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Abstract—We determine the achievable distortion region when Different from the above mentioned works which deal
the correlated source samples are transmitted by two energy with throughput optimization, the works [8]-[10] considke
harvesting (EH) sensor nodes to the destination over orthogoha aspects of source sample acquisition, compression rate and

fading channels. A time slotted system is considered in which the t . ith EH traints i int-t int i
energy and the source samples arrive at the beginning of each (fansSmission wi constraints in a point-to-point et

time slot (TS), and both the correlation between source samples In [9], the problem of distortion minimization in a fading

at the two nodes and fading coefficients change over time but channel with an EH transmitter is considered. Taking into
remain constant in each TS. Assuming non-causal knowledge account the variation in energy arrivals, source variances
of these time-varying source statistics, energy arrivals and the and channel gains, the optimal compression and transmissio

channel gains, i.e., under the offline optimization framework, we t f d using the offli timization f K A
obtain the optimal transmission and coding schemes that achieve rates are found using the ottine optimization iramework.

the points on the Pareto boundary of the total distortion region. Simple directional 2D waterfillingalgorithm is proved to be
An iterative directional 2D waterfilling algorithm is proposed to  optimal under a strict delay constraint. In [10], the distor

obtain two specific points on this boundary. performance is studied using a stochastic EH model.
In this paper, we extend the distortion minimization profle
|. INTRODUCTION to a network setting. To the best of our knowledge, distatut

A wireless sensor node collects samples of a physicurce coding with EH nodes from a rate-distortion perspect

phenomenon in its surrounding environment, processes, apdiot studied before. Probably [11] is the closest work that
communicates these samples to a fusion center over a verefednsidered distributed compressive sensing in an EH sensor
radio channel. A network of such nodes can be used to gatR&fWOrk, however, it ignores transmission and coding dspec
information about a time varying process that is possibye consider a system of two sensor nodes which observe
correlated across space and time. The main bottleneck-in fr'rélated source samples, and wish to communicate their
ditional or battery run sensor networks is the limited aali¢ Samples to the destination over orthogonal fading channels
energy, which constraints the lifetime of the sensor networ#ith the minimum average end-to-end distortion. The goal is
EH technology offers an attractive solution to the networi@ see how the correlation and the EH affect the coordination

lifetime problem [1]. EH nodes can scavenge energy frof{"0Ng the nodes in compression and transmission schemes.
the environment (typical sources are solar, wind, vibra,tioThe main contribution of this paper is to characterize the

thermal, etc.) [2], therefore, in principle, one can guszan Pareto boundary of the distortion region of the quadratic

infinite lifetime without the need of replacing batteries. ~ Gaussian two-encoder source coding problem [12] under EH

However, the ambient energy is typically sporadic angPnstraints. As we shall see, the resource allocationythiat

random, thus making the harvested energy time-varying @Ptimizes the distortion outperforms the throughput optém
addition to the underlying source processes and the chnnBfn Schemes which ignore the variation in source stasistic
Given these variations, the nodes should coordinate their Il. SYSTEM MODEL
coding and transmission schemes to intelligently manage th , o

Ve consider a system consisting of two sensor nodes

energy across the network and achieve the best performance’ -
Recently, significant research effort has been invested ‘ffi€"® €ach node observes and samples a common physical

studying the optimal transmission schemes for EH CommBEenor;:enoré Iocally(,j arr]'d_ hefnce th_e samﬁlez are C(_)rrelated.
nication systems [3]-[6]. The classical offline optimipati Then the rllo _esl Sen ht eir Iln ormartllon tqt e estlnatlr(])m o(\j/e
framework deals with systems which assume the non-cau@df109onal wireless channels as shown in Fig. 1. Both nodes

knowledge of the parameters involved, such as energy krrivAlaVest energy from the environment, and are equipped with

channel gains, etc. See [7] for an overview of differerfdividual energy buffers for storage.

