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Abstract

In this paper we assess the impact of GPU-assisted malware on memory forensics. In particular, we first
introduce four different techniques that malware can adopt to hide its presence. We then present a case study
on a very popular family of Intel GPUs, and we analyze in which cases the forensic analysis can be performed
using only the host’s memory and in which cases it requires access to the GPU’s memory. Our analysis shows
that, by offloading some computation to the GPUs, it is possible to successfully hide some malicious behavior.
Furthermore, we provide suggestions and insights about which artifacts could be used to detect the presence of
GPU-assisted malware.
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1. Introduction

For more than twenty years computers have relied on
dedicated Graphics Processing Units (GPUs) to per-
form graphical computations and rendering. More re-
cently, with the advent of general-purpose computing
on graphics processing units (GPGPU), GPUs have
been increasingly adopted also to perform other generic
tasks. In fact, thanks to their many-core architecture,
GPUs can provide a significant speed-up for several
applications – such as financial and scientific compu-
tations, regular expression matching, bitcoins mining,
video transcoding, and password-cracking.

Despite their pervasiveness and their ability to per-
form generic computations, the role and impact of
GPUs to perform malicious activities is still largely
understudied. To the best of our knowledge, no GPU-
assisted malware has been discovered in the wild – with
the sole exception of BadMiner [1] which exploits the
presence of a GPU to mine bitcoins. However, re-
searchers have already shown that several malicious
activities can take advantage of GPUs, for instance
to steal sensitive information [9, 11], unpack malicious
code [23], and hide malicious activities from malware
detection and analysis tools [21, 10]. It is important
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to notice that these threats are not confined to the
graphic environment (e.g., screen grabbing or unre-
stricted access to GPU memory) but that GPUs can
also be abused to perform attacks that are outside
the graphic domain. In fact, opposite to others com-
monly available PCI devices, the fact that GPUs can
be programmed by userspace applications makes them
a very attractive attack vector. As a matter of fact,
also other peripherals (such as hard disks, network de-
vices, printers) have been abused to perform malicious
activities [25, 19, 3], but those scenarios required to in-
troduce custom modifications to the device firmware.
GPUs are instead meant to be programmed by the
end-user and require no firmware modification to ex-
ecute arbitrary code. To make things worse, graphic
cards vendors pay more attention to the performance
of their products than to their security. Unfortunately,
this has often a negative impact on several security
mechanisms, such as the memory isolation between in-
dependent process running on the same GPU [5, 13].

From a defense perspective, the main problem is
that neither antivirus softwares nor memory forensics
tools are currently able to analyze the content of the
GPU memory. However, it is not clear how severe
this limitation is in practice, and what is the real level
of stealthiness that can be achieved by GPU-assisted
malware. In particular, the main goal of this paper
is to understand what is the impact of GPU-assisted
malware on memory forensics. Are traditional collec-
tion and analysis techniques sufficient to detect and
fully understand the malicious behavior? This is a fun-
damental question for the computer forensic domain.
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Nowadays, memory forensics tools have an incomplete
view of the system, limited only to the content of the
operating system memory. It is very important to un-
derstand under which conditions this piece of informa-
tion is enough to detect the presence of a malicious
activity (even if the malware relies to a certain extent
on the use of the GPU). Only recently GPUs gained
the attention of the digital forensic community and a
common assumption in the current research [16] is that
GPU-assisted malware needs at least a component run-
ning in the system memory. If so, the analysis of this
component could be sufficient to detect that the mal-
ware is using the GPU and maybe even to retrieve the
purpose of the outsourced computation.

However, in this paper we show that in certain con-
ditions it is possible for an attacker to leave no trace
in the OS memory. In this case, malware coders have
a substantial advantage that could only be limited by
developing custom techniques to acquire and analyze
the internal GPU memory of each vendor (as well as
graphic card model, and device driver). Unfortunately,
this can be a very difficult and time-demanding task –
especially for proprietary products for which no docu-
mentation exists about their internal data structures.

Our goal is to answer a number of very practical
questions. For instance, is it possible for an analyst to
identify which processes are using the GPU and which
code is being executed there? To answer the previous
question, is it enough to analyze an image of the sys-
tem memory, or does the analyst need also to inspect
the regions memory-mapped to the video card (poten-
tially containing proprietary data structures) or, worst
case, does the internal memory of the video card also
need to be collected and analyzed? Which of these
questions can be answered by only looking at the sys-
tem memory? Can the GPU be used to implement
anti-forensic techniques? To address these questions,
we designed and implemented a number of tests and
experiments, based on a popular family of Intel GPUs.

