
Cutting the Gordian Knot: A Look Under the Hood of
Ransomware Attacks

Amin Kharraz1, William Robertson1,
Davide Balzarotti3, Leyla Bilge4, and Engin Kirda1,2

1 Northeastern University, Boston, USA
2 Lastline Labs, Santa Barbara, California, USA

3 Institut Eurecom, Sophia Antipolis, France
4 Symantec Research Labs, Sophia Antipolis, France

Abstract. In this paper, we present the results of a long-term study of ransomware
attacks that have been observed in the wild between 2006 and 2014. We also pro-
vide a holistic view on how ransomware attacks have evolved during this period
by analyzing 1,359 samples that belong to 15 different ransomware families. Our
results show that, despite a continuous improvement in the encryption, deletion,
and communication techniques in the main ransomware families, the number of
families with sophisticated destructive capabilities remains quite small. In fact,
our analysis reveals that in a large number of samples, the malware simply locks
the victim’s computer desktop or attempts to encrypt or delete the victim’s files
using only superficial techniques. Our analysis also suggests that stopping ad-
vanced ransomware attacks is not as complex as it has been previously reported.
For example, we show that by monitoring abnormal file system activity, it is pos-
sible to design a practical defense system that could stop a large number of ran-
somware attacks, even those using sophisticated encryption capabilities. A close
examination on the file system activities of multiple ransomware samples sug-
gests that by looking at I/O requests and protecting Master File Table (MFT) in
the NTFS file system, it is possible to detect and prevent a significant number of
zero-day ransomware attacks.
Keywords: Malware, Ransomware, Malicious Activities, Underground Econ-
omy, Bitcoin

1 Introduction

Over the past few years, a class of malware known as scareware has become popular
among cybercriminals. This malware takes advantage of people’s fear of revealing their
private information, losing their critical data, or facing irreversible hardware damage. In
particular, this paper focuses on ransomware, a particular class of scareware that locks
the victims’ computers until they make a payment to re-gain access to their data.

Although the first version of ransomware appeared in the wild almost 10 years ago,
the volume of ransomware incidents was not significant until a couple of years ago. As
number of ransomware attacks increased over 500% on 2013 compared to the previous
years, the ransomware threat made the headlines as the most notable malware trend
after targeted attacks in 2013 [37]. For example, the Cryptolocker ransomware
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alone managed to infect approximately 250 thousand computers around the world, in-
cluding an entire police department that needed to pay a ransom to decrypt their docu-
ments [15,30].

Given the significant growth of ransomware attacks [37], it is very important to de-
velop a protection technique against this type of malware. However, designing effec-
tive defense mechanisms is not practically possible without having an insightful un-
derstanding of these attacks. Currently, many of the recent security reports about ran-
somware [12,15] rely on ad-hoc procedures rather than a scientific assessment. More-
over, these reports mainly focus on the advancements in ransomware attacks and their
levels of sophistication, rather than providing some insights about effective defense
techniques that should be adopted against this threat. In this paper, we investigate the
key functionalities of ransomware samples such that we can propose effective detection
mechanisms leveraging our findings.

We created a collection of ransomware samples that were categorized in 15 different
families. Our data set covers the majority of the existing ransomware families that have
been observed in the wild between 2006 and 2014. The data set is created using multiple
sources including manual and automatic crawling of public malware repositories, and
the ransomware samples submitted to Anubis [7] since 2011. The results of our analysis
confirm the folk wisdom that such attacks have a continuous increase in the number of
families and distinct samples per year [25,37] and also the advances in certain aspects
of the specific functionalities of few ransomware families. However, our results also
reveal that in a significant number of samples, the core parts of ransomware samples
lack the technical complexity to perform successful attacks. While a small fraction of
the samples can really prevent the victims from accessing the resources and cause severe
problems, a significant number of samples fail to seriously take the victims’ resources
as hostage. More specifically, we show that more than 94% of ransomware samples in
our data set simply try to lock the victims’ computer desktop and request ransom, or
use very similar and superficial approaches to target the victims’ resources.

