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ABSTRACT 
 

The recent success of the Kinect sensor has a significant 
impact on 3D data based computer applications. This study 
aims to obtain MPEG-4 compliant realistic and animatable 
face models from Kinect video. The complete framework for 
this process includes initially the computation of high quality 
3D scans from RGB-D Kinect video, and then the 
computation of animatable MPEG-4 face models using these 
high quality scans. This study shows that it is possible to 
obtain high quality 3D scans and realistic and animatable 
face models of subjects using lower quality Kinect data. 
 

Index Terms- Kinect, MPEG-4, animatable face model 
 

1. INTRODUCTION 
 

Since several years, the emerging RGB-D cameras such as 
the Kinect sensor [1] are very popular. They have been 
successfully used for many 3D based applications.  

The Kinect sensor has received significant attention from 
several research communities [2], such as computer vision 
[3], computer graphics [4], augmented reality [5], human 
computer- interaction [6], instrument measurement [7], and 
robotics [8]. The vast utilization of the Kinect sensor in 
several domains is due to its efficiency, low-cost, ease of 
RGB-D mapping, and multi-modal sensing. In biometrics 
domain, Kinect sensor has been used in the analysis of body 
parts segmentation and tracking [9], gait recognition [10], 
and body anthropometric analysis [11]. The utilization of the 
Kinect sensor for face recognition is limited due to the lack 
of a standard database. In [12], several face databases are 
listed. In this list, the EURECOM Kinect Face Dataset 
(EURECOM KFD) [13] is one of the two databases which 
provides video data collected by the Kinect sensor. Hence, 
in the present study, we used this database for our analysis. 

Recent surveys [14, 15] show that in face recognition, 3D 
cues provide complementary information in addition to 2D. 
3D shape information is robust to illumination and pose 
variations [16]. However, the utilization of high quality 3D 
scans leads to an unbalanced comparison between 2D and 
3D data in terms of acquisition efficiency. 3D face scanning 
needs careful user cooperation hence it is inefficient and too 
long for users to keep steady during data collection.  

The Kinect sensor overcomes the above problem by 
providing both 2D and 3D data simultaneously at interactive 
rates. As a result, 3D or 2D+3D data is provided for real-
time and online processing [17]. However, in comparison to 
the high quality laser scans, the quality of 3D data captured 
by the Kinect is relatively low. The problems encountered 
are missing data in blind points [2], relatively low depth 
resolution, noise at large depth transitions at boundaries, and 
spatial calibration of RGB and depth images [18]. 

The main contributions of this paper are as follows: 
• In the EURECOM KFD (test database), 3D scans (.obj 
files) are already provided. In this study, in addition to these 
3D scans, higher quality 3D scans are computed using the 
video data available in the database. These higher quality 3D 
scans show almost complete 3D face. 
• Then, realistic and animatable face models that are in 
compliance with MPEG-4 specifications are computed for 
each subject in the database by applying Thin Plate Spline 
(TPS) warping [23] to the high quality 3D scans. 
• The outputs are both the high quality 3D scans and the 
corresponding animatable MPEG-4 face models of the 
subjects involved in our test database. 
• The proposed process for obtaining animatable models 
from Kinect video is explained in details which makes this 
work reproducible. Following the acquisition protocol 
explained in this paper using a Kinect sensor, it is possible 
to obtain realistic and animatable models of any subject with 
the proposed approach. 

The rest of this paper is as follows. In Section 2, the 
specifications of the EURECOM KFD are given. In Section 
3, the complete framework for the computation of high 
quality 3D model from Kinect video and the corresponding 
animatable MPEG-4 face models is described. Section 4 
explains the additional patch proposed for the EURECOM 
KFD. Finally, conclusions are given in Section 5. 

 

2. KINECT FACE DATABASE 
 

In this section, the summary of the specifications of the 
EURECOM KFD [13] is given. 

In the database, 52 subjects appeared. 38 of them are 
males, 14 of them are females. The participants are from 
different ethnicity, and were born between 1974 and 1987.  



Their ethnicities are categorized into the following classes 
(with the number of participants in each class): Caucasian 
(21), Middle East/ Maghreb (11), East Asian (10), Indian 
(4), African American (3), and Hispanic (3). 

The database was captured in two sessions happened at 
different time period (about half month), where the same 
recording protocol was applied. In each session, 2D RGB 
image, 2.5D depth map, 3D point cloud and RGB-D video 
sequence were captured for each identity. 9 facial variations 
were involved in both sessions, which are neutral face, 
smiling, mouth open, strong illumination, occlusion by 
sunglasses, occlusion by hand, occlusion by paper, right face 
and left face profile. 