To summarize, this paper makes the following con-
tributions:

• We conduct the first study of the impact of GPU-
assisted malware on memory forensics. In par-
ticular, we introduce four possible attack scenar-
ios and discuss their impact for a forensic ana-
lyst. For each scenario we implement a differ-
ent proof-of-concept for Linux and we report un-
der what conditions the memory analysis can be
performed through the kernel data structures, the
video driver or the GPU memory

• We present a detailed case study on Intel inte-
grated GPUs, which are part of all modern pro-
cessors. Our results show that an adversary can
take advantage of these integrated GPUs to obtain

full access to any memory page in the host. Even
worse, we show how it is possible to obtain a per-
sistent malicious code running on the GPU with-
out any associated process running on the host.

2. Background

Modern GPUs are specialized massively parallel pro-
cessors with hundreds of computational units. In fact,
while traditional CPUs dedicate most of their die area
to cache memory, GPUs dedicate it to logic circuits.
The combination of the two processing units, which
takes advantage of the CPU for general applications
tasks and of the GPU for highly parallel computation,
is today the most common example of an heteroge-
neous architecture (see Figure 1 for a simplified exam-
ple). The host, namely the logical element containing
the CPU, has its own memory and coordinates the
execution of one or more GPUs in a master-slave con-
figuration. The GPUs, which also have their own lo-
cal memory, consist of several identical computational
units, each containing the same amount of processing
elements. A task which is executed on a GPU is called
kernel. The GPU drivers manages kernels through the
means of contexts, the equivalent of a process control
block in the GPU2. A key aspect of this architecture is
that the GPU is also able to directly access arbitrary
pages on the host memory. One of the motivation for
this is that, in order to coordinate the executions of
tasks on the GPU, the CPU typically writes commands
into a command buffer that is consumed by the GPU.
The same execution model is adopted by both graphic
and general purpose tasks. Indeed, regardless on which
high level library is used (e.g. OpenGL, CUDA, or
OpenCL), eventually all commands are appended into
the command buffer.

2.1. Physical Memory acquisition

The dump of the physical memory allows a foren-
sic investigator to extract detailed information about
the system state, its configuration, and possible mal-
ware infections. However, the amount of useful infor-
mation that can be extracted from a memory dump
strictly depends on the way the memory image is ob-
tained. Modern open-source memory acquisition tools
for Linux (such as LiMe [12] and pmem [15]) load a
kernel module and perform the acquisition from ker-
nel space. Both LiMe and pmem automatically select
the address ranges that are associated to the main sys-
tem memory by examining the iomem resource linked
list in the Linux kernel and selecting only the address

2To disambiguate between the operating system kernel and
the GPU kernel, the second one will be typed in italic
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Figure 1: A simplified view of a GPU-based heterogeneous ar-
chitecture. The GPUs have access both to a dedicated device
memory and to the host memory

ranges marked as System RAM. This is necessary be-
cause the access to other memory regions can have side
effects due to the presence of memory mapped I/O
(MMIO), potentially resulting in a system crash [20].

A portion of the MMIO memory is reserved to the
PCI bus. At boot time, the BIOS instructs the oper-
ating system on which memory areas should be used
for this purpose. Therefore, the CPU and the DRAM
controller have two different views of the memory. The
main difference is that the DRAM controller does not
see memory ranges consumed for MMIO. The TOLUD

register marks the top of the low (i.e. below 4GB) us-
able physical memory that is accessible to the CPU.
The CPU views the memory range from TOLUD to
4GB as reserved for MMIO, while the DRAM con-
troller views the same range to be allocated to DRAM.

All the memory areas assigned to the PCI subsystem
are marked as Reserved and they are dumped neither
by LiMe nor by pmem.

2.2. Threat Model

In this paper we use the term GPU assisted mal-
ware (or just GPU malware for simplicity) to describe
malicious software that performs some of its compu-
tation in the GPU. This definition covers the case in
which the malware delegates some tasks to the GPU
for pure performance reasons (e.g., to mine bitcoins in
a more efficient way) and the case, more interesting for
our study, in which the malware leverages the GPU for
anti-forensic purposes.

However, in this paper we do not consider nei-
ther malicious hardware, nor code that requires the
modification of the graphic card’s firmware. A con-
siderable effort has already been dedicated to study
firmware-level malware in several contexts, spanning
from chipsets, hard-drives, and graphic cards [25, 19, 3,
21]. Current forensic analysis techniques are often in-
effective in this scenario, and a more general approach

(independent from the device that has been compro-
mised) is needed to handle these powerful cases.