We also performed an analysis of the charging methods adopted by different ran-
somware families and also traced the transactions of 1,872 Bitcoin addresses that were
used during the Cryptolocker attack. The analysis of the transactions shows that
cybercriminals started to adopt evasive techniques (e.g., using new addresses for each
infection to keep the balances low) in order to better conceal the criminal activity of the
Bitcoin accounts. Our analysis also confirms that the Bitcoin addresses used for mali-
cious intents share similar transaction records (e.g., short activity period, small Bitcoin
amounts, small number of transactions). However, determining malicious addresses in
the Bitcoin network based on the transaction history is significantly difficult, in par-
ticular when cybercriminals use multiple independent addresses with small amount of
Bitcoins.

In addition to our long-term study, we also evaluate the feasibility of implementing
defense mechanisms against destructive ransomware attacks. We provide an analysis
of the file system activity of ransomware samples that target users’ files. Our analysis
shows that different classes of ransomware attacks with multiple levels of sophistica-
tion share very similar characteristics from a file system perspective, due to the nature
of these attacks. Our analysis suggests that when an infected system is under attack,
one can notice a significant change in the file system activity since the malicious pro-
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cess generates a large number of similar file system access requests. Consequently, if
we effectively monitor the file system activity (e.g., the changes in Master File Table
(MFT) and the types of I/O Request Packets (IRP) to the file system), it is possible to
detect multiple different types of destructive ransomware attacks that target users’ files.
This contradicts recent discussions in the security community about the impossibility of
detecting or stopping these types of attacks due to the use of sophisticated destructive
techniques [5,25,34,37]. Based on our analysis, we conclude that detecting and stop-
ping a large number of destructive ransomware attacks is not as complex as it has been
reported and deploying practical defense mechanisms against these attacks is possible
due to the engineering of NTFS file system.

In summary, the contributions of our paper are as follows:

– We analyzed 1,359 ransomware samples, describing previously undocumented as-
pects of ransomware attacks with the focus on distinctive and common behaviors
among different families.

– We explain how the core parts of ransomware samples are engineered and how
these findings can potentially be used to detect these attacks. Our analysis shows
that the abnormal file system activity can be accurately monitored in destructive
ransomware attacks with different levels of sophistication.

– We perform an analysis of charging methods adopted among ransomware fami-
lies and also investigate how cybercriminals used cryptocurrency in recent ran-
somware attacks. Our analysis of illicitly-gained Bitcoins suggests that cybercrimi-
nals adopted multiple evasive techniques to protect their privacy in Bitcoin network,
making the tracing procedure significantly more difficult.

– We suggest avenues that can be used to defend against a large number of destructive
zero-day ransomware attacks. We propose a general methodology to detect these
attacks without making any assumptions on how they attack the users’ files.

The rest of the paper is structured as follows. In Section 2, we present our data set
and ransomware families we categorized. In Section 3, we present experiments we con-
ducted and discuss our findings. In Section 4, we discuss the financial incentives and
payment methods. In Section 5, we briefly present related work. Finally, we conclude
the paper in Section 6.

2 Ransomware Data Set

Since collecting the malware data set was a critical part of our research, in this section,
we provide some details about our ransomware sample selection procedure. To achieve
a comprehensive ransomware data set, we collected malware samples from multiple
sources. While we obtained 37.9% of our samples from Anubis, 48.38% were collected
by automatically crawling public malware repositories [4,2,1]. We captured the remain-
der 13.8% by manually browsing through security forums [23,3].

We collected 3,921 ransomware samples from all those sources. However, after re-
moving the samples that did not execute properly in our environment and those for
which we were not able to find a release date, our data set contained a total of 1,359 ac-
tive ransomware samples. To obtain accurate labels for these samples, we cross-checked
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Table 1: The list of malware families used in our experiments. Some families such as Reveton,
Winlock, and Urausy aggressively employed polymorphic techniques.

