, the whole system can exhibit race conditions and deadlocks,
which might occur extremely rarely and only under very speci�c circumstances.

Static and dynamic analysis tools need to be adapted

Binary analysis for PC programs has greatly advanced in the last decade. White-
box fuzzing of application and operating system interfaces, taint analysis to track
data �ow through applications, and symbolic execution to automatically discover
new test cases and increase code coverage are advanced dynamic program anal-
ysis techniques which are frequently used by security analysts. Unfortunately,
these techniques cannot be applied to embedded systems.

One reason is the heterogeneity of system software in embedded systems. While
some systems have a clear separation and well-de�ned interface between the op-
erating system and the application, like Linux-based embedded systems, others
run special-purpose or proprietary operating systems. Especially in low-end em-
bedded devices, one may even �nd the application compiled together with an
operating system library.

Moreover, depending on the embedded system's purpose, hardware security fea-
tures may di�er a lot. High-end ARM processors have several privilege levels, and
even support for hardware virtualization, while low-end processors of the same
family can merely distinguish between three privilege levels and do not support
virtual memory.

Static analysis is rendered di�cult by the numerous instruction sets employed in
embedded device processors. ARM is the most prevalent instruction set [CZFB14],
but MIPS, AVR, MSP430, and 8051 are also frequently used. Just developing
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1.1. PROBLEM STATEMENT 5

tools for one instruction set is not a viable solution if one wants to provide an
analysis which applies to embedded devices in general.

Finally, dynamic analysis methods which are more advanced than debugging and
tracing are hard to use on embedded systems' software. Without special-purpose
hardware, more advanced techniques require an instrumented emulator that runs
the �rmware. However, functioning of software and hardware of an embedded
system is intertwined, such that a �rmware will not execute correctly if not all
platform peripherals are emulated at the expected addresses. Thus, one �rst
needs to perform static analysis to reverse-engineer the platform before being
able to build a suitable emulator and perform advanced dynamic analysis.

1.1 Problem statement

This dissertation is centered around the problem of dynamic binary �rmware anal-
ysis. Independent analysts such as certi�cation laboratories, penetration testers,
forensic analysts, integration vendors and researchers have a legitimate interest
in analyzing binary �rmware for security purposes. But binary �rmware analysis
can be very di�cult: Emulators need to be tailored to each embedded device
speci�cally, as no common hardware abstraction exists. Even when one has a
way to debug �rmware running on a device, applying modern dynamic analysis
methods like symbolic execution is impossible, as support from the hardware
platform would be required. Instead, lots and lots of time is spent backtracking
from crashes and following data �ow by hand. Even the operating system, li-
braries and the application in a code blob need to be identi�ed for each �rmware
again and again. With an environment that allows data �ow analysis, code path
exploration and instrumentation, more of these tasks could be automated.

1.2 Contributions

We propose an analysis framework which �lls this gap of dynamic analysis tools
for embedded devices. Avatar , as presented in Chapter 3, allows a user to
emulate the �rmware of an embedded device. Complex analysis applications
such as concolic execution can be implemented on top of this framework. We
discuss several techniques that can be used to optimize the performance of the
system, and to adapt Avatar to the user's needs. Avatar is demonstrated in three
di�erent security scenarios, including reverse engineering, vulnerability discovery,
and backdoor detection. To show the �exibility of our system, each test was
performed on a completely di�erent class of devices.

Further, in Chapter 4, we demonstrate a practical, real-world implementation
of a data ex�ltration backdoor for a common o�-the-shelf SATA hard disk. On

Development of novel dynamic binary analysis techniques for the security analysis
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6 1. INTRODUCTION

this example, we show the dangers and catastrophic loss of security of malicious
�rmware modi�cations. The backdoor is self-contained, requiring no cooperation
from the host. It is stealthy, in that it only hooks legitimate reads and writes,
without relying on DMA or other advanced features. Its overhead is unnoticeable
by the user in normal operation. This backdoor can be installed by software in
very little time. We also demonstrate that it is feasible to build such a backdoor
with an investment of roughly ten man-months, despite di�culties in debugging
and reverse engineering a disk's �rmware. Finally, we present a number of forensic
techniques which can help to identify a similar backdoor.

Last, in Chapter 5 we propose a methodology to identify hardware con�gurations
of embedded devices. Avatar tackles the problem of tight coupling between
software and hardware by forwarding hardware accesses from the emulator where
the software is running to the real hardware platform. This approach, while
well-suited for the analysis of smaller code regions, has some disadvantages:
Whole-system emulation is very di�cult, as timing-critical code needs to be
identi�ed, interrupts need to be handled correctly, etc. Moreover, the forwarding
of concrete values to physical hardware in symbolic execution renders all other
symbolic states invalid. In this work, we observe the communication between
�rmware and peripherals in S2E to create a �ngerprint of each peripheral device,
similar to register model descriptions found in a human-readable datasheet. We
show that a database of register models can be built, from which an automatic
recommendation for a platform device map can be given.

1.3 Organization of the dissertation

In this dissertation, we analyze the feasibility and impact of a targeted attack on
an embedded system, namely a Hard Disk Drive (HDD), and develop dynamic
binary analysis tools to analyze such threats. After summarizing the state of
the art in Chapter 2, we present Avatar , a dynamic analysis tool for embedded
systems, in Chapter 3. In the next chapter, the design and implementation of a
HDD �rmware modi�cation attack is shown. Chapter 5 then presents techniques
based on Avatar to automate platform reverse engineering of embedded devices.
Finally, the dissertation concludes in Chapter 6.

Chapter 2 � Literature review

Chapter 2 summarizes the relevant state of the art. An overview of static, dy-
namic and symbolic binary analysis is given, which is relevant for all of the follow-
ing chapters. The section on �rmware security is mostly relevant for Chapters 3
and 4. The summary on backdoors is related to the work presented in Chapter 4,
and �nally driver and device reverse engineering is connected to Chapter 5.
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Chapter 3 � Avatar : A Framework to Support Dynamic Security
Analysis of Embedded Systems' Firmwares

In this chapter, we present Avatar, a dynamic binary analysis framework for
embedded devices. The introduction gives an overview of the design of embedded
systems and the challenges in embedded device emulation. Following, the core
idea of Avatar , the forwarding of Input-Output (I/O) accesses from an emulator
to the physical device, is explained. Several techniques to improve the system's
performance are discussed, and demonstrated on three di�erent use cases. The
publication that this chapter is based on has been published in the proceedings
of the Network and Distributed Systems Symposium (NDSS) in 2014 [ZBFB14].

Chapter 4 � Implementation and Implications of a Stealth Hard-
Drive Backdoor

Here, we present a data ex�ltration backdoor implanted in the �rmware of a hard
drive disk. The introduction motivates why a hard drive is an attractive attack
target, and lays out the assumed threat model. Next, the reverse engineering of
the disk's �rmware and the implementation of the backdoor are discussed. Data
ex�ltration without assistance of the computer's operating system is outlined,
and the backdoor's performance is evaluated. The work of this chapter has
been presented at the 29th Annual Computer Security Applications Conference
(ACSAC) in 2013 [ZKB+13].

Chapter 5 � Towards automating platform reverse engineering of
embedded devices

This chapter proposes a technique to reverse engineer the hardware platform
of an embedded system. First, an overview of the challenges of whole-system
analysis with Avatar are given. Then, a technique for �ngerprinting accesses of
the �rmware to a peripheral device is described. Finally, limitations and future
extensions of the method are discussed.

Chapter 6 � Future work and conclusion

Finally, we summarize open research problems of each chapter, and conclude the
dissertation with a review of the contributions of the previous chapters.

Development of novel dynamic binary analysis techniques for the security analysis
of embedded devices





Chapter 2

Literature review

In this chapter, we summarize previous work related to this dissertation. Three
sections are dedicated to static, dynamic and symbolic analysis of binary code.
The relationship of these analyses is shown in Figure 2.1. Afterwards, one sec-
tion for each following chapter describes embedded devices' �rmware security
(relevant for Chapter 3 and 4), backdoors (relevant for Chapter 4), and driver
and device reverse engineering (relevant for Chapter 5).

2.1 Static binary analysis

Static analysis encompasses the extraction of knowledge from code without ac-
tually executing the code. There are still many open research problems in static
code analysis: identifying and correctly disassembling machine instructions in the
�rst place, reconstructing the control �ow graph (especially in the presence of
indirect jumps), reconstructing types (especially bu�er bounds), and the extrac-
tion of models which describe the behavior of the code at a higher level. Binary
code is very hard to analyze in its original form, which is why we studied several
intermediate languages for code analysis and their ecosystems.

Because the focus of this dissertation lies on dynamic analysis, we use static
methods mainly to analyze data �ow inside basic blocks from traces of a dy-

Figure 2.1: Relationship of static and dynamic binary analysis methods.
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namic execution (in Chapter 5.3.2), and to statically identify control �ow of
code snippets to migrate to the embedded device (in Chapter 3.4.2). All of
these static analyses were done using LLVM as intermediate language, which
was chosen mainly for its good integration with the rest of the toolchain. More-
over, at the time when we had to decide for a framework, most of the alternatives
had only incomplete or no support for the ARM instruction set.

Intermediate languages

Machine instruction sets are inherently di�cult to analyze, as many instructions
have side e�ects which are not explicitly exposed. For example, the MOV R0, R1

ARM assembler instruction, which copies the values of register R1 to register
R0, also implicitly modi�es the program status register. A complete description
with side e�ects would look like this:

R0 := R1
CPSR_N := R1 >> 31
CPSR_Z := R1 = 0
CPSR_C := 0

This is why machine programs, as originally proposed by [CS98], are usually trans-
lated to an intermediate language before analysis. Figure 2.2 shows how these
languages relate to the compilation and reverse engineering process. Several
frameworks have been built around these languages to assist reverse engineering.
Binary Analysis Platform (BAP) [BJAS11], the successor of BitBlaze [SBY+08],
translates to Bil. Bil is designed especially for reverse engineering and binary
analysis and is backed by a formal de�nition. Once a program is translated to
Bil, BAP provides an arsenal of tools for common static analyses.

Valgrind is another framework, originally designed for dynamic binary program
instrumentation. Most known for its memory allocation checker, it has been
extended by many other tools. Pathgrind [Sha14], for example, is a symbolic
execution engine which can execute Vex, Valgrind 's intermediate language.

Yet another suite of (commercial) binary analysis tools, BinDi� and BinNavi,
uses the Reverse Engineering Intermediate Language (REIL) for static machine
code comparison and reverse engineering automation. The language has since
been re-implemented in several frameworks, for example BARF [HA14], and in
a modi�ed form as RREIL in bindead [Mih].

Radare2 [AiC] is a binary reverse engineering framework with support for static
and dynamic analysis. Its intermediate language, Evaluable Strings Intermediate
Language (ESIL), serves for interpreting code snippets on an analysis Virtual
Machine (VM).

Finally, several frameworks exist to translate binary code to LLVM Intermediate
Representation (IR) [LA04]. Since this intermediate language was not designed
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Figure 2.2: Positioning of intermediate languages in the compilation/reverse engineer-
ing process.

for reverse engineering, several constructs present in machine code are miss-
ing. For example, LLVM IR does not allow jumps to arbitrary destinations, but
only to landing pads. Indirect jumps in machine code are di�cult to impos-
sible to resolve, which means that helper constructs like an �unknown� jump
destination node need to be used if a jump is not de�nitely resolvable. Fur-
ther, LLVM IR still uses functions, but most machine instruction sets do not
have a unique way to express this abstraction. Thus, pattern-matching solu-
tions to identify likely functions in machine code are used. Moreover, register
assignments in LLVM use the Static Single Assignment (SSA) form, which is
why the frameworks express processor state as global variables. Di�erent static
analysis frameworks (McSema [webc, DR14], Dagger [weba], Fracture [webb],
SecondWrite [ASKE10], RevGen [CC11]) present solutions for these problems.
RevGen is based on Qemu's translation of machine code to TCG, and LLVM-
Qemu [CC10a], an additional translation layer from TCG to LLVM.

2.2 Dynamic analysis

Dynamic analysis is the technique of analyzing code while it is executing. Of
these, trace recording and replay, as well as dynamic binary instrumentation are
used heavily in this dissertation. More precisely, Chapter 5 requires recorded
instruction and memory access traces, and binary instrumentation is a key com-
ponent of Chapter 3.

Development of novel dynamic binary analysis techniques for the security analysis
of embedded devices
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Tracing and replay

Program tracing records events during an execution. The range of possible
events includes assembler instruction execution, basic block execution, condi-
tional jumps, memory accesses, and many more. Depending on traced events,
the taken execution path and even the register values during execution can be
reconstructed post-mortem. Optimizations have been proposed [BCdJ+06] to
minimize the impact of tracing.

A deterministic program can, once all its external inputs were recorded in a trace,
be replayed. More precisely, the program will execute exactly the same code
path when replayed, which allows for heavy instrumentation while the execution
behavior remains deterministic. Replaying executions is di�cult in parallel and
distributed systems. Many solutions have been proposed for PC systems [XBH03,
HA10, LSG+10], and some for embedded systems [DGHH+14].

Dedicated hardware support can provide a very good solution to improve ef-
�ciency of debugging, improving signi�cantly the ability to replay events and
system status. In [XBH03] Xu et al., presents an hardware architecture for
recording precise events and replay them during debugging sessions. For this
purpose custom hardware logs memory and taps on several important internal
features (e.g., cache lines). Simpler systems also exist, like In-Circuit Emulators
[Wil12], which replace the CPU core by an emulated CPU that can then directly
interact with hardware peripherals.

PANDA [DGHH+14] is a dynamic analysis framework for whole system anal-
ysis. Instead of performing analyses directly when the program is running, it
records execution traces, and then replays those traces with (possibly heavy-
weight) instrumentation. The bene�t of this solution is that analyses are re-
peatable once traces have been recorded. PANDA has been used to identify
interesting tap points in executables by monitoring data stored to and loaded
from memory [DLHL13].

Similar to PANDA, we used Avatar , the framework presented in Chapter 3, to
record and replay executions of embedded systems. We found replay to be an
extremely valuable feature for advanced analyses such as concolic execution, data
�ow analysis and heavy instrumentation.

Instrumentation

Static Binary Instrumentation (SBI) and Dynamic Binary Instrumentation (DBI)
have both been used for some time on programs. DBI parses machine code
before it is executed, and inserts instrumentation code on the �y (similar to a
just-in-time compiling virtual machine). SBI inserts instrumentation hooks into
the executable ahead-of-time, but can be used only when all code is known before
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� dynamically loaded or generated code needs to be instrumented dynamically.
DBI has been implemented as part of several frameworks.

Valgrind [NS07] is a heavyweight binary instrumentation framework, providing
rich information about the program state at each point. PIN [RSCC04] is a
proprietary instrumentation framework from Intel, which has also been ported
to the ARM platform [HK06]. DynamoRIO [BDA01] has been recently used to
instrument the Linux kernel [FBG12]. DynInst [BM11] o�ers both static and
dynamic binary instrumentation.

Bochs [Law96] and the Qemu system emulator [Bel05] have both been instru-
mented for dynamic binary analysis [zyn, VE14, Lin12]. S2E, which builds on
Qemu, allows for whole-system dynamic binary instrumentation at instruction
level through its plugin interface.

SBI is implemented in PEBIL [LTCS10], a framework which is supposed to pro-
vide more e�cient instrumentation than dynamic instrumentation frameworks.
An example of static binary instrumentation are software symbiotes, developed
by Cui et al. [CS11], to insert calls to a security hypervisor into legacy �rmware.

2.3 Symbolic execution

Symbolic execution as a program analysis technique has been proposed �rst by
King et al. [Kin76]. Instead of executing a single program path conditioned
by concrete inputs, symbolic inputs are provided to the program. Operations on
symbolic values are tracked, and constraints are applied to symbolic values which
in�uence program �ow decisions. When a terminal program state is reached, the
symbolic execution engine attempts to solve the generated equations in order to
provide concrete inputs which will result in the execution of precisely the same
execution path. In this way, concrete inputs for any possible execution path are
generated.

A limitation of symbolic execution is path explosion. For each control �ow
decision in the executed path, at least two symbolic states are spawned. In
particular counting loops and polling loops contribute to path explosion, as each
loop iteration typically leads to two symbolic states.

A way to mitigate this problem is to use search heuristics which pick symbolic
states for execution that are more likely to execute interesting paths [CDE08a].
For example, a heuristics which penalizes re-execution of already executed basic
blocks helps to avoid getting stuck in loops and achieving greater code coverage.
A second problem of symbolic execution is excessive memory consumption, as
every state occupies some memory. State pruning is a way to reduce memory
needs. Here, symbolic states which are very unlikely to yield a desired result are
simply discarded [Cop14]. Of course both solutions require a deeper understand-
ing of which paths are deemed interesting and which are not before the end of the

Development of novel dynamic binary analysis techniques for the security analysis
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path is reached. Another way to reduce the number of symbolic states is state
merging. Here, two states with almost identical path conditions are merged into
one state with path conditions describing both previous states. As more path
conditions stress the constraint solver, it is a good idea to only merge states
when it is bene�cial to the symbolic executor's overall performance [KKBC12].
When state merging is applied aggressively, symbolic execution converges to-
wards abstract interpretation, a static program analysis technique.

Concolic execution [GKS05, SMA05, Sen07], also called �o�ine symbolic execu-
tion�, reduces the resources needed by the symbolic execution engine by pairing a
concrete and a symbolic input. A single path is executed, driven by the concrete
value. At the end of the execution, one of the path constraints, deciding which
execution path is chosen, is negated. By solving the new constraints, another
concrete value driving the execution of this di�erent program path can be found.
Godefroid et al. use this technique in SAGE [GLM12] to create a white-box
fuzzer for Windows applications. By permutating, for example, input �les of
applications, SAGE can generate example �les which crash the program.

Many di�erent symbolic execution engines for di�erent programming languages
and instructions sets have been built. Proof-of-concept systems [BEL75] existed
quite early, but were limited by the computing power available at the time.
Symbolic execution of full programs had been impractical due to the huge number
of paths that need to be explored and the large amount of memory required to
hold di�erent states. Since then a large number of symbolic execution engines
have sprung up. Some of them are only suitable for the execution of source
code, like Otter for the C programming language [MYPFH11] and Rubyx for
Ruby [CF10]. Others process intermediate languages for virtual machines like
Java [VHB+03, LV01, SA06], .NET [TdH08], Dalvik [JMF12] and KLEE for
LLVM [CDE08a].

While symbolic execution of machine code has long been di�cult due to com-
plex instruction sets and side e�ects of instructions, the rise of translators from
machine code to intermediary languages has made this accomplishment pos-
sible [CS98]. Several di�erent symbolic execution engines based on di�erent
intermediate languages have been presented. FuzzBALL [BMMS11, MMP+12]
is based on the Vine intermediate language produced by the BitBlaze frame-
work [SBY+08] which can execute x86 user space binaries. Similarly Path-
grind [Sha12] is executing x86 binaries translated to Valgrind's intermediate lan-
guage. Mayhem [CARB12] and SAGE [GLM08] both have demonstrated that
symbolic execution for vulnerability discovery is feasible on a large number of
binaries.

S2E [CKC12] di�ers from the previously mentioned execution engines in that
it can be applied to a whole platform, which enables symbolic execution of
operating systems. This system couples the Qemu system emulator [Bel05] with
KLEE. As long as no symbolic values are accessed, code is executed directly by
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Qemu. Only when symbolic execution is required, a glue layer translates Qemu's
internal intermediate language code, TCG, to LLVM, synchronizes the concrete
and symbolic state, and defers execution to KLEE.

2.4 Embedded device �rmware security

Embedded device security has often been answered with a �security by obscurity�
approach by embedded systems' manufacturers, and has led to the discovery of
major weaknesses in commonly deployed technologies [NESP08] in the past.

However, more rigorous solutions have been proposed based on virtualization,
symbolic execution and binary instrumentation. Han et al. [HLSH11] propose
a dynamic debugging system for Cisco IOS based on virtualization. Kuznetsov
et al. [KCC10] present a testing system for binary device drivers in a virtualized
environment using symbolic execution.

Similarly, Davidson et al. [DMJR13] developed a tool to perform symbolic ex-
ecution of embedded �rmware for MSP430-based devices. Like Avatar , this
tool is based on the KLEE symbolic execution engine. However, it relies on the
availability of �rmware source code as well as on documented SoCs, peripherals
mapping, and a simple device emulation layer. Any of those are rarely available
for commercial devices.

In Firmalice [SWH+15], Shoshitaishvili et al. use a mixed approach of static,
symbolic and manual analysis to identify authentication bypass backdoors in
�rmware. Points in the control �ow which can only be reached when a user is
authenticated are identi�ed semi-automatically. The framework then assists the
analyst in �nding control �ows which reach this point from an unauthenticated
state without proper authentication (i.e., through hidden commands or hard
coded credentials).

Cui et al. proposed software symbiotes [CS11], an on-device binary instrumenta-
tion to automatically insert hooks in embedded �rmwares. Their solution allows
to inject a security monitor that can interact with the original �rmware.

2.5 Backdoors

Backdoors have a long history of creative implementations: Thompson [Tho84]
describes how to write a compiler backdoor that would compile backdoors into
other programs, such as the login program, and persist when compiling future
compilers.

Many papers describe the design and implementation of hardware backdoors.
King et al. [KTC+08] present the design and implementation of a malicious
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processor with a circuit-level backdoor allowing, for example, a local attacker
to bypass MMU memory protection. Heasman presents implementations of PCI
and ACPI backdoors [Hea06, Hea07] that insert rootkits into the kernel at boot
time. However, with the exception of Triulzi [Tri08], who presented a NIC
backdoor that provides a shell running on the GPU, those previous backdoors
were only bootstrapped from hardware devices. Then they tried to compromise
the host machine's kernel from there. Therefore, those kinds of backdoors can
be detected and prevented by kernel integrity protection mechanisms, such as
Copilot [PJFMA04], which is implemented as a PCI device.