Finally, our definition of GPU assisted malware does
not cover attacks against the GPU. For instance, this
includes malicious code which resides completely in the
host memory but which has the GPU memory as main
target, e.g., to retrieve sensitive data from the content
of the framebuffer or from the graphic buffer objects
allocated by the GPU driver.

3. GPU assisted malware

The goal of our paper is to understand what is the
impact of gpu-assisted malware on memory forensics.
For this reason, it is convenient to classify each type of
GPU malware according to two sets of requirements:
the operating system privileges required by the mali-
cious sample, and the amount of internal information
about the graphic card required to realize the malware
itself. According to these characteristics, we identify
three main classes: userspace GPU malware, super-
user GPU malware, and kernel-level GPU malware.

Userspace malware includes all the GPU malware
samples that do not require administrative privileges
on the victim host. This kind of malware simply ex-
ploits the possibility to execute general purpose com-
putation on the GPU and, therefore, from an OS per-
spective it only uses legitimate APIs and it does not
rely on any underlying software bug. For instance,
Ladakis et al. [10] presented an example of this cate-
gory that uses the GPU to execute the unpacking rou-
tine of a generic malware.

Super-user malware requires instead administrative
privileges on the target host. This allows the malicious
code to perform a number of additional operations that
are not available from user space. However, in this case
we assume that the malware writer only relies on well
defined libraries and APIs – without tampering with
the internal information used by the graphic driver or
the card itself.

The most powerful case is represented by kernel-level
malware. In this case, on top of having administrative
privileges on the host, the malware also knows the in-
ternal implementation of the graphic driver. As a re-
sult, it is able to modify arbitrary data structures in
kernel space performing Direct Kernel Object Manipu-
lation (DKOM). While from a strict operating system
perspective, super-user and kernel access are equiva-
lent, we prefer to separate these two scenario because
they may have different consequences on the portabil-
ity of the malicious code and on the forensic examina-
tion itself.
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3.1. GPU Malware and Memory Forensic

In presence of GPU malware, a forensic analyst
needs to be able to answer a certain number of ques-
tions. In particular, in this paper we focus on three
of them, which we believe are the most important for
an investigation: (1) the enumeration of the processes
that are using the GPU, (2) the extraction of the code
that those processes have been executing in the video
card, and (3) the identification of the memory areas
that the code in the video card has access to.

To answer these three questions, the analyst needs to
collect a memory dump and to extract a certain num-
ber of information. Our goal is not to present a step-
by-step description of how to perform this procedure.
Instead, we want to study which of these three ques-
tions can be answered depending on the type of mem-
ory acquired, the class of GPU malware (userspace,
super-user, or kernel-level), and the knowledge of the
analyst (limited to the Operating system internals, or
covering also the internals of the video card manufac-
turer). We stress that we are interested on the im-
pact on memory forensic of GPU malware. Section 7
provides a brief description on what malicious tasks
a GPU malware can execute and how it can achieve
persistence.

3.2. Anti-forensic Techniques

The operating system, some of its core services (e.g.,
X windowing system), and/or the graphic driver usu-
ally maintain a number of internal data structures that
describe who is using the graphic card and which tasks
have been scheduled for execution. Since all of this
data resides in the system memory, it may seem that a
properly designed memory forensic tool should be able
to answer all our three questions without the need to
access the GPU memory.

In the next section we will see how this is indeed pos-
sible in most of the cases. However, malware develop-
ers do not need to always play by the rules, and there-
fore we investigate a number of possible anti-forensic
techniques that could be used to reduce the footprint
in the system memory.

Unlimited Code Execution. Under normal conditions,
executing code on the GPU requires a controlling pro-
cess running on the host. The host process adds a
task on the command queue, which will be eventually
fetched and executed by the GPU. However, GPUs
have a non-preemptive nature: once the execution of a
task is initiated, the GPU is locked with the execution
of that task and no one else can use the GPU in the
meanwhile. This is particularly problematic when the
GPU is used both for rendering and computation, as
this could generate undesired effects such as an unre-
sponsive user interface.

As a consequence, in order to ensure a proper behav-
ior, the graphic driver usually enforces a timeout to kill
long lasting kernels. For GPU malware this could rep-
resent an important limitation because the malicious
kernel needs to be sent over and over in a loop, making
it more easy to detect in system memory.

The first anti-forensic technique consists in disabling
the existing timeout to take full control of the GPU.
For instance, in [22] the authors disabled the GPU
hangcheck to lock the GPUs indefinitely.

