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Abstract
Despite years of intensive research, Byzantine fault-
tolerant (BFT) systems have not yet been adopted in
practice. This is due to additional cost of BFT, in terms of
resources, protocol complexity and performance, com-
pared to crash fault-tolerance (CFT). This overhead of
BFT comes from the assumption of a powerful adver-
sary that can fully control not only the Byzantine faulty
machines, but at the same time also the message deliv-
ery schedule across the entire network, effectively in-
ducing communication asynchrony and partitioning oth-
erwise correct machines at will. To many practitioners,
however, such strong attacks appear irrelevant.

In this paper, we introduce cross fault tolerance or
XFT, a novel approach to building reliable and se-
cure distributed systems and apply it to the classical
state-machine replication (SMR) problem. In short, an
XFT SMR protocol provides the reliability guarantees
of widely used asynchronous CFT SMR protocols such
as Paxos and Raft, but also tolerates Byzantine faults
in combination with network asynchrony, as long as a
majority of replicas are correct and communicate syn-
chronously. This allows the development of XFT sys-
tems at the cost of CFT (already paid for in practice), yet
with strictly stronger resilience than CFT — sometimes
even stronger than BFT itself.

As a showcase for XFT, we present XPaxos, the first
XFT SMR protocol. Although it offers much stronger
resilience than CFT SMR at no extra resource cost, the
performance of XPaxos matches that of the state-of-the-
art CFT protocols.

1 Introduction

Tolerating any kind of service disruption, whether caused
by a simple hardware fault or by a large-scale disaster,
is key for the survival of modern distributed systems.

∗Work done while PhD student at EURECOM.

Cloud-scale applications must be inherently resilient, as
any outage has direct implications on the business behind
them [24].

Modern production systems (e.g., [12, 7]) increase the
number of nines of reliability1 by employing sophisti-
cated distributed protocols that tolerate crash machine
faults as well as network faults, such as network parti-
tions or asynchrony, which reflect the inability of other-
wise correct machines to communicate among each other
in a timely manner. At the heart of these systems typi-
cally lies a crash fault-tolerant (CFT) consensus-based
state-machine replication (SMR) primitive [36, 9].

These systems cannot deal with non-crash (or Byzan-
tine [29]) faults, which include not only malicious, ad-
versarial behavior, but also arise from errors in the hard-
ware, stale or corrupted data from storage systems, mem-
ory errors caused by physical effects, bugs in software,
hardware faults due to ever smaller circuits, and human
mistakes that cause state corruptions and data loss. How-
ever, such problems do occur in practice — each of these
faults has a public record of taking down major produc-
tion systems and corrupting their service [13, 3].

Despite more than 30 years of intensive research since
the seminal work of Lamport, Shostak and Pease [29],
no practical answer to tolerating non-crash faults has
emerged yet. In particular, asynchronous Byzantine
fault-tolerance (BFT) that promises to resolve this prob-
lem [8] has not lived up to this expectation, largely due
to its extra cost compared to CFT. Namely, asynchronous
(that is, “eventually synchronous” [17]) BFT SMR must
use at least 3t + 1 replicas to tolerate t non-crash faults
[6] instead of only 2t + 1 replicas for CFT, as used by
Paxos [27] or Raft [34], for example.

The overhead of asynchronous BFT is due to the ex-
traordinary power given to the adversary, which may
control both the Byzantine faulty machines and the en-

1As an illustration, five nines reliability means that a system is up
and correctly running at least 99.999% of the time. In other words,
malfunction is limited to one hour every 10 years on average.



tire network in a coordinated way. In particular, the clas-
sical BFT adversary can partition any number of other-
wise correct machines at will. In line with observations
by practitioners [25], we claim that this adversary model
is actually too strong for the phenomena observed in de-
ployed systems. For instance, accidental non-crash faults
usually do not lead to network partitions. Even malicious
non-crash faults rarely cause the whole network to break
down in wide-area networks and geo-replicated systems.
The proverbial all-powerful attacker as a common source
behind those faults is a popular and powerful simplifica-
tion used for the design phase, but it has not seen equiv-
alent proliferation in practice.

In this paper, we introduce XFT (short for cross fault
tolerance), a novel approach to building efficient resilient
distributed systems that tolerate both non-crash (Byzan-
tine) faults and network faults (asynchrony). In short,
XFT allows for building resilient systems that:

• do not use extra resources (replicas) compared to
asynchronous CFT;

• preserve all reliability guarantees of asynchronous
CFT (that is, in absence of Byzantine faults); and

• provide correct service (i.e., safety and liveness [1])
even when Byzantine faults do occur, so long as a
majority of the replicas are correct and can commu-
nicate with each other synchronously (that is, when
a minority of the replicas are Byzantine faulty or
partitioned due to a network fault).

In particular, we envision XFT for wide-area or geo-
replicated systems [12], as well as for any other de-
ployment where an adversary cannot easily coordinate
enough network partitions and Byzantine faulty machine
actions at the same time.

As a showcase for XFT, we present XPaxos, the first
state-machine replication protocol in the XFT model.
XPaxos tolerates faults beyond crashes in an efficient
and practical way, achieving much greater coverage of
realistic failure scenarios than the state-of-the-art CFT
SMR protocols, such as Paxos or Raft. This comes with-
out resource overhead as XPaxos uses 2t + 1 replicas.
To validate the performance of XPaxos, we deployed
it in a geo-replicated setting across Amazon EC2 data-
centers worldwide. In particular, we integrated XPaxos
within Apache ZooKeeper, a prominent and widely used
coordination service for cloud systems [19]. Our evalua-
tion on EC2 shows that XPaxos performs almost as good
in terms of throughput and latency as a WAN-optimized
variant of Paxos, and significantly better than the best
available BFT protocols. In our evaluation, XPaxos
even outperforms the native CFT SMR protocol built in
Zookeeper [20].

Finally and perhaps surprisingly, we show that XFT
can offer strictly stronger reliability guarantees than
state-of-the-art BFT, for instance under the assumption
that machine faults and network faults occur as inde-
pendent and identically distributed random variables, for
certain probabilities. To this end, we calculate the num-
ber of nines of consistency (system safety) and avail-
ability (system liveness) of the resource-optimal CFT,
BFT and XFT (e.g., XPaxos) protocols. Whereas XFT
always provides strictly stronger consistency and avail-
ability guarantees than CFT and always strictly stronger
availability guarantees than BFT, our reliability analy-
sis shows that, in some cases, XFT also provides strictly
stronger consistency guarantees than BFT.

The rest of this paper is organized as follows. In Sec-
tion 2, we first define the system model, which is then
followed by the definition of the XFT reliability model
in Section 3. In Section 4 and Section 5, we present
XPaxos and its evaluation in the geo-replicated con-
text, respectively. Section 6 provides simplified relia-
bility analysis comparing XFT with CFT and BFT. We
overview related work and conclude in Section 7. For
space limitations, the full correctness proof of XPaxos
is given in [31].

2 System model

Machines. We consider a message-passing distributed
system containing a set Π of n = |Π| machines, also
called replicas. Additionally, there is a separate set C
of client machines.