Cui et al. [CCS13] present a �rmware modi�cation attack on HP LaserJet print-
ers. The authors remark that, in the case of most printers, �rmware updates
could be performed by sending specially-crafted printing jobs. Cui et al. also
state that �rmware updates were not signed and that signing would not prove
su�cient in the presence of exploitable vulnerabilities, which is in line with our
observations. In addition, they create, as payload, a VxWorks rootkit capable of
print job ex�ltration using the network link the printer is connected to.

Concurrently and independently from the work presented in Chapter 4, Domburg
(a.k.a. sprite_tm) reverse-engineered a hard drive from another manufacturer
and also demonstrated that modifying a hard disk �rmware to insert a backdoor
is feasible [aS], albeit without demonstrating data ex�ltration.

Delugre [Del] reports on the techniques that were used to reverse engineer the
�rmware of a PCI network card, and to develop a backdoored �rmware. For this
purpose, QEMU was adapted to emulate the �rmware and to forward IO access
to the device. However, this was limited by bad performance. We have seen
similar performance blockers when using Avatar in full separation mode, but
the ability to perform memory optimization and push back code to the physical
device allow Avatar to overcome such limitations.

Other examples of data-ex�ltration attacks involving NICs include [SEZ09],
where the authors use IOAPIC redirection to an unused IDT entry that they
modify to perform data ex�ltration. More generally, remote-DMA-capable NICs
(such as In�niBand and iWARP) can be used to perform data ex�ltration [SB03].
However, such tra�c can equally easily be identi�ed and blocked by a �rewall
at the network boundary. Thus, a covert channel is needed to communicate
with the backdoor, as mentioned in [Dae] for ICMP echo packets (independently
of any hardware backdoor). In comparison, our approach leverages an existing
channel on the backdoored system (e.g., HTTP) and therefore cannot be easily
distinguished from legitimate tra�c at the network level.
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2.6 Driver and device reverse engineering

In this section, we lay out previous work on binary driver testing, reverse engi-
neering and synthesis. The hardware reverse engineering presented in Chapter 5
is built upon similar techniques as used in driver reverse engineering, but aims
at creating a model of a peripheral device, not its driver. For this reason, we
also included works on driver testing with simulated devices, which is a close
equivalent to our work. Finally, a subsection is dedicated to protocol learning.
Especially the bit vector analysis technique used in the process of register data
type recovery is very similar to the white-box analysis methods of Tupni and
Prospex. Techniques for state machine recovery, as presented by Prospex, could
be used in a future version of our peripheral reverse engineering system to build
a more accurate �ngerprint.

Several works for the reverse engineering of device drivers have been presented.
RevNIC [CC10b] is a tool to automate reverse-engineering of device drivers. The
authors demonstrate on the example of a Windows network driver that RevNIC
can use symbolic execution to explore the device driver's code, slice instructions
related to the driver, and build a synthesized driver from the extracted hardware
model. SymDrive [RKS12] uses a very similar technique of exercising drivers with
symbolic execution. The focus of this work is to �nd bugs in operating system
drivers, without the need of the physical device that the driver is developed for.

Kuznetsov et al. [KCC10] analyze device drivers by relying on an emulated PCI
bus and network card that return symbolic values. This approach has the main
drawback that it requires to emulate the device properly. While this is not much
of a problem for well understood devices, like a PCI network card supported
by most PC emulation software, it can be a real challenge in embedded systems
and can be just impossible when the hardware is not documented. Unfortunately,
lack of documentation is the rule in the embedded world, especially in complex
proprietary System on Chips (SoCs).

Guardrail [RKGM14] is a framework for run-time instruction-level driver analysis
and can detect data races and uninitialized memory accesses in arbitrary kernel
drivers. Levasseur et al. [LUSG04] propose a method for reusing unmodi�ed
device drivers running in isolated virtual machines. Faults in a driver thus only
a�ect the virtualization domain, not the whole operating system.

Termite [RCK+09] reduces driver-related bugs by synthesizing drivers from for-
mal speci�cations. In a way, the driver speci�cation is exactly the other side of
the coin of what we do in Chapter 5 � instead of building a speci�cation of the
driver, we extract a speci�cation of the peripheral.

FEMU [LTHC10] proposes a hybrid �rmware/hardware emulation framework for
SoC. Thus, peripherals can be tested with emulated �rmware. Several sys-
tems exist to simulate peripherals written in hardware speci�cation languages
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like VHDL or SysML for an emulated system running in Qemu [Zab12, Lem13,
MHM12, SLC10].

Protocol learning

Polyglot [CYLS07] di�ers from previous work on protocol reverse engineering
in that it proposes a technique called shadowing to extract protocol speci�ca-
tions from a program binary. By observing how the program interprets received
messages, the system is able to identify �xed length �elds, variable length �elds
and keywords. The same approach of white-box execution analysis is followed
by Tupni [CPC+08] to reverse binary �le formats. In addition, it can use infor-
mation from several example input �les to gain more accurate information on
�le �elds. Prospex [CWKK09] identi�es similar protocol messages and clusters
them to recover the protocol's state machine.
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Chapter 3

Avatar: A Framework to

Support Dynamic Security

Analysis of Embedded

Systems' Firmwares

This chapter is based on a publication which has been presented at the Network
and Distributed Systems Security Symposium (NDSS) in 2014 [ZBFB14].

3.1 Introduction

An embedded system consists of a number of interdependent hardware and soft-
ware components, often designed to interact with a speci�c environment (e.g.,
a car, a peacemaker, a television, or an industrial control system). Those com-
ponents are often based on basic blocks, such as CPUs and bus controllers,
which are integrated into a complete custom system. When produced in large
quantities, such customization results in a considerable cost reduction. For large
quantities, Application-Speci�c Integrated Circuit (ASIC) are preferred as they
allow to tailor functionality according to the speci�c needs, which results in
cost reduction, better integration, and a reduction of the total number of parts.
Such chips, also called SoCs, are often built from a standard CPU core to which
both standard and custom hardware blocks are added. Standard blocks, com-
monly called IP Cores, are often in the form of a single component that can
be integrated into a more complex design (e.g., memory controllers or standard
peripherals). On the other hand, custom hardware blocks are often developed
for a speci�c purpose, device, and manufacturer. For example, a mobile phone
modem may contain a custom voice processing Digital Signal Processor (DSP),
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an accelerator for the Global System for Mobile Communications (GSM) pro-
prietary hardware cryptography (A5 algorithms) and an o�-the-shelf Universal
Serial Bus (USB) controller.

Over the years, such SoCs have signi�cantly grown in complexity. Nowadays,
they often include Multiple Processors (MPSoC) and complex, custom, hardware
devices. As a consequence, virtually every embedded system relies on a di�erent,
application speci�c, system con�guration. As a witness of this phenomenon, the
website of ARM Ltd., which provides one of the most common CPU core used
in embedded systems, lists about 200 silicon partners1. Most of those partners
are producing several product families of SoCs relying on ARM cores. This leads
to a huge number of systems on the market, which are all di�erent, but all rely
on the same CPU core family.

Unfortunately, the increasing pervasiveness and connectivity of embedded devices
signi�cantly increased their exposure to attacks and misuses. Such systems are
often designed without security in mind. Moreover visible features, low time to
market, and reduction of costs are the common driving forces of their engineer-
ing teams. As a consequence, an increase in the number of reports of embedded
systems exploitation has been recently observed, often with very serious con-
sequences [BBB09, Car13, CMA+11, CCS13, Del, FMC11, MGS11, PD, Tri,
ZKB+13]. To make things worse, such systems frequently play an important
role in security-relevant scenarios: they are often part of safety critical systems,
integrated in home networks, or they are responsible to handle personal user
information. Therefore, it is very important to develop the tools and techniques
that would make easier to analyze the security of embedded systems.

In the traditional IT world, dynamic analysis systems play a crucial role in many
security activities - ranging from malware analysis and reverse engineering, to vul-
nerability discovery and incident handling. Unfortunately, there is not an equiva-
lent in the embedded system world. If an attacker compromises the �rmware of a
device (e.g., a smart meter or a PLC in a Stuxnet-like attack scenario [FMC11])
even vendors often do not have the required tools to dynamically analyze the
behavior of the malicious code.

Dynamic analysis allows users to overcome many limitations of static analy-
sis (e.g., packed or obfuscated code) and to perform a wide range of more
sophisticated examinations [ESKK08] - including taint propagation [KMPS11,
WWGZ10], symbolic and concolic execution [CDE08b, CKC12, DMJR13], un-
packing [KPY07], malware sandboxing [anu, CWS08], and whitebox fuzzing [GLM08,
GLM12].

Unfortunately, all these techniques and their bene�ts are still not available in
the world of embedded systems. The reason is that in the majority of the cases
they require an emulator to execute the code and possibly monitor or alter its

1http://www.arm.com/community/partners/silicon.php
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execution. However, as we will explain in Section 3.2, the large number of custom
and proprietary hardware components make the task of building an accurate
emulator a daunting process. If we then consider that additional modules and
hardware plugins should be developed for each embedded system on the market,
we can easily understand the infeasibility of this approach.

In this chapter, we present a technique to �ll this gap and overcome the limitation
of pure �rmware emulation. Our tool, named Avatar , acts as an orchestration
engine between the physical device and an external emulator. By injecting a
special software proxy in the embedded device, Avatar can execute the �rmware
instructions inside the emulator while channeling the I/O operations to the phys-
ical hardware. Since it is infeasible to perfectly emulate an entire embedded
system and it is currently impossible to perform advanced dynamic analysis by
running code on the device itself, Avatar takes a hybrid approach. It leverages
the real hardware to handle I/O operations, but extracts the �rmware code from
the embedded device and emulates it on an external machine.

3.2 Dynamic Firmware Analysis

While the security analysis of �rmwares of embedded devices is still a new and
emerging �eld, several techniques have been proposed in the past to support the
debugging and troubleshooting of embedded systems.

Hardware debugging features (mostly built around In-Circuit Emulators [CCK94,
KHC08, Mel97] and JTAG-based hardware debuggers [JTA90]) are nowadays
included in many embedded devices to simplify the debugging procedure. How-
ever, the analysis remains extremely challenging and often requires dedicated
hardware and a profound knowledge of the system under test. Several debug-
ging interfaces exist, like the Background Debug Mode (BDM) [Wil12] and the
ARM CoreSight debug and trace technology [Wil12]. Architecture-independent
standards for debugging embedded devices also exist, such as the IEEE NEXUS
standard [IEE03]. Most of these technologies allow the user to access, copy, and
manipulate the state of the memory and of the CPU core, to insert breakpoints,
to single step through the code, and to collect instructions or data traces.

When available, hardware debugging interfaces can be used to perform certain
types of dynamic analysis. However, they are often limited in their functionalities
and do not allow the user to perform complex operations, such as taint propaga-
tion or symbolic execution. In fact, these advanced dynamic analysis techniques
require an instruction set simulator to interpret the �rmware of the embedded
target. But for a proper emulation of the embedded system, not only the CPU,
but all peripheral devices need to be emulated. Without such a support, the
emulated �rmware would often hang, crash, or in the best case, show a di�erent
behavior than on the real hardware. Such deviations can be due, for example, to
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incorrect memory mappings, active polling on a value that should be changed by
the hardware, or the lack of the proper hardware-generated interrupts or DMA
operations.

To overcome these problems, researchers and engineers have resolved to three
classes of solutions, each with its own limitations and drawbacks:

• Complete Hardware Emulation
Chipounov [CC10b] and Kuznetsov et al. [KCC10] analyze device drivers
by relying on an emulated PCI bus and network card that return symbolic
values. This approach has the main drawback that it requires to emulate
the device properly. While this is not much of a problem for well under-
stood devices, like a PCI network card supported by most PC emulation
software, it can be a real challenge in embedded systems and can be just
impossible when the hardware is not documented. Unfortunately, lack of
documentation is the rule in the embedded world, especially in complex
proprietary SoCs.

In some cases, accurate system emulators are developed as part of the
product development to allow the �rmware development team to develop
software while the �nal hardware is still not available. However, those
emulators are usually unavailable outside the development team and they
are often not designed for code instrumentation, making them unable to
perform basic security analysis like tainting or symbolic execution.

• Hardware Over-Approximation
Another approach consists in using a generic, approximated, model of the
hardware. For example, by assuming interrupts can happen at any time
or that reading an IO port can return any value. This approach is easy
to implement because it does not require a deep knowledge of the real
hardware, but it can clearly lead to false positives, (e.g., values that will
never be returned by the real system) or misbehavior of the emulated code
(when a particular value is required). This approach is commonly used
when analyzing small systems and programs that are typically limited to a
few hundreds lines of code, as showed by Schlich [Sch10] and Davidson et
al. [DMJR13]. However, on larger programs and on complex peripherals
this approach will invariably lead to a state explosion that will prevent any
useful analysis.
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• Firmware Adaptation
Another approach consists in adapting the �rmware (or in extracting lim-
ited parts of its code) in order to emulate it in a generic emulator. While
this is possible in some speci�c cases, for example with Linux-based em-
bedded devices, this technique does not allow for an holistic analysis and
may still be limited by the presence of custom peripherals. Moreover, this
approach is not possible for monolithic �rmwares that cannot be easily
split into independent parts - unfortunately a very common case in low-
end embedded systems [CS11].

In the next section we present our novel hybrid technique based on a combination
of the actual hardware with a generic CPU emulator. Our approach allows to
perform advanced dynamic analysis of embedded systems, even when very little
information is available on their �rmware and hardware, or when basic hardware
debugging support is not available. This opens the possibility to analyze a large
corpus of devices on which dynamic analysis was not possible before.

3.3 Avatar

Avatar2 is an event-based arbitration framework that orchestrates the commu-
nication between an emulator and a target physical device.

Avatar 's goal is to enable complex dynamic analysis of embedded �rmware in
order to assist in a wide range of security-related activities including (but not
limited to) reverse engineering, malware analysis, vulnerability discovery, vulner-
ability assessment, backtrace acquisition and root-cause analysis of known test
cases.

3.3.1 System Architecture

The architecture of the system is summarized in Figure 3.1: the �rmware code is
executed inside a modi�ed emulator, running on a traditional personal computer.
Any IO access is then intercepted and forwarded to the physical device, while
signals and interrupts are collected on the device and injected into the emulator.

The internal architecture is completely event-based, allowing user-de�ned plugins
to tap into the data stream and even modify the data as it �ows between the
emulator and the target.

In the simplest case Avatar requires only a backend to talk to the emulator and
one to talk to the target system, but more plugins can be added to automate,
customize, and enhance the �rmware analysis. In our prototype, we developed

2The Avatar framework is open-source and available at http://s3.eurecom.fr/tools/avatar.
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Figure 3.1: Overview of Avatar .

a single emulator backend. This controls S2E (or Selective Symbolic Execution
engine), which is an open-source platform for selective symbolic execution of
binary code [CKC12]. It builds on the foundation of Qemu, a very popular open-
source system emulator [Bel05]. Qemu supports many processor families such
as i386, x86-64, Arm, Mips and many others. Apart from being a processor
emulator, Qemu can also mimic the behavior of many hardware devices that are
typically attached to the central processor, such as serial ports, network cards,
displays, etc.

S2E leverages the intermediate binary code representation of Qemu called Tiny
Code Generator (TCG), and dynamically translates from TCG bytecode to Low-
Level Virtual Machine (LLVM) bytecode whenever symbolic execution is ac-
tive [LA04]. KLEE, the actual symbolic execution engine, is then taking care of
exploring the di�erent execution paths and keeps track of the path constraints
for each symbolic value [CDE08b]. Evaluating possible states exhaustively, for
some symbolic input, can be assimilated to model checking and can lead to
proving some property about a piece of software [KKBC12].

Even though S2E uses the TCG representation of the binary code to generate
LLVM code, each processor architecture has its own intricacies that make it
necessary to write architecture speci�c extensions to make S2E work with a new
processor architecture. Since our focus was on embedded systems and all the
systems we analyzed are ARM systems, we updated and improved an existing
incomplete ARM port3 of S2E, to suit the needs of dynamic analysis of �rmware
binaries.

To control the execution of code in more detail, S2E provides a powerful plugin
interface that allows instrumentation of virtually every aspect of execution. Any
emulation event (e.g., translation of a basic block, instruction translation or ex-
ecution, memory accesses, processor exceptions) can be intercepted by a plugin,
which then can modify the execution state according to its needs. This modu-
lar architecture let us perform dynamic analysis of �rmware behaviour, such as

3Our patches have been submitted to the o�cial S2E project and are currently under review
for merging.
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recording and sandboxing memory accesses, performing live migration of subrou-
tines (see Section 3.3.3), symbolically executing speci�c portion of code as well
as detecting vulnerabilities (see Section 3.5).

S2E is connected through three di�erent control interfaces with Avatar : the �rst
interface is a GDB debug connection using the GDB serial protocol. Avatar is
connecting to this interface using a GDB instance controlled via the GDB/MI
protocol. This connection is used for �ne-grained control over the execution, such
as putting breakpoints, single-stepping the execution, and inspecting register val-
ues. The second interface is Qemu's Management Protocol (QMP) interface, a
JSON-based request-response protocol. Though detailed virtual machine control
is possible through this interface, it is currently only used to dynamically change
S2E's con�guration at run time. This is done by accessing S2E through its Lua
interface, which is called from Lua code embedded in the JSON requests. The
third interface is a plugin for S2E that is triggered whenever a memory access is
performed. This S2E plugin then forwards this request to Avatar , which in turn
handles the memory access (e.g., sends it to Avatar 's plugins), or forwards it to
the target.

Even though at the moment the only available emulator back-end is for Qemu/S2E,
the emulator interface is generic and allows other emulators to be added easily.

On the target side, we developed three back-ends:

• A back-end that uses the GDB serial protocol to communicate with GDB
servers (e.g., a debugger stub installed on the device or a JTAG GDB
server).

• A back-end to support low-level access to the OpenOCD's JTAG debugging
interface via a telnet-like protocol.

• A back-end that talks to a custom Avatar debugger proxy over an opti-
mized binary protocol (which is more e�cient than the verbose protocol
used by GDB). This proxy can be installed in an embedded device that
lacks debugging hardware support (e.g., no hardware breakpoints) or on
which such support was permanently deactivated.

The proper target back-end has to be selected by the user based on the char-
acteristics and the debugging functionalities provided by the hardware of the
embedded device. For example, in our experiments we used the OpenOCD
back-end to connect to the JTAG debugger of the mobile phone and of the
Econotag, while we used the Avatar proxy to perform dynamic analysis of the
hard drive �rmware.

To analyze a �rmware, an access to the �rmware's device is needed. This can be
either a debugging link (e.g., JTAG), a way to load software or a code injection
vulnerability. In cases where a debugging stub, for example the GDB stub, is
used, an additional communication channel, e.g., an UART, is also needed.

Development of novel dynamic binary analysis techniques for the security analysis
of embedded devices



26
3. AVATAR: A FRAMEWORK TO SUPPORT DYNAMIC SECURITY ANALYSIS OF EMBEDDED

SYSTEMS’ FIRMWARES

3.3.2 Full-Separation Mode

When Avatar is �rst started on a previously unknown �rmware, it can be run in
what we call �full-separation mode�. In this con�guration, the entire �rmware
code is executed in the emulator and the entire (memory) state is kept in the
physical device. In other words, for each instruction that is executed by the
emulator, the accessed memory addresses are fetched from and written to the real
memory of the embedded system. At the same time, interrupts are intercepted
by the debugging stub in the physical system and forwarded back to the emulator.
Code and memory are perfectly separated, and Avatar is responsible to link them
together.

Even though this technique is in theory capable of performing dynamic analysis on
unknown �rmwares, it has several practical limitations. First of all, the execution
is very slow. Using a serial debug channel at 38400 Baud, the system can perform
around �ve memory accesses per second, reducing the overall emulation speed
to the order of tens instructions per second. Even worse, many physical devices
have time-critical sections that need to be executed in a short amount of time
or the execution would fail, making the system crash. For example, DRAM
initialization, timer accuracy and stability checks belong to this category.

Moreover, tight hardware-polling loops (e.g., UART read-with-timeout) become
painfully slow in full separation mode. Finally, regular interrupts (e.g., the clock
tick) quickly overload the limited bandwidth between the target system and the
emulator.

These limitations make the full separation approach viable only to analyze a
limited number of instructions or when the user wants to focus only on particular
events in more complex �rmwares. For this reason, Avatar supports arbitrary
context-switching between the emulator and the real device.

3.3.3 Context Switching

While it is possible to run the �rmware code from beginning to end inside the
emulator, sometimes it is more e�cient to let the �rmware run natively on
the target device for a certain amount of time. This allows, for example, to
execute the code without any delay until a particular point of interest is reached,
skipping through initialization routines that may involve intensive I/O operations
or network protocol communications that may need to be performed in real-time.
In such cases, it is important to let the target device run the �rmware, while
still monitoring the execution for regions of code relevant to the current analysis.
The ability of Avatar to perform arbitrary context switches gives the user the
ability to quickly focus her analysis on a particular section of the code, without
the drawbacks of emulating the entire �rmware execution. In its core, this state
migration technique is highly in�uenced by existing solutions for performance
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Figure 3.2: Avatar architecture and message exchange in full separation mode.

improvement of virtual machine hot-migration. In particular, our approach is a
simpli�ed version of the one proposed by Clark et al. [CFH+05], where Avatar is
the arbiter of a managed migration, which can either happen in a single stop-
and-copy phase (as in full-separation mode) or in an event-driven pull-phase
(during context switching).

Starting the analysis at speci�c points of interest

In this case the �rmware starts the execution on the physical device and runs
natively until a certain pre-de�ned event occurs (e.g., a breakpoint is reached
or an exception is raised). At this point, the execution on the physical device
is frozen and the state (e.g., the content of the CPU registers) is transferred to
the emulator, where the execution is resumed. An example of this transition is
described in Section 3.6.3, in which the �rmware of a mobile phone baseband chip
is executed until the phone receives an SMS, and then transferred by Avatar in
the emulator to perform further analysis.

