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ABSTRACT

Automatic context recognition enables mobile devices to re-

act to changes in the environment and different situations.

While many different sensors can be used for context recogni-

tion, the use of acoustic cues is among the most popular and

successful. Current approaches to acoustic context recogni-

tion (ACR) are too costly in terms of computation and mem-

ory requirements to support an always-listening mode. This

paper describes our work to develop a reduced complexity,

efficient approach to ACR involving support vector machine

classifiers. The principal hypothesis is that a significant frac-

tion of training data contains information redundant to clas-

sification. Through clustering, training data can thus be se-

lectively decimated in order to reduce the number of support

vectors needed to represent discriminative hyperplanes. This

represents a significant saving in terms of computational and

memory efficiency, with only modest degradations in classifi-

cation accuracy.

Index Terms— Acoustic Context Recognition, mobile

devices contextualization, SVM, k-means, LDA

1. INTRODUCTION

Context recognition aims to categorize the environment in

which a computer system is used. The problem is particularly

pertinent in the case of mobile devices given their use in mul-

tiple situations throughout the course of a typical day. Here,

for instance, the ringer volume of a smart telephone might be

adjusted according to whether the user is travelling on a bus,

in an office or at home. The motivation stems from the con-

tinuous demand for advanced functionality by automatically

adapting the device configuration to the situation.

Mobile devices are increasingly equipped with multiple,

heterogeneous sensors, many of which provide cues use-

ful to context recognition. Examples include light sensors,

gyroscopes and accelerometers. Acoustic sensors are the

most widely used in practice; almost every mobile device

is equipped with a microphone. There is evidence that the

use of acoustic cues outperforms context recognition with

accelerometer measurements [1, 2] and that, in any case,

complementary audio cues are useful in a fusion framework.

This paper is concerned with acoustic context recognition

(ACR). Here, context refers to an ensemble of sounds, events

and background noise. Many approaches are reported in the

literature. While the majority use cepstral features typical of

speech processing systems, a variety of different classifiers

have been investigated. There exist distance based classi-

fiers, such as k-nearest neighbor (kNN) [3], to classify exam-

ples based on distance to known data. In [4], Gaussian Mix-

ture Model (GMM) classification is employed. One popular

approach involves temporal modelling using hidden Markov

models (HMMs) to classify the context through a sequence of

events or states [5]. One of the last approaches represents a

context as an histogram of audio events which are detected in

a scene [6]. Others, more recent works [7, 8] shows that sup-

port vector machine (SVM) classifiers offer a better trade-off

between high performance and low-complexity.

Efficiency is especially important with ACR for mobile

devices. First, unreliable data connections and the power im-

plications of continually communicating audio data to a re-

mote server make cloud solutions impractical. While running

locally on the device itself, computational efficiency is essen-

tial to minimise battery consumption. Second, the context is

dynamic. The need for always-active ACR calls for algorith-

mic efficiency. Third, reliable context recognition usually re-

quires context modelling with large amounts of data. Efficient

modelling is thus needed to avoid the processing and storing

in memory of large, complex models. None of the existing

approaches to ACR meets all of these requirements. As an

example, the complexity of an SVM classifier depends funda-

mentally on the number of training samples and the amount of

support vectors (SVs) in the model. With large quantities of

data being needed for reliable ACR, standard SVM classifiers

are typically too complex.

This paper reports our work to develop an efficient ACR

system for mobile devices. The general research hypotheses

are that (i) gains in modelling efficiency can be achieved by

reducing the redundancy in a large training dataset and that

(ii) with only modest degradation in recognition performance,

computational complexity can be reduced by using less com-

plex models. Inspired by related research [9–11], the strategy



is to reduce the dependence of a typical ACR algorithm on

a large training dataset. The main idea is to reduce compu-

tational complexity by purging a training dataset of samples

deemed least relevant to the learning of decision boundaries.

The novel contribution in this paper relates to an addi-

tional level of data selection through clustering and decima-

tion. The principal idea is to reduce model complexity by

learning from a subset of training data selected uniformly

from each cluster. The decimation of training data brings a

sympathetic reduction in the number of support vectors, less

complex models and, in turn, further reductions in computa-

tional requirements.

The rest of the paper is organized as follows: Section 2

describes the methods used for model complexity reduction;

Section 3 presents the experimental set-up, database descrip-

tion and implementation details results. The results are ana-

lyzed in Section 4; Section 5 presents conclusions and direc-

tions for further investigation

2. REDUCED COMPLEXITY ACR

Complexity reduction is achieved through a set of techniques

designed to reduce the number of SVs with the common goal

of decreasing the memory size and the computational com-

plexity of the testing phase. Before training, we perform fea-

ture extraction and selection, followed by reduction of the

training dataset. In testing, the feature selection transforma-

tion is applied to the test data before classification. The steps

of the system are presented in Fig. 1.