Clients and replicas may be Byzantine faulty: we dis-
tinguish between crash faults, where a machine simply
stops any computation and communication, and non-
crash faults, where a machine acts arbitrarily, but cannot
break cryptographic primitives we use (cryptographic
hashes, MACs, message digests and digital signatures).
A machine that is not faulty is called correct. We say
a machine is benign if the machine is correct or crash
faulty. We further denote the number of replica faults at
a given moment s by

• tc(s): the number of crash faulty replicas; and,

• tnc(s): the number of non-crash faulty replicas.

Network. Each pair of replicas is connected with reli-
able point-to-point bi-directional communication chan-
nels. In addition, each client can communicate with any
replica.

The system can be asynchronous in the sense that ma-
chines may not be able to exchange messages and obtain
responses to their requests in time. In other words, net-
work faults are possible; we define a network fault as the
inability of some correct replicas to communicate with
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each other in a timely manner, that is, when a message
exchanged between two correct replicas cannot be deliv-
ered and processed within delay ∆, known to all repli-
cas. Notice that ∆ is a deployment specific parameter:
we discuss practical choices for ∆ in the context of our
geo-replicated setting in Section 5. Finally, we assume
an eventually synchronous system in which, eventually,
network faults do not occur [17].

Note that we model excessive processing delay as a
network problem and not as an issue related to a machine
fault. This choice is made consciously, rooted in the ex-
perience that for the general class of protocols considered
in this work, long local processing time is never an issue
on correct machines compared to network delays.

To help quantify the number of network faults, we first
give the definition of partitioned replica in the following.

Definition 1 (Partitioned replica). Replica p is parti-
tioned if p is not in the largest subset of replicas, in
which every pair of replicas can communicate among
each other within delay ∆.

If there are more than one subset with the maximum
size, only one of them is recognized as the largest subset.
For example in Fig 1, the number of partitioned replicas
is 3, counting either group of p1, p4 and p5 or group of
p2, p3 and p5. The number of partitioned replicas can be
as much as n− 1, which means that no two replicas can
communicate with each other within delay ∆. We say
replica p is synchronous if p is not partitioned. We now
quantify network faults at a given moment s as:

• tp(s): the number of correct but partitioned replicas.

p2 

p3 

p1 

p4 

p5 

☎ �  

☎ �  

☎ �  

Figure 1: An illustration of partitioned replicas:
{p1, p4, p5} or {p2, p3, p5} are partitioned based on Def-
inition 1.

Problem. In this paper we focus on the state-machine
replication problem (SMR) [36]. In short, in SMR clients
invoke requests, which are then committed by replicas.
SMR ensures:

• safety or consistency, by (a) enforcing total order
across committed client’s requests across all correct

replicas; and by (b) enforcing validity, i.e., that a
correct replica commits a request only if it was pre-
viously invoked by a client;

• liveness or availability, by eventually committing a
request by a correct client at all correct replicas and
returning to the client an application-level reply.

3 The XFT model

This section introduces the XFT model and relates
it to the established crash-fault tolerance (CFT) and
Byzantine-fault tolerance (BFT) models.

3.1 XFT in a nutshell

Classical CFT and BFT explicitly model machine faults
only. These are then combined with an orthogonal net-
work fault model, either the synchronous model (where
network faults in our sense are ruled out), or the asyn-
chronous model (that includes any number of network
faults). Hence, previous work can be classified into four
categories: synchronous CFT [15, 36], asynchronous
CFT [36, 27, 33], synchronous BFT [29, 16, 5], and
asynchronous BFT [8, 2].

XFT, in contrast, redefines the boundaries between
machine and network fault dimensions: XFT allows de-
signing reliable protocols that tolerate crash machine
faults regardless of the number of network faults and that,
at the same time, tolerate non-crash machine faults when
the number of machines that are either faulty or parti-
tioned is within a threshold.

To formalize XFT, we first define anarchy, a very
severe system condition with actual non-crash machine
(replica) faults and plenty of faults of different kinds, as:

Definition 2 (Anarchy). The system is in anarchy at a
given moment s iff tnc(s)> 0 and tc(s)+tnc(s)+tp(s)> t.

Here t is the threshold of replica faults, such that
t ≤ b n−1

2 c. In other words, in anarchy, some replica is
non-crash faulty, and there is no correct and synchronous
majority of replicas. Armed with the definition of anar-
chy, we can define XFT protocols for an arbitrary dis-
tributed computing problem in function of its safety and
liveness properties [1].

Definition 3 (XFT protocols). Protocol P is an XFT pro-
tocol if: (a) P satisfies safety in all executions in which
the system is never in anarchy, and (b) P satisfies live-
ness eventually provided a majority of replicas is correct
and synchronous.
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Maximum number of each type of replica faults

non-crash faults crash faults partitioned replicas

Asynchronous CFT (e.g., Paxos [28])
consistency 0 n n−1

availability 0 b n−1
2 c (combined)

Asynchronous BFT (e.g., PBFT [8])
consistency b n−1

3 c n n−1

availability b n−1
3 c (combined)

(Authenticated) Synchronous BFT (e.g., [29])
consistency n−1 n 0

availability n−1 (combined) 0

XFT (e.g., XPaxos)
consistency

0 n n−1

b n−1
2 c (combined)

availability b n−1
2 c (combined)

Table 1: The maximum number of each type of faults tolerated by representative SMR protocols. Notice that XFT
provides consistency in two modes, depending on the occurrence of non-crash faults.

3.2 XFT vs. CFT/BFT

Table 1 illustrates differences between XFT and
CFT/BFT in terms of their consistency and availability
guarantees for SMR.

State-of-the-art asynchronous CFT protocols [28, 34]
guarantee consistency despite any number of crash faulty
replicas and despite any number of partitioned replicas.
They also guarantee availability whenever a majority of
replicas (t ≤ b n−1

2 c) are correct and not partitioned. As
soon as a single machine is non-crash faulty, CFT proto-
cols guarantee neither consistency nor availability.

Optimal asynchronous BFT protocols [8, 22, 2] guar-
antee consistency despite any number of crash faulty or
partitioned replicas and with at most t = b n−1

3 c non-crash
faulty replicas. They also guarantee availability with up
to b n−1

3 c combined faults, i.e., whenever more than two-
thirds of replicas are correct and not partitioned. Notice
that BFT availability might be weaker than that of CFT
in absence of non-crash faults — unlike CFT, BFT does
not guarantee availability when the sum of crash-faulty
and partitioned replicas is in range [n/3,n/2).

Synchronous BFT protocols (e.g., [29]) do not con-
sider the existence of correct but partitioned replicas.
This makes for a very strong assumption — and helps
synchronous BFT protocols that use digital signatures
for message authentication (so called authenticated pro-
tocols) to tolerate up to n−1 non-crash faulty replicas.

In contrast, XFT protocols with optimal resilience,
such as our XPaxos, guarantees consistency in two
modes: (i) without non-crash faults, despite any num-
ber of crash faulty and partitioned replicas (i.e., just like
CFT), and (ii) with non-crash faults, whenever a major-
ity of replicas are correct and not partitioned, i.e., pro-

vided the sum of all kinds of faults (machine or network
faults) does not exceed b n−1

2 c. Similarly, it also guar-
antees availability whenever a majority of replicas are
correct and not partitioned.