Returning execution to the hardware

After the required analysis is performed on the emulator, the execution of the
�rmware can be transferred back to continue on the real device. In this case,
any state kept on the virtual environment is copied back to the physical device.
Depending on the user's needs, it is possible to switch again to the emulator at
a later stage. This approach is used in Section 3.6.1, in which the �rmware of a
hard disk is started inside the emulator and later transferred back to the disk.
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3.3.4 Interrupts Handling

Software interrupts do not present a problem for our framework, since they are
issued by the �rmware code and the emulator takes care of calling the corre-
sponding interrupt handler directly. However, as shown in Figure 3.2, hardware
interrupts need to be trapped in the real hardware and forwarded back to the
emulator. In this case, the stub in the embedded system receive the interrupt
and forwards them to Avatar 's target back-end. Finally, using the emulator
back-end, Avatar suspends the �rmware execution and injects the interrupt in
the emulator.

Based on the circumstances in which the interrupt is generated, we distinguish
three di�erent cases:

• Hardware interrupts that indicate the completion of a task. These inter-
rupts are issued by a device to indicate that a particular task initiated by
the code has been completed. For example, the UART send interrupt
indicates that the send bu�er has been successfully transmitted. This type
of interrupts is easy to handle because it just needs to be forwarded from
the target to the emulator.

• Periodical hardware interrupts, e.g., the timer noti�cations. These inter-
rupts can be forwarded to the emulator but their frequency needs to be
scaled down to the actual execution speed in the emulator. The equivalent
number of instructions between two interrupts should be executed in the
emulator as it would on the target running in native mode. In our current
implementation, an Avatar plugin detects periodic interrupts and report
their information to the user, who can decide how to handle each class. For
example, the user can instruct Avatar to drop the clock interrupts on the
device and just generate them (at the right frequency) on the emulator,
thus saving bandwidth and increasing the analysis performance.

• Hardware interrupts that notify of an external event. For example the
receive interrupt of an UART indicates that new data on the UART bu�er
is available. The emulation strategy for those interrupts depends on the
frequency of the external event. For events that require previous activity
(e.g., a request-response protocol where the response triggers an interrupt)
a simple forwarding strategy can be used. For unrelated events that happen
very frequently (i.e., where the handler in the emulator cannot process
the interrupt in time before the next interrupt is generated) the user can
choose if she wants to suppress some of them or to handle the interrupt by
migrating the handler itself back to the embedded device (see Section 3.4)

While the straightforward interrupt forwarding does not present any problem
for Avatar , when the user needs to tune the framework to handle speci�c cases
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(e.g., regular or very frequent interrupts) the stub needs to be able to distinguish
between them. Unfortunately, this task is often di�cult.

Interrupts de-multiplexing

In a traditional, x86-based, personal computer there is a standard interrupt con-
troller that handles interrupt lines from each device and peripheral. However,
on ARM-based systems there are only two interrupt lines directly attached and
visible to the processor: IRQ and FIQ. Because of this embedded devices often
use an interrupt multiplexer (or controller) peripheral that is normally included as
an hardware block (�IP core�) on the same chip. The disadvantage for a user is
that at the point where the interrupt vector routine is called, all interrupt signals
are still multiplexed together. The driver for a particular interrupt multiplexer
will then query the underlying hardware multiplexer to identify which line was
actually triggered and then forward the event to the handler registered for this
interrupt.

Now, suppose the user wants to instruct Avatar to suppress a particular interrupt
on the device (e.g., the timer), while still letting through the ones associated to
important hardware events that need to be forwarded to the emulator. In this
case, the proxy needs to take a decision based on the interrupt type which is
unfortunately not available when the interrupt is received.

In this case, the user needs to disassemble the interrupt vector handler, and
follow the code �ow until the code of the interrupt controller driver branches
into di�erent functions that handle each device's interrupt. At this point, she
can specify these program points to Avatar that can terminate the interrupt
vector's execution and signal to the proxy that an interrupt has been identi�ed.
The proxy then sends the interrupt event to Avatar . Now the target backend of
Avatar can suppress a particular interrupt by instructing the proxy to drop the
corresponding event.

3.3.5 Replaying Hardware Interaction

It is quite common for a �rmware to have several sections that require only a
limited interaction with dedicated peripherals. In this case, the I/O operations
can be recorded by Avatar and transparently replayed during the next execution
of the �rmware.

This allows the user to test the �rmware without the bottleneck of the interaction
with the physical device. In this mode of operation the �rmware itself or parts
of it (e.g., applications) can be signi�cantly changed, as long as the order of I/O
interactions is not modi�ed. This is a major advantage over resuming a snapshot,
which requires the full code path until the snapshot point to be executed to
ensure that peripherals are in the state the snapshot expects them to be in.
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3.4 Overcoming the limits of Full Separation

The techniques introduced in the previous section are enough to perform dynamic
analysis on small portions of a �rmware code. However, sometimes the internals
and behavior of the system are completely unknown. In those cases, it can be
very useful to perform the analysis on larger portions of the binary, or, in the
extreme case, on the entire �rmware.

In this case, the performance of Avatar running in full separation mode poses a
great limitation to the usability of our framework. To overcome this problem,
in this section we present two techniques designed to overcome the limits of full
separation by moving part of the code to the physical device and part of the
memory to the emulator. This results in a considerable reduction in the number
of messages forwarded by Avatar between the emulator and the target, and
therefore a large improvement in the overall performance of the analysis system.

3.4.1 Memory Optimization

Forwarding all memory accesses from the emulator to the target over a limited-
bandwidth channel like UART or JTAG incurs in a heavy performance penalty.
For example, in our experiments an average of �ve instructions per second were
executed using the GDB stub through a 38400 baud UART connection.

The reason why memory operations need to be forwarded in the �rst place is
that di�erent embedded systems typically have di�erent mappings of addresses
to memory regions. Some of these memory regions are used for code (in RAM,
ROM or Flash memories), stack and heap, but one or several regions will be
used to access registers of physical peripherals through Memory-Mapped I/O
(MMIO). In this case, any I/O operation on those areas is equivalent to sending
and receiving data from an external device. If these address ranges are known,
the user can con�gure Avatar to keep every read-only memory (such as the code
segment) on the emulator. Read-write memory regions can also be marked as
local to the emulator, but modi�cations to them need to be tracked by Avatar to
be able to transfer those changes to the target at a later context switch. In fact,
when an emulator-to-target context switch happens, all modi�ed local memory
(�dirty memory�) needs to be copied to the target before the execution can
resume on the embedded device.

However, in most of the cases the user does not know a priori which area of mem-
ory is assigned to I/O. For this reason, Avatar includes an automated memory
optimization plugin that monitors the execution in the emulator and automat-
ically identi�es the regions that do not require access to the hardware. This
includes the stack (easily identi�ed by the execution of stack-related operations)
and the code segment (identi�ed by the values of the program counter). For
any other area, Avatar starts by forwarding the read and write operations to the
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Access type Read Write Cumulative

Code 61,632 - 61,632

Stack & data 646 1,795 64,073

I/O 3,614 2,097 69,784

Table 3.1: Number of memory accesses grouped by memory regions for the HDD
bootloader.

target device. It then keeps track of the values that are returned and applies a
simple heuristic: if the target always returns the value that was previously writ-
ten by the �rmware code (or if it always returns the same value and it is never
written by the �rmware) then it is probably not assigned to a memory mapped
device.

Table 3.1 shows an example of how many memory accesses could be saved by
keeping memory regions local to the emulator: transferring the code region to
the emulator would save 61,632 memory accesses (88%). Moving the stack and
data region in local memory as well would save 64,073 memory accesses (92%).
Only the I/O accesses cannot be moved to the emulator's memory.

3.4.2 Selective Code Migration

So far, we assumed that the �rmware is either running entirely inside the emula-
tor, or entirely on the embedded device. The user can instruct Avatar to switch
from one mode to the other when certain conditions are met, but such context
switches are time consuming.

In this section we present a �ne-grained solution that allows the user to migrate
only parts of the �rmware code back to the target. This technique allows to
overcome two limitations of the full-separation mode. Some code blocks need
to be executed atomically, for example when there are timing constraints on the
code. We will describe such a case in Section 3.6.1, where we encountered a
function that read the timer twice and waited for the di�erence to be below a
certain limit. Another example is when delays introduced by Avatar would lead
the target in an invalid state. We encountered such a case during the DRAM
initialization of the HDD, as shown in Section 3.6.1).

The second limitation addressed by selective code migration is related to the
analysis performance. In fact, certain functions (e.g., polling loops and interrupt
handlers) can be executed signi�cantly faster when run natively on the target.

In the current Avatar prototype, code migration is supported at a function level.
In this case, the code can be copied to its location in the target's memory
without modi�cation. Its exit points are then replaced by breakpoints, and the
virtual machine register state is transferred from the emulator to the target. The
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execution is resumed on the target until one of the exit breakpoints is triggered,
and at that point the state is transferred back to the emulator. This transition is
much faster than a complete context switch, since Avatar only needs to transfer
few bytes and not the entire content of the memory.

Even though this simple technique is enough to circumvent critical code regions
in several real world scenarios, it neglects some di�culties that may a�ect code
migration. First, the code may read or write arbitrary memory locations associ-
ated, for example, with global variables. Avatar keeps track of those locations,
copy their content over to the target before the execution, and copy written
locations back after the execution. Second, the code may use instructions that
change the control �ow in unforeseen ways, like software interrupts, processor
mode changes, and indirect jumps.

Our framework prototype addresses these issues by performing an on-the-�y
static analysis. When a function is selected for code migration, Avatar disas-
sembles its code using the llvm-mc disassembler. The result is then analyzed
to identify critical instructions. In this way, we can predict memory accesses
outside the function stack, compute the control �ow of the code and verify that
no instructions can escape from this computed control �ow. As we describe
in Section 3.6, this technique is su�cient to migrate small, atomic functions.
However, we plan to extend the capabilities of the code migration system to
apply transformations to the code. On the one hand, those transformations will
allow to ensure that instructions which are not statically veri�able (e.g., indirect
jumps) will not escape the proxy's sandbox. On the other hand, it can be used
to track memory accesses, so that only the modi�ed (�dirty�) part of the state
needs to be copied back from the target to the emulator when a context switch
happens. Those critical instructions will be replaced with instrumentation code
that calls functions in proxy, which will handle them in a safe way.

3.5 Extending Avatar

Avatar 's architecture is designed to be modular and its base framework can be
easily customized to �t di�erent analysis scenarios. We chose S2E as default
Avatar emulator back-end because it o�ers many hooks and manipulation fa-
cilities on top of QEMU which facilitates the development of custom dynamic
analysis plugins.

In this section, we show an example of an Avatar extension: we built upon
its core capabilities to support selective symbolic execution. For this we add
several features and plugins to the ARM port of S2E. Moreover, we believe
the symbolic execution engine provides a super-set of the capabilities needed
to implement taint analysis, even though a targeted plugin could be needed to
perform concrete data tracking and taint analysis in a more lightweight way.
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In the rest of this section we describe the technique Avatar employs to fully
exploit the symbolic engine of S2E and perform selective symbolic execution
on unmodi�ed portions of �rmware blobs. Moreover, we show how we use our
extended version of S2E in Avatar to dynamically detect potential control �ow
corruption vulnerabilities by injecting and tracking symbolic inputs.

3.5.1 Injecting Symbolic Values Into the Firmware's Execution
Flow

In the �eld of program testing, symbolic execution is a technique employed
to improve code coverage by using symbols as input data (instead of concrete
values) and keeping track of constraints upon their manipulation or comparison
(c.f. [SAB10]). The result of symbolic evaluation is an execution tree, where
each path is a possible execution state that can be reached by satisfying the
constraints associated to each symbolic value.

S2E further develops this concept by performing selective symbolic execution,
i.e., by restricting the area of symbolic execution to speci�c code portions and
treating only speci�c input data as symbolic [CKC12]. This greatly helps to
speedup the analysis process (as symbolic execution of code results in signi�cant
slowdowns) and to drive the exhaustive symbolic exploration into selected regions
of code. This process requires Avatar to control the introduction of symbolic
values into S2E, in place of existing real values.

The remote memory interface between S2E and Avatar , as introduced in Sec-
tion 3.3, ensures that only concrete values reach the real hardware through
Avatar . Symbolic values remain therefore con�ned to the emulation domain.
If a symbolic value is about to be written to the target hardware, the remote
memory interface in S2E performs a forced concretization before forwarding it.
Such symbolic value concretizations happen in two stages. First, all the con-
straints associated with the value are retrieved and evaluated by the integrated
SAT-solver. Second, a single example value which satis�es all the constraints is
forwarded to Avatar to be written on the target.

On the one hand, making Avatar handle only concrete values leaves it as a
controller with a simpler external view of S2E and avoids having to keep track of
execution paths and paths conditions twice. On the other hand, this choice brings
the minor drawback that Avatar has no direct control on symbolic execution,
which is instead under the control of S2E/KLEE.

We designed a simple plugin for detecting arbitrary execution conditions. It relies
on the following heuristics as signs of possibly exploitable conditions:

• a symbolic address being used as the target of a load or store instruction,

• a symbolic address being leaked into the program counter (e.g., as the
target of a branch),
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• a symbolic address being moved into the stack pointer register.

In order to selectively mark some input data as symbolic, two di�erent approaches
can be taken: either modify the binary code (or the source code, if available)
to inject custom instructions into the �rmware, or dynamically instrument the
emulation environment to specify the scope of symbolic analysis at run-time.
The �rst approach requires some high-level knowledge of the �rmware under
analysis (e.g., access to source code) and the guarantee that injecting custom
instructions into �rmware code would not a�ect its behavior. Examples include
the Android Dalvik VM, whose source code can be modi�ed and rebuilt to enable
transparent analysis of pristine Java bytecode with S2E [Kir].

Since we did not want to limit Avatar to this scenario, we decided to follow
the second approach, which requires to extend the symbolic engine and the
Avatar framework. Such extensions should know when symbolic execution has
to be triggered and where symbolic values should be injected.

This choice leads to two major advantages:

• Firmware Integrity
The binary code is emulated as-is, without injecting custom opcodes or
performing recompilation. This guarantees that the emulated code adheres
to the original �rmware behavior (i.e., no side-e�ects or bugs are introduced
by the intermediate toolchain)

• Programmatic Annotation
The control and data �ow of �rmware emulation can be manipulated and
annotated with symbolic meta-data in an imperative way. A high-level
language (Lua) is used to dynamically script and interact with current
emulation environment, as well as introducing and tracing symbolic meta-
data.

For this we �rst completed the port of S2E to the ARM architecture in order to
have complete symbolic execution capabilities, then we ported the Annotation
plugin to the ARM architecture. The Annotation plugin lets the user specify
a trigger event (e.g., a call/return to a speci�c subroutine or the execution of
code at a speci�c address), and a Lua function to be executed upon the event.
A simple API is then provided to allow for manipulation of the S2E emulation
environment directly from the Lua code. Avatar provides direct channels to
dynamically control the emulation �ow via QMP command messages. These
channels can also be used to inject Lua code at run-time, in order to dynamically
generate annotations which depend on the current emulation �ow and inject
them back into S2E. Once symbolic values are introduced in the execution �ow,
S2E tracks them and propagates the constraints.

Symbolic analysis via Lua annotations is intended to be used as a tool for late
stage analysis, typically to ease the discovery of �aws in logic-handling code, with
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hand-made Lua analysis code directly provided by the user. It can be employed
in both full separation mode and context switching, as soon as code execution
can be safely moved to the emulator (e.g., outside of raw I/O setup routines,
sensors polling). This normally happens after an initial analysis has been done
with Avatar to detect interesting code and memory mappings.

A similar non-intrusive approach has already been used in a x86-speci�c context,
to test and reverse-engineer the Windows driver of a network card [CC10b]. To
the best of our knowledge, however, this technique has never been applied before
to embedded devices. In the context of �rmware security testing, annotations
can be used in a broad range of scenarios. In Section 3.6, we present how we
applied this technique to di�erent technologies and devices, to perform dynamic
analysis of widespread embedded systems such as hard drives, GSM phones, and
wireless sensors.

3.5.2 Symbolically Detecting Arbitrary Execution Conditions

When dealing with modern operating systems, an incorrect behavior in a user-
space program is often detected because an invalid operation is performed by the
program itself. Such operations can be, for example, an unauthorized access to
a memory page, or the access to a page that is not mapped in memory. In those
cases, the kernel would catch the wrong behavior and terminate the program,
optionally triggering some analysis tools to register the event and collect further
information that can later be used to identify and debug the problem. Moreover,
thanks to the wide range of exploit mitigation techniques in place today (DEP,
canaries, sandboxing and more), the system is often able to detect the most
common invalid operations performed by userspace processes.

When dealing with embedded systems, however, detecting misbehavior in �rmware
code can be more di�cult. The observable symptoms are not always directly
pinpointed to some speci�c portion of code. For example, many �rmware are
designed for devices without a Memory Management Unit (MMU) or Memory
Protection Unit (MPU) or are just not using them. In such a context, incorrect
memory accesses often result in subtle data corruption which sometimes leads
to erratic behaviors and rare software faults, such as random events triggering,
UI glitches, system lock or slowdown [Cri82]. For this reason, it is common for
embedded devices to have a hardware watchdog in charge of resetting the device
execution in case of any erratic behavior, e.g., a missed reply to timed watchdog
probes.

For these reasons, detecting incorrect execution inside the emulation is easier
when some OS support can be used for co-operation (e.g., a Blue Screen Of
Death interceptor for Windows kernel bugs is implemented in S2E). On the other
hand, catching such conditions during the emulation of an embedded device
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�rmware is bound to many system-speci�c constraints, and require additional
knowledge about the internal details of the �rmware under analysis.

However, Avatar does not rely on the knowledge of any speci�c operating system
or the fact that a MMU is used. Instead, it aims at detecting a larger range of po-
tentially critical situations which may result in control �ow hijacking of �rmware
code, by using a technique similar to the one employed by AEG [ACHB11].

All three conditions may lead to false positives, when the variable is symbolic but
strongly constrained. Therefore, once such a condition is detected the constraints
imposed on the symbolic variables must be analyzed: the less constrained is the
result, the higher is the chance of control �ow corruption. Intuitively, if the
constraints are very loose (e.g., a symbolic program counter without an upper
bound) then the attacker may obtain enough control on the code to easily exploit
the behavior. In contrast, tightly constrained symbolic addresses, such as a
properly constrained pointer into a jump table, are not relevant for the purpose
of security analysis.

When an interesting execution path is detected by the above heuristic, the state
associated to the faulty operation is recorded and the emulation is terminated.
At this point a test-case with an example input to reach this state is generated,
and the constraints associated with each symbolic value are stored to be checked
for false positives (i.e., values too strictly bound).

Automatically telling normal constraints apart from those that are a sign of
a vulnerability is a complex task. In fact it would require knowledge of the
program semantics that were lost during compilation (e.g., array boundaries).
Such knowledge could be extracted from the source code if it is available, or
might be extrapolated from binary artifacts in the executable itself or the build
environment. In such cases, speci�c constraints could be fed into Avatar by
writing appropriate plugins to parse them, for example by scanning debug symbols
in a non-stripped �rmware (e.g., a DWARF parser for ELF �rmwares) or by
reading other similar symbols information.

Finally, Avatar could highly bene�t from a tighter coupling with a dynamic data
excavator, helping to reverse engineer �rmware data structures [CSXK08]. In
particular, the heuristic proposed in Howard [SSB11] for recovering data struc-
tures by observing access patterns under several execution cycles could be easily
imported into the Avatar framework. Both tools perform binary instrumentation
on top of QEMU dynamic translation and make use of a symbolic engine to
expand the analyzed code coverage area.

3.5.3 Limitations of state synchronization

Our current implementation of the synchronization between device state and
emulator state works well in general, but is di�cult in some special cases.
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First it is di�cult to handle DMA memory accesses in our current model. For
example, the �rmware can send a memory address to a peripheral and request
data to be written there. The peripheral will then notify the �rmware of the
request's completion using an interrupt. Since Avatar does not know about
this protocol between �rmware and peripheral, it will not know which memory
regions have been changed. On newer ARM architectures with caches, data
synchronization barrier or cache invalidation instructions might be taken as hint
that some memory region has been changed by DMA.

Second, if code is executed on the device, Avatar is currently incapable of de-
tecting which regions have been modi�ed. In consequence, whenever memory
accesses of the code run on the device are not predictable by static analysis,
we need to transfer the whole memory of the device back to the emulator on a
device-to-emulator state switch. We plan to address this issue by using check-
summing to detect memory region changes and minimize transferred data by
identifying smallest changed regions through binary search.

Third, when Avatar performs symbolic execution, symbolic values are con�ned
to the emulator. In case that a symbolic value needs to be concretized and
sent to the device, a strategy is needed to keep track of the di�erent states and
I/O interactions that were required to put the device in that state. This can be
performed reliably by restarting the device and replaying I/O accesses. While
this solution ensures full consistency, it is rather slow.

3.6 Evaluation

In this section we present three case studies to demonstrate the capabilities of
the Avatar framework on three di�erent real world embedded systems. These
three examples by no means cover all the possible scenarios in which Avatar can
be applied. Our goal was to realize a �exible framework that a user can use
to perform a wide range of dynamic analysis on known and unknown �rmware
images.

As many other security tools (such as a disassembler or an emulator), Avatar re-
quires to be con�gured and tuned for each situation. In this section, we try
to emphasize this process, in order to show all the steps a user would follow
to successfully perform the analysis and reach her goal. In particular, we will
discuss how di�erent Avatar con�gurations and optimization techniques a�ected
the performance of the analysis and the success of the emulation.