Process-less Code Execution. The GPU execution
model involves the presence of an host process P con-
trolling a GPU kernel K. This is an advantage for
a forensic investigation, since the operating system
should always maintain a link between a task executed
in the GPU and the process which is responsible for
that execution. However, in section 4 it will be shown
how the GPU execution model can be broken on In-
tel GPUs allowing the presence of a running kernel
K without any controlling process P . In such case,
the presence of the malware could still be detected by
looking at the GPU driver itself. In fact, an analysis
of the memory of the driver (which resides in the host
memory) would reveal the presence of a GPU context
running a kernel K without any controlling process P.

Context-less code execution. In the previous point we
say how the graphic drivers stores information about
the task being executed on the GPU (refer to section 4
for more details). A more advanced anti-forensic tech-
nique could directly target the kernel objects to detach
the kernel from the list of contexts in the GPU driver
and remove any trace regarding the existence of a par-
ticular GPU kernel (of course, this only makes sense
if the malware already achieves unlimited code execu-
tion). If context-less code execution is possible, and
we will investigate that in the next section, then the
GPU malware can completely hide his presence from
the host memory.

Inconsistent Memory Mapping. In [23], the authors
propose to use the GPU to implement a stealthy key-
logger that runs inside the graphic card and accesses
through DMA the physical page containing the key-
board buffer. This makes the detection of the keylog-
ger functionality more difficult, as the keyboard buffer
does not appear in the list of memory pages mapped
by the malicious process. In our tests we discovered
that the list of accessible pages is kept both in the
operating system and in the GPU memory. However,
we will see how the two page tables do not necessarily
need to contain the same information. This technique
has some similarities with the TLB desynchronization
attack [17]; however, in our case a custom page fault
handler is not required.
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4. Case study: Intel GPUs Architecture

GPUs can be broadly divided into two categories:
(i) discrete GPUs with dedicated device memory and,
(ii) integrated GPUs that use a portion of DRAM for
graphics. For our analysis, we focus on the integrated
GPU of Intel, namely the Intel Integrated Graphic De-
vices (IGDs). However, the concepts and ideas de-
scribed in this paper can be also applied to other hard-
ware and software configurations. In particular, in
Section 6.2 we will discuss how our findings can be
extended beyond our case study.

It is important to note that our study focuses on the
Linux Direct Rendering Infrastructure (DRI), a frame-
work to allow userspace applications to access graph-
ics hardware [6]. In DRI, a userspace application can
talk to the graphic drivers in two ways: directly us-
ing ioctls or indirectly through the X server. As it
will be described in the following, OpenCL applica-
tions uses ioctls to interact with the GPUs. Therefore,
in this work we focus on the former case. Nonetheless,
in a different context the X server memory could also
contain useful artifacts and therefore should also be
analyzed to extract forensics information.

Figure 2 shows a simplified view of the reference soft-
ware stack. Note that we represented only the DRI’s
software components which are involved in our study.
In the following, we describe briefly each layer. The
information contained in the current section has been
obtained from several sources including the source code
of i915.ko, the official documentation of Intel [8] and
unofficial sources such as [24].

The Userspace Components: Beignet and libdrm

The Open Computing Language (OpenCL) is an
open standard for parallel programming of heteroge-
neous systems. OpenCL allows the parallel program-
ming of modern processors found in personal comput-
ers, servers and mobile devices. Beignet [2] is an open
source OpenCL implementation for Linux supporting
two Intel processors: Ivy-Bridge and Haswell.

Beignet is composed by two main components: the
OpenCL runtime and the Just-in-Time compiler. The
runtime consists of a dynamic library which imple-
ments the OpenCL API. The Just-in-Time (JIT) com-
piler uses LLVM to implement the OpenCL C lan-
guage compiler and to translate the code of the kernel
into the ISA of the IGD. The kernel code is compiled
through JIT because the OpenCL programs should
be device-independent and could be executed on any
hardware platform, supported by OpenCL.

In order to implement the runtime, Beignet uses a
user-space library called libdrm. Libdrm is a cross-
driver middleware which allows user-space applications
to communicate with the kernel. The library provides

Beignet

libdrm userspace

kernelspace

Direct Rendering 
Manager

i9
1
5

drmOpen

ioctl

create_ctx

Firmware

Xorg

Figure 2: Overview on the Linux Beignet Architecture

wrapper functions for the ioctls to avoid exposing the
kernel interface directly. Libdrm is a low-level library,
typically used by graphics drivers such as the X drivers,
and provides a common API for higher layers and im-
plements specific functions for several vendors such as
Intel, NVIDIA and AMD. In this paper we will rely on
the Intel functions.

All our tests were conducted on an Intel Haswell
processor with Beignet 0.9.1 and libdrm 2.4.58.