The database was captured in a controlled environment 
(natural light at daytime). The participants were asked to 
follow the predefined acquisition protocol. The protocol to 
record the RGB-D video sequences for each person 
consisted of slow head movements in both the vertical 
(pitch) and the horizontal (yaw) directions. The video 
sequence allows extraction of multiple frames with different 
poses. A white board was placed behind each participant 
with fixed distance to the Kinect, to produce a simple 
background which can be easily filtered. 

A software application (based on the OpenNI [20] library) 
was used for the database recording. The captured RGB 
image and the depth image were cropped using a pre-defined 
ROI (with the size of 256×256). 

The dataset comes with the manual landmarks of 6 
positions in the face: left eye, right eye, the tip of nose, left 
side of mouth, right side of mouth and the chin to perform 
facial region extraction and normalization. 

 

3. THE COMPLETE FRAMEWORK 
 

The EURECOM KFD provides RGB-D video data. Thus, 
it can be used to develop animatable MPEG-4 models from 
low quality Kinect video data. Animatable MPEG-4 models 
are animatable models which are computed by warping an 
animatable generic model using 3D frontal face models of 
the subjects and some of the MPEG-4 specified feature 
points on that models. Commercial players use animatable 
face models to perform animation encoded in a MPEG-4 
data stream. Hence realistic animations of synthetic faces is 
possible using these MPEG-4 animatable models. 

 
Figure 1. The complete framework for the proposed study 

 

Figure 1 shows the flowchart of the complete framework 
of this study. In the first step (1), we were inspired from the 
study [19], in which high quality 3D models are computed 
from RGB-D video via 3D accumulation and refining. The 
differences in our technique compared to [19] are defined in 

 
Figure 2. An example of a 3D face model generated using a video 
of cooperative head movement (images taken from [19]). 
 

section 3.1.4. In the second step (2), we compute animatable 
MPEG-4 models using the pre-computed high quality 3D 
models. In order to obtain MPEG-4 animatable models, we 
benefited from the study [22].  

Section 3.1 and 3.2 explain the first and the second steps 
of the proposed approach (Figure 1), respectively. 
 

3.1. Kinect Video to High Quality 3D Model (Step 1) 
 

Recently, dense 3D modelling using the Kinect has 
attracted vast amounts of attention. Pioneering works [4, 5] 
have demonstrated how to build a dense 3D map of indoor 
scene/ object by camera tracking using sparse features and 
optimize the 3D points aggregation, taking advantage of the 
real-time, low-cost, and ease of RGB-D mapping from the 
Kinect sensor. More recently, 3D face modelling using the 
Kinect is introduced in [19, 21] to generate a 3D model for 
video conferences and Massive Multi-player Online Games. 

An example of the 3D model generated from video data is 
illustrated in Figure 2. The video based face modelling [19] 
shown in Figure 2 aggregates and averages data points from 
multiple single depth frames in a cylindrical coordinates 
system, so as to capture the complementary information 
brought by the given video sequence. Bilateral smoothing is 
applied to remove noise while keeping edges. The generated 
3D faces from the Kinect video sequence have demonstrated 
comparable accuracy to laser scanned 3D faces [19]. 

The EURECOM KFD provides for each subject video 
records including two sets of RGB and depth frames. In the 
present study, we initially developed a technique aiming to 
rebuild high quality 3D faces from these low resolution 
RGB-D videos. The proposed method is explained in the 
following subsections. 

The whole process to create 3D faces from Kinect videos 
in this paper is described in Figure 3. First, frames from the 
3D videos are extracted and converted to a readable format, 
bitmap (1). Then, they are cropped and their background is 
deleted so that the resulting image focuses on the face (2). In 
order to compute head pose, features are extracted from the 
frame by comparing it to training models (3). From the 
position of the eyes and the mouth corners, we can identify 
the head pose (4). Given the head pose and the depth frames 
extracted from the videos, a depth frame is computed for the 
whole face and a 3D file representing the face is written (5). 
Finally, the texture map is computed from the frames, and 



 
 
 
 
 
 
 
 
 

Figure 3.  3D face computation process 
 

applied to the 3D face (6).  
 