Not all the devices we tested were equipped with a debug interface, and the
amount of available documentation varied considerably between them. In each
case, human intervention was required to determine appropriate points where
to hook execution and portions of code to be analyzed, incrementally building
the knowledge-base on each �rmware in an iterative way. A summary of the

Development of novel dynamic binary analysis techniques for the security analysis
of embedded devices



38
3. AVATAR: A FRAMEWORK TO SUPPORT DYNAMIC SECURITY ANALYSIS OF EMBEDDED

SYSTEMS’ FIRMWARES

Experiment 3.6.1 Experiment 3.6.2 Experiment 3.6.3

Target device Hard disk ZigBee sensor GSM phone

Manufacturer
and model

undisclosed Redwire
Econotag

Motorola C118

System-on-Chip unknown MC13224 TI Calypso

CPU ARM966 ARM7TDMI ARM7TDMI

Debug access Serial port JTAG JTAG

Analyzed code Bootloader ZigBee stack SMS decoding

Scope of analysis Backdoor
detection

Vulnerability
discovery

Reverse
engineering

Table 3.2: Comparison of experiments described in Section 3.6.

main characteristics of each device and of the goal of our analysis is shown in
Table 3.2.

3.6.1 Analysis of the Mask ROM Bootloader of a Hard Disk
Drive

Our �rst case study is the analysis of a masked ROM bootloader and the �rst
part of the secondary bootloader of a hard disk drive.

The hard disk we used in our experiment is a commercial-o�-the-shelf SATA
drive from a major hard disk manufacturer. It contains an ARM 966 processor
(that implements the ARMv5 instruction set), an on-chip ROM memory which
contains the masked ROM bootloader and some library functions, an external se-
rial �ash that is connected over the SPI bus to the processor, a dynamic memory
(SDRAM) controller, a serial port accessible through the master/slave jumpers,
and some other custom hardware that is necessary for the drive's operation. The
drive is equipped with a JTAG connection, but unfortunately the debugging fea-
tures were disabled in our device. The hard drive's memory layout is summarized
in Figure 3.4.

The stage-0 bootloader executed from mask ROM is normally used to load the
next bootloader stage from a SPI-attached �ash memory. However, a debug
mode is known to be reachable over the serial port, with a handful of commands
available for �ashing purposes. Our �rst goal was to inject the Avatar stub
through this channel to take over the booting process, and later use our frame-
work for deeper analysis of possible hidden features (e.g., backdoors reachable
via the UART).

The �rst experiment we performed consisted of loading the Avatar stub on
the drive controller and run the bootloader's �rmware in full separation mode.
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Figure 3.3: The disk drive used for experiments. The disk is connected to a SATA
(Data+Power) to USB interface (black box on the right) and its serial port is connected
to a TTL-serial to USB converter (not shown) via the 3 wires that can be seen on the
right.

This mimics what a user with no previous knowledge of the system would do
in the beginning. In full separation mode, all memory accesses were forwarded
through the Avatar binary protocol over the serial port connection to the stub and
executed on the hard drive, while the code was interpreted by S2E. Because of the
limited capacity of the serial connection, and the very intensive I/O performed
at the beginning of the loader (to read the next stage from the �ash chip),
only few instructions per second were emulated by the system. After 24 hours
of execution without even reaching the �rst bootloader menu, we aborted the
experiment.

In the second experiment we kept the same setting, but we used the memory
optimization plugin to automatically detect the code and the stack memory
regions and mark them as local to the emulator. This change was enough
to reach the bootloader menu after approximately eight hours of emulation.
Though considerably faster than in the �rst experiment, the overhead was still
unacceptable for this kind of analysis.

Since the bottleneck of the process was the multiple read operations performed
by the �rmware to load the second stage, we con�gured Avatar to replay the
hardware interaction from disk, without forwarding the request to the real hard-
ware. In particular, we used the trace of the communication with the �ash
memory from the second experiment to extract the content of the �ash memory,
and dump it into a �le. Once the read operations were performed locally in the
emulator, the bootloader menu was reached in less than four minutes.

At this point, we reached an acceptable working con�guration. In the next
experiment, we show how Avatar can be used in conjunction with the symbolic
execution of S2E to automatically analyze the communication protocol of the
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0x00100000
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Data SRAM

0x40000000

0x50000000

Memory Mapped IO

0xFFFFFFFF

Figure 3.4: Hard drive memory layout.

hard drive's bootloader and detect any hidden backdoor in it.

We con�gured Avatar to execute the hard drive's bootloader until the menu was
loaded, and then replace all data read from the serial port register by symbolic
values. As a result, S2E started exploring all possible code paths related to the
user input. This way, we were able to discover all possible input commands,
either legitimate or hidden (which may be considered backdoors), that could be
used to execute arbitrary code by using S2E to track when symbolic values were
used as address and value of a memory write, and when the program counter
would become symbolic. With similar methodologies, a user could use symbolic
execution to automatically discover backdoors or undocumented commands in
input parsers and communication protocols.

In order to conduct a larger veri�cation of the �rmware input handler, we were
also able to recover all the accepted commands and verify their semantics. Since
the menu o�ered a simple online help to list all the available commands, we
could demonstrate that Avatar was indeed able to automatically detect each and
all of them (the complete list is reported in Table 3.3). In this particular device,
we veri�ed that no hidden commands are interpreted by the �rmware and that
a subset of the commands can be used to make arbitrary memory modi�cations
or execute code on the controller, as documented.

However, we found that the actual protocol (as extracted by symbolic analysis) is
much looser than what is speci�ed in the help menu. For example the argument
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DS Use a minimal version of the Motorola S-
Record binary data format to transmit data
to the device

AP <addr> Set the value of the address pointer from
the parameter passed as hexadecimal number.
The address pointer provides the address for
the read, write and execute commands.

WT <data> Write a byte value at the address pointer. The
address pointer is incremented by this opera-
tion. The reply of this command depends on
the current terminal echo state.

RD Read a byte from the memory pointed to by
the address pointer. The address pointer is
incremented by this operation. The reply of
this command depends on the current terminal
echo state.

GO Execute the code pointed to by the address
pointer. The code is called as a function with
no parameters, to execute Thumb code one
needs to specify the code's address + 1.

TE Switch the terminal echo state. The terminal
echo state controls the verbosity of the read
and write commands.

BR <divisor> Set the serial port baud rate. The parameter is
the value that will be written in the baud rate
register, for example "A2" will set a baudrate
of 38400.

BT Resume execution with the �rmware loaded
from �ash.

WW Erase a word (4 bytes) at the address pointer
and increment address pointer.

? Print the help menu showing these commands.

Table 3.3: Mask ROM bootloader commands of the hard drive. In the left column
you can see the output of the help menu that is printed by the bootloader. In the right
column a description obtained by reverse engineering with symbolic execution is given.

of the 'AP' command can be separated by any character from the command, not
only spaces. It is also possible to enter arbitrarily long numbers as arguments,
where only the last 8 digits are actually taken into account by the �rmware code.

After the analysis of the �rst stage was completed, we tried to move to the
emulation of the second stage bootloader. At one point, in what turned out
to be the initialization of the DRAM, the execution got stuck: the proxy on
the hard drive would not respond any more, and the whole device seemed to
have crashed. Our guess was that the initialization writes the DRAM timings
and needs to be performed atomically. Since we already knew the exact line of
the crash from the execution trace, it was easy to locate the responsible code,
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Figure 3.5: Econotag memory layout (respective scales not respected).

Figure 3.6: The Econotag device. From left to right: the USB connector, serial and
JTAG to USB converter (FTDI), Freescale MC13224v controller and the PCB 2.4 GHz
antenna.

isolate the corresponding function, and instruct Avatar to push its code back to
be executed natively on the hard drive.

In a similar manner, we had to mark few other functions to be migrated to
the real hardware. One example is the timer routine, which was reading the
timer value twice and then checked that the di�erence was below a certain
threshold (most probably to ensure that the timer read had not been subject to
jitter). Using this technique, in few iterations we managed to arrive at the �nal
Avatar con�guration that allowed us to emulate the �rst and second stages up
to the point in which the disk would start loading the actual operating system
from the disk's platters.

3.6.2 Finding Vulnerabilities Into a Commercial Zigbee Device

The Econotag, shown in Figure 3.6, is an all-in-one device for experimenting
with low power wireless protocols based on the IEEE 802.15.4 standard [IEE06],
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such as Zigbee or 6lowpan [MKHC07]. It is built around the MC13224v System
on a Chip from Freescale. The MC13224v [Red] is built upon an ARM7TDMI
microcontroller, includes several memories, peripherals and has an integrated
IEEE 802.15.4 compatible radio transceiver. As it can be seen in Figure 3.5,
the device includes 96KB of RAM memory, 80 KB of ROM and a serial Flash
for storing data. The ROM memory contains drivers for several peripherals as
well as one to control the radio, known as MACA (MAC Accelerator), which
allows to use the dedicated hardware logic supporting radio communications
(e.g., automated ACK and CRC computation).

The goal of this experiment is to detect vulnerabilities in the code that process
incoming packets. For this purpose, we use two Econotag devices and a program
from the Freescale demonstration kit that simulates a wireless serial connection
(wireless UART [Fre11a]) using the Simple MAC (SMAC [Fre11b]) proprietary
MAC layer network stack. The program is essentially receiving characters from its
UART and transmitting them as radio packets as well as forwarding the charac-
ters received on the radio side to its serial port. Two such devices communicating
together essentially simulate a wireless serial connection.

The data received from the radio is bu�ered before being sent to the serial port.
For demonstration purposes, we arti�cially modi�ed this bu�er management to
insert a vulnerability: a simple stack-based bu�er over�ow. We then compiled
this program for the Econotag and installed it on both devices.

Avatar was con�gured to let the �rmware run natively until the communication
between the two devices started. At this point, Avatar was instructed to perform
a context switch to move the run-time state (registers and data memory) of one
of the devices to the emulator. At this point, the execution proceeded in full
separation mode inside the emulator using the code loaded in ROM memory
(extracted from a previous dump), and the code loaded in RAM memory (taken
from the application). Every I/O access was forwarded to the physical device
through the JTAG connection.

The emulator was also con�gured to perform symbolic execution. For this pur-
pose, we used annotations to mark the bu�er that contains the received packet
data as symbolic. Then, we employed a state selection strategy to choose sym-
bolic states which maximize the code coverage, leading to a thorough analysis
of the function.

On the �rst instruction that uses symbolic values in the bu�er, S2E would switch
from concrete to symbolic execution mode. Execution will fork states when, for
example, conditional branches that depend on such symbolic values are eval-
uated. After exploring 564 states, and within less than a minute of symbolic
execution, our simple arbitrary execution detection module detected that an
unconstrained symbolic value was used as a return address. This con�rmed
the detection of the vulnerability and also provided an example of payload that
triggers the vulnerability.
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Figure 3.7: The Motorola C118. The clip-on battery (on the right) has been wired to
the corresponding power pins, while the ribbon cable is connected to the JTAG pads
reachable on the back (not shown).

We also used Avatar to exhaustively explore all possible states of this function
on a program without the injected vulnerability, and con�rmed the absence of
control �ow corruption vulnerabilities that could be triggered by a network packet
(that our simple arbitrary execution detection module could detect).

3.6.3 Manipulating the GSM Network Stack of a Common Fea-
ture Phone

Our �nal test-case is centered on the analysis of the �rmware of a common GSM
feature phone. In contrast with most recent and advanced mobile phones and
smartphones, feature phones are characterized by having one single embedded
processor for both the network stack (i.e., GSM baseband capabilities) and the
Human-to-Machine Interface (HMI: comprising the main Graphical User Inter-
face, advanced phone services, and miscellaneous applications). As such, there is
no clear code separation between di�erent �rmware sections. On these phones,
typically a real-time kernel takes care of scheduling all the tasks for the processes
currently in execution. These are executed in the same context and have shared
access to the whole physical memory as well as memory-mapped I/O.

GSM baseband stacks have already been shown to have a large potentially ex-
ploitable attack surface [Wei12]. Those stacks are developed by few companies
worldwide and have many legacy parts which were not written with security
in mind, and in particular were not considering attacks coming from the GSM
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Figure 3.8: Motorola C118 memory layout (respective scales not respected).

infrastructure [Wel].

For our experiment, we used a Motorola C118, which is a re-branded version
of the Compal E88 board also found in other Motorola feature phones. This
board makes use of the Texas Instruments �Calypso� digital baseband, which
is composed of a mask-ROM, a DSP for GSM signal decoding, and a single
ARM7TDMI processor. It also includes several peripherals such as an RTC clock,
a PWM generator for controlling the lights and buzzer as well as a memory
mapped UART as shown in Figure 3.8. Some board models have JTAG and
UART ports available, which are from time to time left enabled by manufacturers
to simplify servicing devices. In our case, we gained access to the JTAG port and
used an adapter to bridge communication between Avatar and the hardware, as
shown in Figure 3.7.

Some speci�cation documents on the Calypso chipset have been leaked in the
past, leading to the creation of home-brew phone OS that could be run on
such boards. As part of the Osmocom-BB project, most of the platform has
been reversed and documented, and it is now possible to run a free open-source
software GSM stack on it [osm]. However, we conducted our experiments on the
original Motorola �rmware, in order to assess the baseband code of an unmodi�ed
phone. Moreover, as the GSM network code is provided as a library by the
baseband manufacturer, there is an higher chance that �aws a�ecting the library
code would also be present in a broader range of phones using baseband chips
from that same vendor.

Development of novel dynamic binary analysis techniques for the security analysis
of embedded devices



46
3. AVATAR: A FRAMEWORK TO SUPPORT DYNAMIC SECURITY ANALYSIS OF EMBEDDED

SYSTEMS’ FIRMWARES

The phone has a �rst-stage bootloader executed on hardware reset, which can
be used to re-�ash the �rmware. After phone setup, execution continues to
the main �rmware, which is mainly composed of the Nucleus RTOS, the TI
network stack library, and of third-party code to manage the user interface.
The phone bootloader can be analyzed using Avatar in a similar way as the
one already described for the hard disk in Section 3.6.1 to discover �ashing
commands, hidden menus and possible backdoors. However, the bootloader
revealed itself to be simpler than the hard drive one, supporting only a UART
command to trigger �rmware �ashing and executing the �ashed �rmware, or
continuing execution after a timeout expiration.

For this reason, we focused on the analysis of the GSM network stack, and in
particular on the routines dedicated to SMS decoding. It has already been shown
in the past how maliciously crafted SMS can cause misbehavior, ranging from
UI issues to phone crashes [MGS11]. However, due to the lack of a dynamic
analysis platform to analyze embedded devices, previous studies relied on blind
SMS fuzzing. Our experiment aims at improving the e�ectiveness of SMS fuzzing
to detect remotely exploitable execution paths.

In this scenario, Avatar was con�gured to start the execution of the �rmware
on the real device, and switch to the emulator once the code reached the SMS
receiving state (e.g., by sending a legitimate SMS to it through the GSM net-
work). Avatar was then used to selectively emulate and symbolically explore the
decoding routines. As a result of this exploration, a user is able to detect faulty
conditions, to determine code coverage due to di�erent inputs and to recover
precise input constraints to drive the �rmware execution into interesting areas.

In this context, Avatar uses the JTAG connection to stop the execution on the
target and later perform all synchronization steps between the emulator and the
target. All memory and I/O accesses through JTAG are traced by Avatar to let
the user identify address mappings. When the phone reaches the SMS receiving
state, a target-to-emulator context switch happens and the phone's state is
transferred into S2E. Using address mapping information previously recovered
through Avatar , just the relevant memory is moved into S2E (e.g., portions of
code and the execution stack), while remaining memory is kept on the target and
forwarded on-the-�y by Avatar (e.g., I/O regions). On this device, no selective
code migration was required.

Using this Avatar con�guration, the SMS payload can be intercepted in memory
and marked as symbolic by employing the techniques shown in Section 3.5. In
particular, we wrote Annotation functions to be triggered before entering the
decoding routines and we then proceeded to selectively mark some bytes of their
input arguments as symbolic. The S2E plug-in for Arbitrary Execution Detection
has been employed to isolate interesting vulnerable cases, while other execution
paths were killed upon reaching the end of the decoding function.

The symbolic execution experiments have been performed over several days, with
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the ones with larger number of symbolic inputs taking up to 10 hours before �ll-
ing up 60 GB of available memory. In such case, we observed more than 120,000
states being spawned according to di�erent constraints solving. Unfortunately,
and contrary to the other experiments, the GSM network stack proved to be
way too complex to be symbolically analyzed without prior knowledge on the
high-level structure of the code. The analysis was clobbered by an explosion
of possible states due to many forks happening in pointer-manipulating loops.
Avatar was able to symbolically explore 42 subroutines executed during SMS
decoding, without detecting any exploitable conditions. However, it was able to
highlight several situations of user-controlled memory load, which were unfortu-
nately too strictly constrained to be exploited, as discussed in Section 3.5.2.

State explosion is a well-known limitation of symbolic execution. To mitigate
the problem, a user may need to de�ne heuristics to avoid an excessive resource
consumption. This could be done, for example, by employing more aggressive
state selectors to enhance code coverage, and actively prune states by looking
at loops invariants [SW07]. However, this optimizations are outside the scope
of our work. The objective of our experiments are, in fact, limited to prove
that Avatar can be used to perform dynamic analysis of complex �rmware of
embedded devices.

Development of novel dynamic binary analysis techniques for the security analysis
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Chapter 4

Implementation and

Implications of a Stealth

Hard-Drive Backdoor

This chapter is based on a publication which has been presented at the 29th
Annual Computer Security Applications Conference (ACSAC) in 2013 [ZKB+13].

In the previous chapter, we presented Avatar , a dynamic analysis framework for
�rmware. We have shown its usefulness on three test cases. Here, we want
to exand on one of the test cases, the hard drive, and perform an analysis of
the whole �rmware, not just the boot ROM. As we will explain later, there are
some intricacies in injecting Avatar 's GDB stub into the �rmware and preventing
it from being overwritten. However, in the end, the tracing features of the
framework proved very helpful to identify possible locations where data blocks
can be intercepted in the �rmware.

We also want to highlight the topicality of �rmware backdoors. In January
2014, Just about a month after this work was presented, documents leaked
by whistleblower Edward Snowden revealed that the National Security Agency
(NSA) had been working on a �rmware implant for hard drives, codenamed
�IRATEMONK� [Sch14, AGG+15]. From our understanding, this backdoor is
used to inject a rootkit into the Master Boot Record (MBR). Code in the MBR
runs at the very beginning of the boot process in the highest privilege level. Even
if the disk is completely erased, the rootkit can be re-injected into the MBR by the
�rmware and install itself from there. As we will show, the backdoor presented
in this chapter works di�erently, and does not execute any code on the main
CPU.

In our original paper we claim that �the di�culty of implementing such an attack
is not limited to the area of government cyber-warfare; rather, it is well within the
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reach of moderately funded criminals, botnet herders and academic researchers�.
This claim is bolstered today by the work of another private security researcher.
Jeroen Domburg reverse-engineered at the same time, independently from us,
a hard drive �rmware and presented his work at a hacking conference in July
2013 [aS], just when this work was accepted to be presented at ACSAC 2013.
Finally, Kaspersky reported in February 2015 to have discovered a malware that
is capable of infecting hard drive �rmware [kas15].

4.1 Introduction

Rootkits and backdoors are popular examples of malicious code that allow at-
tackers to maintain control over compromised machines. They are used by simple
botnets as well as by sophisticated targeted attacks, and they are often part of
cyber-espionage tools designed to remain undetected and collect information for
a long period of time.

Traditionally, malicious code targets system utilities, popular network services or
components of the operating system. However, in a continuous e�ort to be-
come more persistent and avoid detection, the target of the infection has shifted
from software components towards more low-level elements, such as bootload-
ers, virtual-machine hypervisors, computer BIOS, and recently even the hardware
itself.

The typical hardware-based threat scenario involves a malevolent employee in the
manufacturing process or a compromised supply chain. In addition, many devices
from trusted parties have been known to contain rootkits for copyright protec-
tion [HF06] or lawful interception capabilities in network devices [BFS04, Cro10].
Recent reports of hard drives shipping with viruses [Max13] show that such
threats are also realistic in the context of storage devices. In this chapter, we
will demonstrate that it is not even necessary to have access to the manufac-
turer or to the supply chain in order to compromise a hard drive's �rmware.
Instead, a �rmware backdoor can be installed by, e.g., traditional malware after
the operating system has been compromised.

From the attacker's point of view, a drawback of hardware backdoors is the
fact that they are highly hardware dependent, requiring customization for each
targeted device. This has made hardware backdoors less generic and less attrac-
tive than more traditional operating-system backdoors. However, the hard-drive
market has now shrunk to only three major manufacturers, with Seagate and
Western Digital accounting for almost 90% of all drives manufactured [bac12].
While drive �rmwares may vary across product lines, porting a backdoor from
one model to another of the same manufacturer should require only a limited
amount of work, making backdoors on hard drives an attractive attack vector.
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So far, malicious hardware has typically been used as a stepping stone to compro-
mise other system components: for example, by exploiting the auto-run function-
ality, �lesystem vulnerabilities [Lar11], or DMA capabilities on systems lacking
properly con�gured I/O Memory Management Units (IOMMU). In such cases,
malicious code on the operating system is simply bootstrapped from the hard-
ware device. Then, to perform its operation, the malware propagates and infects
the OS kernel, using the compromised hardware only as a way to survive re-
installation and software updates. However, as soon as malicious code �leaves�
the �rmware and moves to the system memory, it breaks cover. Therefore,
such malware can be detected and prevented by kernel- or hardware-supported
integrity mechanisms, such as Copilot [PJFMA04].

In this chapter, we describe how an attacker can overcome the above limitations
by leveraging a storage �rmware backdoor. Such a �rmware backdoor does not
require any modi�cation to the operating system. The backdoor is, therefore,
less intrusive and less dependent on other layers (e.g., OS, applications, and
�lesystem). As a consequence, it cannot be detected by existing mechanisms
that guarantee OS integrity [PJFMA04, HDK+11].