Direct Rendering Manager

The Direct Rendering Manager (DRM) is a subsys-
tem of the Linux kernel responsible for the interface
with the GPU. The DRM exposes an API that user
space programs can use to send commands and data
to the GPU, and perform operations like memory allo-
cation on the GPU memory. Graphics drivers may also
use DRM functions to provide a uniform interface to
applications for memory management, interrupt han-
dling and DMA. While user-space applications can in-
teract directly with the GPU through ioctls, in many
cases developers use the more high-level interface pro-
vided by the libdrm library.

The DRM supports two memory managers: the
Translation Table Maps (TTM) and the Graphics Ex-
ecution Manager (GEM). In this paper we focus on the
GEM, which is used by the Intel graphic driver. GEM
is designed to manage both the graphic memory and
the graphic execution contexts, allowing multiple host
processes to share graphics device resources. However,
GEM only provides generic functions and each ven-
dor implements its own functionality to support the
GEM interface (in our case study the GEM functions
were implemented inside the Intel graphic driver). The
buffers allocated from GEM are called buffer objects.

The Intel Graphic Driver

The Intel graphic driver, called i915 in the main
branch of the Linux kernel, implements a superset of
the ioctls defined in the DRM layer (we used the ver-
sion 3.14 of the Linux kernel in our experiments). The
IGD is controlled by the CPU in two ways: through a
set of memory-mapped IO registers, and through the
ringbuffers, a set of queues containing the list of com-
mands to be executed on the IGD. In particular, in
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Haswell there are three different types of ringbuffers:
the render, the blitter, and the bitstream buffers.

Any application which uses the GPU is called a GPU
client. Before submitting a job to the GPU, each client
sends a hardware-context creation request to the Intel
graphic driver. Hardware contexts are opaque objects
which are used to manage context switches between
clients. Intel added the support to hardware contexts
from the Ironlake family (i.e. from 2010) relieving the
driver from managing them. The clients submit a job
j to the driver, which then tells the GPU to perform a
context switch and execute j. To enforce the context
switch, the driver encloses the commands received from
the client with the proper restore and save commands.
It is worth mentioning that a client can decide to avoid
the creation of new hardware context, and in this case
it gets associated with the so-called default hardware
context. Nonetheless, in our experiments we focused
on clients with an associated hardware context – as it
is the case for Beignet.

The Intel graphic driver tracks all the hardware con-
texts using a linked list of i915 hw context.

4.1. Memory Management

From a memory forensics perspective it is very im-
portant to understand that the CPU and the mem-

ory controller have two different views of the mem-
ory. From the controller point of view, the memory
is just an array of contiguous physical addresses. On
the contrary, the CPU sees the memory as sequence
of special-purpose areas of contiguous locations. Such
areas include system RAM as well as MMIO. The
combination of these special-purpose areas is normally
called Address Space Layout. The address space lay-
out of the Haswell architecture is represented in Fig-
ure 3. The figure shows on the right side the view of
the Haswell DRAM controller and on the left side the
view of the CPU. The address space is divided into
two parts (i.e., below and above the 4GB threshold)
and each part is composed by system RAM, MMIO
areas, and remapped regions. The graphic card has a
specially-reserved area of memory that is not accessi-
ble from the CPU. This section is called Graphic Stolen
Memory (GSM) and consists of two contiguous ranges,
which are configured by the BIOS: the Graphics Trans-
lation Tables (GTT) range that stores the virtual to
physical graphic translation tables and the Data Range
which is a programmable space, used to store graphics
data (e.g the framebuffer).

A special register called Base of GTT Stolen Mem-
ory (BGSM in the Figure) points to the base address
of the GSM. The TOLUD register marks instead the
top of the low usable physical memory that is accessi-
ble to the CPU. The only way for the CPU to read the
GTT memory is through MMIO on the PCI BAR0 of
the graphic card. A MMIO on the PCI BAR2 – which
is also called the Graphics Aperture – is used to access
the Data range. The size of this area is defined in the
BIOS and goes from 32MB to 256MB. The layout of
the PCI BARs is depicted in Figure 4.

IGDs have two virtual address spaces of 2GB each,
each one with its own page table. The first page table is
called Global Graphic Translation Table (GGTT) and
the second one is called Per-Process Graphic Transla-
tion Table (PPGTT). The GGTT is used by the ren-
der ring and the display functions. Interestingly, the
GGTT entries can point both to the GSM data range
and to system RAM, while the PPGTT entries can
point only to the system RAM. The two tables con-
tain almost the same entries, except for those pointing
to the data GSM that are only present in the GGTT.

