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Abstract—The paper addresses the performance evaluation via
the Cramer-Rao Lower Bound (CRLB) of power-based localiza-
tion of a source in spatially-correlated log-normal propagation.
The novel element is the inclusion and assessment of the impact of
conditioning measurements on such performance. The proposed
model parameterizes performance by both the sensor topology
(density, positioning) producing the current measurements as well
as by conditioning measurements (essentially, prior or training
data) which reduce the statistical uncertainty in the model.
Experimental results for indoor and outdoor environments are
presented which quantify the expected localization accuracy, as
well as identify practical issues to be further addressed. One
main concern is the quantification of scaling on required sensor-
network size for achieving a pre-specified localization accuracy.

Index Terms—Received signal strength; localization; log-
normal; spatial correlation, Cramer-Rao Lower Bound;

I. INTRODUCTION

Transmitter localization via distributed sensor networks is
an enabling technology for a large set of applications. In
particular, radio-source localization is viewed as an important
element of upcoming cognitive radio networks [1]. Endowed
with the capability to sense and process radio activity in the
surrounding environment, cognitive radios can efficiently plan,
decide upon and execute their respective actions [2], [3].

Sensing is based on simple received power. In radio jargon
this is called Received Signal Strength (RSS) and it is popular
due to its simplicity every radio measures power. The flip side
of this simplicity is that RSS-based localization tends to be
less accurate than competing, more complex schemes. This is
because, for RSS-based localization, deterministic power-law
is not a reliable reception model. More advanced probabilistic
(log-normal) propagation models include a shadow-fading
random variable (rv) to describe the variation around the mean
provided by the aforementioned power law. This is still not
adequate, unless the spatial-correlation aspect of propagation
is included in the model. Proper modeling information can
be presumed available in modern networks endowed with
databases which extract the information from past measure-
ments or training and offer it for future benefits. The present
paper incorporates this spatial correlation aspect and assesses
its impact, in conjunction with the beneficial effect of prior

training measurements. We adopt the term conditioning mea-
surements (CM) to represent any such modeling enrichment
or uncertainty reduction brought about by the availability of
training, pilot-based information, past known results, or any
other factor that will yield a conditional propagation density
with better performance. Implicit in this conditioning is the
existence of a sensor network that provided those, a network
viewed as distinct from the currently available one for the
collection of the present measurements. For compactness, the
terms prior and current will be used to describe these two
classes although, in a general setting, epoch may not be the
only qualifier of information provision. A probabilistic (Bayes)
flavor of the respective terms yields a better understanding.

Many models exist for describing spatial correlation in
shadow fading [4]. Experiments have also been executed for
measuring it [5] [6], and various techniques have been pro-
posed for taking advantage of it in a solution [7]. Performance
analysis and improvement of RSS-based localization in such
an environment has been performed in [8], [9]. In [10], [11],
the CRLB for Correlated Log-Normal (CLN) propagation was
derived for different parameters. The novelty of the present
paper is that it takes spatial correlation as well as CM into
account for deriving the respective CRLB and then using
it to assess performance. One of the main benefits of such
parametric performance quantification is the ability to address
questions of network scaling. In particular, we can address
questions such as: (1) what is the required density of RSS-
based sensor networks (prior and current) for achieving a given
localization accuracy? (2) How can current required density
be reduced in view of the utilization of the prior network? (3)
How are these two network densities (prior and current) related
in general, for a given propagation environment? Because the
answers herein are based on rather simple analytic models
for the propagation environment and the spatial statistics,
another important question is (4) how close are these answers
to the true performance typically experienced in practice?
This last question is hard to answer, in general, because any
given trial represents a single realization of the underlying
stochastic experiment. There have been qualitative arguments
[8] on the value of exploiting spatial correlation but to provide
hard, quantitative arguments there needs to be more extensive



measurement campaigns. The indoor measurements of the
present paper using the OpenAirInterface (OAI) [12] platform
further add to the collection of such available results.

The paper is organized as follows: Section II presents the
CRLB propagation model. The statistics of RSS are derived
with the inclusion of CM, since these are needed for the
derivation of the CRLB. In Section III, this CRLB is derived
and is subsequently invoked in the semi-analytic performance
assessment of Section IV. For drawing specific performance
conclusions two scenarios are chosen, one indoor and one
outdoor. Based on those, we can assess the additional gains
enabled by CM. In section V, finally, we present the experi-
mental gains observed from the OAI collection in an indoor
environment.