As a proof of concept, we present a Data Ex�ltration Backdoor (�DEB�) that
allows an attacker to remotely retrieve and modify any data stored in the device.
A DEB allows a bi-directional communication channel to be established between
the attacker and the storage device that potentially resides in a data center
well outside the attacker's reach. As most Internet-based services, such as web
forums, blogs, cloud services or Internet banking, eventually need to read and
write data to disk, a DEB can be used to remotely ex�ltrate data from such
services. The rationale of this data-replacement backdoor is that the attacker
can piggy-back its communications with the infected storage device on disk reads
and writes. Indeed, the attacker can issue a speci�c command by encapsulating
it in normal data which is to be written to a block on a compromised hard drive.
This command makes the malicious �rmware replace the data to be written
with the data of an arbitrary block speci�ed by the attacker. In a second step,
the attacker can then request the block that was just written and therewith,
e�ectively, retrieve the content of any block on the hard-drive. We also discuss
a number of challenges that arise with this technique, and show how the attacker
can overcome them (e.g., data alignment and cache issues).

Threat Model In our threat model, an attacker has compromised an o�-the-
shelf computer. This machine may have been initially infected with a malware
by a common attack such as a drive-by-download or a malicious email attach-
ment. Then the malware infects the machine's hard drive �rmware by abusing
its �rmware update mechanisms. Finally, the OS part of the malware removes
itself from the machine, and future malicious behavior becomes completely �in-
visible� to the OS, anti-virus or forensics tools. Following such an infection, the
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malware can keep control of the machine without being detected even if the
drive is formatted and the system re-installed.

We show in this chapter that, surprisingly, the above attack requires the same
amount of e�ort and expertise as the development of many existing forms of
professional malware (e.g., large scale botnets). Moreover, we claim that this
attack is well within the capabilities of current cyber-espionage tools. Finally,
we note that this threat model applies to dedicated hosting providers, since an
attacker could temporarily lease a dedicated server and infect an attached hard
drive via a malicious �rmware update. A subsequent customer leasing a server
with this infected drive would then be a victim of this attack.

4.2 Backdooring a Commercial O�-The-Shelf Hard
Drive

In this section we describe how we inserted a backdoor into the �rmware of a
stock hard drive.

4.2.1 Modern Hard-Drive Architecture

The software and system architecture described here are speci�c to the drive we
analyzed. However, we observed that it is almost identical for two distinct drives
from one product family of the same manufacturer, and a brief look at one drive
from another major manufacturer revealed a very similar architecture.

Physical Device A hard disk is a set of rigid magnetic disks aligned on a
spindle, which is rotated by a motor. A rotary actuator structure moves a stack
of heads relative to concentric tracks on the surface of the disks. The entire
apparatus is contained in a tightly sealed case. A micro-controller takes care
of steering the motors and translating the higher-level protocol that a computer
uses to communicate with the disk to and from a bitstream, which is processed by
specialized hardware (a DSP or FPGA) and fed to the heads [CFRN95]. Today,
hard disks interface with other systems mostly through Serial ATA (SATA) and
Small Computer Systems Interface (SCSI) buses, although bridge chips might
translate to other buses, such as USB. Parts of those protocols are typically
handled directly in hardware.

Execution Environment Like many embedded systems, this hard drive is
based on a custom System on Chip (SoC) design. This SoC is built around
an ARM966 CPU core, a read-only memory (ROM) containing a �mask ROM�
bootloader, internal SRAM memories, an external serial FLASH (accessed via an
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SATA cable

SATA drive

Relay for serial port
controlled power reset

Spare power cable

Spare relay

Serial to USB cables

Power cord

Figure 4.1: Custom backdoor development kit. This apparatus was built to reset the
drive, allowing easy scripting and automated tasks. One USB to serial cable controls
the relay, the second is connected to the serial port of the drive. The SATA cable is
connected through a USB-SATA adapter for backdoor development. It is then directly
connected to a computer motherboard for the �eld tests.

SPI bus), and an external DRAM memory. This DRAM is the largest memory
and is used to cache data blocks read from or written to disk as well as a part
of the �rmware code that does not �t into the SRAM.

Interestingly, this hard drive also provides a serial console accessible through a
physical serial port on the drive's Master/Slave jumper pins.

Software Architecture and Boot Sequence The bootloader in mask ROM
is executed immediately after the CPU resets and loads a reduced boot �rmware
from the serial FLASH chip. The boot �rmware has the capability to initialize
the hardware to a su�cient degree to load the main �rmware from the magnetic
disks. However, it does not implement the full SATA protocol that this hard
drive uses to talk to the computer.

Finally, the main �rmware is loaded into memory from a reserved area of the
disk (not user accessible) and then executed. Additional overlays, providing
non-default functionality, can be loaded on demand from the reserved area. For
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Figure 4.2: Overview of a hard drive's architecture.

example, a diagnostic menu available through the serial console is in overlays �4�
and �5�. The memory layout at run-time is depicted in Figure 4.2.

As our hard drive has a SATA bus, read and write requests to it are encapsulated
in the ATA protocol. This is a simple master-slave protocol where the computer
will always send a request, to which the hard drive replies with a response.

Inside the hard drive's �rmware, �ve components take care of processing data:
the interrupt handlers process hardware events, the SATA task processes data
from the SATA port, the cache task manages the cache memory and evicts blocks
from the cache, the read-write task transfers data to and from the disk platters,
and the management task handles diagnostic menu commands and background
activities.

Analysis Techniques Knowledge about the system was acquired from publicly
available information (e.g., [hdd13]) and by reverse-engineering a hard drive in
our lab. While the �rmware (except for the mask ROM bootloader) is contained
in update �les, their format is not obvious and the header format was not docu-
mented. Fortunately, the diagnostic menu allows parts of memory to be dumped
while the system is loaded. Thus, it proved easier to dump the �rmware of
the running hard drive through this menu than recovering it from the �rmware
update binary.

The mask ROM bootloader contains another menu, which can be accessed at
boot time on the serial console. This menu provides a means to read and write
the memory contents before the boot �rmware is loaded. We therefore designed a
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small GNU Debugger (GDB) stub that we injected into the hard drive's memory.

Inconveniently, our target hard drive's ARM 966 [ARM04] core lacks hardware
debug support. Therefore, we relied purely on software breakpoints, rather than
on hardware breakpoints or single-stepping. In this context, software breakpoints
are essentially instructions that trigger a data abort interruption. By hooking
into that interrupt vector's handler and replacing instruction by a breakpoint,
one can implement a debugger stub fully in software.

If a software breakpoint is overwritten prior to it being reached, e.g., because
the �rmware loads new code, the breakpoint will never be triggered. In addition,
we have observed that interrupt vectors or the debugger code itself can be over-
written by the �rmware. To work around these problems, because of the lack
of hardware breakpoints and watch-points, we manually identi�ed all sections of
code that load new code and hooked these functions to keep our debugger from
disconnecting.

Finally, because setting a software breakpoint requires to modify instructions, it
was not possible to put breakpoints on the ROM memory that contains the �rst
bootloader and many other important library functions.

Our debugger stub itself requires only 3.4 kB of memory, and it can be easily
relocated to a new address. It communicates with a GDB instance over the
serial port while still allowing the �rmware's debug messages to be printed on
the serial port. As the stub is stateless, it does not require any permanent storage
of information. Complex debugging features, such as the bookkeeping required
for breakpoints, are managed on the reverse engineer's workstation by GDB.

4.2.2 Developing Malicious Payloads

Our main goal in designing a proof-of-concept compromised hard-drive �rmware
is to be able to modify blocks as they are read from or written to the disk.
Hooking into write requests allows the backdoor to read and tamper with data
blocks in the write bu�er before they are written to the disk. In particular, we
use a sequence of bytes in the �rst few bytes of a block, as a magic value. When
this magic value is detected by the backdoored �rmware, prede�ned actions of
the backdoor will be triggered.

Hooking Writes in the Firmware A write operation in a modern hard drive
speci�es the logical block number to write to (LBA), the number of blocks to
write, and the data to be written. This information is encoded in ATA commands
and transmitted to the hard drive through the Serial ATA connection.

On the hard drive we reverse engineered, specialized hardware is responsible for
receiving the ATA messages and notifying the �rmware by raising an interrupt.
The �rmware then performs the action corresponding to the opcode �eld of the
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Figure 4.3: Call sequence of a write operation on the hard drive.

ATA message. In a write DMA extended ATA command, the data is then passed
to the cache management task. This task keeps the received data blocks in
volatile low-latency memory. When contiguous blocks are received, the �rmware
aggregates these blocks in memory. Eventually, the blocks will be evicted from
cache memory, either because the cache is �lled with newer data, or because a
task commits them to the hard drive. Finally, the blocks will be passed to the
read/write task, which takes care of positioning the head on the right track of
the platter, and writes the data to the magnetic storage.

Figure 4.3 shows the sequence of the operations inside the hard drive. Our
backdoor inserts itself in the call chain between the cache manager and the
read/write task. By hooking writes after the cache, we ensure that the perfor-
mance overhead remains low. At this point ATA commands have already been
acknowledged, thus, the overhead of searching for the magic command in a block
is less apparent to the user.

Reading Blocks from inside the Firmware Reading blocks inside the �rmware
proved to be harder than modifying writes. In order to read an arbitrary block,
the modi�ed �rmware has to invoke a function providing several structured pa-
rameters. In our prototype implementation, this operation seems to trigger some
internal side e�ect that makes the �rmware unstable when multiple consecutive
read operations are performed by our code.

Update Packaging and Final Payload Thanks to the debugger and the full
�rmware image, we were able to understand the �rmware update format. We
then generated a modi�ed �rmware update �le that includes the original �rmware
infected with our proof-of-concept malicious code. Such a �rmware update �le
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can then be programmed to the disk with the manufacturer's �rmware update
tool, which could be done by a malware with administrator rights. The backdoor
will then be permanently installed on the drive.

With the current state of our reverse engineering of the hard drive, we can
reliably hook write commands received by the hard drive and modify the data to
be written to the magnetic platter. The backdoor can also read and ex�ltrate
arbitrary blocks, but it is not stable enough to retrieve multiple blocks from
the disk. A more stable implementation would allow the full port of the Data
Ex�ltration Backdoor that we will present in Section 4.3. We could invest more
time to try to solve the bug in our code, but there are few incentives to do so as
our aim is to demonstrate the feasibility of such attacks rather than to develop
a weaponized exploit for the hard drive.

However, the current state is su�cient to fully implement more straightforward
attacks. For example, we can re-implement the famous backdoor presented
by Ken Thompson in Re�ections on Trusting Trust [Tho84]. In this lecture
Thompson presented a compiler that inserts a backdoor while compiling the
UNIX login command, allowing the password check to be bypassed. Similarly
a compiler would transmit such a functionality when compiling a compiler. A
malicious drive version of the login program backdoor simply detects a write to
the disk of a critical part of the login binary and replace the code by a malicious
version of the login binary.

4.2.3 Evaluation of the backdoor

We performed an overhead test to measure the impact of the backdoor under
worst-case hard-drive operation. Indeed, if the backdoored �rmware introduced
signi�cant overhead, this may alert a user of an anomaly.

This experiment is performed on the hard drive with the �rmware backdoor
described in Section 4.2.2, on an Intel Pentium E5200 2.5 GHz desktop computer
equipped with 8 GB of physical memory. The hard drive was connected over
internal SATA controller (Intel 82801JD/DO (ICH10 Family) 4-port SATA/IDE
Controller).

Overhead Test We measured the write throughput on the test machine using
IOZone [IOZ13]. As the backdoor functionality is only activated during writes, we
use the IOZone write-rewrite test. We compare the write throughput obtained
on the system running the unmodi�ed hard drive �rmware with the one running
the backdoored �rmware.

We perform the test with the IOZone o_direct option set to compare the
results when the �lesystem cache is not present. Most applications make use of
the �lesystem bu�er cache to optimize access to the hard drive. However, with
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the cache enabled, our experiments showed it was impossible to distinguish the
performance of the modi�ed �rmware from the original one. Hence, we emulate,
as best as we can, a suspicious user attempting to detect hard-drive anomalies
by testing the direct throughput.

Table 4.1: Filesystem-level write-throughput.

Write test

Mean (MB/s) 95% CI

With backdoor 37.57 [37.56; 37.59]
Without backdoor 37.91 [37.89; 37.94]

We perform 30 iterations of the experiment, with a 30 second pause between suc-
cessive iterations. For each set of values measured, we compute 95%-con�dence
intervals using the t-distribution. Table 4.1 shows the comparison of the write
throughputs of the hard drive with the unmodi�ed and the backdoored �rmware.
In both cases, we executed the IOZone write/rewrite test to create a 100 MB
�le with a record length of 512 KB.

Comparing the results, we can conclude that the backdoor adds an almost un-
noticeable overhead to write operations. For instance, to put those results into
context, we measured larger disk throughput �uctuations by changing the cable
that connects the hard drive to the computer than in the case of our backdoor.

4.3 Data Ex�ltration Backdoor

In this section, we present the design overview of a backdoor that allows to send
and receive commands and data between the attacker and a malicious storage
device, i.e., a Data Ex�ltration Backdoor (DEB).

Basically, a DEB has two components: (i) a modi�ed �rmware in the target
storage device and (ii) a protocol to leverage the modi�ed �rmware and to
establish a bi-directional communication channel between the attacker and the
�rmware.

First we describe a concrete scenario in which the data ex�ltration attack is
performed, and then proceed to describe the challenges and our solution in
detail.

4.3.1 Data Ex�ltration Overview

We start with a real-world example of a server-side DEB, where the compromised
drive runs behind a typical two-tier web server and database architecture, see
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Figure 4.4: A server-side storage backdoor.

Figure 4.4. This scenario is of particular interest, because the various protocols
and applications between the attacker and the storage device can render the
establishment of a (covert) communication channel extremely di�cult. We as-
sume that the web server provides a web service where users can write and then
read back content. This is the case for many web services. The speci�c example
we select here is that of a web forum or blog service where users can post and
browse comments.

To perform data ex�ltration from a server, the attacker proceeds in the following
way:

First, the attacker performs an HTTP GET or POST request from his or her
browser to submit a new comment to the forum of the web server. The com-
ment contains a trigger value, or magic value, and a disguised �read sector X�
command for the backdoor. The web server passes this comment data and other
meta-data�such as the user name and timestamp�to the back-end database
through an SQL INSERT query. Using the �lesystem and the operating system,
the database then writes the data and meta-data to the compromised storage
device. As one of the write requests contains the magic value, some of the
comment data is now replaced by the compromised �rmware with the contents
of sector X.

Finally, the attacker issues a GET request to simply read the exact forum com-
ment just created. This causes an SQL SELECT query from the web application
to the database, which triggers a read request from the database to the com-
promised storage device. The content of the comment displayed to the attacker
now contains data from sector X. The attacker has successfully ex�ltrated data.

We stress that this DEB allows the attacker to read arbitrary sectors and access
the storage device as a (remote) block device. The attacker can thus remotely
mount �lesystems and access �les from the device selectively, without having to
ex�ltrate the storage device's contents fully.

For example, by extracting the �rst couple of sectors, the attacker can read the
device's partition table, inferring the �lesystem types in use. He or she can then
follow the �leystem meta-data either locally inside the disk or remotely on his or
her client machine to request individual �les. We have automated this process
and present results in Section 4.3.4. In conclusion, the attacker has a complete
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remote read access to the hard disk.

4.3.2 Challenges in Implementing a DEB

While modern operating systems and disks do little to actively prevent this type
of attack, we have observed some challenges that we address next.

Data Encoding The character encoding chosen by the application should
match the one the backdoor expects. The backdoor may try di�erent character
encodings on the content of incoming write requests, looking for the magic value
in the data. By knowing the encoded magic value under di�erent encodings, the
backdoor can identify which encoding is being used and encode the data to be
ex�ltrated such that it can be read back without con�icts by the application.

Caching Caching at any layer between the attacker and the storage device will
cause delay, potentially both in the reception of the malicious command and the
reply from the device. The delay corresponds to the time taken to evict the
malicious command from caches above the storage device. Therefore, this delay
depends on the load of the web server and can be in�uenced by the attacker.

Magic Value Alignment It is di�cult to predict the alignment of the magic
value at speci�c boundaries. This results in considerable overhead when searching
for the magic value in a write bu�er. Searching for a 4-byte magic value in a
512-byte sector, for instance, would require examining 509 byte sequences. As
discussed in the next section, we mitigate this by repeating the magic value
multiple times in a request, such that the overhead of searching for it becomes
negligible. At the same time, these repeated sequences form a suitable space for
the ex�ltrated data to be written to by the �rmware backdoor.

While the above challenges are certainly signi�cant and render the exploitation
of the backdoor more complicated, they do not prevent the use of DEBs in the
general case. Our implementation provides adequate solutions to all the above
complications.

4.3.3 Solutions Implemented

When a write request at a block number Y with a to-be-written bu�er B is
received, the backdoor checks for a magic value in bu�er B. In our imple-
mentation the magic value is a sequence of bytes (magic), and followed by a
sequence of bytes (cmd) specifying the malicious command to be executed. As
we now focus on data ex�ltration, cmd contains only the hex-encoded block
number to be read. It would be easy to extend this encoding, for example, to
support other operations, such as appending data to existing blocks, tamperingPh.D. Thesis — Jonas Zaddach
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with stored data, or injecting malicious code into executables. Here, the attacker
submits writes of length 2·bkdr_bs, formatted in the following way, with ‖ being
the concatenation operation:

magic‖ . . . ‖magic︸ ︷︷ ︸
repeated count times

‖ cmd ‖ magic‖ . . . ‖magic︸ ︷︷ ︸
repeated count times

‖ cmd

count = (bkdr_bs− length(cmd))/length(magic)

Typically, there are layers (such as the �lesystem) between the attacker and the
disk that split all writes into blocks of at least bkdr_bs size at an arbitrary o�set.
Thus, the blocks created have at least one bkdr_bs-sized chunk exclusively con-
taining the repeated magic sequences followed by the command (modulo a byte-
level circular permutation on the chunk, i.e., a �wrap around�). This allows the
backdoor (i) to make sure the bkdr_bs-sized chunk can be safely replaced by an
equal-size ex�ltrated data chunk, and (ii) to check e�ciently for the magic value.
More precisely, the backdoor checks only the �rst length(cmd)+length(magic)
bytes of the chunk, because of the possible length(magic) alignments of the
magic value and the possibility of the chunk starting with cmd. Note that in-
creasing the length of the magic value increases the performance overhead of the
backdoor. We chose a 4-byte magic value which results in a low performance
overhead.

Algorithm 1 backdoor(blocks,magic, cmd_size, bkdr_bs)

bkdr_count← length(magic) + cmd_size
for blk in blocks do
if magic present in �rst bkdr_count bytes of blk then
if blk does not contain count successive magics then
continue loop at next iteration

end if
cmd← cmd_size bytes after last magic, wrap around if required
block_num← hex_decode(cmd)
buf ← read_block(block_num)
base64_encode(buf)
blk ← buf

end if
end for

If the magic value is present in B, the malicious behavior of the DEB is triggered:
The backdoor extracts the command from the request data, such as �read data at
sector X� for data ex�ltration from the storage device, as shown in Algorithm 1.
The backdoor reads data bu�er B′ from sector X, encodes it using base64,
which increases its size by 1

3 , and writes B′. To ensure that the encoded data
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can be successfully ex�ltrated, the backdoor checks for the presence of at least
bkdr_bs ∗ 4

3 bytes of consecutive magic values in a sequence of blocks and
then replaces these by the base64-encoded data. At this point, a future read
request at address Y will return the modi�ed content, allowing unauthorized data
ex�ltration of the contents at address X from the device to a remote attacker.

Valid magic sequences could occur during normal, non-malicious use of the stor-
age device. Such a false-positive would result in the storage device to detect the
magic sequence and write faulty data to a sector, possibly undermining the stabil-
ity of the system. However, such a false positive can only occur with negligible
probability, as the backdoor always checks for about two blocks of successive
magic values before attempting a replacement.

Also note that the �rmware can write B′ to Y possibly after modi�cations
through cryptographic and steganographic operations to prevent easy detection
by the administrator of the target machine.

4.3.4 DEB Evaluation

As we mentioned in the previous section, our backdoor in the o�-the-shelf disk
drive it is not stable enough to perform multiple arbitrary reading operations from
the disk, which is required for implementing the complete DEB. In this section,
we therefore report on experiments performed on a QEMU-based prototype.

We implemented the DEB inside QEMU's storage device functionality, which
is used when using virtual IDE drives in system-virtualization software such as
KVM and Xen. This provided us with an easy-to-use platform to develop, test,
debug, and evaluate the backdoor.

In this case, we evaluate the data ex�ltration latency from an attacker's point
of view. In addition, we perform a �le ex�ltration test to show the feasibility
of retrieving sensible remote �les without needing to ex�ltrate the entire disk.
We base this evaluation on the scenario described in Section 4.3.1. We have
conducted experiments on a virtual machine with 1 GB of memory running on
a modi�ed QEMU containing the backdoor. This is the attacker's target host.
Our tests were performed on the emulated IDE disk with writeback caching.
The target host runs Ubuntu and an Apache web server with two PHP scripts
providing web forum (or blog) functionality. The forum shows all (recently) made
comments (or �posts�) using the �rst PHP script, and also allows the submission
of new comments, using the second script. These comments are written to and
read from a table in a MySQL database which runs atop an ext3 �lesystem.

We emphasize here that the results of this second set of experiments highly
depend on the application, the workload on the machine, and the total available
system memory � and do not depend much on the caracteristics of the disk or
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Table 4.2: Data ex�ltration performance.