frameworks used in studying EH communication systems. a Energy Harvesting Model

This work has been performed within the framework of the Euaope A time SIOtted_ sy;stem withK” unit duration TSs is consid-
research project E-CROPS, funded by CHIST-ERA. ered. At the beginning of the-th TS,k € [1 : K], new energy



to another. Additionally, since the channels are orthogona

T EL source-channel separation is optimal in this setting [13].
x o For a given power/rate allocation, the achievable disiorti
region in thek-th TS is given by [12]

Decoder
7 Dy =D1x N Do NDigy, 1)
where the sets describir, are defined as:
[ ]
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Dl,k = {(dl,k,dg’k) : dl,k: > 4227"1: (]_ — Pk + pk2 Tz,k) )
Figure 1. Distributed sensing and transmission with EH nodes ’
2

a
le = {(d17k,d27k) : dg,k > 22:;’1" (1 - pi + sz—Qm,k)} ,

packets of sizes; ;, andeg; units arrive at node and 2,
respectively. At each node the harvested energy is storedgjhy finally,

an infinite size battery and it is used only for communication

purposes, i.e., the energy consumed in sampling, compressi Di2.s = {(d1k,da k) : digda s > 0%, 0%, B (riksT2k)} 5
etc., is ignored here, and will be studied in a future work. \ynere

. . . 2
B. Sensing and Communication Model B(ry g, rox) = pr2~runtrae) 4 1= pi
. R 2(r1,k+72,8)
The observed physical phenomena at the two nodes are 2R

modeled as correlated Gaussian random processes. In 4he @nd ri are the achievable distortion and transmis-
kth TS, node1 and node?2 collect samplesa” sion/compression rate of noden TS k, respectively.

[T16, T2k, Tnk) ANA YY = [Y1,6 Y2,k - - > Yn,k)» TESPEC- C. Problem Formulation

t|vetljy. The (.ali)rl‘ner;t(s OYW Y ha}r(ra] !ndepgnld%nt cop;;a:s Of. the e distortion achievable for the data transmitted byittte
rgn om varlade{( ko kgl} W |hc h'S fm|(|3 e asE t')fl\,'a”datesensor node oveK TSs is denoted byD;, = + 31 di .
aussian random variable with the following probabilitynéle \\ /. yefine the distortion regiod* as

sity function (PDF):
D* = {(D1, Ds) : (d1k,d2,x) € Dy VK, (p1,p2) € 3},

_ 1 1 TN, -1
Fxovi (@, ye) = 2 Ap| /2 CXP Tk Bk Uk wherep; = [pi1,pi2,---,pikl),i € {1,2} andF is given by

k k
wherewv, = [z, yx]" and the covariance matri; is given _ . < > 0.Vl VE 2
by S (pl;p2) . ;pz,] >~ 261,37 Di,j = U, Ve, . ( )

j=1
Ay = ( a?gk pkUXQk UYk) <<l The above set represents theergy neutralityof the system,
PEOX, 0y, Iy, ’ i.e., at each node, energy consumed can not be more than the

We assume that the duration of each TS is large enough (i_eéw_grgy ha:\_/estedhtlll that _t'mem boundarof th _
large 1) to invoke the information theoretic arguments. We_ OUr 9oalis to characterize tikareto boundanyf the region

consider strict delay constraints, and assume that all lmmp?]*' T.h'.s pounda.rty)/lcons[sts of operzaugg po@&h ?2) SUChd
collected in the beginning of T% must be sent to the .art1 I |s.|mp|053| € |t0.|mprov_e t i |str?rt|on do ,03;? node,
destination within the same TS. without simultaneously increasing the other node’s diinr