II. PROPAGATION MODEL

RSS measurements are drawn either from a set of sensors in
a prior network (which lead to CM) or from a current network.
The current scenario assumes known sensor positions plus a
single active emitter within an area of interest. This leads
to three unknown parameters under estimation: two flat-plane
coordinates plus the transmit power of the emitter.

We adopt the classic log-normal propagation model

Ri = P tx − L0 − 10αlog(di/d0) + ns
i + nf

i , (1)

where Ri is the source power, measured by i-th sensor or
RSS, di = ∥xi − s∥ is their respective distance (xi,s are the
coordinates of i-th sensor and source, respectively), P tx is the
emitter power, d0 is a reference distance and L0 is the power
loss in that reference distance, α is the path-loss exponent, nf

i

is the noise due to fast fading, which is hereby modeled as
zero-mean Gaussian (in linear scale) and (ns

i ) is the shadow-
fading rv. We follow common practice and reduce the effect
of fast fading by averaging measurements taken around the
true location. This maybe seem unpractical (since we don’t
know where the source is), but the same effect can be had
by moving the sensors around a bit instead of the source. It
follows the above log-normal distribution: a Gaussian rv in
the log domain with zero mean and variance σ2

s .
1) Typical power model in lognormal fading: The typical

model used does not account for CM, plus the sensors are
considered far apart from each another, with zero spatial
correlation. Let mi(θ) = P tx−L0−10αlog(di/d0), then, for
θ = [P tx, L0, d0, α, x, y] as the unknown parameters under
estimation, we have

Ri = mi(θ) + ns
i , (2)

so, Ri follows Gaussian pdf

Pi(Ri|θ) =
1

(σs

√
2π)

e

−
(
Ri−mi(θ)

)2
2σ2

s . (3)

Due to zero spatial correlation, the joint pdf becomes

P (R|θ) =
N∏
i=1

Pi(Ri|θ) , (4)

for the vector measurement R = [R1, · · · , RN ].
2) Power model in lognormal fading under CM: The prop-

agation model is the same as above. In addition, let R{t}
i be the

current measurement rv of the i-th sensor from the source at a
location t = (x, y) and let R{p}

i be the vector of M CM (say,
derived from a training source and a prior sensor network) at
locations p = [p1, . . . ,pM ]. The pdf for all measurements (in
dB) is modeled as joint Gaussian:

[
R

{t}
i

R
{p}
i

]
∼ N

([
µ
{t}
i

µ
{p}
i

]
,

[
σ
{t}
i C

{t×p}
i

C
{p×t}
i C

{p}
i

])
, (5)

where

µ
{t}
i = PT − 10αlog(d

{t}
i )

µ
{p}
i = PT − 10αlog(d

{t}
p )

σ
{t}
i = σ2

, (6)

C
{p}
i = σ2


ρ
{p1}
i · · · ρ

{p1×pM}
i

...
. . .

...
ρ
{pM×p1}
i · · · ρ

{pM}
i

 , (7)

and

C
{p×t}
i = C

{t×p}T

i = σ2


ρ
{p1×t}
i

...
ρ
{pM×t}
i

 . (8)

Here, PT = P tx − L0 − 10αlog(d0) is a simplifying
parameter, which assumes that the source(s) providing the
CM and the current source have the same transmit power.
d
{t}
i is the unknown distance between the emitter and the i-th

sensor and d
{p}
i is M × 1 vector with the known distances

between the i-th sensor and the positions of the CM (totally
we have M CM positions). Also, ρ{pk×pj}

i = e−αcd
{p}

is the
correlation factor and d{p} is the distance between pk and
pj pilot transmitters. The correlation constant is depicted as
αc and the de-correlation distance is defined as dc = 1/αc.
It is also assumed that the standard deviation of the shadow
fading is equal for all sensors, i.e. σ{p}

i = σ. Finally ρ
{pk×t}
i

is the correlation factor between the pk pilot and the unknown
transmitter.