Mean (s) 95% CI

Insert 10.7 [10.65; 10.71]
Latency 9.7 [9.55; 9.82]
File ex�ltration 40.0 [39.6; 40.4]

�rmware backdoor. Indeed, because the Linux page cache1 is essentially an LRU-
like cache, forcing the eviction of pages from main memory requires generating
accesses for about as much data as there is free available memory for bu�ers
and caches on the system (and the more eager the operating system is to swap
pages, the higher the memory that is available). For a single block, the time to
generate that workload largely dominates the transfer time from and to the disk
for a single block (even in our setup where relatively little memory is available).

We perform 30 iterations for all tests, with a 30 second pause between succes-
sive iterations. For each set of values measured, we compute 95%-con�dence
intervals using the t-distribution.

Latency Test Because of caching, the inserted comments are not immediately
updated with the ex�ltrated data. In fact, the malicious blocks are temporarily
stored in the page cache � from where they are retrieved when they are imme-
diately accessed by the attacker. Therefore, the presence of a cache forces the
attacker to wait until the blocks are evicted from the cache. In our scenario, this
can be forced by the attacker as well, namely by inserting dummy comments to
quickly �ll up the cache and thus force eviction of least recently accessed data.

The insert time in Table 4.2 shows the time taken to insert 500 8-KB comments
sequentially, using the PHP form. As described in Section 4.3.3, the backdoor
replaces each of these comments with 3 KB of ex�ltrated data starting at the
sector number included in the comment. The latency time in Table 4.2 shows the
update latency in seconds for the 500 comments inserted during the insert test
� during this time, the attacker sends many other dummy comments to speed
up cache eviction. It follows that an attacker is able to ex�ltrate 3000 sectors in
10.7+9.7 = 20.4 seconds in our setup, achieving a read bandwidth of 74 KB/s.
In practice, an attacker may limit bandwidth to avoid detection. In addition,
those values will di�er depending on the characteristics of the system (mainly,
more physical memory will cause the comments to persist longer in cache, and
more load on the server will cause the opposite). Hence, these results show that
the latency is likely to be su�ciently low, and that an attacker can realistically
use this technique.

1The page cache caches blocks read from and written to block devices, and is integrated
with the �lesystem cache (or bu�er cache).
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Ex�ltration Test Let's now consider a typical case in which an attacker at-
tempts to ex�ltrate the /etc/shadow �le on the target host.

To that end, we created a python program that successively (a) retrieves the
partition table in the MBR of the disk, (b) retrieves the superblock of the ext3
partition, (c) retrieves the �rst block group descriptor, (d) retrieves the inode
contents of the root directory / (always at inode number 2) in the inode table,
and (e) retrieves the block corresponding to the root directory, therefore �nding
the inode number of /etc. By repeating the last two steps for /etc, the attacker
retrieves the /etc/shadow �le on the target host.

Table 4.2, row 3, shows that /etc/shadow can be ex�ltrated in less than a
minute. Because the process of retrieving the �le requires nine queries for a few
sectors, each of them depending on the results returned by the preceding query,
this �gure is mainly dominated by the time taken to evict comments from the
cache. This means that the actual latency for a single sector is about 4 seconds
(for a comparison, note that the latency �gure in row 2 also includes the retrieval
time of the 3000 sectors).

4.4 Detection and Prevention

We �rst discuss the applicability of existing standard techniques for defeating or
mitigating DEBs, including encryption of data at rest, signed �rmware updates,
and intrusion detection systems. Subsequently, we propose two new techniques
speci�cally targeting the detection of DEBs: OS page cache integrity checks and
�rmware integrity veri�cation.

4.4.1 Encryption of Data at Rest

The use of encryption of data at rest is still an exception, both on servers
and desktop computers. When used, it is often for the purpose of regulatory
compliance or to provide easy storage-device disposal and theft protection (by
securely deleting the encryption key associated with a lost disk). Under some
conditions, encryption of data at rest mitigates the possibility of data-ex�ltration
backdoors on storage devices: it renders establishing a covert communication
channel more di�cult for remote attackers and prevents the untrusted storage
device from accessing the data in the �rst place.

Hardware-Based Disk Encryption Hardware-based disk-encryption mecha-
nisms commonly rely on the hard disk drive to encrypt data itself. Decryption is
only possible after a correct password has been provided to the drive. In such a
setup, as data is encrypted and decrypted within the drive, a backdoor would only
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have to hook into the �rmware before the encryption component. Thereafter,
the hard-disk will encrypt and decrypt data for the backdoor.

Software-Based (Filesystem and Partition) Encryption Other hard-disk
encryption systems, among them BitLocker, FileVault, and TrueCrypt, encrypt
full partitions over arbitrary storage devices. Such mechanisms often rely on a
minimal system to be loaded from a non-encrypted partition whose integrity is
veri�ed by a trusted boot mechanism. A trusted boot mechanism relies on a
TPM to prevent a modi�ed system, e.g., modi�ed by the drive itself, to access a
protected key sealed by the TPM. However, without an IOMMU, the backdoor
on a hard drive can launch a DMA attack [Dor04] to read arbitrary locations
from the main memory. This allows the backdoored hard disk to obtain the
encryption key. Recently, it has been shown that even mechanisms to protect
encryption keys against DMA attacks [MFD11] can be circumvented [BR12].

In conclusion, neither hardware-based nor software-based encryption o�er full
protection against DEBs in all cases. Disk encryption can prevent DEBs as
presented in this chapter when keys are not managed by the disk itself and when
the disk is not able to use DMA to access main memory. This corresponds to
setups in which:

• system-level encryption is used and disks are attached to the computer
(e.g., desktops or laptops) and an IOMMU (e.g., Intel VT-d or AMD
SVM) is present and properly con�gured;

• system-level encryption and remote storage are used, for example, servers
with a Network Attached Storage (NAS) or Storage Area Network (SAN).
Such a remote storage must not support remote DMA capabilities, like
In�niband or Myrinet protocols does.

We believe that both setups are uncommon. While IOMMUs are present in many
computers, they are rarely activated because of their signi�cant performance
overhead [BYXO+07]. On the other hand, servers that rely on a SAN or NAS are
typically not using software disk encryption because of its signi�cant performance
impact.

4.4.2 Signed Firmware Updates

To protect a device from malicious �rmware updates, cryptographic integrity
checks can be used. The use of asymmetric signatures is preferable in this
case, and each device would be manufactured with the public key of the entity
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performing the �rmware updates. Although the idea of signing the �rmware is
widely known, we have not been able to assess how widespread its use is for
hard-disks and storage devices in general. We have found evidence that some
RAID controllers [RSA13] and USB �ash storage sticks [Kin13] have digitally
signed �rmware, but these appear to be exceptions rather than the rule.

Nevertheless, signed �rmwares do not prevent an attacker with physical access to
the device from replacing it with an apparently similar, but in reality backdoored,
device. Also note that the recent compromise of certi�cation authorities, software
vendors' certi�cates, and hash collisions has demonstrated real-world limitations
of signature mechanisms.

Finally, �rmware signatures merely check code integrity at load time and do
not prevent modi�cations at run time. A vulnerability in the �rmware that is
exploitable from the ATA bus2 would allow infection of the drive, bypassing the
signed update mechanism. In addition, such vulnerabilities are likely to be easily
exploitable, because no modern exploit-mitigation techniques are present in the
disk �rmwares we analyzed.

4.4.3 Intrusion Detection Systems

Current network-based intrusion detection systems and antivirus software prod-
ucts use, to a large extent, simple pattern matching to detect known malicious
content. The DEBs presented in this paper could be detected by such tools if
the magic value is known to the latter. This can be the case if the attacker
targets a large number of machines with the same magic value, but is inade-
quate for targeted attacks. For instance, an attacker could change the magic
value for each target machine or it would be possible to make the magic values
a time-dependent function to evade detection. Finally, the attacker's channel
used for communication with the �rmware may be encrypted. We conclude that
today's intrusion detection systems do not o�er a strong protection mechanism
against DEBs.

4.4.4 Page-cache-driven Integrity Checks

In addition to the standard mechanisms presented above, one could also envision
detection technique that relies on the page cache. Most �lesystems leverage the
page cache to signi�cantly speed up workloads by caching most recently accessed
blocks. We propose to modify the page cache to also perform probabilistic
detection of DEBs. As the cache contains recently written data, it can be used
to check the integrity of disk-provided data.

2Or an insecure functionality that could be abused without physical access.
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More precisely, the cache would allocate a new entry on write misses, and, after
the data has been written to the disk (immediately for write-through caches, and
after laundering for writeback caches), subsequent reads from the cache would
be randomly subject to asynchronous integrity checks. The checks would simply
read back data from the disk and check for a match.

However, with deterministic cache-eviction algorithms such as least recently used
(LRU), both the disk and the remote attacker could estimate the size of the
cache in use, and the attacker could adjust queries to guarantee that the data
has been evicted from the cache by the time it is read back. Therefore, we
suggest to partially randomize the cache eviction policy. For instance, a good
candidate would be a randomization-modi�ed LRU-2 algorithm, whereby the
eviction from the �rst-level cache to the second-level cache would remain LRU,
but the eviction from the second level cache would be uniformly random. This
technique would introduce a performance overhead, but we conjecture that this
could be an acceptable trade-o� for detecting such backdoors in the wild.

4.4.5 Detection Using Firmware Integrity Veri�cation

Recent research in device attestation [LMP11] could be applied to detect mali-
cious �rmwares. However, we note that device attestation is controversial [CFPS09],
especially in the speci�c context of this work: the �rmware is typically stored
in di�erent regions of the drive (such as disk platters and serial �ash), and ac-
cessing those di�erent regions is slow and subject to various time delays. Delays
are di�cult to predict, and this questions standard assumptions made by existing
software-based attestation techniques, rendering them ine�ective in our scenario.

However, one could leverage the fact that the disk always starts executing from
the ROM code, essentially providing a hardware root of trust. By interfacing with
the ROM bootloader and using it to control execution and verify code loading
one could guarantee that only correct code was loaded.
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Chapter 5

Towards automating

platform reverse engineering

of embedded devices

5.1 Introduction

Avatar has proven to be a useful tool for analyzing �rmware which is tightly
coupled with its hardware platform. Thanks to Avatar , one needs signi�cantly
less prior knowledge of the hardware platform to perform analyses of particu-
lar regions of interest in embedded code. However, the framework has some
limitations when applied to whole-system execution.

We identi�ed three major issues when forwarding all I/O accesses with Avatar
to physical hardware. First, using physical hardware makes it much harder to
control input. Hence, experiments are less deterministic, as a rerun might have
di�erent timer values, di�erent sensor readings, and so on. Second, we faced
several problems caused by execution time in Avatar being much slower than
before. One such problem occurred with the DRAM controller initialization
code of the HDD which we reversed in Chapter 4. Apparently, the controller's
registers need to be con�gured within a certain timespan, which was exceeded
when the code was emulated. Thus we had to execute this code snippet on
the device to initialize the controller properly. Another case was the reading of
hardware timers. Here, the �rmware reads the timer repeatedly and checks that
the di�erence between readings is small, most certainly to prevent jitter. Third,
symbolic execution with Avatar is tricky when physical hardware is accessed.
Once a value has been written to a hardware device in one symbolic state, the
device's state is not any more coherent with all other symbolic states. If the
device was emulated, its internal state could be kept synchronized with symbolic
states.
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To summarize, Avatar would bene�t from moving peripherals from the physical
device to the emulator. However, the framework was designed in the �rst place
so that one would not have to reverse-engineer the hardware platform, which is
in general a di�cult and time-consuming work.

Embedded systems are typically designed as a System on Chip (SoC), which
means that the processor core and peripherals are located on the same sili-
con. Peripherals communicate with the processor through buses (e.g., Advanced
Peripheral Bus (APB), AMBA High-performance Bus (AHB) and Advanced eX-
tensible Interface (AXI), di�erent versions of ARM's Advanced Microcontroller
Bus Achitecture (AMBA) bus). Further, peripherals may have one or several
clock inputs, and can connect directly to pins of the processor, the interrupt
controller, and the Direct Memory Access (DMA) controller.

Most bigger chip vendors have one or several standard platforms, with a default
peripheral for each task. Examples are Texas Instruments (TI)'s OMAP platform,
Xilinx' Zynq platform, etc. However, manufacturers are also free to integrate
hardware blocks (IP cores) from other companies into their own ASIC. An ASIC
is speci�cally built for one purpose (like a hard disk controller), and does not
necessarily conform to other platforms.

Of course, designing a non-standard system requires adapting �rmware. Embed-
ded systems, unlike Personal Computers, do not have a standardized system for
hardware discovery. PC based systems today provide auto-discovery mechanisms
like the Advanced Con�guration and Power Interface (ACPI) and the Peripheral
Component Interconnection (PCI) bus to assist the operating system in �nding
devices and choosing appropriate drivers. However, in most embedded systems,
knowledge about peripheral devices in a SoC are usually encoded only in the
�rmware. As a consequence, �rmware code has implicit expectations about the
platform it is running on, and needs to be adapted to each platform. While this
is easy if the Software Development Kit (SDK) and all IP cores used are from
one company, signi�cant work is needed to integrate drivers for peripherals from
other companies.

Software like Das U-Boot (a popular open-source bootloader) and the Linux ker-
nel aid in this task by providing a library of drivers for most peripherals. The plat-
form layout is described in a static data structure, called �Device Tree� [pow11,
ope94, GH06] (also known as Flattened Device Tree (FDT) or Device Tree Blob
(DTB)). The device tree is a tree-like structure, where inner tree nodes are bus
controllers and leaf nodes are devices. Each node contains key-value assign-
ments, called attributes, describing the hardware more closely. More complex
peripheral relationships, like interrupts, can be expressed with pointers to other
nodes (called handles, which e�ectively transform the tree structure into a di-
rected graph). Both a human-readable textual representation (an example is
given in Listing 5.1) and a binary representation suitable for passing a device
tree to �rmware have been de�ned. The speci�cation detail of device tree is
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su�cient to instantiate peripherals in an emulator, as we will demonstrate in
Section 5.4.

In this chapter, we propose a method to �ngerprint peripherals. We �rst cap-
ture traces of interactions between the �rmware and some emulated peripherals
with S2E. Then, we create �ngerprints of peripherals based on their interac-
tions. These �ngerprints of known, emulated devices are stored in a database.
When a �ngerprint is now obtained from traces of another peripheral, it can be
compared against the database to get likely matches. In the end, we build a
platform description with su�cient detail to instantiate an emulated version of
the embedded device from these matches.

Listing 5.1: An example of a device tree.

/∗ An example of the textual device tree representation ∗/
/ {

model = "ARM Integrator/CP"; /∗ A human−readable board name ∗/
/∗ The "compatible" attribute speci�es a list of machine−readable names

that this board is compatible with (in decreasing order) ∗/
compatible = "arm,integratorcp";
/∗ All child nodes use one cell (integer value) to represent addresses ∗/
#address−cells = <1>;
#size−cells = <1>; /∗ And one cell for sizes ∗/

/∗ The board's memory (SRAM, DRAM) is registered here ∗/
memory@00000000 {

device_type = "memory";
/∗ "reg" attributes contain a list of address, size pairs .

The number of cells used for address and size depends on the
#address−cells, #size−cells attribute of the closest parent ∗/

reg = <0x00000000 0x08000000>;
};

cpus {
/∗ CPUs are just numbered, not mapped to the global address space ∗/
#address−cells = <1>;
#size−cells = <0>;
cpu@0 {

device_type = "cpu";
compatible = "arm,arm1136";

};
};

/∗ This is the interrupt controller ∗/
pic0x14000000 {

compatible = "arm,versatile−fpga−irq";
/∗ Interrupt pins on this controller are speci�ed with one cell ∗/
#interrupt−cells = <1>;
interrupt−controller;
reg = <0x14000000 0x100>;
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/∗ Some attribute speci�c to the Linux driver of this device ∗/
clear−mask = <0x����>;

};

/∗ This is a bus ∗/
fpga {

/∗ The "ranges" attribute can be used to remap the bus to another
memory location. Here no value is speci�ed, so the bus is just
referring to the global address space. ∗/

ranges;
compatible = "arm,amba−bus", "simple−bus";
/∗ Device on this bus send interrupt requests to this device (pic) ∗/
interrupt−parent = <&pic>;

/∗ A serial port ∗/
uart@16000000 = {

compatible = "arm,pl011", "arm,primecell";
reg = <0x16000000 0x1000>;
/∗ The serial port's interrupt is connected to pin 1 of the

interrupt controller ∗/
interrupts = <1>;

};
};

};

Problem statement and contributions

Avatar 's idea of forwarding I/O interactions to the physical platform while ex-
ecuting the �rmware in an emulator helps to avoid tedious reverse engineering
of the embedded platform. However, this method has some shortcomings in
execution time �delity and incompatibilities of concrete physical and emulated
symbolic domains in symbolic execution.

Hence, we propose a method to use the current Avatar system to automatically
�ngerprint embedded device peripherals, and suggest similar, known peripherals
from a �ngerprint database. The goal of our system is to create an initial
assumption of the embedded platform's device description, which can then be
adjusted and used to instantiate an emulator for the device.

Further, we discuss issues with systems where some peripherals have been moved
to the emulator domain, and some remain on the physical device, and suggest
strategies to mitigate those.

Scope

In this work, we focus on detecting Memory-Mapped Input-Output (MMIO)
devices. There are other ways to connect peripheral devices, like dedicated I/O
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Figure 5.1: Steps for training the peripheral identi�cation system.

address spaces (in the x86 architecture), or dedicated processor instructions such
as the coprocessor interface of ARM processors. However, most embedded device
architectures use memory-mapped I/O to expose peripherals to �rmware.

Besides, understanding direct connections between peripherals is out of scope of
this work. Such a connection can be an interrupt line which is directly connected
to the interrupt controller, or a DMA request line connected to the DMA con-
troller. In Section 5.5, we discuss how identifying interrupt controllers and DMA
controller can help in building a model of those which will be able to uncover
these connections.

Overview of the chapter

In Section 5.2, we describe the design of our system and speci�c design choices
we made. Section 5.3 then details how the design was implemented on top
of Avatar . Subsequently, in Section 5.4, we evaluate the system on several
embedded platforms and draw conclusions from its performance. Finally, we
discuss some implications of mixing peripherals on a physical device and in the
emulator in Section 5.5.

5.2 Methodology

In this section, we present the design of our embedded peripheral identi�cation
system. Peripheral identi�cation is split into two parts: First, in a learning phase
(see Figure 5.1), a database of labeled peripheral device �ngerprints is built.
Then, in a second phase (see Figure 5.2), �ngerprints of unknown peripherals
are compared against this database to identify similarities to known models. Both
phases share the initial steps of capturing MMIO traces of the communication
between �rmware and peripherals, breaking those traces into individual traces
per peripheral, and aggregating information into peripheral �ngerprints. The
identi�cation phase additionally includes a comparison of generated �ngerprints
against the database. We describe each of these steps in more detail in the
following subsections.
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Figure 5.2: Steps for identifying unknown peripherals.

5.2.1 Gathering traces

In a �rst step, we collect MMIO traces of one or several peripherals of an em-
bedded system. An important aspect of trace acquisition is the proper exercising
of the device from which traces are collected. The more functionality of the
device is explored during this phase, the better the device's �ngerprint will be
afterwards. On the serial port, for example, it would be desirable to see MMIO
operation as well as DMA operation, changing of baud rate and other line pa-
rameters, and data input as well as output. Obviously, the exercising phase is
highly dependent on the device class.

We considered several approaches, both hardware-based and emulator-based, to
collect traces. As our goal is to build emulators for identi�ed hardware platforms,
we need to �ngerprint emulated peripherals �rst to build the �ngerprint database.

The output of this step is a memory trace containing MMIO accesses with the
following information: physical address, access size, value, program counter at
access, CPU state register at access.

5.2.2 Splitting traces per peripheral

Once traces have been obtained, they need to be broken down to individual
peripherals. Each peripheral occupies one range in the global address space. 1

We then assume a minimum memory region size. Choosing a very small value
will result in many fragmented devices being detected, which should in fact be
a single device. On the other hand, choosing a very big initial value will group
several di�erent devices together, which should in fact be single devices.

The best value we found as smallest memory region assumption was 0x100 bytes.
Even though there are some devices which have smaller memory region sizes, the
risk of grouping them together is low. Due to memory alignment constraints,
address space between peripherals is often left unused. Taking this unused space
into account, 88% of peripherals in the Linux device tree speci�cations were

1There are very few peripherals, like a PCI bus interface, that can have several associated
memory ranges. In a future version we plan to add handling for those peripherals as well.
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located at least 0x100 bytes apart. Furthermore, the understanding of what is
�one peripheral� di�ers considerably between Qemu and the Linux kernel. For
instance, Qemu tends to group �platform devices� (like several timers) together,
where Linux does not. In fact, most devices in the Linux device tree speci�cations
located less than 0x100 bytes apart are of this kind.

The address space is then divided evenly into bins of the minimum peripheral
memory range size, and all accesses from the trace are grouped into their respec-
tive bin. Subsequently, adjacent bins are merged if they are believed to belong
to the same peripheral. The decision to merge two bins is made based on a
linear distance function. This function maps the base address distance between
two bins and the minimum code distance of memory access locations in the bin.
While the motivation for taking the base address of bins as parameter is evident,
the code distance is less obvious. The rationale behind this parameter is that
driver code for one peripheral is contained in one or a small set of source code
�les. A linker will most likely place generated binary object �les close together
in the �nal binary, which is why we expect memory accesses from close code
locations to belong more likely to the same peripherals than accesses from code
locations which are far apart. Of course, code inlining breaks this assumption,
as code locations accessing the device will be distributed across the �rmware.
Hence, we chose to take only the minimum distance between code locations of
two neighboring bins into account, thus increasing the probability that at least
one access location in the bin is made from non-inlined driver code.

The threshold used in the distance function was empirically determined to min-
imize the errors in our experiments.