2.1. Feature extraction and selection

In the first step, full audio samples are first divided into fixed-

length non-overlapping segments. This is common prac-

tice [12] as a means of improving granularity. Each segment

is then divided into a sequence of short, over-lapping seg-

ments before Mel-frequency Cepstral Coefficients (MFCCs)

are extracted. While designed for speech signals, MFCCs are

popular for ACR and encode the spectrum of a signal into

a compact and uncorrelated representation. The mean and

standard deviation of the set of MFCCs for each segment is

then determined such that each of them is then represented by

a single, fixed-length feature vector.

Linear discriminant analysis (LDA) is applied in order

to reduce feature vector size while improving discrimination.

LDA is a supervised feature transformation technique which

utilises class label information to identify a linear projection.

Original features are projected into a new sub-space where the

ratio of between-class variability to within-class variability is

maximized according to the following cost function:

J(~w) =
~wTSb ~w

~wTSw ~w
(1)

Fig. 1. The entire process of complexity reduction: 1. feature

extraction and selection using LDA. 2. The SVM training,

after the K-means dataset reduction 3. The testing with SVM

reduced model.

where Sb and Sw are the between-class and within-class scat-

ter matrices calculated in the usual way [13]. Equation 1 is

treated as a regular eigenvalue problem, where the eigenvec-

tors corresponding to the largest eigenvalues are used to de-

termine discriminant feature transformations [14]. LDA pro-

jections are learned using an independent training subset and

applied without modification to test samples before classifica-

tion. While LDA may not necessarily improve classification

accuracy, dimensionality reduction reduces the size of result-

ing class models, therefore saving memory.

2.2. Training set reduction and SVM learning

The second step involves the learning of class models. First,

the training data is clustered in order to select a sub-set of

training samples for modelling.

The training data for a given class or context consists of

n samples xi, i = 1...n. The data is clustered into k clusters

using a standard K-means algorithm which minimizes the av-

erage distance between the set of samples and a set of clusters

centres µi, i = 1...k expressed as an objective function:

argmin
C

k∑

i=1

∑

x∈Ci

||x− µi||
2 (2)

where x ∈ Ci is the set of samples belonging to cluster i and

µi is the ith cluster mean. The cluster centroids are initial-

ized randomly. The K-means algorithm is iterative, attribut-

ing samples at each iteration to its nearest cluster. Cluster



centres are updated and the algorithm is repeated until conver-

gence. The data attributed to each cluster is then decimated

according to random selection so that the full data distribution

is now represented by a subset of the original data.

Clustering and data selection is performed for each class

or context before a multi-class SVM classifier is trained with

the reduced subset. The decimated training set reduces the

number of support vectors (SVs) required to represent the

SVM discrimant hyperplanes. This effectively reduces the

size of the context models required for ACR.

2.3. Testing

The final step involves testing. Feature extraction is applied

in the same way as before to each test audio sample. The

same LDA projection is applied to reduce the feature vector

dimension and to project each test sample into the same fea-

ture sub-space. Finally, test samples are classified according

to the reduced set of support vectors for each context model.

3. EXPERIMENTS

The proposed method was assessed using two different

databases, using five-fold partitioning into independent train-

ing and testing sets. Results are averaged across the five

folds and each context. The baseline is the classification

performance without reduction of the training set. In order

to demonstrate the benefit of clustering, results are also pre-

sented for a similar system which reduces the training data

set by random data selection without clustering.

3.1. Databases

The DCASE challenge dataset [15] consisting of 100 audio

recordings, each of length 30 seconds. There are 10 differ-

ent acoustic contexts and 10 recordings for each. Through

other experiments not reported here, the DCASE dataset was

found to be too small to explore fully the merit of the pro-

posed approach. While the size of the DCASE dataset does

not necessitate data decimation, it is included here since it is a

standard database and thus supports the comparison of results

generated by other researchers. Accordingly, results are also

reported for a more extensive, though non-standard database

collected by NXP Software. The NXP Software database

was recorded by volunteers using mobile devices on which a

recording application was installed. The application handles

both data collection and labelling before uploading both to a

centralised server. The recorded data covers five of the most

common, everyday acoustic contexts: inside a bus, inside a

car, office, subway and street. The amount of data available

for each context is presented in Table 1.

3.2. Protocols and metrics

Each of the samples in both DCASE and NXP Software

databases were divided into segments as described in Sec-

Context Files Duration (minutes) Segments

bus 22 121 1795

car 99 200 2854

office 89 76 1023

street 57 78 1102

subway 49 22 265

Table 1. Amount of audio data for each context in the NXP

Software database: number of files, recording duration and

number of segments.

tion 2 and subsequently treated as individual samples. While

they are not independent, together they represent greater

variability; this information would otherwise be lost in the

averaging process applied during feature extraction. The di-

vision in to short segments also allows assessments reflective

of on-line classification system, here offering a decision on

the current context.

The evaluation criteria is the global recognition accuracy,

averaged on five-fold partitions. The memory required to

store SVs is a second evaluation criteria. Recognition accu-

racy and memory size are expected to be inversely related.

The statistical significance between different recognition ac-

curacies is determined according to a McNemar test [16].