It may be tempting to view XFT as some sort of a com-
bination of asynchronous CFT and synchronous BFT
models. This is however misleading, as even with actual
non-crash faults, XFT is incomparable to authenticated
synchronous BFT. Namely, authenticated synchronous
protocols such as the seminal Byzantine Generals pro-
tocol [29] may violate consistency in presence of a sin-
gle partitioned replica. For instance, with n = 5 replicas
and execution in which three replicas are correct and syn-
chronous, one replica is correct but partitioned and one
replica is non-crash faulty, XFT model mandates that the
consistency is preserved whereas the Byzantine Generals
protocol may violate consistency.2

Furthermore, from Table 1, it is immediate that XFT
offers strictly stronger guarantees than asynchronous
CFT, for both availability and consistency. XFT also
offers strictly stronger availability guarantees than asyn-
chronous BFT. Finally, consistency guarantees of XFT
are incomparable to those of asynchronous BFT. On the
one hand, outside anarchy, XFT is consistent with the
number of non-crash faults in range [n/3,n/2), whereas
asynchronous BFT is not. On the other hand, unlike
XFT, asynchronous BFT is consistent in anarchy pro-
vided the number of non-crash faults is less than n/3.
We discuss these points further in Section 6, where we
also quantify the reliability comparison between XFT
and asynchronous CFT/BFT assuming the special case

2XFT is not stronger than authenticated synchronous BFT either,
as the latter tolerates more machine faults in the complete absence of
network faults.
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of independent faults.

3.3 Where to use XFT?
The intuition behind XFT starts from the assumption that
“extremely bad” system conditions, such as anarchy, are
very rare, and that providing consistency guarantees in
anarchy might not be worth paying the asynchronous
BFT premium.

In practice, this assumption is plausible in many de-
ployments. In principle, we envision XFT for use cases
in which an adversary cannot easily coordinate enough
network partitions and Byzantine faulty machine actions
at the same time. Some interesting candidates use cases
include:

• Tolerating “accidental” non-crash faults. In sys-
tems which are not susceptible to malicious be-
havior and deliberate attacks, XFT can be used to
protect against “accidental“ non-crash faults, with
which network faults can be assumed to be largely
independent from machine faults. In such cases,
XFT could be used to harden CFT systems without
considerable overhead of BFT.

• Wide-area networks and geo-replicated systems.
XFT may reveal useful even in cases where the sys-
tem is susceptible to malicious non-crash faults, so
long as it may be difficult or expensive for an adver-
sary to coordinate an attack to compromise Byzan-
tine machines and partition sufficiently many repli-
cas at the same time. Particularly interesting for
XFT are WAN and geo-replicated systems which
often enjoy redundant communication paths and
typically have a smaller surface for network-level
DoS attacks (e.g., no multicast storms and flood-
ing).

• Blockchain. A special case of geo-replicated sys-
tems, interesting to XFT, are blockchain systems.
In a typical blockchain system, such as Bitcoin
[32], participants may be financially motivated to
act maliciously, yet may lack means and capabilities
to compromise the communication among (a large
number of) correct participants. In this context,
XFT is particularly interesting for so-called per-
missioned blockchains, which are based on state-
machine replication, rather than on Bitcoin-style
proof-of-work [40].

4 XPaxos Protocol

4.1 XPaxos overview
XPaxos is a novel state machine replication (SMR) pro-
tocol designed specifically in the XFT model. XPaxos

specifically targets good performance in geo-replicated
settings, which are characterized by network as the bot-
tleneck, with high link latency and relatively low, het-
erogenous link bandwidth.

In a nutshell, XPaxos consists of three main compo-
nents:

• a common-case protocol, which replicates and
totally orders requests across replicas; this has,
roughly speaking, the message pattern and com-
plexity of communication among replicas of state-
of-the-art CFT protocols (e.g., Phase 2 of Paxos),
hardened by the use of digital signatures;

• a novel view change protocol, in which the infor-
mation is transferred from one view (system con-
figuration) to another in a decentralized, leaderless
fashion.

• a fault detection (FD) mechanism, which can help
detect, outside anarchy, non-crash faults that would
leave the system in an inconsistent state in anarchy.
The goal of the FD mechanism is to minimize the
impact of long-lived non-crash faults (in particu-
lar “data loss” faults) in the system and help detect
them before they coincide with a sufficient number
of crash faults and network faults to push the system
into anarchy.

XPaxos is orchestrated in a sequence of views [8].
The central idea in XPaxos is that, during common-case
operation in a given view, XPaxos synchronously repli-
cates clients’ requests to only t+1 replicas, which are the
members of a synchronous group (out of n = 2t+1 repli-
cas in total). Each view number i uniquely determines
the synchronous group, sgi, using a mapping known to
all replicas. Every synchronous group consists of one
primary and t followers, which are jointly called active
replicas. Remaining t replicas in a given view are called
passive replicas; optionally, passive replicas learn the or-
der from the active replicas using the lazy replication ap-
proach [26]. A view is not changed unless there is a ma-
chine or network fault within the synchronous group.

In the common case (Section 4.2), the clients send dig-
itally signed requests to the primary which are then repli-
cated across t + 1 active replicas. These t + 1 replicas
digitally sign and locally log the proofs for all replicated
requests to their commit logs. Commit logs then serve as
the basis for maintaining consistency in view changes.

The view change of XPaxos (Section 4.3) recon-
figures the entire synchronous group and not only the
leader. All t + 1 active replicas from the new syn-
chronous group sgi+1 try to transfer the state from pre-
ceding views to view i+1. This decentralized approach
to view change stands in sharp contrast to the classical
reconfiguration/view-change in CFT and BFT protocols
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(e.g., [27, 8]), in which only a single replica (the pri-
mary) leads the view change and transfers the state from
previous views. This difference is crucial to maintaining
consistency (i.e., total order) across XPaxos views in the
presence of non-crash faults (but in the absence of full
anarchy). XPaxos’ novel and decentralized view-change
scheme guarantees that, even in presence of non-crash
faults, but outside anarchy, at least one correct replica
from the new synchronous group sgi+1 will be able to
transfer the correct state from previous views, as it will
be able to contact some correct replica from any old syn-
chronous group.

Besides, we specially design a fault detection (FD)
mechanism (Section 4.4), which can help detect, outside
anarchy, non-crash faults that would leave the system
in an inconsistent state in anarchy. The FD mechanism
serves to minimize the impact of long-lived non-crash
faults in the system and help detect them before they co-
incide with a sufficient number of crash faults and net-
work faults to push the system into anarchy.

The main idea behind the FD scheme of XPaxos is
the following. In view change, a non-crash faulty replica
(of an old synchronous group) might omit to transfer its
latest state to a correct replica in the new synchronous
group. This “data loss” fault is dangerous, as it may vio-
late consistency when the system is in anarchy. However,
such a fault can be detected using digital signatures from
the commit log of some correct replicas (from an old syn-
chronous group), provided that these correct replicas can
synchronously communicate with correct replicas from
the new synchronous group. In a sense, with XPaxos
FD, a critical non-crash machine fault must occur for the
first time together with enough crash or partitioned ma-
chines (i.e., in anarchy) to violate consistency.

In the following, we explain the core of XPaxos
for the common-case (Sec. 4.2), view-change (Sec. 4.3)
and fault detection (Sec. 4.4) components. We discuss
XPaxos optimizations in Sec. 4.5 and give XPaxos cor-
rectness arguments in Sec. 4.6. For space limitations,
the complete pseudocode and correctness proof are post-
poned to [31].