5.2.3 Fingerprinting a peripheral

Once the memory trace has been split by peripheral, we generate a �ngerprint
from each peripheral's accesses. Our �ngerprint is inspired by register descrip-
tions like they are commonly found in datasheets. Each register is described by
several features, for example the register's direction (read, write, or read/write),
its width and access frequency. The following list explains all collected features
in detail.

• Register size as used by the code to access the register.

• Estimated real register size. Due to alignment requirements, some plat-
forms use larger integer types to access device registers than needed. For
example, the popular UART 16550 design has byte-sized registers, but
was found to be used with word-sized (4 byte) accesses in a platform. We
identify the e�ective size by testing if the value can be stored in a one,
two, four or eight byte integer without loss of information. This feature
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enabled the machine learning algorithm to identify two register models as
the same even though di�erent access sizes were used.

• Access frequency as a fraction of total accesses to all of the device's
registers. This value helps to distinguish con�guration registers from �ag
and data registers, as con�guration registers should be initialized only very
rarely (during device initialization and con�guration changes).

• Register direction. A register can be either read-only (when it was read
from but never has been written to), write-only (when it was written to
but never has been read from), or read-write.

• Bit vector detection. If a register value is always manipulated with logical
operations (and, or, shift) just before being stored or just after being read,
it is likely to contain bit �ags. This feature counts the frequency of accesses
preceded or followed by logic operations, and is designed to identify �ag
and con�guration registers organized as bit vectors.

• Mean and variance of value di�erence. The distribution of the di�er-
ence between two consecutive accesses. This feature is designed to dis-
cover increments registers which increase or decrease continuously (e.g., a
timer's data register).

• Mean and variance of the Hamming distance. Similar to the previous
feature, we observe the distribution of the number of changed bits between
two consecutive accesses. Flag registers, for example, only change a few
bits at a time. We expect the Hamming distance (number of changed
bits) to be a good measurement to detect such behavior.

• Value mean and variance. This feature is designed to measure the
distribution of values written to and read from this register. While it
is dangerous to draw conclusions on data from higher protocol layers,
our expectation is that we can exercise the device well enough so that
the machine learning algorithm will only use these values when they are
pertinent to the peripheral.

• Accessed in interrupt mode. The frequency at which register accesses
happen while the CPU is in interrupt mode. A peripheral's interrupt �ag
is usually accessed in this mode, and should thus be detectable through
this feature.

To avoid biased peripheral descriptions based on some speci�c behavior of one
�rmware or platform, several normalized access traces of the same peripheral
from di�erent platforms and/or running with di�erent �rmware can be merged
before the �ngerprinting phase.
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5.2.4 Identifying similar �ngerprints

In the �nal step of our approach, we study several classi�ers to identify a �nger-
print of an unknown peripheral from the gathered information. We test machine
learning approaches as well as a manually designed �ngerprint comparison func-
tion and evaluate their performance. In order to train the machine learning
algorithm, we need a labeled dataset of peripherals' �ngerprints. Fortunately,
the Linux kernel already contains a large database of well-identi�ed device pe-
ripherals in the form of device tree �les. Thus, we can simply label peripherals
for most of the used devices by using these device tree descriptions. It is much
harder to �nd the peripheral design that a concrete peripheral is based on for
devices where no such description is available. Most of the time, the manufac-
turer provides a description of the registers which we can manually check against
the automatically extracted register model. However, he will not tell the name
and brand of the IP block the peripheral design is based on (i.e., the information
conveyed by the device tree �compatible� attribute). In these cases, we simply
veri�ed manually that the extracted register model conforms to the datasheet,
and that the behavior of suggested similar peripherals is compatible with the
datasheet.

5.3 Implementation

In the previous section, we described the abstract design of our peripheral iden-
ti�cation system. Here, we will outline speci�c implementation decisions for
this design. First, we discuss several methods for tracing memory accesses with
hardware methods and emulation. Then, trace analysis is described brie�y, high-
lighting only points which are not evident from the �ngerprint description in the
methodology. Finally, a subsection is dedicated to the �ngerprint comparison.

5.3.1 Trace recording

We considered and evaluated several options for recording MMIO access traces
to varying degrees. The remainder of this subsection is dedicated to �rst a de-
scription of hardware-based tracing methods, and then emulation-based memory
access recording.

Synthesizing peripherals on an FPGA

Field Programmable Gate Arrays (FPGAs) are a fast way of testing chip designs
speci�ed in a hardware design language (e.g., VHDL). Many IP cores of embed-
ded peripherals which are synthesizable on an FPGA are available in open-source
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public libraries, for example LEON/GRLIB[man15] and OpenCores [webd]. We
considered supplementing these designs with a bus tracer [YLKH11] to record
peripheral accesses. Using a development board which can run Linux and synthe-
size designs on an FPGA, we could quickly program the FPGA with peripheral IP
blocks. The Zedboard, an evaluation board based on the Xilinx Zynq family with
a dual-core ARM Cortex A9 core as well as an FPGA, ful�lls this requirement.
On the ARM core, we could then run a Linux kernel compiled with drivers for
the peripheral to exercise the device and generate traces.

Eventually we decided against this solution, as the steep learning curve for FPGA
programming, choice of the right peripherals from libraries, and getting those
devices to work in Linux seemed to harbor too many pitfalls. However, we want
to study this solution more in the future, as this experimental setting seems most
suited for tracing a large set of peripherals.

Using hardware debug and trace technology

A very straightforward idea would be to use ARM Embedded Trace Macrocell
(ETM) and Data Watchpoint and Trace (DWT) technology to generate instruc-
tion and memory access traces of platforms in real-time. This option was not
viable for us, as some of the evaluation boards at hand were lacking the ETM
core. Others had the necessary hardware (e.g., the BeagleBoard), but were not
compatible with our tools As for the previous technique, we would like to explore
this solution in more depth in future work.

Dynamically creating emulated platforms

The concept of an emulator where platforms can be con�gured dynamically seems
perfectly suited for our problem. Here, we could con�gure a minimum platform,
and then add one peripheral at a time. A Linux kernel including drivers for the
peripheral could then do the exercising. There was already a version of Qemu
in the Xilinx Zynq SDK capable of adding peripherals [webg]. We extended this
version to work with arbitrary peripherals in the expectation that we could use
device tree speci�cations from the Linux kernel to generate an emulator, and then
run the Linux kernel inside this emulator. Unfortunately, it turned out there are
several limitations in this approach. First, not all the peripherals speci�ed in the
device trees are emulated by Qemu. Thus it is necessary to pass Linux a device
tree which contains only the actually emulated devices. Second, embedding pe-
ripherals into another platform's device tree speci�cation is non-trivial. Di�erent
device trees have subtle di�erences in vocabulary. For example, a peripheral's
interrupt connection can be speci�ed with the �interrupts� and �interrupt-parent�
attributes, or with the �interrupts-extended� attribute. Further, each device can
have special attributes which need to be taken into consideration in the emula-
tion (e.g., some serial ports use the �reg-shift� parameter to specify a left-shift
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to be applied to register o�sets). Finally, addressing and naming conventions
vary across boards. On the Zynq boards, interrupt pins are addressed with three
cells, while ARM boards use only one cell to number interrupt pins. One board
uses clocks with unnamed pins, but a serial driver from another board makes
assumptions about the name of clock pins and fails the initialization if the name
cannot be resolved.

All together, these issues required too much e�ort to �x by hand every single
device tree speci�cation and adapt it to our purposes. As a result, also this
solution was infeasible for our experiments.

Using existing emulated platforms

Finally, we settled on using platforms already supported by Qemu/S2E, and
ported emulation of the TI/Omap3 platform from Linaro's Qemu branch. As
most of the platforms available in Qemu are quite old, obtaining working operat-
ing system images posed some challenges. Some boards were still supported by
U-Boot and Linux, in which case we compiled binaries with recent code bases.
Already-assembled �rmware images were available on the Internet for others
cases and, �nally, some boards required to use speci�c versions of OpenEm-
bedded [webe] and Poky Linux [webf]. The emulated boards used in this work
are:

• integratorcp, based on the ARM Integrator platform, with U-Boot and
Linux

• versatilepb, based on the ARM Versatile platform, with U-Boot and Linux

• beagle, an emulation of the BeagleBoard based on the TI Omap3 platform,
with U-Boot

• smdkc210, an emulation of a development board for the Samsung Exynos
platform, with Linux

• xilinx-zynq-a9, based on the Xilinx Zynq platform, with U-Boot and Linux

• n800, an emulation of a Nokia N800 navigator based on the TI Omap3
platform, with Linux

• connex, an emulation of a Gumstix Connex board, based on the Intel/-
Marvell PXA 255 architecture, with U-Boot and Linux

• verdex, and emulation of a Gumstix Verdex board, based on the Intel/-
Marvell PXA 270 architecture, with U-Boot and Linux
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We ran each board in S2E with a con�guration to trace memory accesses to
any peripheral (peripheral ranges were identi�ed by reading Linux device tree
speci�cations and the Qemu source code) and the start of execution of each
translation block. The existing InstructionTracer plugin in S2E was enhanced
to log the LLVM name of each translation block. Similarly, the MemoryTracer
plugin was adapted to monitor virtual or physical memory ranges, and to log
physical addresses. Finally, a new plugin, DumpLLVMBitcode, was introduced
to store the generated LLVM bitcode at the end of the emulation.

5.3.2 Trace analysis

Trace analysis is split across several di�erent programs. First, a C++ program
processes the huge execution trace �les, and extracts information on memory
accesses into a JSON (a simple object serialization format) �le. Generated LLVM
bitcode is processed by another program to extract information on memory load
and store instructions into another JSON �le. The LLVM code generated by
S2E always reads and stores register values to Qemu's central CPU structure
(CPUARMState), which makes data �ow analysis more di�cult. Thus, the bitcode
is �rst transformed to eliminate consecutive store - load sequences for registers
in the same basic block. It then checks for any bitwise operation in the same
basic block on the data �ow upgraph (for reads) or downgraph (for writes).

These two �le are then consumed by a python script, which generates a �n-
gerprint. All values are aggregated per peripheral and register as described in
Section 5.2.3.

5.3.3 Machine learning of �ngerprints

To be usable as input for a machine learning algorithm, each device must have
a �xed vector of features. As devices can have register sets of di�erent lengths,
we limit the identi�cation to the �rst twenty registers. The register index is
calculated by dividing the register o�set with the greatest common divisor of all
register o�sets of one peripheral. This measure is taken to ensure that devices
with di�erent architecture-dependent access sizes, which are otherwise identical,
are recognized as the same. Then, all register indices from 0 to 19 are iterated.
In case a register is not present in the register map, all its features are assumed to
be zero. The gathered feature vectors of each register are concatenated, yielding
a vector of 12 features per register times 20 registers = 240 features for a device
�ngerprint.

The �ngerprints are then labeled with the device tree �compatible� attribute. We
use the Weka machine learning framework [HFH+09] to classify the data.

Our manually designed �ngerprint comparison borrows on the concepts of NMap's
operating system �ngerprints [Lyo09]. The �ngerprint is discretized further, re-
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ducing per-register information to the register's direction, maximum value size
in bytes, access frequency (�frequently�, �sometimes�, �rarely� accessed, or �un-
known�) and data type (�bit vector�, �integer� or �unknown�). A comparison
of two �ngerprints then boils down to a comparison of registers. Registers are
referenced by their index, i.e., their o�set divided by the peripheral's access size.
This measure insures that same peripherals with di�erent access sizes are still
identi�ed as being the same. For each register present in both �ngerprints, a
full point is awarded if the discretized information matches perfectly, and half
a point if the information is one category o� (e.g., if the access frequency is
�sometimes� instead of �frequently�). Features where one of the �ngerprints has
an �unknown� value are ignored in the comparison.

Finally, the register score is normalized to one, and added to the total similarity
value. This value is again normalized, where registers present in both �ngerprints
are given a weight of one, and registers present in only one peripheral have
a weight of a half. Thus, the �nal value is between 1.0, which is a perfect
match, and 0.0, which means that the two peripherals do not share any common
registers.

5.4 Evaluation

In this section, we evaluate the performance of our identi�cation system. The
work in this section is ongoing research, we expect to improve the shown results in
the future with a more carefully curated dataset and the acquisition of additional
traces.

Our dataset currently contains 66 traces for 34 peripherals. To evaluate cross-
platform detection of peripherals, at least two platforms with the same peripheral
are needed, e.g., the integeratorcp and the versatilepb platform share the same
devices. Further, di�erent �rmware needs to be run on the same platform (e.g.,
u-boot and linux) to evaluate if a reliable �ngerprint can be extracted from
di�erent �rmware behaviors. An overview of the di�erent peripherals and the
number of traces is given in Table 5.1.

First, we present a machine learning approach on the extracted �ngerprints,
and show that these methods are not adapted to the small number of samples
available. Then we perform an exemplary manual comparison of the extracted
register information against a product datasheet. Finally we describe a more
successful manual �ngerprint comparison heuristics.

5.4.1 Supervised classi�cation and K-Means clustering

Due to the low number of samples, supervised classi�cation algorithms like de-
cision trees are hard to train and evaluate properly. Most peripherals are repre-
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peripheral device number of traces
arm,core-module-versatile 1
arm,integrator-cp-syscon 1
arm,pl031 1
arm,pl041 1
arm,sctl 1
arm,versatile-sic 1
samsung,exynos4210-pmu 1
ti,omap3430-timer 1
ti,omap3-i2c 1
ti,omap3-prm 1
ti,omap3-scrm 1
unknown2 1
unknown3 1
unknown4 1
unkown1 1
xlnx,ps7-nand-1.00.a 1
arm,pl050 2
arm,pl180 2
arm,versatile-fpga-irq 2
marvell,pxa-intc 2
mrvl,pxa-lcdc 2
mrvl,pxa-mmc 2
mrvl,pxa-timers 2
pxa,coremodule 2
pxa,mm 2
smsc,lan91c111 2
xlnx,ps7-uart-1.00.a 2
arm,core-module-integrator 3
mrvl,pxa-gpio 3
arm,gic 4
arm,integrator-cp-timer 4
arm,pl011 7
mrvl,pxa-uart 7

Table 5.1: Number of traces per peripheral.
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Figure 5.3: K-Means clustering of peripheral �ngerprints.

sented by only one or two samples. In this case, machine learning cannot �nd a
classi�er without under�tting or over�tting, and is simply not the right tool for
the task.

Another way of analyzing high-dimensional data with few samples is k-means
clustering. We plotted the sum of distances of all points from their centroid
in Figure 5.3. At 20 clusters, a drop is clearly visible. As some traces, for
example from secondary and tertiary serial ports, contain very little information,
the denser clusters here conform to our intuition. After 35 clusters, one cluster
per device exists, and the clusters become again visibly denser.

5.4.2 Evaluation against datasheet

Exemplary, we evaluate a trace of a pl011 serial port on the integratorcp board
with u-boot. Of course, this showcase evaluation cannot replace a more rigorous
one. The idea is to demonstrate that di�erent learning methods might be more
promising with the current dataset.

In Table 5.2, three registers can be seen. According to the datasheet, register
0 is the data register. To output data, the driver simply writes to this register.
Similarly, to read data from the port, the driver reads this register. These
properties are well re�ected in the data direction (rw), and the access frequency
(very frequent). Further, register 6 is a �ag register. It signals when data has
been sent, and when data has been received. One can see from the high bit
vector frequency (0.71) and the Hamming distance distribution that this register
contains a bit vector. The data direction is read-only. Finally, register 9 is a
con�guration register. It is written only once, and never read.
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Index 0 6 9
O�set 0 24 36
Size 4 4 4
Actual size 1 1 1
Direction rw r w
Bit vector frequency 0.02 0.71 0.0
IRQ mode
frequency

0.0 0.0 0.0

Access frequency 0.41 0.59 0.00
Value distribution µ = 82.97,

σ = 36.05
µ = 142.70,
σ = 19.60

µ = 24.00,
σ = 0.0

Di�erence
distribution

µ = 0.01,
σ = 39.85

µ = −0.01,
σ = 3.55

µ = 0,
σ = 0

Hamming distance
distribution

µ = 2.64,
σ = 1.32

µ = 0.00,
σ = 0.00

µ = 0,
σ = 0

Table 5.2: An excerpt of the pl011 uart's register map.

peripheral �ngerprint 1 �ngerprint 2 similarity

pl011
integratorcp - u-boot integratorcp - linux 0.80
integratorcp - linux versatilepb - u-boot 0.80

arm,timer
integratorcp - u-boot integratorcp - linux 0.95
integratorcp - u-boot connex - linux 0.78
integratorcp - linux connex - u-boot 0.83

smsc,lan91c111 integratorcp - u-boot integratorcp - linux 0.81

Table 5.3: Peripherals identi�ed by heuristics

5.4.3 Manual �ngerprint comparison heuristics

Here we evaluate the performance of the manually-designed �ngerprint com-
parison heuristics. As can be seen from Table 5.3, the heuristics successfully
identi�es three di�erent peripheral devices across three di�erent platforms and
two di�erent �rmware. With the current cuto� threshold (0.75), no false pos-
itive detections are present. Below this threshold, false positives will start to
appear, as some devices have very similar register access patters. For example,
ARM primecell devices all have a common register block for device identi�ca-
tion. These registers are accessed by Linux, but then the device is not initialized
further, making di�erent devices look alike from their access patterns.

It is also interesting to note that the peripheral detected as a timer in the connex
platform is labeled as core module in the device tree �le. Further investigation
showed that the core module actually incorporates the identi�ed timer hardware.

While the detection heuristics is surely can be optimized more, e.g., by adding
more features to the comparison and by better optimizing the weights of indi-
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vidual features, this proof-of-concept implementation is already useful. Since
the number of false positives is low, the current system can assist in reverse
engineering, and suggest highly likely similar peripherals to the reverse engineer.

5.4.4 Instantiating an emulator from a reverse-engineered de-
vice tree �le

We manually identi�ed peripheral devices on the integratorcp platform from
traces of u-boot running. From there, we could create a minimal device tree
�le, which was then used to emulate the board again. To this end, we modi�ed
Xilinx' Qemu version to also support the creation of other boards beside the Zynq
platform from device tree �les. An emulator instantiated from a reconstructed
device tree �le for the integratorcp and versatilepb platform was able to run
u-boot.

5.5 Conclusion

In this section, we shortly discuss some di�culties in running platforms on Avatar
in a mixed mode, where some some peripherals are emulated and others are on
the physical device. Then we conclude this chapter with a review of the work.

5.5.1 Considerations in mixed emulated and physical execution

Having some peripherals located on the physical device and some peripherals in
the emulator brings some new challenges. Here, we are going to highlight those
challenges which need to be addressed to achieve mixed emulated and physical
execution.

For very simple cases, mixed execution requires no additional e�ort. We were
able to simply move the serial port of the hard disk (see Chapter 4) to the
emulator while forwarding all other peripheral accesses to the physical platform
with Avatar . However, whenever there are interconnections between peripherals,
move one from the physical platform to the emulator gets more tricky.

Let us assume that a hardware timer has been moved from the physical device
to the emulator. In consequence, also the interrupt controller needs to be in-
stantiated in the emulated platform to correctly relay the interrupt signal from
the timer to the processor. Now, our system has one interrupt controller on the
physical platform, and one in the emulator. Whenever an interrupt occurs on
in the emulator, it is obvious that this interrupt stems from the migrated timer,
and that the emulated interrupt controller needs to be accessed to execute the
correct interrupt handler. However, if an interrupt occurs on the physical plat-
form, say, due to a serial port receiving data, then the interrupt controller on the
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physical platform needs to be interrogated to �nd the right interrupt handler.
Hence, our system needs to keep track of where an interrupt was generated, and
have enough knowledge about the interrupt controller to forward accesses to the
right instance.

The same considerations also apply for other peripherals with direct connections
to other peripherals, like the DMA controller and the General-Purpose Input
Output (GPIO) controller. For the DMA controller, the added challenge consists
in understanding if a physical memory range has been modi�ed by the emulated
DMA controller in the emulator, or a memory range on the physical platform
has been updated by the physical DMA controller.

5.5.2 Conclusion

Whole-platform emulation is a challenging topic, and has been driven mostly
by manual emulator coding. In this chapter, we proposed a methodology to
automatically infer a platform's peripheral devices, and use this information to
generate a platform description. With some added manual work, this platform
description can then be used to automatically generate an emulator. We de-
scribed the various challenges we met during the implementation of this work:
su�cient exercising of peripherals by di�erent �rmware, making a large num-
ber of platforms work in our instrumented environment, choosing features to
measure, and �nally mining information from gathered features to identify pe-
ripherals. While there is still room for improvement in the current �ngerprint
comparison heuristics, we believe that the methodology is valid and worth pur-
suing further. Adding more information, e.g., from static code analysis, could
be used to enhance the peripheral �ngerprints further.

The code written during this project will be contributed back to the community
once this work has been released.
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Chapter 6

Conclusion

In this �nal chapter, we �rst want to discuss future work to extend Avatar and
the peripheral identi�cation system.

6.0.3 Future Work

Future work on Avatar will consist in integrating better analysis techniques to
achieve better automated bug detection. Especially data structure recovery, as
presented in Howard [SSB11], could help to �nd memory-related bugs earlier
and more reliably. Combined with ideas from Dowser [HSNB13], a white-box
fuzzer to �nd bu�er boundary violations, Avatar could go deeper in code explo-
ration than it is currently capable of. Exploit generation techniques as used in
AEG [ACHB11] and access control methods as presented in Firmalice [SWH+15]
could be applicable as well.