3.1.1. Frame extraction and conversion ((1) in Fig. 3) 
 

Extracting frames from Kinect records has to be achieved 
using tools provided with the OpenNI open source library 
[22]. These tools allow obtaining RAW format images from 
ONI record for both RGB and depth frames. Frames are then 
converted into basic BMP format (Kinect frames are initially 
640x480, with 3 interlaced RGB channels for color and 2 
interlaced Grey and Alpha channels for depth). 
 

3.1.2. Background deletion and cropping ((2) in Fig. 3) 
 

We cannot isolate the image from the rest of the background 
by simply removing all pixels in the depth frames which are 
further than a given threshold, since there are indeed 
unwanted noise and outliers due to errors in the depth 
determination and depending on the background material. 

The purpose is then to assume that the background has a 
uniform color; the average background color is determined 
and removed at each frame. To achieve this, we first have to 
determine all the non-moving pixels in a video sequence. 
The aggregated difference of each frame with the initial one 
is computed assuming that all pixels which have an 
aggregated difference value close to zero correspond to the 
background. Thus, the median value of all concerned pixels 
gives an approximation of the average background color. 
Finally, for each depth frames, we delete all pixels which 
have a corresponding color value close to this median value. 
However, there are still some outliers in depth frames which 
have to be excluded from the process. These outliers are 
mainly very bright pixels due to noise from the sensor or 
because of features being too close to the depth camera. A 
simple exclusion using a grey value threshold is enough to 
avoid the outliers. 

 

3.1.3. Feature detection ((3) in Fig. 3) 
 

Head pose estimation is needed in order to recompose the 
3D face. Given the fact that depth values have low precision, 
we have chosen to estimate head pose by relying on RGB 
data. Eyes and mouth corners are used to compute rotation 
angle for head pose estimation (cf. Section 3.1.4). 

The feature detection algorithm processes face detection 
and landmarks positioning by computing similarity scores 
between the considered frame and a set of training models. 
These landmark positions enable to compute the 
approximate positions of eyes and mouth corners (Figure 4).  

 
Figure 4.  Landmarks detection 

 

3.1.4. Head pose computation ((4) in Fig. 3) 
 

The head pose estimation is mainly based on the distance 
between paired features such as eyes or mouth corners. Such 
distances between landmarks have to be computed from real 
world coordinates; thus initially a conversion is needed. For 
a given pixel p(x, y) on the depth frame, the associated real-
world coordinates are:   
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where Z = p(x, y), cx and cy are the optical center position of 
the camera, fx, fy are the focal lengths of the RGB camera 
(along X and Y axis) and fir is the focal length of the infrared 
depth camera. Assuming that the initial frame is a front face 
image, (the origin of the coordinates located in the middle of 
the face for the initial pose), using the real world coordinates 
(Eq. 1), trigonometric analysis gives the following relations: 
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where xright and xleft are the position of right and left eye after 
rotation on the x-plan, θ  is the angle between the Z axis and 
head rotation axis for the initial frame, γ  is the angle 
between the axis passing from the initial location of right eye 
and the axis passing from the location of right eye after 
rotation (i.e. rotation angle) (Figure 5). These equations 
enable to compute head pose of the subject. 

Note that in [19], for reconstructing 3D face from Kinect 
records, ICP algorithm [25] is used to determine head pose. 
In our study, head pose estimation is achieved through basic 
feature detection and simple geometric operations. Hence 
the applied technique is simple and enable to reach real-time 
with classic CPU programming. 
 

3.1.5. Depth map computation ((5) in Fig. 3) 
 

In this step, the 3D face is modeled through a cylindrical 
depth map. We consider a virtual cylinder surrounding the 
face and project each head’s pixel on it. The depth map 
contains all the data needed to reconstruct the 3D model and 
directly gives the cylindrical coordinates. 

Thus for each depth frame, an associated “unitary” depth 
map has to be computed. The set of all unitary depth maps 

Frame 
extraction and 
conversion (1) 

Background 
deletion and 
cropping (2) 

Feature 
detection (3) 

Texture map 
computation 

(6) 

Depth map 
computation 

(5) 

Head pose 
computation 

(4) 



 
Figure 5.  Head pose estimation 

 

will then be used to generate the final depth map 
corresponding to the 3D reconstructed face. 