4.2 Common case

Figure 2 shows the common-case message patterns of
XPaxos for the general case (t ≥ 2) and for the special
case t = 1. XPaxos is specifically optimized for the case
where t = 1, as in this case, there are only two active
replicas in each view and the protocol is very efficient.
The special case t = 1 is also very relevant in practice
(see e.g., Google Spanner [12]). In the following, we
first explain XPaxos in general case, and then focus on
the t = 1 special case.

s
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s
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(a) t ≥ 2
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3 REPLY 
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Figure 2: XPaxos common-case message patterns (a)
for the general case when t ≥ 2 and (b) for the special
case of t = 1. The synchronous groups are (s0,s1,s2)
and (s0,s1), respectively.

Notation. We denote the digest of a message m by
D(m), whereas 〈m〉σp denotes a message that contains
both D(m) signed by the private key of machine p and m.
For signature verification, we assume that all machines
have public keys of all other processes.

4.2.1 General case (t ≥ 2)

The common-case message pattern of XPaxos is shown
in Fig. 2a. More specifically, upon receiving a signed
request req = 〈REPLICATE,op, tsc,c〉σc from client c
(where op is the client’s operation and tsc is the clients’
timestamp), the primary (say s0): (1) increments se-
quence number sn and assigns sn to req, (2) logs
〈req, prep〉 into its prepare log PrepareLog0[sn] (we say
s0 prepares req), and (3) forwards req to all other active
replicas (i.e, the t followers) together with the prep =
〈PREPARE,D(req),sn, i〉σs0

message.
Each follower s j (1≤ j ≤ t) verifies the primary’s and

client’s signatures, checks if its local sequence number
equals sn− 1, and logs 〈req, prep〉 into its prepare log
PrepareLog j[sn]. Then, s j updates its local sequence
number to sn, signs the digest of the request req, the
sequence number sn and the view number i, and sends
〈COMMIT,D(req),sn, i〉σs j

to all active replicas.
Upon receiving t signed COMMIT messages — one

from each follower — such that a matching entry is in
the prepare log, an active replica sk (0≤ k≤ t) logs prep
and the t signed COMMIT messages into its commit log
CommitLogsk [sn]. We say sk commits req when this oc-
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curs. Finally, sk executes req and sends the authenticated
reply to the client (followers may only send the digest
of the reply). The client commits the request when it
receives matching REPLY messages from all t +1 active
replicas.

A client that times out without committing the requests
broadcasts the request to all replicas. Active replicas then
forward such request to the primary and trigger a retrans-
mission timer within which a correct active replica ex-
pects the client’s request to be committed.

4.2.2 Tolerating a single fault (t = 1).

When t = 1, the XPaxos common case simplifies to in-
volve only 2 messages between 2 active replicas (see
Fig. 2b).

Upon receiving a signed request req =
〈REPLICATE,op, tsc,c〉σc from client c, the pri-
mary (s0) increments the sequence number sn, signs sn
along the digest of req and view number i in message
m0 = 〈COMMIT,D(req),sn, i〉σs0

, stores 〈req,m0〉 into
its prepare log (PrepareLogs0 [sn] = 〈req,m0〉), and
sends the message 〈req,m0〉 to the follower s1.

On receiving 〈req,m0〉, the follower s1 verifies the
client’s and primary’s signatures, and checks if its lo-
cal sequence number equals sn − 1. Then, the fol-
lower updates its local sequence number to sn, exe-
cutes the request producing reply R(req), and signs mes-
sage m1; m1 is similar to m0 yet also includes the
client’s timestamp and the digest of the reply: m1 =
〈COMMIT,〈D(req),sn, i,req.tsc, D(R(req))〉σs1

. The fol-
lower then saves the tuple 〈req,m0,m1〉 to its commit log
(CommitLogs1 [sn] = 〈req,m0,m1〉) and sends m1 to the
primary.

The primary, on receiving a valid COMMIT message
from the follower (with a matching entry in its prepare
log) executes the request, compares the reply R(req)
to the follower’s digest contained in m1, and stores
〈req,m0,m1〉 in its commit log. Finally, it returns an au-
thenticated reply containing m1 to c, which commits the
request if all digests and the follower’s signature match.

4.3 View change
Intuition. The ordered requests in commit logs of cor-
rect replicas are the key to enforcing consistency (total
order) in XPaxos. To illustrate XPaxos view change,
consider synchronous groups sgi and sgi+1 of views i and
i+1, respectively, each containing t +1 replicas. Notice
that proofs of requests committed in sgi might have been
logged by only one correct replica in sgi. Nevertheless,
XPaxos view change must ensure that (outside anarchy)
these proofs are transferred to the new view i+ 1. To
this end, we had to depart from traditional view change

Synchronous Groups
(i ∈ N0)

sgi sgi+1 sgi+2

Active replicas
Primary s0 s0 s1
Follower s1 s2 s2

Passive replica s2 s1 s0

Table 2: Synchronous group combinations (t = 1).

techniques [8, 22, 11] where the entire view change is led
by a single replica, usually the primary of the new view.
Namely, in XPaxos view-change, every active replica
in sgi+1 retrieves information about requests committed
in preceding views. Intuitively, with correct majority of
correct and synchronous replicas, at least one correct and
synchronous replica from sgi+1 will contact (at least one)
correct and synchronous replica from sgi and transfer the
latest correct commit log to the new view i+1.

In the following, we first describe how we choose ac-
tive replicas for each view. Then, we explain how view
changes are initiated, and, finally, how view changes are
performed.

4.3.1 Choosing active replicas

To choose active replicas for view i, we may enumer-
ate all sets containing t + 1 replicas (i.e.,

(2t+1
t+1

)
sets)

which then alternate as synchronous groups across views
in a round robin fashion. Additionally, each synchronous
group uniquely determines the primary. We assume that
the mapping from view numbers to synchronous groups
is known to all replicas (see e.g., Table 2).

The above simple scheme works well for small num-
ber of replicas (e.g., t = 1 nd t = 2). For a large num-
ber of replicas, the combinatorial number of synchronous
groups may be inefficient. To this end, XPaxos may be
modified to rotate only the leader, which may then resort
to deterministic verifiable pseudorandom selection of the
set of f followers in each view. The exact details of such
a scheme are, however, beyond the scope of this paper.

4.3.2 View change initiation

If a synchronous group in view i (denoted by sgi) does
not make progress, XPaxos performs a view change.
Only an active replica of sgi may initiate a view change.

An active replica s j ∈ sgi initiates a view change if:
(i) s j receives a message from another active replica that
does not conform to the protocol (e.g., an invalid signa-
ture), (ii) the retransmission timer at s j expires, (iii) s j
does not complete a view change to view i in a timely
manner, or (iv) s j receives a valid SUSPECT message for
view i from another replica in sgi. Upon view change
initiation, s j stops participating in the current view and
sends 〈SUSPECT, i,s j〉σs j

to all other replicas.
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Figure 3: XPaxos view change illustration: synchronous
group is changed from (s0,s1) to (s0,s2).

4.3.3 Performing view-change

Upon receiving a SUSPECT message from an active
replica in view i (see the message pattern in Fig. 3),
replica s j stops processing messages of view i and sends
m = 〈VIEW-CHANGE, i + 1,s j,CommitLogs j〉σs j

to the
t + 1 active replicas of sgi+1. A VIEW-CHANGE mes-
sage contains the commit log CommitLogs j of s j. Com-
mit logs might be empty (e.g., if s j was passive).