The GGTT is a memory-resident page table contain-
ing an array of 32-bit Page Translation Entries (PTEs).
The PPGTT is instead a two-level page table. The
second level makes the allocation of memory for these
structures less problematic for the operating system
since it can be allocated also on not-contiguous pages.
If a PPGTT is enabled, all rendering operations target
per-process virtual memory.
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5. Malware on Intel GPUs

In this section we describe the experiments we con-
ducted to test how the different techniques presented
in Section 3 could be implemented on Intel GPUs.

Unlimited Code Execution

To obtaining unlimited code execution, a mal-
ware needs to disable the hangcheck in the Intel
graphic driver. The hangcheck is a watchdog mech-
anism that kills any kernel running for more then
t seconds. The i915 driver exposes a facility to
disable the hangheck through the sysfs, at the path
/sys/module/i915/parameters/enable hangcheck

(writing a zero to this file disables the watchdog).
This operation requires superuser privileges.

Inconsistent Memory Mapping

When a buffer object is allocated through the GEM
subsystem, it can be referenced from both the CPU
and the GPU domains using two different virtual ad-
dresses. To implement this feature, the graphic driver
creates two memory mappings in both the domains.
However, the mapping in the CPU domain is stored
into the OS page table whereas the mapping in the
IGD domain is stored in the graphic page tables. Dur-
ing normal operations the two information are consis-
tent. Therefore, as long as the corresponding physical
address is not in the GSM, an analyst can extract the
memory accessed by the GPU by looking at data struc-
tures of the operating system, in system memory.

However, if an entry in any of the graphic page ta-
bles is manually modified to point to a different lo-
cation, the Linux page table is not affected. Indeed,
the driver only cares of preserving the coherency be-
tween the GGTT and the PPGTT. In this case, the
virtual address in the CPU domain continues to point
to the original physical page, while the GPU address
now points to any arbitrary page in memory.

To show the feasibility of this attack we performed a
simple test. Our experiment includes a victim applica-
tion V which contains some sensitive data in a memory
area Bvictim. This application does not use the video
card. At the same time, a malicious application M in-
vokes the OpenCL library function clCreateBuffer()

to allocate a buffer Bdummy of 1024 bytes. The mal-
ware then loads a kernel module that performs a num-
ber of tasks. First, it finds the physical address of
Bvictim and Bdummy and locates the Intel GPU in the
PCI device list. Second, it retrieves the pointer to the
MMIO address of the beginning of the Graphic Stolen
Memory through the struct drm i915 private data
structure. Then, the module scans the two levels of
the PPGTT to find the entry pointing to the physical
address of Bdummy and modifies the entry to point to

the physical address of Bvictim. At this point, the mal-
ware unloads and removes the kernel module from the
system. Finally, M prepares a kernel task K to over-
write the content of Bdummy (that in the IGD domains
points to Bvictim), it compiles it using the Beignet JIT
compiler, and sends it to the video card.

Using this technique the malware forced an incon-
sistent memory mapping between the Linux page table
and the GPU page table. An investigator looking at
the system memory would see that the process M is
using the GPU and that his kernel task has access to
a buffer, which still correctly points to the harmless
Bdummy. However, the GPU page table (which does
not reside in the system RAM) allow the malware to
overwrite the content of Bvictim, which resides in a dif-
ferent process which does not even use the GPU. Even
more interesting, we verified that the GPU is able to
overwrite the target buffer even if it resides in a read-
only page (for instance, we were able to modify the
.text segment of another running process).

Process-less execution

We demonstrate that it is possible to have a kernel
running in the GPU without any corresponding active
host process. In this experiment the malware M uses a
simple kernel that runs an infinite loop to increments
the value of a properly allocated Bdummy. Using again
the inconsistent memory mapping technique, the mal-
ware uses its kernel K to overwrite an integer variable
which resides on the stack of a victim process.

However, in this experiment once the kernel execu-
tion started, we killed the malicious process by sending
a SIGINT to M just after the kernel submission. In
order to verify if the IGD was still running our code,
we used several indicators. First, even if there was no
trace of M in the process list, the value of the stack
variable in the victim process kept increasing accord-
ing to the code of K. Second, we used an utility to
estimate the load of the render ring measuring the dis-
tance between the head and the tail pointers. Indeed,
when the GPU is idle, the head and the tail pointers
point to the same address. This was not the case in
our experiment, confirming that something was indeed
running in the GPU.

This attack only makes sense if the malware also
disable the watchdog to perform an infinite task in the
GPU. In a normal desktop computer, this would render
the display not responsive and the attack could be eas-
ily noticed. However, this side effect is only noticeable
when the IGD is effectively used for rendering. This is
not the case of servers that are managed through re-
mote connections or high end laptop and workstations
which are equipped with both an integrated and the
discrete GPUs. In such configurations is very common
that the discrete GPU is the one used by default.
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Context-less execution

We demonstrate that it is possible to have a kernel
running in the GPU without any hardware context
registered in the data structures of the Intel graphic
driver. Indeed, the process-less execution still leaves
some traces inside the Intel graphic driver. We were
not able to retrieve the original malware PID, however,
the buffer objects related to the running kernel and its
hardware context, were still in the driver’s memory.