The purpose of this step is to determine precisely how to 
locate a depth frame’s pixel on its unitary depth map and 
what its corresponding value is. As introduced before, it is 
mainly a matter of conversion between the real-world 
Cartesian coordinates of each pixel into cylindrical ones, and 
projection of the depth value on the considered cylinder. 
Here, we assume that the original axis of the cylinder is 
vertical and placed 10 cm behind the closest point of the 
initial frame (this approximation gives good results). The 
pixel’s value is computed given its distance from this axis, 
and its position on the depth map is obtained from its height 
on the depth frame and its angle with the front axis (and an 
additional offset equal to the current face pose). 

Once the complete set of unitary depth map is obtained 
(Figure 6), an array of all non-null pixels’ values is filled for 
each pixel’s location. The final value corresponds to the 
median value of these arrays (Figure 7). 
 

 
Figure 6.  Unitary depth map 

 

Pre-processing is also important in order to fill holes 
which are due to the lack of data and to smooth the result. In 
this study, a simple linear interpolation on the horizontal 
axis is used to complete the depth map. Then a bilateral 
filter is applied to smooth the result, which preserves edges 
while reducing noise in other parts of the image. 

 

3.1.6. Texture map computation ((6) in Fig. 3) 
 

The previous method can be easily applied to compute a 
texture color map. The algorithm applied is almost exactly 
the same; we just complete the unitary maps with color 
instead of depth, and process the sequence three times (one 
time per color channel) (Figure 8). 

From the final depth map and texture map, a 3D object is 
generated in .OBJ/.MTL format. These models complete the 
existing EURECOM KFD (which already contains raw 3D 

 
Figure 7.  Final depth map computation 

 

 
Figure 8.  Unitary texture map generation 

 

conversions of the previously included depth frames) with 
complete 3D heads (Figure 9). This figure shows the 3D 
head reconstruction performance of the proposed approach 
for the identity shown in Figure 4. 

  
Figure 9.  3D head reconstructed 

 

Note that our reconstruction program is still highly 
dependent on the recording conditions. For many sessions, 
the subject was too close to the camera and a high number of 
corrupted depth frames did not enable a proper 
reconstruction. Using the EURECOM KFD, we observed 
that 59% of all records (i.e. 61 faces over 104) were 
successfully computed in 3D. 
3.2 From High Quality 3D Model to MPEG-4 
Animatable Model (Step 2) 

 

In order to obtain an animatable model from a 3D face, the 
method used here is based on warping a generic animatable 
face, which is compatible with MPEG-4, in order to make it 
look similar to the target 3D faces. The generic face that was 
used for warping is shown in Figure 10. Its feature points 
were also available.  

The method used for warping was first introduced in [22]. 
The generic face is warped using TPS method [23]. 
However, before applying the TPS warping, the generic face 
needs to be rescaled and then aligned to the target face (i.e. 
the  reconstructed  3D  face).  The  warping  is  done in two  



 
Figure 10.  Generic Face 

 

steps. First a coarse warping is computed, by warping the 
face according to a non-linear transformation defined by the 
pairing of the feature points in the initial 3D face with the 
corresponding feature point in the generic model and 
interpolating other points with the TPS method. A second 
warping is done by pairing all the points of the original face 
with the closest one in the generic face. The original texture 
of the 3D face from the database is applied to the warped 
face afterwards. Finally, a list of the feature points of the 
warped face is retrieved, by using the already existing 
feature points of the generic face and finding the 
corresponding coordinates in the new face.  

We have to note though that in our process, 3 feature 
points were annotated as opposed to 29 manually annotated 
feature points for all the 3D faces in [22] for alignment and 
coarse warping. Although the utilization of less feature 
points decreases the alignment and coarse warping 
performance slightly, it still provides significant 
performance with the advantage of less computation 
complexity. The faces that were successfully computed in 
3D (i.e. 3D faces computed in the previous section) were 
also successfully warped, except for 5 of them, probably due 
to the low number of feature points annotated in the initial 
3D face. After warping, the associated feature points for the 
center of the eyes were computed. 

The different steps of the computation of the animatable 
faces are shown in Figure 11. 56 VRML files describing 3D 
faces after the warping of the generic animatable face with 
the associated FDP (Face Definition Parameters) files 
describing their feature points were obtained.  

 

3.2.1 MPEG-4 Animatable Model 
 

MPEG-4 Face and Body Animation is part of the MPEG- 4 
standard developed by the Moving Picture Experts Group, 
describing a standard to represent humans with key feature 
points called Face Definition Parameters and how to move 
them with the definition of Face Animation Parameters.  