The sensed data is sent to the destination over orthogonall. CHARACTERIZING THE PARETO BOUNDARY OF D*
channels. Each TS consists ofchannel uses. The channel \ye siart by investigating the convexity @*, which will

between thei-th node ¢ € {1,2}) and the destination in the_be useful in the characterization of its Pareto boundarg Th

k-th TS is modeled as a memoryless additive white Gaussigiiortion region in thek-th TS in terms of the transmission
noise (AWGN) channel with unit noise variance and a fixe owersp, » can be written as
2,

channel gairy; ;. Due to the large: assumption, the maximum .
transmission rate of théth node in thek-th TS is given by D, = {(d1 prdog) i > firsdog > fordog > le,k;
3

i

)

A

ik = 310gy (14 gikpik) bits/channel use, where j, is the di k

average transmission power of nodan k-th TS.
Some comments on the general characteristics of the oﬁMJ . Frr@rep2e)s fa =

mal transmission strategies are in order. First, sincetieegy /2.5 (P1.k>2.1) and Z121,k = fi2k(prr p2) are obtained

packets are available only at the beginning of a TS, and tR¥ substitutingr; s = 3logy (1 + gixpik) in the three sets

channel gain remains constant throughout a TS, it is not h&8ScrbingDy. in (1).

to see that constant power transmission is optimal in eaBfoposition 1 The functionsfy x(p1,k: p2.k)s f2,k(P1k: P2,k)

TS, while the transmission power may change from one T&d %f;’pm are jointly convex inp; i, p2,r, and dy .

4

ere the functions fi



Proof: See Appendix. | The power allocation policy that minimiz€3, is obtained

Proposition 2 D* is a convex region. by solving the following optimization problem
Proof: Let two distinct distortion pairs achieved by the K

power allocation policiegp;, p>) and (py, p2) belonging to min Zdl-k (10a)

the set§ be denoted byD;, D,) and(Dy, D,), respectively. ~Pimdir =

Every point on the line segment joining the poiriiS;, D2) fieP1k,p2k) —dip <0, kell:K] (10b)

and (D1, D) can be represented §)1, Do) = a(D1, Do) + ! I

(1 = a)(D1,D2),0 < a < 1. By finding a feasible power me. < Zem’ ie{1,2}, le[1: K], (10c)

allocation policy that achieves the distortion péip;, Ds), = =

we prove thatD* is a convex set. We can write pin>0 i€ {12}, kell:K]. (10d)

A 1o 1xns Since the distortion is minimized, the constraint (10b) is

(D1, Do) <K kzzldl’k’ K kz::ld“> ’ “) satisfied with equality for the optimal solution. Using Posp

A - , ) tion 1, we can see that (10) is a convex optimization problem,
where d; ;. = adiy + (1 — a)dik, i € {1,2}. Using the and the Karush-Kuhn-Tucker (KKT) conditions provide the
conditions inD; , we have necessary and sufficient conditions for optimality [15].€Th

Cil,k > afip (DL Do) + (1 — @) frp (B ox) Lagrangian of (10) can be defined as

(a) )

K K J J
> fl,k (ﬁl,kaﬁ?,k)a L éZfl,k(p17kap2,k)+Z)‘j (Zpl,k—zel,k>
k=1 j=1 k=1 k=1