Even though there is no a straightforward way to
link such information back to the owner PID since the
task struct was unlinked by the kernel after the SIG-
INT, this anomaly can be detected by a very careful
forensic investigator.

Therefore, in our final experiment we tried to repli-
cate the previous attack, but this time also to re-
move any hardware context associated with the run-
ning kernel. This technique, on top of requiring su-
peruser privileges, also requires a detailed knowledge
of the driver internals to perform a DKOM attack. In
our test, we developed another malicious kernel mod-
ule that locates the hardware context of the malware
kernel and removes it from the internal list in the
driver. To do so, the module performs the following
steps: first, it looks for symbol referencing the struct

drm i915 private. Then it gets the context list

pointer and destroys the target context through the
driver function i915 gem context unreference() .
This operation has the side effect of also freeing all
the buffer objects of the hardware context. However,
as long as the malicious process is the only process
running on the GPU, this operation does not alter the
behavior of the malicious kernel. Finally, the malware
set the memory of the hardware context to zero.

6. Findings and Discussion

Table 1 summarizes the main findings of our study.
The first column shows the different techniques we pro-
posed in this paper and that can be used by malware
to increase the complexity of a memory forensic exam-
ination. The second column shows the requirements
of such malware: U for user privileges, S for super-
user privileges, and K for super-user privileges with an
additional knowledge of the GPU driver internal data
structures. On the right side of the table we summa-
rize the consequences for memory forensics, grouped
around the three main objective of listing the processes
that use the GPU, understanding which kernel code
is executed by each of them, and listing the memory
ranges that are accessible to such kernels.

Memory forensic involves two separate processes:
memory acquisition and memory analysis. Table 1
reports information for both processes. First, a 3
sign means that the corresponding objective can be

achieved by looking only at the content of the system
memory. This is very important because it means that
the memory acquisition tools we use today are already
sufficient to complete the task.

When this is possible, we report if the memory anal-
ysis can be performed extracting information only from
OS data structures, or if it requires ad-hoc modules to
analyze the video driver internals. The latter can be
quite problematic for a forensic point of view. Video
drivers are often closed-source, and developing a sepa-
rate memory analysis module (e.g., a Volatility plugin)
for each of them can be a daunting task. A similar con-
sideration applies to the cells containing the 7 sign. In
this case, an analyst would first need a specialized tool
to dump the video card memory. In our scenario this
means the Graphic Stolen Memory and the PCI BARs
of the GPU, but this could be even more complicated
for cards with a separate dedicated memory. More-
over, the analyst would then need custom modules to
parse the data this memory contains. Again, without
the support of the vendors, this can be completely im-
practical on a large scale.

6.1. Summary and Guidelines

As part of our experiments, we developed a set of
custom tools and volatility plugins to retrieve a num-
ber of information from the system and GPU memory.
In particular, from a forensic perspective, we collected
and parsed the following data structures:

Graphic page tables: this artifact can be used to
detect the presence of inconsistent memory map in
the system. For IGDs, the Graphic Translation Table
(GTT) and Per-Process GTT (PGTT) can be dumped
through mmio on the GPU PCI BAR2.

Hangcheck flag : This flag is stored in the driver and,
as described in the previous section, can be very im-
portant to detect sophisticated attacks.

List of buffer objects: together with the graphic page
tables, these artifacts can be used to detect which
memory pages can be accessed by a process, passing
through the GPU. In the case of GEM, this informa-
tion consists of two doubly-linked lists that can be ob-
tained from the struct drm i915 private.

List of contexts: this artifact can be used to get in-
formation on the GPU kernels and understand which
processes are using the GPU. In IGDs this can be
done through the context list field in the struct

drm i915 private data structure.

Register file: it contains information on the inter-
nal state of the GPU and can be accessed through
mmio on GPU PCI BAR0. Among the IO registers
the RING TAIL and the RING HEAD deserve a spe-
cial mention. These registers are used to control how
the ringbuffer is accessed by the CPU and can be very
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Anti-Forensic Malware Forensic Objectives
Technique Requirements List Processes List Kernels Memory Map
None U 3 (OS) 3 (Driver) 3 (OS)
Unlimited Execution S 3 (OS) 3 (Driver) 3 (OS)
Process-less S 7 3 (Driver) 3 (Driver)
Inconsistent Map K 3 (OS) 3 (Driver) 7
Context-less K 7 7 7

Table 1: Summary of our Findings

useful for the analyst to understand if there were any
tasks running during the acquisition process.