84 feature points and 68 Face Animation Parameters are 
defined in the standard. Face Animation Parameters include 
both high level descriptions, such as expressions (joy, 
sadness, anger) and visemes (position of the feature points 
when the model says a specific phoneme) and low level 
parameters (specific movements of one part of the face, such 
as raising an eyebrow). 

The software used for the animation of the faces is 
visage|life, which was developed by Visage Technologies 
[24]  to  animate  faces  (and  bodies)  in  a way that was 

   
(a) (b) (c) 

Figure 11. Generating the animatable model: (a) 3D face, (b) 
warped generic face with texture, (c) warped generic face with 
texture and eyes  

compatible with the MPEG-4 standard. The idea behind the 
animation in visage|life is to import a VRML description of 
a 3D face, with its feature points (in a .fdp file with the same 
name) and clone the animations from an existing animatable 
model. Feature points positions can be verified and modified 
in the software as well. 

The cloning process consists first in the computation of 
the facial motion for the existing animatable face. The facial 
motion is then applied to the new input 3D face. All the 
faces that were successfully warped were also successfully 
animated. 

In the visage|SDK, which is a Software Development Kit 
made available by Visage Technologies, a face tracking 
demo is available. It finds and tracks a face in real time from 
a camera feed and outputs Face Animation Parameters and 
face position to animate the 3D animatable face in the same 
way as the tracked face (Figure 12). Figure 9 shows the 
performance of the proposed approach for high quality 3D 
head reconstruction.   The example videos under the link 
http://rgb-d.eurecom.fr/ show the performance of the 
proposed approach for MPEG-4 animatable model 
computation. In this link, one video shows the speech 
synthesis process achieved using the output animatable 
model of this study. The other video shows the face tracking 
process with expression variations using a computed MPEG-
4 animatable model in this paper (Note that in this video, the 
animatable face is not the animatable model of the tracked 
face). These videos clearly show that it is possible to 
compute realistic and animatable MPEG-4 face models 
using the RGB-D video data collected with a cheap 3D 
scanner such as Kinect.  

4. ADDITIONAL PATCH TO THE EURECOM KFD 
 

In this study, a new patch was created for the EURECOM 
KFD. It contains for each subject, the 3D face computed 
during the first step (Section 3.1) and the VRML file for the 
creation of the animatable face, the final animatable face and 
its feature points when available. 
The architecture of the patch is as follows: 
0001: subject number (4 digits, 0001 to 0052) 
s1: session number (s1 or s2) 
3D Face: contains the 3D face after computation, eventually 
cleaned using the Autodesk Maya software (in .OBJ format), 
its associated .mtl file and texture file. 



  
(a) (b) 

Figure 12.  Example of a tracked expression: (a) tracked face, (b) 
animated face from the database 

Animatable Face: contains the 3D face used for animation 
(in VRML format), the animatable face (.afm), its associated 
feature points file and the associated texture file. 

According to the information in [13], the EURECOM 
KFD was prepared for the studies regarding biometrics 
domain. However, with the proposed patch, the utilization of 
the database can be more general. Since it includes the 3D 
animatable models, it can be used in several other domains. 

 
5. CONCLUSION 

 

In this paper, we used the video data in EURECOM KFD 
[13], which is collected with the Kinect sensor. Although the 
performance of the proposed approach is tested only using 
this database, following the acquisition protocol explained in 
this paper, it is possible to obtain animatable models of any 
subject with the proposed approach using a Kinect sensor.  

In this study, we aim to produce realistic and animatable 
MPEG-4 face models using the Kinect video data. For this 
purpose, first, we built high quality 3D faces from low 
resolution RGB-D videos. After extracting the video frames, 
this process is achieved via 3D accumulation and refining. In 
the next step, these complete 3D faces of high quality are 
used to obtain animatable MPEG-4 models. For this 
purpose, TPS warping is applied using a generic face model 
and the animatable models of each subject are evaluated.The 
faces which are successfully warped are also successfully 
animated using the visage|SDK, which is a Software 
Development Kit made available by Visage Technologies. 

This study provides the high quality 3D face, the VRML 
file for the creation of the animatable face, the final 
animatable face and its feature points for each subject in the 
existing EURECOM KFD. This study proves that it is 
possible to obtain high quality 3D faces using a cheap 3D 
scanner such as Kinect. The techniques used for the whole 
process are explained in details, which makes the work 
reproducible. Since the output of this study is a 3D 
animatable model, it can be used not only in biometrics but 
also in other domains. Our future perspective is to compare 
the performance of the proposed approach with other 
existing techniques for the evaluation of animatable models.  
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