Family Family Description Types of Attacks
Samples Variants First Seen Most Recent Encypting Files Changing MBR Deleting Files Stealing Info

Reveton 244(17.95%) 14 2012 2014 X X
Cryptolocker 32 (2.35%) 4 2013 2014 X X
CryptoWall 11(0.8) 2 2014 2014 X
Tobfy 122 (8.97%) 12 2010 2014 X
Seftad 23 (1.69%) 4 2006 2010 X
Winlock 308(22.66%) 27 2008 2013 X
Loktrom 4 (0.29%) 2 2012 2013
Calelk 9 (0.663%) 2 2009 2010
Urausy 523 (38.48%) 16 2009 2014 X X
Krotten 17 (1.25%) 3 2008 2009
BlueScreen 4 (0.29%) 1 2008 2009
Kovter 8 (0.58%) 2 2013 2013 X
Filecoder 9 (0.66%) 3 2012 2014 X X
GPcode 21 (1.54%) 4 2004 2008 X
Weelsof 24 (1.76%) 3 2012 2013
No. of Samples 1,359 - - - 73(5.37%) 23(1.69%) 484(35.61%) 44(3.23%)
No. of Variants - 99 - - 13(13.13%) 4(4.04%) 29(21.33%) 6(6.06%)

the malware samples by automatically submitting the list of MD5 hashes to VirusTotal.
To be conservative on our ransomware malware selection, we consider a malware to be
ransomware if at least three AV engines recognized it as belonging to this category.

To obtain the family names, we parsed the naming schemes of the AV vendors that
are commonly used to assign malware labels. In 77% of samples, AV engines followed
the same labeling scheme and our naming policy was mainly based on the popularity of
the family name in the community (e.g., Gpcode, Reveton). The remaining 23% of
the samples were labeled in an inconsistent way among the different antivirus software,
and in this case we simply selected the most common label among the list of the top
39 AV engines. For example, some samples were labeled both as Pornoasset and as
Tobfy by top AV engines, but we labeled these samples as Tobfy due to the perceived
popularity of the label.

To the best of our knowledge, our analysis covers the majority of the existing ran-
somware families observed between 2006 to 2014. However, as our data collection
module relies on external sources, we are aware of the possibility of missing some
types of ransomware attacks. Furthermore, in order to conduct balanced experiments
over the ransomware families, and also to avoid biased results due to polymorphic tech-
niques, we performed our analysis not only based on individual samples, but also based
on the families and distinct variants per family. Table 1 shows the total number of dis-
tinct samples per family as well as distinct variants in each family. It also shows the first
time they appeared in the wild and the most recent sample in our data set.

As it can be clearly seen from Table 1, there is a rapid emergence of new families be-
tween 2012 and 2014, as well as a significant growth on the number of new samples in
each family. This may be due to a bias on the data set toward more recent samples, or to
the multiplication of samples due to polymorphism in newer families. (e.g., Winlock,
Urausy, and Reveton). The Table also shows the types of ransomware attacks we
observed among each family in our data set (in addition to locking the user desktop).
In particular, we observed that 61.22% of the samples (57 variants) only targeted the
desktop of compromised computers, without touching the documents in the file sys-
tem. More details on the locking procedure are discussed in Section 3.1. Encrypting
the victim files in addition to locking the desktop was observed in 5.37% of samples
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in four families (Cryptolocker, CryptoWall, Filecoder, and Gpcode). We
also observed the emergence of other malicious activities, such as changing the browser
setting or performing multiple infections to install other malware, in 3.23% of the sam-
ples. Despite the fact that the number of samples performing additional malicious ac-
tivities (e.g., stealing private information) is not alarmingly high, this phenomenon is
now increasing. For example, our analysis shows that information stealing was first
seen in Reveton in early 2012, but other families such as Kevtor, Urausy, and
Cryptolocker started to add stealing information capabilities to their samples af-
ter that date [16,21]. We provide more details on the malicious behaviors among ran-
somware families in Section 3.