Note that XPaxos requires all active replicas in the
new view to collect the most recent state and its proof
(i.e., VIEW-CHANGE messages), rather than the new pri-
mary only. Otherwise, a faulty new primary could, even
outside anarchy, purposely omit VIEW-CHANGE mes-
sages that contain the most recent state. Active replica
s j in view i+ 1 waits for at least n− t VIEW-CHANGE
messages from all, but also waits for at least 2∆ time,
trying to collect as many messages as possible.

Upon completion of the above protocol, each ac-
tive replica s j ∈ sgi+1 inserts all VIEW-CHANGE mes-
sages it has received in set VCSet i+1

s j
. Then s j sends

〈VC-FINAL, i+1,s j,VCSet i+1
s j
〉σs j

to every active replica
in view i+1. This serves to exchange the received VIEW-
CHANGE messages among active replicas.

Every active replica s j ∈ sgi+1 must receive VC-FINAL
messages from all active replicas in sgi+1, after which
s j extends the value VCSet i+1

s j
by combining VCSet i+1

∗
sets piggybacked in VC-FINAL messages. Then, for each
sequence number sn, an active replica selects the commit
log with the highest view number in all VIEW-CHANGE
messages, to confirm the committed request at sn.

Afterwards, to prepare and commit the selected re-
quests in view i + 1, the new primary psi+1 sends
〈NEW-VIEW, i + 1,PrepareLog〉σpsi+1

to every active
replica in sgi+1, where array PrepareLog contains pre-
pare logs generated in view i + 1 for each selected
request. Upon receiving a NEW-VIEW message, ev-
ery active replica s j ∈ sgi+1 processes prepare logs
in PrepareLog as described in the common case (see
Sec. 4.2).

Finally, every active replica s j ∈ sgi+1 makes sure that
all selected requests in PrepareLog are committed in
view i+1. When this condition is satisfied, XPaxos can
start processing new requests.

4.4 Fault detection

XPaxos does not guarantee consistency in anarchy.
Hence, non-crash faults could violate XPaxos consis-
tency in the long run, if they persist long enough to even-
tually coincide with enough crash or network faults. To
cope with long lived faults, we propose (an otherwise op-
tional) Fault Detection (FD) mechanism for XPaxos.

Roughly speaking, FD guarantees the following prop-
erty: if a machine p suffers a non-crash fault outside an-
archy, in a way that would cause inconsistency in anar-
chy, then XPaxos FD detects p as faulty (outside an-
archy). In other words, any potentially fatal fault that
occurs outside anarchy, would be detected by XPaxos
FD.

Here, we sketch how FD works in case t = 1 (see [31]
for details), focusing on detecting a specific non-crash
fault that may render XPaxos inconsistent in anarchy —
a data loss fault by which a non-crash faulty replica loses
some of its commit log prior to view change. Intuitively,
data loss faults are dangerous as they cannot be prevented
by the straightforward use of digital signatures.

Our FD mechanism entails modifying XPaxos view
change as follows: in addition to exchanging their com-
mit logs, replicas also exchange their prepare logs. No-
tice that in case t = 1 only the primary maintains a pre-
pare log (see Section 4.2). In the new view, the primary
prepares and the follower commits all requests contained
in transferred commit and prepare logs.

With the above modification, to violate consistency,
a faulty primary (of preceding view i) would need to
exhibit a data loss fault in both its commit log and its
prepare log. However, such a data loss fault in the pri-
mary’s prepare log would be detected, outside anarchy,
because (i) the (correct) follower of view i would reply
in the view change and (ii) an entry in the primary’s pre-
pare log causally precedes the respective entry in the fol-
lower’s commit log. By simply verifying the signatures
in the follower’s commit log the fault of a primary is de-
tected. Conversely, a data loss fault in the commit log
of the follower of view i is detected outside anarchy by
verifying the signatures in the commit log of the primary
of view i.

4.5 XPaxos optimizations

Although common case and view change protocols de-
scribed above are sufficient to guarantee correctness, we
applied several standard performance optimizations to
XPaxos. These include checkpointing and lazy repli-
cation [26] to passive replicas (to help shorten the state
transfer during view change) as well as batching (to
improve the throughput). Below, we provide a brief
overview of these optimizations — details are postponed
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to [31].
Checkpointing. Similarly to other replication proto-
cols, XPaxos includes a checkpointing mechanism that
speeds up view changes and allows for garbage collec-
tion (by shortening commit logs). To this end, every
CHK requests (where CHK is a configurable parameter)
XPaxos checkpoints the state within the synchronous
group. Then the proof of checkpoint is lazily propagated
to passive replicas.
Lazy replication. To speed up the state transfer in view
change, the every follower in the synchronous group
lazily propagates the commit log to one passive replica.
With lazy replication, a new active replica, which might
be the passive replica in preceding view, may only need
to retrieve the missing state from others during view
change.
Batching and pipelining. In order to improve the
throughput of cryptographic operations, the primary
batches several requests when preparing. The primary
waits for B requests, then signs the batched request and
sends it to every follower. In case there are not enough
requests received within a time limit, the primary batches
all requests it has received.

4.6 Correctness arguments
Consistency (Total Order). XPaxos enforces the fol-
lowing invariant, which is key to total order.

Lemma 1. Outside anarchy, if a benign client c commits
a request req with sequence number sn in view i, and a
benign replica sk commits the request req′ with sn in view
i′ > i, then req = req′.

A benign client c commits request req with sequence
number sn in view i, only after c receives matching
replies from t +1 active replicas in sgi. This implies that
every benign replica in sgi stores req into its commit log
under sequence number sn. In the following, we focus
on the special case where: i′ = i+ 1. This serves as the
base step for the proof of Lemma 1 by induction across
views that we postpone to [31].

Recall that, in view i′ = i + 1, all (benign) repli-
cas from sgi+1 wait for n− t = t + 1 VIEW-CHANGE
messages containing commit logs transferred from other
replicas, as well as the timer set to 2∆ to expire. Then,
replicas in sgi+1 exchange this information within VC-
FINAL messages. Notice that, outside anarchy, there ex-
ists at least one correct and synchronous replica in sgi+1,
say s j. Hence, a benign replica sk that commits req′ in
view i+ 1 under sequence number sn must have had re-
ceived VC-FINAL from s j. In turn, s j waited for t + 1
VIEW-CHANGE messages (and timer 2∆), so it received
a VIEW-CHANGE message from some correct and syn-
chronous replica sx ∈ sgi (such a replica exists in sgi as at

most t replicas in sgi are non-crash faulty or partitioned).
As sx stored req under sn in its commit log in view i, it
forwards this information to s j in a VIEW-CHANGE mes-
sage and s j forwards this information to sk within a VC-
FINAL. Hence req = req′ follows.

Availability. XPaxos availability is guaranteed in case
the synchronous group contains only correct and syn-
chronous replicas. With eventual synchrony we can as-
sume that, eventually, there will be no network faults.
Additionally, with all combinations of t + 1 replicas ro-
tating in the role of active replicas, XPaxos guarantees
that, eventually, view change in XPaxos will complete
with t +1 correct and synchronous active replicas.