6.2. Beyond our Case Study

The variety of GPU ecosystem poses a big chal-
lenge for the forensic community. In the worst case,
a different tools should be developed for each possi-
ble combination of GPU model and Operating system.
Nonetheless, for what concerns Linux, the presence of
the DRM layer can ease this task. Other than the Intel
driver, also other drivers (e.g. tegra, nouveau, radeon,
...) are compliant with both the DRM and the GEM
memory manager. For such drivers, most of our con-
siderations remains the same. For other closed-source
drivers, more work is required to reverse-engineer their
internal data structures.

Few additional observations can be done by looking
at Table 1. For example, the information stored in the
system memory (marked with the 3 sign in the table)
are likely to be the same for most GPUs. In fact, to use
the GPU, a host process needs to communicate with
the driver and in order to do this, the host process must
open the GPU device file. Therefore, to find which host
processes are using the GPU, the system memory is
enough. Contrarily, especially for cards with dedicated
memory, some of the information that in our case were
stored within the driver’s memory may instead reside
in the device memory. This would translate inevitably
into more 7 locations on the table.

7. Related Work

Several examples of GPU-assisted malware have
been analyzed so far [23, 10, 21, 4]. For instance,
in [10] the GPU is used to implement a stealthy keylog-
ger. To access the keyboard buffer, the GPU uses the
physical addressing through DMA, without any CPU
intervention. In [23] the authors present a proof-of-
concept which leverages GPU to unpack the code of a
malware with a XOR-based encryption scheme using
several random keys. To hinder the analysis, the mal-
ware’s code is unpacked at runtime and the decryption
keys are stored in the device memory, that is not ac-
cessible from the CPU. In [21] the author shows how

the GPU and NIC with a malicious firmware can be
used to exfiltrate data from the host’s memory. Fi-
nally, in [4] the authors describe an attack targeting a
mobile GPU. In such case a vulnerability in the driver
is exploited to take over the memory protection mech-
anism of the GPU.

Vasiliadis et al. [22] implemented some encryp-
tion algorithms with CUDA and leveraged the non-
preemptive nature of GPUs to preserve the integrity
of the cryptographic algorithms and the confidential-
ity of the key. However, the same technique can be
used by malware to hinder live analysis or to achieve
persistence.

In the past, several anti-memory forensic techniques
have been developed. Such techniques can be di-
vided into two categories: anti-acquisition and anti-
analysis [20]. Anti-acquisition operates during the
memory acquisition process interfering with the mem-
ory scanner. For instance, in [18] the author shows
how a kernel rootkit can hijack the memory scan-
ner reads to hide its presence in the memory dump.
Some PoC tools are more invasive and they prevent
the kernel from loading additional drivers [14]. The
goal of anti-analysis techniques is instead to prevent
the correct analysis of the memory dump. They per-
form DKOM to prevent the memory analysis tools
from finding some fundamental kernel variables which
are used as starting point for the analysis (e.g. the
KDDEBUGGER DATA64 data structure). Haruyama et

al. [7] show how the modification of one-byte on some
kernel variables can break the memory analysis pro-
cess. Stuttgen et al. [20] show that hooking mem-
ory enumeration and memory mapping API can hin-
der the analysis. This is substantially different from
the Incosistent Mapping presented here. Indeed, even
in the presence of the improved memory acquisition
technique proposed in [20], the GPU page table would
be marked as not safe to dump and the modified map-
ping would not be detected.

GPUs can be used as both an anti-acquisition and
anti-analysis technique. Indeed, the non-preemptive
nature of GPUs can be leveraged to prevent the mem-
ory acquisition process of the GPU memory itself. Pix-
elvault [22] locks the GPU to protect the key mate-
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rial, the same mechanisms can be used to prevent the
memory scanner from getting the dump of the GPU
memory. Furthermore, since GPUs are not considered
during the memory-forensic analysis by current tools,
using the GPU to run malicious code can prevent the
correct analysis of the memory dump.

8. Conclusions and future work

In this work we analyzed to what extent a GPU
can be used to perform malicious computation. We
modeled the GPU as an anti-forensic tools and we
highlighted four different techniques that a malware
can use to hide its presence. We provided a case
study on Intel Integrated GPUs showing how each of
the four techniques impacts on the memory analysis.
We tried to keep our analysis as general as possible
however, as a future work, we plan to perform ad-
ditional experiments targeting different GPU models
and different Operating Systems.
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