2.1 Experimental Setup

We performed all malware execution experiments according to common scientific guide-
lines [33] inside a Cuckoo Sandbox [14] running Windows XP SP3 32bit, with a con-
trolled access to the Internet via NAT. Network traffic (e.g., IRC, DNS and HTTP) were
allowed to enable commands and controls (C&C) communication. In order to control
harmful traffic (e.g., spam) during the execution of the experiments, we redirected this
traffic to a local honeypot. The network bandwidth was also reduced to mitigate poten-
tial DoS attacks.

The environment installed inside the malware analysis system includes typical data
in an user session such as saved credentials, browser history, and other customizations.
We also emulated some basic user activity by running an script in each malware run
(e.g., opening a window, moving the mouse, opening a website). We then executed each
sample in the analysis environment for 45 minutes to capture the execution traces of the
sample. Since current ransomware samples typically start attacking the user’s files right
after the malicious program is executed by the user, we believe that the 45 minutes
threshold is sufficient for most ransomware samples to exhibit their malicious behavior.
After each execution, the entire system is rolled back to a clean state to prevent any
interference across executions.

3 Characterization and Evolution

In this section, we describe our findings based on the types of malicious activities de-
tected in ransomware samples during our experiments. We partition the malicious ac-
tivities into multiple categories and discuss our findings in each of them.

3.1 File System Activity

One of our first goals was to describe how a malicious process interacts with the file
system when a compromised computer is under a ransomware attack. To answer this
question, we investigate the common characteristics of ransomware attacks from a file
system perspective regardless of the technical differences that these attacks might have
(such as the infection and the key generation techniques). In order to monitor the file
system activity, multiple approaches could be used. One classic approach is to hook the
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SSDT table [19,22] to monitor interesting function calls. In our analysis, we developed
a minifilter driver [26] to capture all I/O Requests that the I/O manager generates on
behalf of user-mode processes to access the file system.

To monitor the I/O requests the minifilter driver registers callback routines to the filter
manager. In our analysis, we defined pre-operation and post-operation callback routines
for all IRP functions in order to precisely record any I/O and transaction activity on the
files. For each file system request, we collected the process name, the process ID, the
parent process ID, the pre-operation and post-operation callback time, the IRP type, the
arguments and the result of the operation. Each record is a tuple:

<PName,PID,PPID,PreOpTime,PostOpTime,IRPFlag,Args,Result>
The minifilter with different callback routines allows us to capture all the the read,

write, and attribute change requests to the file system at the closest possible level to
the file system driver. Our minifilter driver is deployed in a privileged kernel mode that
has access to nearly all objects of the operating system. Furthermore, since we captured
the file system activity directly from the I/O manager in the kernel, there was a low
chance that cybercriminals could bypass our monitor. When looking at the execution
traces of the malware program in the analysis environment, we observed that the way
malicious processes generate requests to access file system was significantly different
from benign processes. By performing a close examination of the file system activity
of multiple ransomware samples, we were able to distinguish multiple attack strategies
that ransomware families used while the system was under the attack. We discuss our
findings in the following sections.

Encryption Mechanisms As presented in Table 1, 5.37% of the samples among four
families employed some encryption mechanisms during the experiments. Our analysis
shows that existing ransomware samples use both customized and standard cryptosys-
tems during the attacks. The customized cryptosystems are not necessarily more reli-
able or complicated than the standard cryptosystems that Windows platforms provide
(e.g., CryptoAPI). Cybercriminals develop their own cryptosystems for multiple rea-
sons. One reason is probably to decrease the chance of being easily detected by common
malware analysis techniques (e.g., PE header checking, Hooking standard API func-
tions). One of the key features crypto-style ransomware samples should have is to reli-
ably minimize the chance of recovering the original data after generating the encrypted
files. Some of the modern crypto-style ransomware families such as cryptolocker
and CryptoWall make use of standard Windows functions to perform their file en-
cryption. They simply call CryptEncryptwith an handle to the encryption key and a
pointer to a buffer that contains the plaintext to be encrypted. In these families, the plain-
text in the buffer is directly overwritten with the encrypted data created by this function.
As depicted in Table 2, the I/O manager generates IRP MJ CREATE on behalf of the
malicious process to open the user’s file. The file content is read via IRP MJ READ
for encryption and is overwritten with the ciphertext buffer using the IRP MJ WRITE
function each time a file encryption occurs.