5 Performance Evaluation

In this section, we evaluate the performance of XPaxos
and compare it to Zyzzyva [22], PBFT [8] and a WAN-
optimized version of Paxos [27], using the Amazon EC2
worldwide cloud platform. We chose a geo-replicated,
WAN settings as we believe that these are a better fit for
protocols that tolerate Byzantine faults, including XFT
and BFT. Indeed, in WAN settings: (i) there is no sin-
gle point of failure such as a switch interconnecting ma-
chines, (ii) there are no correlated failures due to, e.g.,
a power-outage, a storm, or other natural disasters, and
(iii) it is difficult for the adversary to flood the network,
correlating network and non-crash faults (the last point is
relevant for XFT).

In the rest of this section, we first present the exper-
imental setup (Section 5.1), and then evaluate the per-
formance (throughput and latency) in the fault-free sce-
nario (Section 5.2), as well as under faults (Section 5.3).
Finally, we perform a performance comparison using
a real application: the Zookeeper coordination service
[19] (Section 5.4), by comparing native Zookeeper to
Zookeper variants that use the four replication protocols
mentioned above.

5.1 Experimental setup
5.1.1 Synchrony and XPaxos

In a practical deployment of XPaxos, a critical param-
eter is the value of timeout ∆, i.e., the upper bound
on communication delay between any two correct ma-
chines. If the round-trip time (RTT) between two correct
machines takes more than 2∆, we declare a network fault
(see Sec. 2). Notably, ∆ is vital to the XPaxos view-
change (Sec. 4.3).

To understand the value of ∆ in our geo-replicated
context, we ran a 3-month experiment during which
we continuously measured round-trip latency across six
Amazon EC2 datacenters worldwide using TCP ping
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US West (CA) Europe (EU) Tokyo (JP) Sydney (AU) Sao Paolo (BR)
US East (VA) 88 /1097 /82190 /166390 92 /1112 /85649 /169749 179 /1226 /81177 /165277 268 /1372 /95074 /179174 146 /1214 /85434 /169534
US West (CA) 174 /1184 /1974 /15467 120 /1133 /1180 /6210 186 /1209 /6354 /51646 207 /1252 /90980 /169080
Europe (EU) 287 /1310 /1397 /4798 342 /1375 /3154 /11052 233 /1257 /1382 /9188
Tokyo (JP) 137 /1149 /1414 /5228 394 /2496 /11399 /94775
Sydney (AU) 392 /1496 /2134 /10983

Table 3: Round-trip latency of TCP ping (hping3) across Amazon EC2 datacenters, collected during three months.
The latencies are given in milliseconds, in the format: average / 99.99% / 99.999% / maximum.

(hping3). We used the least expensive EC2 micro in-
stances, that arguably have the highest probability of ex-
periencing variable latency due to virtualization. Each
instance was pinging all other instances every 100 ms.
The results of this experiment are summarized in Table 3.
While we detected network faults lasting up to 3 min-
utes, our experiment showed that the round-trip latency
between any two datacenters was less than 2.5 seconds
99.99% of the time. Therefore, we adopted the value of
∆ = 2.5/2 = 1.25 seconds.

5.1.2 Protocols under test

We compare XPaxos against three protocols whose
common case message patterns when t = 1 are depicted
in Figure 4. The first two are BFT protocols, namely (a
speculative variant of) PBFT [8] and Zyzzyva [22] and
require 3t+1 replicas to tolerate t faults. We chose PBFT
because it is possible to derive a speculative variant of the
protocol that relies on a 2-phase common case commit
protocol across only 2t + 1 replicas (Figure 4a; see also
[8]). In this PBFT variant, the remaining t replicas are
not involved in the common case, which is more efficient
in a geo-replicated settings. We chose Zyzzyva because
it is the fastest BFT protocol that involves all replicas in
the common case (Figure 4b). The third protocol we
compare against is a very efficient WAN-optimized vari-
ant of crash-tolerant Paxos inspired by [4, 23, 12]. We
have chosen the variant of Paxos that exhibits the fastest
write pattern (Figure 4c). This variant requires 2t + 1
replicas to tolerate t faults, but involves t + 1 replicas in
the common case, i.e., just like XPaxos.

In order to provide a fair comparison, all protocols rely
on the same Java code base and use batching, with batch
size set to 20. We rely on HMAC-SHA1 to compute
MACs and RSA1024 to sign and verify signatures.

5.1.3 Experimental testbed and benchmarks

We run the experiments on the Amazon EC2 platform
that comprises widely distributed datacenters, intercon-
nected by the Internet. Communications between data-
centers have a low bandwdith and a high latency. We run
the experiments on mid-range virtual machines that con-
tain 8 vCPUs, 15GB of memory, 2 x 80 GB SSD Storage,

primary

S1

S2

S3

client

(a) PBFT

primary 

S1 

S2 

S3 

client 

(b) Zyzzyva

leader 

S1 

S2 

client 

(c) Paxos

Figure 4: Communication patterns of the three protocols
under test (t = 1).

and run Ubuntu Server 14.04 LTS (PV) with the Linux
3.13.0-24-generic x86 64 kernel.

In the case t = 1, Table 4 gives the deployment of the
different replicas at different datacenters, for each ana-
lyzed protocol. Clients are always located in the same
datacenter as the (initial) primary to better emulate what
is done in modern geo-replicated systems where clients
are served by the closest datacenter [37, 12].3

To stress the protocols, we run a microbenchmark that
is similar to the one used in [8, 22]. In this microbench-
mark, each server replicates a null service (this means
that there is no execution of requests). Moreover, clients
issue requests in closed-loop: a client waits for a reply
to its current request before issuing a new request. The
benchmark allows varying the request size and the reply
size. For space limitations, we only report results for two
request sizes (1kB, 4kB) and one reply size (0kB). We re-
fer to these microbenchmarks as 1/0 and 4/0 benchmarks,
respectively.

5.2 Fault-free performance
We first compare the performance of protocols when t =
1 in replica configurations as shown in Table 4, using
1/0 and 4/0 microbenchmarks. The results are depicted

3In practice, modern geo-replicated system, like Spanner [12], use
hundreds of CFT SMR instances across different partitions to accom-
modate for geo-distributed clients.
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in Figures 5a and 5b. On each graph, the X-axis shows
throughput (in kops/s), and Y-axis shows latency (in ms).

PBFT Zyzzyva Paxos XPaxos EC2 Region
Primary Primary Primary Primary US West (CA)

Active Active
Active Follower US East (VA)
Passive Passive Tokyo (JP)

Passive - - Europe (EU)

Table 4: Configurations of replicas. Greyed replicas are
not used in the “common” case.

As we can see, in both benchmarks, XPaxos
achieves significantly better performance than PBFT and
Zyzzyva. This comes from the fact that in a worldwide
cloud environment, the network is the bottleneck and
the message patterns of BFT protocols, namely PBFT
and Zyzzyva, tend to be expensive. Compared to PBFT,
XPaxos simpler message pattern allows better through-
put, whereas compared to Zyzzyva, XPaxos puts less
stress on the leader and replicates requests in the com-
mon case across 3 times fewer replicas than Zyzzyva
(i.e., across t followers vs. across all other 3t replicas in
Zyzzyva). Moreover, XPaxos performance is very close
to that of Paxos. Both Paxos and XPaxos implement a
round-trip across two replicas when t = 1, which renders
them very efficient.