where (a) follows from the convexity off; , and the def- = =

L N . 7 K j j K K

inition p; 1. = apir + (1 — a)pix. Similarly, we can show

that ' Z ( P + E :% E P2k — E €2k | + E NkP1,k + E OLP2, k>
j=1 k=1 k=1 k=1 k=1

dage > fog (D1 P2k) - (6) ‘ (11)
Finally, considering the constraint ;2 , where A; > 0,¢; > 0,7, > 0 and ¢, > 0 are the
L Lagrange multipliers corresponding to (10c) and (10d).iffgk
dy g > aflm (P1,k: P2,1) +(1 _a)flw (131x’€’p2x’€) the derivative of (11) with respect tp; x, and using the
k= dy i dy i 0 complimentary slackness conditions, we obtain
® P11y D
> w7 i = Wi [0, — Hi] T, (12)
di _
. o2 2
whse_re(bg fO||OV\)/S fr{(;m tg?~cor~1v1)'-3XIt)/gof{lg,k/cél,k. ‘| where W, £ \/gf’; (1 —pi+ Mzﬁm), H, & ﬁg”
INCE(P1,p2) € § and(pi1, p2) € §, It can be easily SEen 5,y the water leved), £ ———. Similarl
that(p:, p2) € §. From (5), (6) and (7), we hav@ 1, d2 k) € k (V=) ¥
Dy. Using (4) and the definition o>*, we conclude that N
(D1, Dy) € D*, and hence the proof. n P2k = Bi [y — Li]", (13)
Since D* is a convex region, the Pareto boundgry is thenere B & TV Pk , Ly & 51— and the water
closure of all the pointsDj, D3), where (D7,D3) is the N \/fiz,k(lﬂn.wl.k) kG2,
solution to the following optimization problem level 7, = —=———, From (12) and (13) we can see that
j=k *J
min  p1 D1 + paDs St (D1, Do) € D* ®) optimal p; 1'S are de_pendent, and it i; diffi.cult to optain a
(D1,D2) closed form expression, however, an iterative directidial

swaterfilling algorithm to obtain the optimal policy is proéd.
Given the optimal power allocation of the second node,
denoted a3, the optimalp; is obtained by solving

for somep = [11 po]™ € R?. We examine two different case
of (8) depending on the choice ¢f.

A. Source coding with a helper nodg(= 0 or ps = 0) X

In this subsection, we focus on the scenario in which the min Zfl’k(prPS L) st (p1,p3) €3 (14)
decoder is interested in minimizing the distortion of one Pre 4 ’

of the source component, and treats the other compon
information as side information. Without loss of geneyalit
we consider minimizing the distortio®,. Since the decoder
is only interested in decoding,, the distortion incurred in
decodingYy, dq k, is ignored. Thus, in this case the distortio
region is given by [14]

e§§/ using KKT conditions, it can be easily seen that, is
obtained by plugging; , into the expression in (12). This
solution can be interpreted as directional 2D water-filljag
A graphical illustration of the solution fgs} , is given in Fig.
' for K = 3 TSs. Precisely, in thé-th TS we have rectangles
of width W), and heightH. The harvested energy is poured
over the levelH; up to the water level},. The shaded area
Di = {(dlv’“’d“) g 2 fl*k(pl”“’pr"*k)}' ©®) pelow the water leved,, and aboveH,, represents the power
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Figure 2. 2D waterfilling interpretation. 0 02 0.4 08 1 12
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Distortion dl,k

Figure 3. Distortion regioDy, lines u1dy i + pads j for different p.
allocated in TSk. The directional taps in Fig. 2 represents the
fact that the energy can be flown only in forward direction.
We refer the reader to [9] for the details of the algorithm. ~ USing (16) and (17), the second step of the optimization is
Since (10) is a convex optimization problem, and the co@iven by
straint set can be written as the Cartesian product of tws set K K
it can be shown that an alternating minimization algorithm, min Dy (p1,p2) = 11 Zd’ik + g Zd;k (18a)
alternating between vectogg andp-, converges to the global Pik k=1 k=1
optimum [16]. Therefore, we use directional 2D water-filin (p1,p2) €3 (18b)
in an alternating fashion until the solution converges. We
denote(D; ,,,Ds,4) as the optimal distortion tuple obtained USsing the above analysis, we now provide a simplified way
wheny, = 0. Similarly, we obtain(D; ;, Ds.,,,) wheny; = 0. of obtaining the Pareto optimal points Df in a static setting.
) ) ) 1) Static setting:In the static setting, we haveg(k =
B. Weighted sum distortion{ > 0, uo > 0) 03(7‘712@ = o2,k = pgix = gi,¥i,k, and the EH pro-
The points in betweelD, ,,, D2 ) and (Dy,,,D2.,) that files aresimilar. The EH profiles are said to be similar if
lie on the Pareto boundary are obtained by solving (8) fatie most majorizeld feasible vectoryp:, p3), where pi <