We also observed that even if the samples do not use standard cryptosystems, it
is still possible to recognize how they attack users’ files. For instance, a member of
the Filecoder family uses a simple customized approach to encrypt files. Unlike



7

Table 2: The IRP requests generated on behalf of the malicious process during Cryptowall at-
tack. Similar file system activity traces were also observed in Cryptolocker attack due to the use
of Windows standard cryptosystem. The table does not show all the captured information for each
I/O operation.

Process Name Operation Path Result
mal.exe IRP MJ CREATE E:\MySubmissions SUCCESS

mal.exe IRP MJ DIRECTORY CONTROL E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLEANUP E:\MySubmissions\ SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\ SUCCESS

mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ READ E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ WRITE E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ READ E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ WRITE E:\MySubmissions\dimva2015-submission.tex SUCCESS

.

.

.
mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ SET INFORMATION E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\dimva2015-submission.tex SUCCESS

Cryptolocker and CryptoWall, the sample first generates an encrypted version
of a file using an AES-256 encryption key and then overwrites the original file’s data
with the encrypted file. Table 3 shows how the malicious process interacts with the file
system to encrypt an arbitrary file when the system is under the attack. The types of
IRPs generated when the malicious process operates show how a ransomware sample
targets the victim’s files. For example, the sequence of IRPs shows that the ransomware
sample first queries the given location to find the user’s file and creates handles to the
original and encrypted files. The file’s data is read via a IRP MJ READ IRP and the
encrypted data buffer is written to the destination file via a IRP MJ WRITE IRP. Con-
sequently, IRP MJ SET INFORMATION is used to delete the original file after the file
is closed and also to overwrite the original file with the encrypted file. The sequence of
IRPs shown in Figure 3 is repeated for every file on the infected system.

Another sample from Filecoder makes use of the Defragmentation API
to get raw access to each file’s data based on the volume sector and the cluster size.
The sample overwrites the files with custom data patterns based on how the files are
kept on the disk. For example, if the file mapping check shows that the file has mul-
tiple extents, the physical disk offsets of each extent should be retrieved to be over-
written with the custom data pattern. If the file does not have any extents, it means
that the file is small and is kept as a MFT entry in the MFT table. The malware uses
the DeviceIoControl from kernel32.dll to get the file map on the physical
disk. Figure 1 shows how a malicious process finds the file’s data and overwrites the
data after the encryption. When NTFS finds the file record for the MFT, it obtains the
VCN-to-LCN mapping information in the file records data attribute. Consequently, the
malicious process can easily retrieve the information and locate the file’s data on the
disk.

Encryption techniques (e.g., key generation and key management) in crypto-style
ransomware families have also evolved significantly. For example, a Gpcode variant
generates a static key during the attack. This key is also used to encrypt all the non-
system files. Finding the encryption key in this variant is fairly simple and we were able
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Table 3: The types of IRPs requested by a malicious process to encrypt and overwrite the victim’s
files during a ransomware attack. The attack strategy can be detected by analyzing the I/O requests
sent to the file system.

Process Name Operation Path Result
mal.exe IRP MJ CREATE E:\MySubmissions SUCCESS

mal.exe IRP MJ DIRECTORY CONTROL E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLEANUP E:\MySubmissions\ SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\ SUCCESS

mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex.crypt SUCCESS

mal.exe IRP MJ READ E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ READ E:\MySubmissions\dimva2015-submission.tex SUCCESS

.