Thus, the conditional pdf of R
{t}
i given R

{p}
i = r

{p}
i

(r{p}i are the specific values of the CM) is also Gaussian
N
(
µ
{t|p}
i , σ

{t|p}2

i

)
with mean and variance given by

µ
{t|p}
i = E

{
R

{t}
i |R{p}

i = r
{p}
i

}
= µ

{t}
i −C

{p×t}T

i C
{p}−1

i

(
µ
{p}
i − r

{p}
i

)
,

(9)



and

σ
{t|p}2

i = σ2 −C
{p×t}T

i C
{p}−1

i C
{p×t}
i . (10)

Therefore R{t} ∼ N (µ (θ) ,Cs (θ)), where

µ (θ) =
[
µ
{t|p}
1 , µ

{t|p}
2 , · · · , µ{t|p}

N

]
, (11)

is the N × 1 mean vector and

Cs (θ) =


σ
{t|p}2

1 · · · 0
...

. . .
...

0 · · · σ
{t|p}2

N

 , (12)

is the N ×N covariance matrix between the sensors, al-
ready calculated. Both depend on θ. In sum, the pdf of the
received power is

P
(
R{t}; θ

)
=

1

(2π)
N
2 det [Cs (θ)]

1
2

exp

[
−1

2

(
R{t} − µ (θ)

)T
C−1

s (θ)
(
R{t} − µ

)]
.

(13)

III. CRAMER-RAO LOWER BOUND

The Fisher information matrix for Gaussian rv is (see [13]):

[I (θ)]kl =
1

2
tr

(
C−1

s (θ)
∂Cs (θ)

∂θk
C−1

s (θ)
∂Cs (θ)

∂θl

)
+

∂µ (θ)
T

∂θk
C−1

s (θ)
∂µ (θ)

∂θl
,

(14)

which tr() is the trace of the matrix. We thus need to
calculate the partial derivatives

∂Cs (θ)

∂θk
=


σ
{t|p}2
1

∂θk
· · · 0

...
. . .

...

0 · · · σ
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N

∂θk

 , (15)

where

σ
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i
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(16)

and

∂C
{p×t}
i

∂θk
= −αce

−αcd
{pj×t} ∂d{pj×t}

∂θk
. (17)

For θk = x{t}, (same for y{t})

∂C
{p×t}
i

∂x{t} =
αc

(
x{p} − x{t})
d{pj×t} ρ

{pj×t}
i . (18)

For the derivatives of the mean value we have

∂µ (θ)

∂θk
= −10α

∂ log10

(
d
{t}
i

)
∂θk

− ∂C
{p×t}T

i

∂θk
C

{p}−1

i(
PT1M − 10α log10

(
d
{p}
i − r

{p}
i

))
.

(19)

We are now able to compute the CRLB (inverse of the Fisher
information matrix) for given prior and current networks. To
assess performance of a stochastic current network under a
stochastic prior network, a semi-analytic approach is adopted.

IV. PERFORMANCE ASSESSMENT

The adopted approach averages over the random positions of
both stochastic networks. This will be followed both without
a prior network (sub-section A) as well as with (sub-section
B).

A. Performance without CM

For the current network, under no preference for the source
position, we place the latter in the middle of a square and
model the random positions of the sensors. One such possibil-
ity is a two-dimensional Gaussian r.v. The means of all sensor
positions will form a square grid of points based on the target
density, and variance relative to that density. In all simulations
we will assume that the transmitter lies at the center of this
deployment, and the sensors capable of measuring its power
are determined by a coverage area, a circle around the emitter.
The radius of this coverage area is determined by the receive
power sensitivity of the measurement network, the transmit
power of the emitter, and the propagation characteristics (path-
loss exponent).

The simulation process always begins with a very dense
realization and gradually we expand the distances of the
sensors until the point where less than three sensors are within
the coverage area (we have three degrees of freedom (x, y, P ),
so we need at least three equations). The performance is
measured for each step, averaged over different realizations.

Two different propagation scenarios will be examined, one
called ’Indoor’ and the other ’Outdoor’, using respectively a
parameterization that tries to reflect such scenarios, i.e. small
coverage, de-correlation distance, large path-loss exponent for
the indoor scenario and the opposite for the outdoor. The exact
values used for those two scenarios are depicted in Table I.