p > 0. The optimization problem is given by p1,P5 X p2,V(p1,p2) € §, have same structure i.evk, if
K K Pl =Dl py1 thenps = ps .y, and ifpi o # pi 4y then
min Dy = Z dy g, + pi2 Z da. 1 (15a) P, 7 P41 More details can be found in [17, Sec. V-A].
Di,ksdi,k P P
(d1,g,dag) € Dy, ke [l: K] (15b) Proposition 3 In the static setting, all points on the Pareto
(p1.ps) € 5. (15c) boundary ofD*are obtained by the power allocatidp;, p3),

. . y wherep} < p1,p; 2 p2 V(p1,p2) €3
Since Dy, is a convex set (by Proposition 2), and the other

constraints are linear, (15) is a convex optimization peobl Proof: In the static case, we havé »(pik,p2k) =
To further understand the structure of the optimal solytiba  f;(p1.x, p2.x)Vi, k and fio x(p1.k, p2.k) = f12(p1k, P2.k)VE.
optimization is performed in two steps. First, consider Therefore, using (17) in the static setting, we can write
~ . d: (1, p2k) = df(p1k, p2.k)Vi, k. Sinced;, = diVk, we
D, (p1, = D, st(dyg,do k) € Di Vk. 16 GBS, LR TSRS T bk T
(P1, p2) 1511? (dik d2.1) k (16) can see that the functioP (p1, p2) is symmetric. Using the

We now illustrate the solution of (16) graphically in Fig.convexity and symmetry ab;, and by [17, Proposition 4], we

3. Since there is no dependency among the distortion s&& Prove thatpi, p3) is optimal. Once(pi, p3) is obtained,

D, D;,i # j, the optimization can be performed separateéghe optimal distortion regiorD;; for TS k is given by (1).

for each TS. In thé-th TS, depending on the slope of the lind?€Pending onu, using D} and (17), we obtair(dy ., d3 ;)

pirdy  + pado g, it is not hard to see that the optimal solutio@nd then(Dy, D3). . _ .

must occur at one the following three points: We cquld not find a simple algorithm to solye (15) in a
AL (f o non-static setting, therefore we resort to numerical nagho

VR IV. NUMERICAL RESULTS

fods,) =< B& ({2 , or 17 _ . e :
( Lk Q’k) N fa.p 2 (17 In this section, numerical simulations are used to illustra
C= (/5w %fm,k), the Pareto boundary of the distortion region. We consider

as shown in Fig. 3. Since (15) is a convex optimizaf-( = 6 TSs. The harvested energy vectors are chosen as

tion problem, the functionD; is convex with domain 1, < . genotes that the vectae is majorizedby the vectory. Please
{(p1,P2) : (P1,p2) € F, (d1,k,d2) € DV} [15, 3.2.5]. refer to [17] for details.
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Figure 4. Pareto boundary @h*.
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andg(z,dy 1) = % The derivative ofh is given by

2
, B P
h(z) = —log. 2 |h(zx)+ V167 + (1 — p7)64®

It can be seen that (x) is monotonically increasing, and
thereforeh(x) is convex. The functiory(z,d; 1) is convex
for dy ; > 0 [15]. Using the above defined functions we can

write
J12(p1,, P2,k)

dy

whereh (pl,kap2,k) =h (7"17k + Tg‘yk).

The functionh (py x,p2.x) IS convex since(x) is convex
and non-increasing, and ;, is concave. Using the fact that
h(p1,k,p2,k) @andg(x,dy ;) are convex, and monotonicity of
g in the first argument, we can easily prove tﬁéﬁ%ﬂ
is convex. ’

=g (h(P1rD2,k) d1 k), (19)
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