Next, to assess the fault scalability of XPaxos, we ran
the 1/0 micro-benchmark in configurations that tolerate
two faults (t = 2). We use the following EC2 datacen-
ters for this experiment: CA (California), OR (Oregon),
VA (Virginia), JP (Tokyo), EU (Ireland), AU (Sydney)
and SG (Singapore). We place Paxos and XPaxos ac-
tive replicas at the first t + 1 datacenters, and their pas-
sive replicas to next t datacenters. PBFT uses the first
2t + 1 datacenters for active replicas and the last t for
passive replicas. Finally, Zyzzyva uses all replicas as ac-
tive replicas.

We observe that XPaxos again clearly outperforms
PBFT and Zyzzyva and achieves performance very close
to that of Paxos. Moreover, unlike PBFT and Zyzzyva,
Paxos and XPaxos only suffer a moderate performance
decrease with respect to the t = 1 case.

5.3 Performance under faults
In this section, we analyze the behavior of XPaxos under
faults. We run the 1/0 micro-benchmark on three repli-
cas (CA, VA, JP) to tolerate one fault (see also Table 4).
The experiment starts with CA and VA as active repli-
cas, and with 2500 clients in CA. At time 180s, we crash
the follower, VA. At time 300s, we crash the CA replica.
At time 420s, we crash the third replica, JP. Each replica
recovers 20s after having crashed. Moreover, the time-
out 2∆ (used during state transfer in view change, Sec-
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(b) 4/0 benchmark, t = 1
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(c) 1/0 benchmark, t = 2

Figure 5: Fault-free performance
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tion 4.3) is set to 2.5s (see Sec. 5.1.1). We show the
throughput of XPaxos in function of time in Figure 6,
which also indicates the active replicas for each view. We
observe that after each crash, the system performs a view
change that lasts less than 10s, which is very reasonable
in a geo-distributed setting. This fast execution of the
view change subprotocol is a consequence of lazy repli-
cation in XPaxos that keeps passive replicas updated.
We also observe that the throughput of XPaxos changes
with the views. This is because the latency between the
primary and the follower, and between the primary and
clients, varies from view to view.
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Figure 6: XPaxos under faults.

5.4 Macro-benchmark: ZooKeeper
In order to assess the impact of our work on real-life ap-
plications, we measured the performance achieved when
replicating the ZooKeeper coordination service [19] us-
ing all protocols considered in this study: Zyzzyva,
PBFT, Paxos and XPaxos. We also compare with the
native ZooKeeper performance, when the system is repli-
cated using the built-in Zab protocol [20]. This protocol
is crash-resilient and requires 2t +1 replicas to tolerate t
faults.

We used the ZooKeeper 3.4.6 codebase. The integra-
tion of the various protocols inside ZooKeeper has been
carried out by replacing the Zab protocol. For fair com-
parison to native ZooKeeper, we made a minor modifica-
tion to native ZooKeeper to force it to use (and keep) a
given node as primary. To focus the comparison on per-
formance of replication protocols, and avoid hitting other
system bottlenecks (such as storage I/O that is not very
efficient in virtualized cloud environments), we store
ZooKeeper data and log directories on a volatile tmpfs
file system. The tested configuration tolerates one fault
(t = 1). ZooKeeper clients were located in the same re-
gion as the primary (CA). Each client invokes 1kB write
operations in a closed loop.

Figure 7 depicts the results. The X-axis represents
the throughput in kops/sec. The Y-axis represents the

latency in ms. As for macro-benchmarks, we observe
that Paxos and XPaxos clearly outperform BFT proto-
cols and XPaxos achieves performance close to that of
Paxos. More surprisingly, we can see that XPaxos is
more efficient than the built-in Zab protocol, although
the latter only tolerates crash faults. For both protocols,
bottleneck in the WAN setting is the bandwidth at the
leader, yet the leader in Zab sends requests to all other 2t
replicas whereas the XPaxos leader sends requests only
to t followers, which yields higher peak throughput for
XPaxos.
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Figure 7: Latency vs. throughput for the ZooKeeper ap-
plication (t = 1).

6 Reliability Analysis

In this section, we illustrate the reliability guarantees of
XPaxos by analytically comparing them to those of the
state-of-the-art asynchronous CFT and BFT protocols.
For simplicity of the analysis, we consider the fault states
of the machines to be independent and identically dis-
tributed random variables.

We denote the probability that a replica is correct
(resp., crash faulty) by pcorrect (resp., pcrash). The prob-
ability that a replica is benign is pbenign = pcorrect +
pcrash. Hence, a replica is non-crash faulty with prob-
ability pnon-crash = 1− pbenign. Besides, we assume there
is a probability psynchrony that a replica is not partitioned,
where psynchrony is a function of ∆, the network, and
the system environment. Finally, the probability that a
replica is partitioned equals 1− psynchrony.

Aligned with the industry practice, we measure relia-
bility guarantees and coverage of fault scenarios using
nines of reliability. Specifically, we distinguish nines
of consistency and nines of availability and use these
measures to compare different fault models. We intro-
duce a function 9of(p) that turns a probability p into the
corresponding number of “nines”, by letting 9of(p) =
b− log10(1− p)c. For example, 9of(0.999) = 3. For
brevity, 9benign stands for 9of(pbenign), and so on, for
other probabilities of interest.
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We focus here on consistency guarantees, which is
less obvious than availability, given that XPaxos clearly
guarantees better availability than any asynchronous
CFT or BFT protocol (see Table 1). We postpone avail-
ability analysis to [31].

6.1 XPaxos vs. CFT
We start with the number of nines of consistency for an
asynchronous CFT protocol, denoted by 9ofC(CFT ) =
9of(P[CFT is consistent]). As P[CFT is consistent] =
pn

benign, a straightforward calculation yields:

9ofC(CFT )=
⌊
−log10(1− pbenign)−log10(

n−1

∑
i=0

pi
benign)

⌋
,

which gives 9ofC(CFT )≈ 9benign−dlog10(n)e for values
of pbenign close to 1, when pi

benign decreases slowly. As a
rule of thumb, for small values of n, i.e., n < 10, we have
9ofC(CFT )≈ 9benign−1.

In other words, in typical configurations, where few
faults are tolerated [12], a CFT system as a whole loses
one nine of consistency from the likelihood that a single
replica is benign.

We now quantify the advantage of XPaxos over asyn-
chronous CFT. From Table 1, if there is no non-crash
fault, or there are no more than t faults (machine faults
or network faults), XPaxos is consistent, i.e.,

P[XPaxos is consistent] = pn
benign+

t=b n−1
2 c

∑
i=1

(
n
i

)
pi

non-crash

×
t−i

∑
j=0

(
n− i

j

)
p j

crash× pn−i− j
correct×

t−i− j

∑
k=0

(
n− i− j

k

)
×

pn−i− j−k
synchrony× (1− psynchrony)

k.

To quantify the difference between XPaxos and
CFT more tangibly, we calculated 9ofC(XPaxos) and
9ofC(CFT ) for all values of 9benign, 9correct and 9synchrony
(9benign ≥ 9correct) between 1 and 20 in the special cases
where t = 1 and t = 2, which are most relevant in prac-
tice. For t = 1, we observed the following relation (t = 2
case is postponed to [31]):

9ofC(XPaxost=1)−9ofC(CFTt=1) =
9correct−1, 9benign > 9synchrony and

9synchrony = 9correct,

min(9synchrony,9correct), otherwise.