TABLE I
PARAMETERIZATION OF THE PROPAGATION SCENARIOS

Parameters Scenarios
Indor Outdoor

Path loss 2 3
Shadow Fading 8 8

correlation coefficient (dc) 2 (0.5m) 0.1 (10m)
Range (coverage) 30dB (3000m2) 80dB (0.6km2)

The semi-analytic performance assessment for these two
scenarios is conducted by the following way. For a given
density of deployment network random realizations of such
networks are first produced, and then, based on the coverage,
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fading values
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Fig. 3. Indoor scenario for various pilot placement
cases and shadow fading equal to 8dB

the active sensors are selected. Based only on the active
sensors, the CRLB is computed, and averaged over a large
number of network realizations. The results for the indoor
scenario and for different levels of shadow fading variance
(2 to 16) are depicted in Fig. 1. The root mean square error
(RMSE) is kept below 1 meter in most cases for a density of 1
sensor per 10 square meters, which is considered very dense.
For the case of 1 sensor per 100m2, which is a rather sparse for
indoor network, the error is bellow 4m, a value that has been
measured experimentally by our group in several measurement
campaigns [14]. The coverage area of this example is 33m,
so a 4m RMSE is consider unacceptable.

For very sparse networks the shadow fading plays very
important role, and only for very small values localization can
be feasible.

For the outdoor scenario, the respective assessment is de-
picted in Fig. 2. The coverage radius in this scenario is 464
meters. The RMSE is small (bellow 6m) for a rather high
density network of 1 sensor per 1000m2 and bellow 20m for 1
per 10000m2. It is clear from the performance results depicted
so far that the RSS-based localization for CR applications
requires very high density sensor networks, if no CM are
utilized.

B. Performance using CM

This is the most important part of our contribution, since
we will examine how the CM can reduce the error and/or
the density of the needed measurement network. The process
is the same as in the previous section, but here we also
have to average out the random positions of the CM. There
exist many spatial models used for the positions of radios
leading to different performances. Here we model the position
of the CM as a homogenous Poisson Point Process (PPP)
of a given density λ. The underline pilot density λ is the
expected number of points (CM) of the process per unit area
(one square meter for indoor and one thousand for outdoor
scenario). The case without CM is also depicted (λ = 0).
Starting from the ’indoor’ scenario, the performance curves for
various densities are provided. Fig. 3 depicts the case of indoor

scenario (correlation distance of 0.5m). Theory suggests huge
improvement when having dense measurements. For the case
of λ = 5, i.e. the density of the PPP process is 5 sensors per
square meter the error is negligible even for very sparse sensor
networks. The performance gain is negligible when the density
falls below 1 measurement per 10m2. As we can see, the
expected theoretical gain is huge; enough to enable practical
use of RSS-based localization, as long as a dense measurement
database of CM is available.

The performance for the ’outdoor’ scenario is also depicted
in Fig. 4.
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Equivalent performance enhancement is displayed. When
the density is higher than 1 per 100m2 the RMSE is bellow
10m2 even for very sparse sensor networks. The performance
gain is negligible when the density falls below 1 per 1000m2.

What we can see is that in theory, the potential of perfor-
mance enhancement is large when having access to CM with
density at the order of the de-correlation distance. What the
theory does not say, is the method of getting such performance.
The CRLB characterizes the performance of the ML estimator,
which is a non-convex optimization problem.



V. EXPERIMENTAL RESULTS

Using semi-analysis we were able to examine how the
performance scales without the need to set-up large costly
experimental campaigns. How close this view to the reality
depends on the modeling assumptions. The simplicity of
the adopted model does not allow us to make any strong
conclusion. Experimental campaigns are needed to verify, at
least, the tendencies. An experimental campaign at an indoor
environment is presented herein in order to practically assess
the gains of the spatial correlation. Due to space limitation,
we cannot provide a detail mathematical description of each
processing step.

The set-up was the following: for the sensor network we
used one OAI platform, controlling four antennas, each one
acting as a different sensor (Rx) located far apart from each
other (with lengthy cables). A signal generator was used as
a transmitter (Tx) to be localized. The signal generator was
tuned at the same central frequency (Fc) with the sensors.
Characteristics of Tx and Rx are shown at Table II.