3.3. Implementation details

SVM classifiers were implemented with the well known Lib-

SVM library [17], using RBF kernels and a grid search to

otimise C and γ parameters. Features are extracted from

frames of 32 ms in duration with a 50% overlap. They

comprise the mean and variance of 13 MFCCs extracted

from each frame over the entire sample. The 26-dimensional

feature vector is then reduced to 13th order through LDA pro-

jection with negligible impact on classification performance.

4. RESULTS

Classification accuracy is assessed using different rates of

data decimation. In all cases, classification accuracy is as-

sessed together with the number of SVs. As demonstrated

in [18], memory and computational time of non-linear ker-

nel SVM are O(nd), where n denotes the number of SVs

and d the features dimension. The size of memory has been

calculated supposing 4 Bytes for each dimension of each SV.

4.1. DCASE dataset

Results for the DCASE dataset are presented in Table 2. They

show that, even when the amount of training data is reduced

by 90%, there is a negligible degradation in recognition ac-

curacy, while the memory requirements are reduced by over

70%. Results for the two different decimation approaches are

illustrated in Fig. 2. They show that the proposed approach



train set size memory

(% reduction) SVs accuracy (KBytes)

480(0%) 276 0.51 14

475(10%) 275 0.51 14

263(50%) 173 0.51 9

192(70%) 137 0.49 7

103(90%) 88 0.50 5

Table 2. Recognition accuracy, number of support vectors and

memory requirements for different amounts of training data

reduction, for the DCASE dataset.
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Fig. 2. An illustration of the different recognition accuracy

for the proposed approach and random data selection. Results

illustrated for the DCASE dataset.

significantly outperforms random data selection when the de-

gree of reduction exceeds 80%. The McNemar test has been

evaluated to reject the hypothesis that the results from dif-

ferent decimations are equal. The test confirms the statisti-

cal significance of these results, when the reduction is more

than 80%. A complete benchmark of DCASE challenge has

been presented in [19], where the different algorithms are

compared. The current DCASE baseline (MFCC and GMM

as classificator) has 55% of accuracy, while the best meth-

ods [20] has reached 71%. The drop of our system compared

to them is due to different protocol (we are not considering

the 30 seconds, but smaller sub-clips) and to more complex

features. With same initial conditions, our system has 60% of

accuracy.

4.2. NXP Software dataset

Results for the NXP Software dataset are presented in Table 3.

While the degradation is more significant than for the DCASE

dataset, a 90% reduction in training data and 85% reduction in

memory requirements sill only causes a 5% drop in recogni-

tion accuracy from 73% to 68%. Results also show that if the

number of SVs and required memory halved, the difference

in performance is only 1% absolute. These results confirm

the redundancy in the training data which, when removed,

causes only negligible degradations in recognition accuracy

while greatly reducing memory requirements.

Results for the two different decimation approaches are

train set size memory

(% reduction) SVs accuracy (KBytes)

5875(0%) 1396 0.73 72

5305(10%) 1282 0.73 66

2946(50%) 790 0.72 41

1782(70%) 524 0.71 27

604(90%) 225 0.68 11

Table 3. As for Table 2, except for the NXP Software dataset.
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Fig. 3. Proposed method vs random selection. NXP Software

dataset.

illustrated in Fig. 3. In this case the proposed approach sig-

nificantly outperforms the random selection approach when

the training data is reduced by more than 50%. The signifi-

cance of these results is confirmed with a McNemar test.

SVs

(% reduction) bus car office subway street

1396(0%) 0.75 0.79 0.91 0.54 0.64

1282(10%) 0.74 0.79 0.91 0.53 0.65

790(50%) 0.74 0.80 0.92 0.52 0.61

524(70%) 0.73 0.74 0.87 0.52 0.64

225(90%) 0.69 0.79 0.86 0.45 0.53

Table 4. NXP Software dataset results with context-wise ac-

curacy

Finally, Table 4 illustrates the variation in performance

for different contexts. With the exception of the car context,

performance degrades as the training data is reduced. Re-

sults for subway and street contexts show the most significant

degradations. This behaviour is likely caused by the different

variation present in each context.

5. CONCLUSIONS

This paper presents a new, reduced complexity approach to

acoustic context recognition for mobile devices. The prin-

cipal idea involves the selective decimation of training data

such that a reduced set of support vectors are required for

classification, which then involves less memory and less com-

putation. Linear discriminant analysis is applied to reduce



the dimension of the feature space without degrading clas-

sification accuracy. K-means clustering is the basis for data

selection, ensuring that the full feature space is adequately

represented after decimation. Evaluation on one small, stan-

dard dataset and one larger, non-standard dataset confirm that

the decimation has only a modest impact on classification ac-

curacy. Furthermore, contrastive experiments with a random

selection approach demonstrate the merit of clustering prior

to decimation. Since the degradation in results seems to de-

pend on the context, further work should investigate context-

dependent cluster optimisation, including the number of clus-

ters and cluster initialisation. A complementary strategy in-

volves decimation optimised at the class and cluster levels.

The work shows that a significant reduction in memory and

computational requirements can be delivered without signifi-

cant impacts on classification accuracy. This approach paves

the way for always-active context awareness for mobile de-

vices.
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