Hence, for t = 1 we observe that the number of nines
of consistency XPaxos adds on top of CFT is propor-
tional to the nines of probability for correct or syn-
chronous machine. The added nines are not directly re-
lated to pbenign, although pbenign ≥ pcorrect must hold.

Example 1. When pbenign = 0.9999 and pcorrect =
psynchrony = 0.999, we have pnon-crash = 0.0001 and
pcrash = 0.0009. In this example, 9× pnon-crash = pcrash,
i.e., if a machine suffers a faults 10 times, then one of
these is a non-crash fault and the rest are crash faults.
In this case, 9ofC(CFTt=1) = 9benign − 1 = 3, whereas
9ofC(XPaxost=1) − 9ofC(CFTt=1) = 9correct − 1 = 2,
i.e., 9ofC(XPaxost=1) = 5. XPaxos adds 2 nines of
consistency on top of CFT and achieves 5 nines of con-
sistency in total.

Example 2. In a slightly different example, let
pbenign = psynchrony = 0.9999 and pcorrect = 0.999, i.e.,
the network behaves more reliably than in Exam-
ple 1. 9ofC(CFTt=1) = 9benign − 1 = 3, whereas
9ofC(XPaxost=1)− 9ofC(CFTt=1) = pcorrect = 3, i.e.,
9ofC(XPaxost=1) = 6. XPaxos adds 3 nines of consis-
tency on top of CFT and achieves 6 nines of consistency
in total.

6.2 XPaxos vs. BFT
Recall that (see Table 1) SMR in asynchronous BFT
model is consistent whenever no more than one-third ma-
chines are non-crash faulty. Hence,

P[BFT is consistent] =
t=b n−1

3 c

∑
i=0

(
n
i

)
(1− pbenign)

i× pn−i
benign.

We first examine the conditions under which XPaxos
has stronger consistency guarantees than BFT. Fix-
ing the value t of tolerated faults, we observe
that P[XPaxos is consistent] > P[BFT is consistent] is
equivalent to:

p2t+1
benign+

t

∑
i=1

(
2t +1

i

)
pi

non-crash×
t−i

∑
j=0

(
2t +1− i

j

)
p j

crash×

p2t+1−i− j
correct ×

t−i− j

∑
k=0

(
2t +1− i− j

k

)
p2t+1−i− j−k

synchrony ×

(1− psynchrony)
k >

t

∑
i=0

(
3t +1

i

)
p3t+1−i

benign (1− pbenign)
i.

In the special case when t = 1, the above inequality
simplifies to

pcorrect× psynchrony > p1.5
benign.

Hence, for t = 1, XPaxos has stronger consistency
guarantees than any asynchronous BFT protocol when-
ever the probability that a machine is correct and not par-
titioned is larger than 1.5 power of the probability that a
machine is benign. This is despite the fact that BFT is
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more expensive than XPaxos as t = 1 implies 4 replicas
for BFT and only 3 for XPaxos.

In terms of nines of consistency, again for t = 1 (t = 2
is again postponed to [31]), we calculated the difference
in consistency between XPaxos and BFT SMR, for all
values of 9benign, 9correct and 9synchrony ranging between 1
and 20, and observed the following relation:

9ofC(BFTt=1)−9ofC(XPaxost=1) =
9benign−9correct +1, 9benign > 9synchrony &

9synchrony = 9correct,

9benign−min(9correct,9synchrony), otherwise.

Notice that in cases where XPaxos guarantees better
consistency than BFT (pcorrect× psynchrony > p1.5

benign), it
is only “slightly” better and does not materialize in addi-
tional nines.
Example 1 (cont’d.). Building upon our exam-
ple, pbenign = 0.9999 and psynchrony = pcorrect = 0.999,
we have 9ofC(BFTt=1)− 9ofC(XPaxost=1) = 9benign−
9synchrony + 1 = 2, i.e., 9ofC(XPaxost=1) = 5 and
9ofC(BFTt=1) = 7. BFT brings 2 nines of consistency
on top of XPaxos.
Example 2 (cont’d.). When pbenign = psynchrony =
0.9999 and pcorrect = 0.999, we have 9ofC(BFTt=1)−
9ofC(XPaxost=1) = 1, i.e., 9ofC(XPaxost=1) = 6 and
9ofC(BFTt=1) = 7. XPaxos has one nine of consistency
less than BFT (albeit the only 7th).

7 Related work and concluding remarks

In this paper we introduced XFT, a novel fault-tolerance
model that allows designing efficient protocols that tol-
erate non-crash faults. We demonstrated XFT through
XPaxos, a novel state-machine replication protocol that
features many more nines of reliability than the best
crash fault-tolerant (CFT) protocols with roughly the
same communication complexity, performance and re-
source cost. Namely, XPaxos uses 2t + 1 replicas and
provides all the reliability guarantees of CFT, yet is also
capable of tolerating non-crash faults, so long as a major-
ity of XPaxos replicas are correct and can communicate
synchronously among each other.

As XFT is entirely realized in software, it is funda-
mentally different from an established approach that re-
lies on trusted hardware to reducing the resource cost of
BFT to 2t +1 replicas only [14, 30, 21, 39].

XPaxos is also different from PASC [13], which
makes CFT protocols tolerate a subset of Byzantine
faults using ASC-hardening. ASC-hardening modifies
an application by keeping two copies of the state at each
replica. It then tolerates Byzantine faults under the “fault
diversity” assumption, i.e., that a fault will not corrupt

both copies of the state in the same way. Unlike XPaxos,
PASC does not tolerate Byzantine faults that affect the
entire replica (e.g., both state copies).

In this paper, we did not explore the impact on varying
the number of tolerated faults per fault class. In short,
this approach, known as the hybrid fault model and in-
troduced in [38] distinguishes the threshold of non-crash
faults (say b) despite which safety should be ensured,
from the threshold t of faults (of any class) despite which
the availability should be ensured (where often b ≤ t).
The hybrid fault model and its refinements [10, 35] ap-
pear orthogonal to our XFT approach.

Specifically, Visigoth Fault Tolerance (VFT) [35] is a
recent refinement of the hybrid fault model. Besides hav-
ing different thresholds for non-crash and crash faults,
VFT also refines the space between network synchrony
and asynchrony by defining the threshold of network
faults that a VFT protocol can tolerate. VFT is however
different from XFT, in that it fixes separate fault thresh-
olds for non-crash and network faults. This difference
is fundamental rather than notational, as XFT cannot be
expressed by choosing specific values of VFT thresholds.
For instance, XPaxos can tolerate, with 2t+1 replicas, t
partitioned replicas, t non-crash faults and t crash faults,
albeit not simultaneously. Specifying such requirements
in VFT would yield at least 3t + 1 replicas. In addition,
VFT protocols have more complex communication pat-
terns than XPaxos. That said, many of the VFT concepts
remain orthogonal to XFT. In the future, it would be
very interesting to explore interactions between the hy-
brid fault model (including its refinements such as VFT)
and XFT.

Going beyond the research directions outlined above,
this paper opens more avenues for future work. For
instance, many important distributed computing prob-
lems that build on SMR, such as distributed storage and
blockchain, deserve a novel look through the XFT prism.
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