TABLE II
TRANSMITTER / RECEIVER CHARACTERISTICS

Transmitting signal Receiver antennas
Random OFDM symbols Fc = 1.9076 GHz

0dBm power Gain = 20dB
Isotropic at (x-y) plate Isotropic at (x-y) plate
Bandwidth = 5 MHz

Tx was placed at totally 1846 different positions (grid with
step 10cm), blue dots, as we see at Fig. 5. Red dots depicts the
positions of four Rxs. The total area for this experiment was ≈
130m2. The high density of the measurement campaign covers
two purposes. The first one is the need to average out the fast
fading. The second one is the need to measure the shadow
fading correlation. For the fast-fading averaging, we used 9
neighbor points to produce one. This reduced the grid density,
from a 10cm step to 30cm. This 30cm is the granularity of our
measurement campaign for estimating the spatial correlation.

Fig. 5. Set up of the experimental procedure, red dots indicate the Rxs
positions and blue dots the different Tx positions

A different processing procedure was followed in order to
visualize this correlation by using a two dimensional moving
average filter directly on the dense measurements. The results
are depicted in Fig. 6 for Rxs 1 & 3, where the parameters

of the propagation model were estimated by a simple least-
squares fit. The correlation can be seen visually. Taking also
into account the positions of the Rxs, the existence of angular
correlation is also evident.
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Another question that arises regarding the modeling relates
to the Gaussianity of the shadow fading. Fig. 7 shows the
histogram of shadow fading variables for the second Rx and
the Gaussian fitting curve. The amount of points is not enough
for a smooth result, but the tendency on following a Gaussian
distribution can be verified. The model parameters (path-loss,
shadow-fading variance) for each Rx is different as opposed
to the theoretical modeling assumptions where it was consider
the same.

As next step we calculate the de-correlation distance of the
environment. At Fig. 8 we depict the estimated correlation
with respect to distance for all Rxs. The average de-correlation
distance is dc ≈ 0.65m.The minimum de-correlation value
is ≈ 0.3m, observed, as expected, for the non-line of sight
Rx (#4). We should mention that without the fast-fading
averaging, the de-correlation distance is less than 7cm.

Lastly: what is the performance gain when exploiting
CM. We follow an assessment based on the CRLB. More
specifically a slight modification of it to support the different
propagation parameters per sensor (another deviation from the
theoretical model). The key parameter in this assessment is
the estimated shadow fading variance (per sensor). Without
the CM the shadow fading is modeled as zero-mean. This is
not the case with CM.

Using various interpolation techniques (for a given set of
CM) we estimate the mean, and then the shadow fading
variance that best describes the measurements. The interpo-
lation techniques used for this scope are three deterministic
(Linear, Voronoi regions, and Weighted Voronoi [15]) and one
probabilistic (Kriging [15]).

In theory, we choose PPP to model the random position
of the CM. Here, we can simulate the probabilistic nature
of the CM positions by taking randomly a given portion of
the measurements and use them as CM. The process for
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computing the CRLB of each point depicted in Fig. 9 is
the following: For the given percentage X (x-axis) and for
each point P , we randomly choose X% of the measurements
(also excluding the measurement on point P ). Using these
measurements as CM the new mean of the shadow-fading of
point P is estimated (by spatial interpolation), and by this the
new shadow-fading error term. This process is repeated many
times and for each point P . By this process we are able to
estimate the new shadow fading variance, for each choice of
interpolation method, and for the given CM density.

Fig. 9 depicts the CRLB (Mean Square Error, MSE) for a
reference point at the center of the room, as a function of X%.
As expected, the probabilistic interpolation (Kriging) method
gives the best performance, which is gradually converges
to the case with no CM. The linear interpolation method
provide better performance only for dense CM. The Voronoi
methods on the other hands provide a good trade-off between
performance and complexity.

As a final comment, we can say that in practice, for indoor
environments, same performance gain is verified. Due to the
small de-correlation distance, the density of our measurements
did not allowed as to observe the huge gains promised by
theory. This means that for indoor environments extremely
dense CM is need it.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have provided an assessment of the required
network density of sensors for RSS-based localization utilizing
CM in log normal environment with spatial correlation. Using
the CRLB and proper semi-analysis we showed that large
performance gains are expected when the spatial correlation
is exploited by the use of a database of CM. The utilization
of CM is been used very often in the literature, but a semi-
analytic approach that reveals the scaling of the needed sensor
network is for the first time introduced. The results of an
experimental assessment using the OAI platform are also
presented, focusing on the practical utilization of the spatial
shadow-fading correlation. As future work, we have to expend
the theoretical results and to rearrange a measuring campaign
at the more challenging multi source scenario.
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