Our peripheral identi�cation system could be extended to not only gather static
�ngerprints, but also stateful information about a peripheral. Currently, some
devices will be modelled incorrecty, as the meaning of registers changes depend-
ing on the con�guration. Our �ngerprint is currently not capable of expressing
this information. A peripheral description in form of a state machine would be
even more bene�cial if a device emulation could be generated right from the de-
scription, without the need of a hand-coded emulated device. We imagine that it
is feasible to extract a model of the expected peripheral device's behaviour from
�rmware code. Device drivers could be identi�ed with static analysis, for exam-
ple, and then exercised with symbolic execution to understand expected device
behaviors. Such a model might not be 100% exact, but at least useful enough
generate a fake peripheral which can lead to an exploration of deeper �rmware
code regions. Especially for special-purpose peripherals, such as the servo con-
troller in the analyzed hard drive, this might be the only way to generate a
complete emulator.
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6.1 Conclusion

This dissertation presented novel methods for the dynamic analysis of binary
�rmware. We designed Avatar , a tool for the execution of �rmware code in
an analysis-friendly emulator. The system orchestrates the emulator and the
physical device to avoid having to emulate all the platform's peripherals. Instead,
accesses to peripherals are forwarded to the physical device. In this way, hardware
platforms with unknown peripherals can be analyzed.

Then, we applied Avatar to the analysis of a hard disk drive �rmware. With
knowledge gathered through Avatar 's assisted reverse engineering, we could in-
ject a backdoor into the �rmware which intercepts and modi�es read and write
operations on the disk. Our backdoor can be installed in little time and has a
very small overhead that will go unnoticed in day-to-day operations. Parallel
work of other researchers and revelations about spying tools employed by the
NSA have con�rmed our point that such a backdoor can be implemented by a
moderately funded researcher, and a fortiori by a well-funded nation state.

Finally, we designed a peripheral identi�cation system working on top of Avatar .
By moving peripherals from the physical platform to the emulator, we remove
some of the limitations Avatar is exhibiting in whole-system analysis. We demon-
strated the system's concept on eight di�erent platforms, and showed that an
emulator can be reconstructed from the gathered information.

Ph.D. Thesis — Jonas Zaddach



Appendix A

Résumé en français

Les systèmes embarqués sont devenus de plus en plus omniprésents dans nos vies.
Des systèmes industriels ne peuvent guère être conçu sans contrôle numérique,
des voitures contiennent des dizaines d'unités de contrôle électroniques et des
millions de lignes de code, et la domotique se répand de plus en plus.

Bien que la corruption un compromis d'un ordinateur personnel ou d'un serveur
puisse entraîner des graves problèmes et des pertes importantes, des systèmes
embarqués piratés peuvent avoir des conséquences encore plus sévères.

Les systèmes embarqués sont typiquement utilisés pour surveiller et contrôler
des processus du monde physique, où ils peuvent endommager des hommes et
de l'équipement. Le ver Stuxnet, qui a infecté des postes de travail dans une
usine d'enrichissement d'uranium en Iran en 2010, est un bon exemple de ceci.
En injectant des commandes malveillantes dans le programme de contrôle des
centrifuges, il est fortement probable que le ver a détruit plusieurs centaines
de centrifuges et a nettement retardé le programme nucléaire iranien [NFC11,
Lan13].

Jusqu'à récemment, les systèmes embarqués avaient pour la plupart été dé-
couplés de l'Internet. Cependant, les appareils embarqués connectés appelés
�appareils intelligents�, qui ne traitent pas seulement les entrées sensorielles lo-
cales, mais reçoivent aussi des données provenant d'autres systèmes, deviennent
de plus en plus commun. Le réseau électrique ne pouvait pas gérer les grandes
�uctuations en production d'électricité, qui arrivent avec la production solaire,
sans avoir des prévisions météorologiques. Les processus industriels sont censés
de gagner en e�cacité avec ce qui est appelé �l'Industrie 4.0� ou �l'Internet
des objets industriels connectés (IIoT)�. Et même dans nos foyers, le chau�age,
la lumière et les serrures seront bientôt connectés dans �l'internet des objets
(IoT)�.

Le nombre réel d'attaques contre les systèmes embarqués est di�cile à es-
timer. Rapports des intrusions spectaculaires dans les médias, comme Stuxnet
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ou l'e�ondrement d'une fournaise dans une aciérie allemande malicieusement
induite [bsi15], soulignent des évènements isolés. Or, les exploits des systèmes
embarqués, comme des terminaux de cartes de crédit [NB14], des contrôleurs
industriels programmables (PLC) utilisé pour le contrôle des processus de produc-
tion dans les usines [Ber11], et prises de courant disjonctable à distance [Dav14],
sont souvent découverts et présentés lors de conférences de sécurité. La base
de données NIST des vulnérabilités ne contenait que 190 entrées concernant les
logiciels embarqués en 2010, tandis que le nombre a multiplié par dix à environ
1700 en 2014.

Tous ces points mettent en avant que des appareils embarqués connectés peuvent
causer des dommages physiques quand ils ne sont pas sécurisé convenablement.
En conséquence, les gouvernements sont de plus en plus sensibles à la sécurité
des systèmes embarqués. surtout quand ils sont utilisés dans des �infrastructures
critiques�, comme l'électricité, et la distribution du carburant et de l'eau [nis14,
bsi15, ftc15].

Un manque de sécurité dans les systèmes embarqués

Les systèmes embarqués ne montrent actuellement pas la même résistance contre
des attaques comme, par exemple, les systèmes PC le font. Pour cela, il y a
plusieurs raisons.

Premièrement, des systèmes embarqués sont généralement utilisé sur une longue
période de temps. Au cours de leur durée de vie, les techniques d'attaques et
les menaces évoluent de manière signi�cative, tandis que le logiciel de l'appareil,
appelé �rmware, est rarement ou jamais mis à jour. Par exemple, un grand
nombre d'appareils grand public connecté à l'Internet utilisent un noyaux Linux
obsolète avec des vulnérabilités connues [CZFB14].

Deuxièmement, l'interconnectivité est parfois ajoutée à partir d'un concept de
sécurité préexistant, ce qui entraîne des problèmes de sécurité imprévues. Bien
que l'extension d'interfaces existantes est une manière facile de connecter du
matériel plus âgé dans le même système, l'exemple de Modbus illustre les dan-
gers de cette approche. Modbus [spe12] est un bus industriel qui a été conçu
pour connecter de l'équipement local dans une usine. En 1999, un transport
du protocole ModBus était ajouté au bus, sans ajouter des dispositifs pour la
sécurité et l'authenti�cation. En conséquence, l'analyse de l'espace routable
d'adressage IPv4 a révélé plus de 12,000 périphériques ModBus qui sont directe-
ment connectés à l'Internet et accessible à tous [Lal15].

Troisièmement, les fabricants des systèmes embarqués ont reçu peu de pres-
sion de leurs clients pour fournir des systèmes sécurisés, et ont mis l'accent de
développement sur des nouvelles fonctionnalités et la sécurité des utilisateurs.
Les appareils grand public tels qu'un téléviseur �smart�, où une nouvelle fonc-
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tionnalité est plus probable à in�uencer la décision d'achat qu'un certi�cat de
sécurité, en sont un exemple.

Quatrièmement, le développement de dispositifs embarqués est entraîné par des
considérations de coût et le �time-to-market�. Des fonctions de sécurité, qui
auront besoin de plus de surface de silicium pour leur fonctionnement, entraînent
des coûts augmentés. Des mesures de sécurité ajouté au logiciel nécessitent
normalement plus de puissance CPU et de mémoire, ce qui se traduit par une
puce plus chère. Des systèmes qui fonctionnent sur une alimentation limitée,
comme des n÷uds d'un réseau de capteurs alimentés par batterie, donc sacri�er
la sécurité pour moins de consommation électrique.

En�n, une conception robuste de sécurité nécessite un e�ort de développement
supplémentaire. Surtout pour les produits de vente de masse et les produits
grand public, où un prix bas est un facteur décisif dans la décision d'achat, les
fabricants sont tentés de renoncer à la sécurité.

Des systèmes embarqués sont des cibles d'attaque attractifs Les sys-
tèmes embarqués constituent une cible attractive pour les attaquants. En raison
d'un manque de gestion de logiciel embarqué, ils reçoivent rarement des mises à
jour aussi fréquents que les systèmes PC [CZFB14]. En plus, surtout le matériel
plus âgé est livré avec une con�guration peu sécurisée par défaut (p.ex., des
mots de passe qui sont facile à deviner), qui est amélioré seulement par peu
d'utilisateurs après. Encore pire, une fois qu'on matériel embarqué est infecté
avec un logiciel malveillant, il est aujourd'hui très di�cile de détecter cette infec-
tion � tant que la fonctionnalité du matériel ne change pas visiblement, très peu
d'utilisateurs vont suspecter une activité malveillante. Et même si un logiciel
malveillant est trouvé, il est presque impossible de l'enlever d'une manière �able.

Le fait que le logiciel embarqué soit peu mis à jour et forti�é contre des attaques,
et que les systèmes embarqués sont, contrairement aux PCs, toujours allumés,
les rend une cible attractive pour les cyber-criminels. Bien que l'hétérogénéité
des plates-formes pose un dé�s aux auteurs des logiciels malveillants, des kits
d'exploitation facilitent le développement du code malveillant en donnant des
outils d'identi�cation des systèmes et une couche d'abstraction. Une vague de
vers pour les routers résidentiels illustrent ce point: soit le logiciel embarqué ou la
con�guration sont changés pour injecter des publicités dans les sites web [Fra15],
voler des données d'accès bancaires [cym14], ou faire parti d'un botnet [GAZ15,
Car13].

Les systèmes embarqués industriels, qui sont généralement séparés de l'Internet
par la ségrégation de réseau, sont néanmoins confrontés aux mêmes dé�s de
la gestion du logiciel et la détection des logiciels malveillants. Les scénarios
d'attaques les plus probables pour les systèmes industriels sont des APTs, comme
la pénétration d'un réseau d'entreprise nécessite des compétences et des e�orts
plus dévoués. Dans ces attaques, des attaquants de premier plan (par exemple,
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des états ou des organisations terroristes) concentrer leurs e�orts malveillants
contre un système particulier (par exemple, une centrale électrique) [NFC11,
Lan13].

Des tests et de l'assistance à la retro-conception sont nécessaires pour les
systèmes embarqués Les points précédents soulignent la nécessité d'avoir des
outils et techniques pour améliorer la sécurité des systèmes embarqués. Même si
des parties ou l'ensemble du code source d'un logiciel embarqué est disponible,
l'analyse du code binaire peut être la seule option pour un tiers, comme la chaîne
des outils pour la compilation du logiciel embarqué normalement n'est pas fourni.
De plus, quand la compilation du code source ne mène pas à exactement la
même représentation binaire, ce qui peut arriver à cause d'une autre version
de compilateur ou une con�guration di�érente, il est extrêmement di�cile de
prouver que le code source correspond au logiciel binaire original. Ainsi, il peut
être plus facile d'analyser le �rmware binaire en premier lieu. En général, l'analyse
binaire du code binaire embarqué joue un rôle très important dans plusieurs
scénarios.

Tout d'abord, après un incident de sécurité, une analyse post-mortem est néces-
saire pour le comprendre et d'améliorer les pratiques de sécurité ensuite. Ce tra-
vail est généralement e�ectuée par des enquêteurs qui ne disposent pas d'accès
au code source. Toute assistance automatisé à l'analyse pourrait aider à accélérer
ce processus.

Après, les fabriquants ou leurs clients peuvent nécessiter des tests de pénétration.
Deuxièmement, les fabricants et les clients ont parfois besoin d'e�ectuer des tests
de pénétration. Dans ce cas, le matériel est typiquement testé sans connaissances
de leur fonctionnement intérieur (�black-box�). Ses interfaces sont testé avec
des valeurs invalides et des cas limites pour les protocoles connus, mais aucune
connaissance du logiciel est utilisé dans ce processus. En pro�tant des approches
telles que le fuzzing guidé où les connaissances du logiciel embarqué sont utilisés,
des tests de pénétration pourraient être rendus plus e�cace.

En�n, l'évaluation su�sante des appareils embarqués est particulièrement im-
portante pour les fabricants intégrateurs. Lorsque plusieurs appareils embarqués
sont intégrés dans un système, les tests avec connaissances du fonctionnement
intérieur (�white-box�) sont encore plus important. Chaque faille individuelle
d'un matériel peut mener à une situation de compétition ou un blocage qui arrive
très rarement et seulement avec des circonstances particulières.

Les outils d'analyse statique et dynamique nécessitent d'être adaptés
L'analyse binaire pour le logiciel PC a considérablement progressé dans les
dernières dix années. Le fuzzing �white-box� des applications et des inter-
faces du système d'exploitation, la véri�cation des traces pour traquer les �ux
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des données à travers de l'application, et l'exécution symbolique pour décou-
vrir automatiquement des tests et augmenter la couverture du code sont des
techniques avancées d'analyse dynamique qui sont utilisées fréquemment par
des experts. Malheureusement, ces techniques ne peuvent être appliquées à des
systèmes embarqués.

Une des raisons pour ceci est l'hétérogénéité de logiciel de système dans les sys-
tèmes embarqués. Alors que certains systèmes ont une séparation claire et une
interface bien dé�nie entre le système d'exploitation et l'application, comme les
systèmes basés sur Linux, d'autres utilisent des systèmes d'exploitation proprié-
taires. Surtout avec les systèmes de gamme moins chère et professionnelle, on
trouve un logiciel monolithique où l'application est compilé ensemble avec une
bibliothèque de système d'exploitation.

En outre, en fonction du système embarqué, les caractéristiques de sécurité du
matériel changent beaucoup. Processeurs ARM de haute gamme ont plusieurs
niveaux de privilèges et support pour la virtualisation du matériel, tandis que les
processeurs de basse gamme de la même famille ne peuvent distinguer que trois
niveaux de privilèges et ne supportent pas la notion de mémoire virtuelle.

L'analyse statique est rendue di�cile par les nombreux jeux d'instructions em-
ployés dans les processeurs des systèmes embarqués. ARM est le jeu d'instructions
le plus répandu [CZFB14], mais MIPS, AVR, MSP430, et 8051 sont aussi
fréquemment utilisés. Le développement d'outils pour un seul jeu d'instructions
n'est pas une solution viable si veut analyser le logiciel embarqué à grande échelle.

Finalement, des méthodes d'analyse dynamique qui vont plus loin que le débo-
gage et le traçage sont di�cile à utiliser avec le logiciel embarqué. Sans matériel
spécialisé, des techniques plus avancées nécessitent un émulateur instrumenté
qui exécute le �rmware. Cependant, le fonctionnement du logiciel et du matériel
sont liés en sorte qu'un logiciel embarqué ne fonctionnera pas correctement si
le matériel périphérique du système n'est pas émulé. Ainsi, il est nécessaire
de faire une retro-conception du système à la base d'une analyse statique pour
être capable de construire un émulateur et de conduire une analyse dynamique
avancée.

A.1 Énoncé du problème

Cette thèse est centrée autour du problème de l'analyse du dynamique du logi-
ciel embarqué binaire. Des analystes indépendants tels que les laboratoires de
certi�cation, les testeurs de pénétration, analystes judiciaires, les fabricants qui
composent un système plus complexe à partir de plusieurs plus petits appareils,
et les chercheurs ont un intérêt légitime d'analyser du logiciel embarqué pour
des raisons de sécurité. Mais l'analyse du �rmware binaire peut s'avérer di�cile:
Émulateurs doivent spéci�quement être adapté à chaque matériel périphérique,
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comme aucune abstraction commune du matériel n'existe. Même quand on a
un moyen de déboguer un logiciel embarqué sur son matériel, l'application des
méthodes d'analyse dynamique moderne comme exécution symbolique est im-
possible, car le soutien du matériel serait nécessaire. Au lieu de cela, une grande
partie de temps d'analyse est investi à retracer les plantages et de suivre le �ux
des donnés à la main. Même le système d'exploitation, l'application et des bib-
liothèques dans un ensemble du code binaire doivent être identi�és de nouveau
à chaque fois. Avec un environnement qui permet analyse des �ux de données,
le traçage de l'exécution et de l'instrumentation, plus de ces tâches pourraient
être automatisées.

A.2 Contributions

Nous proposons un ensemble d'outils qui comble ce manque d'outils d'analyse
dynamique pour les systèmes embarqués. Avatar , tel que présenté dans le
Chapitre 3, permet d'émuler le logiciel d'un système embarqué. Des analyses
complexes tels que l'exécution concolique peut être implémenté sur cette fonda-
tion. Nous présentons plusieurs techniques qui peuvent être utilisées pour opti-
miser la performance du système, et d'adapter Avatar aux besoins de l'utilisateur.
Avatar est démontré dans trois di�érents scénarios d'analyse de sécurité, y com-
pris la retro-conception, la découverte des vulnérabilités, et la détection des
portes dérobées. Pour démontrer la �exibilité de notre système, chaque test a
été e�ectué sur une catégorie de système embarqué di�érente.

En outre, dans le chapitre 4, nous présentons une porte dérobée implanté dans le
logiciel embarqué d'un disque dur SATA grand public. À partir de cet exemple,
nous démontrons les dangers et la perte catastrophique de sécurité dû aux mod-
i�cations malveillantes du logiciel embarqué. La porte dérobée est autonome,
ne nécessitant aucune coopération de l'hôte. Elle est bien caché. de part le fait
qu'elle n'intercepte que les lectures et écritures légitimes, sans se baser sur le
DMA et d'autres caractéristiques avancées. Le temps additionnel requis pour le
fonctionnement de la porte dérobée est imperceptible par l'utilisateur pendant
l'utilisation normale. De plus, la porte dérobée peut être installé par un logiciel
sur l'hôte dans très peu de temps. Nous démontrons également qu'il est possible
de construire une telle porte dérobée avec un investissement d'une dizaine de
mois-homme, malgré les di�cultés de débogage et de la retro-conception du logi-
ciel embarqué du disque. En�n, nous présenter un certain nombre de techniques
d'analyse judiciaire qui peuvent aider à identi�er une telle porte dérobée.

Finalement, dans chapitre 5 nous proposons une méthodologie pour identi�er la
con�guration du matériel périphérique d'un système embarqué. Avatar aborde
le problème du couplage étroit entre le logiciel et le matériel en relayant les accès
au matériel de l'émulateur, où le logiciel tourne, au plate-forme physique. Cette
approche, qui est bien adaptée pour l'analyse des petits bouts de code, entraîne
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quelques désavantages: La simulation du système entier est di�cile, comme du
code avec des contraintes de temps réel doit être identi�é, des interruptions
doivent être gérées correctement, etc. En plus, l'écriture des valeurs concrètes
au matériel physique pendant l'exécution symbolique rend tous les autres états
symboliques invalides. Dans cet ouvrage, nous observons la communication
entre le logiciel et les périphériques dans S2E pour créer une empreinte digitale
de chaque périphérique, similaire aux descriptions des registres dans les �ches
produit. Nous démontrons qu'une base d'empreintes peut être construite, à partir
de laquelle une recommandation automatique pour un plan des périphériques
peut être donné.

A.3 Organisation de la thèse

Dans cette thèse, nous analysons la faisabilité et l'impact d'une attaque ciblée
contre un système embarqué, plus spéci�quement un disque dur, et de développer
des outils d'analyse dynamique binaire pour analyser de telles menaces. Après
avoir résumé l'état de l'art dans Chapitre 2, nous présentons Avatar , un outil
d'analyse dynamique pour les systèmes embarqués, dans le chapitre 3. Dans le
chapitre suivant, la conception et la mise en ÷uvre d'une attaque de modi�cation
de logiciel embarqué est démontré. Chapitre 5 présente ensuite des techniques
de retro-conception automatisé basées sur Avatar . En�n, la thèse conclut dans
chapitre 6.

Chapitre 2 � Literature review Chapitre 2 résume l'état des techniques le
plus récentes. Un aperçu de l'analyse binaire statique, dynamique et symbolique
est donnée, qui est pertinent pour tous les chapitres suivants. La section sur la
sécurité des logiciels embarqués est surtout pertinente pour les chapitres 3 et 4.
La résumé sur les portes dérobées est liée aux travaux présentés dans chapitre 4,
et en�n la retro-conception des pilotes et du matériel est lié á chapitre 5.

Chapter 3 � Avatar : A Framework to Support Dynamic Security Anal-
ysis of Embedded Systems' Firmwares Dans ce chapitre, nous présentons
Avatar, un ensemble d'outils d'analyse dynamique binaire pour les systèmes em-
barqués. L'introduction donne un aperçu de la conception des systèmes embar-
qués et des dé�s dans l'émulation du logiciel embarqué. À la suite, l'idée es-
sentielle d' Avatar , le renvoi des accès I/O de l'émulateur au matériel physique,
est expliqué. Plusieurs techniques pour améliorer la performance du système
sont discutées, et sont démontrés sur trois cas d'utilisation di�érents. La pub-
lication sur laquelle ce chapitre se base a été publié à la conférence NDSS en
2014 [ZBFB14].
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Chapter 4 � Implementation and Implications of a Stealth Hard-Drive
Backdoor Ici, nous présentons une porte dérobée d'ex�ltration des données
implantée dans le logiciel embarqué d'un disque dur. L'introduction motive
pourquoi un disque dur est une cible d'attaque attractive, et établit le mod-
èle de menace. Ensuite, la retro-conception du logiciel embarqué du disque et
l'implémentation de la porte dérobée sont discutés. L'ex�ltration des données
sans assistance du système d'exploitation de l'hôte est exposé, et la performance
de la porte dérobée est évaluée. Le travail de ce chapitre a été présenté à la
conférence ACSAC en 2013 [ZKB+13].

Chapter 5 � Towards automating platform reverse engineering of embed-
ded devices Ce chapitre propose une technique pour la retro-conception de la
plate-forme matérielle d'un système embarqué. Un aperçu des dé�s de l'analyse
d'un système entier avec Avatar est donné. Puis, une technique pour collecter
des empreintes digitales des accès du logiciel embarqué au matériel est décrite.
En�n, les limitations et les futurs améliorations de cette méthode sont discutées.

Chapter 6 � Future work and conclusion En�n, nous présentons les prob-
lèmes de recherche, et nous concluons la thèse avec un bilan des contributions
des chapitres précédents.
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