.
mal.exe IRP MJ WRITE E:\MySubmissions\dimva2015-submission.tex.crypt SUCCESS

.

.
mal.exe IRP MJ CLEANUP E:\MySubmissions\dimva2015-submission.tex.crypt SUCCESS

mal.exe IRP MJ CLEANUP E:\MySubmissions\dimva2015-submission.tex SUCCESS

.

.
mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ SET INFORMATION E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLEANUP E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\dimva2015-submission.tex SUCCESS

.

.
mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex.crypt SUCCESS

mal.exe IRP MJ SET INFORMATION E:\MySubmissions\dimva2015-submission.tex.crypt SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\dimva2015-submission.tex.crypt SUCCESS

to retrieve the key by comparing the encrypted file and the original one. The most recent
Gpcode variant in our data set encrypts the files using a unique AES-256 encryption
key. The encryption key is then encrypted using a 1024-bit RSA public key. Another
change we observed over time is the place where an asymmetric key pair is gener-
ated. For example, in a sample (md5:ffcf2bb69f23c7c234d2f2ee380cdaa4)
created in 2012, the master key is generated locally in the compromised computer
and can be extracted by looking into the memory. The use of RSA keys with dif-
ferent key length in Cryptolocker was previously reported [30], but at the time
of writing, we observed only samples with 1024-bit RSA public key in our data sets.
The RSA public key is generated remotely on the C&C server once the compromised
computer successfully sends a POST request to C&C servers. If the sample cannot
connect to C&C servers, the malicious behavior is not triggered. The sample md5:
04fb36199787f2e3e2135611a38321eb only encrypted users’ files in logical
drives introduced in the system. An evolution in this family is the encryption of con-
nected drives. The sample (md5:f1e2de2a9135138ef5b15093612dd813) en-
crypts all non-system files including network shares to minimize the possibility of re-
covering files without paying the ransom. These ransomware samples simply employ
GetLogicalDrives, GetDriveType or similar functions to find network drives.

Deletion Mechanisms In this part, we specifically discuss file deletion mechanisms
that are unique to ransomware attacks. 35.6% of samples among five common ran-
somware families do not perform any encryption mechanisms. Instead, they delete the
user’s files if the user does not pay the ransom. On the other hand, we observed that cer-

md5:ffcf2bb69f23c7c234d2f2ee380cdaa4
md5:04fb36199787f2e3e2135611a38321eb
md5:04fb36199787f2e3e2135611a38321eb
md5: f1e2de2a9135138ef5b15093612dd813
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Infected 
Process
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 File 
Object

Handle 
Table

SetFilePointerEx   to the 
beginning of the file

Overwriting the original file’s data with custom data 
pattern after encryption

Fig. 1: The malicious process attempts to get the file map on the physical disk in order to overwrite
the file’s data after the encryption.

Table 4: A set of IRP requests generated on behalf of a malicious process to delete files during an
attack. The process simply searches the directory, creates a handle to files and deletes them via
IRP MJ SET INFORMATION.

Process Name Operation Path Result
mal.exe IRP MJ DIRECTORY CONTROL E:\* SUCCESS

mal.exe IRP MJ CLEANUP E:\ SUCCESS

mal.exe IRP MJ CLOSE E:\ SUCCESS

mal.exe IRP MJ CREATE E:\ SUCCESS

mal.exe IRP MJ DIRECTORY CONTROL E:\MySubmissions\* SUCCESS

mal.exe IRP MJ CLEANUP E:\MySubmissions\ SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\ SUCCESS

mal.exe IRP MJ CREATE E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ DIRECTORY CONTROL E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ SET INFORMATION E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLEANUP E:\MySubmissions\dimva2015-submission.tex SUCCESS

mal.exe IRP MJ CLOSE E:\MySubmissions\dimva2015-submission.tex SUCCESS

tain samples in Gpcode and Filecoder families deleted the original unencrypted
file’s data after the encryption occurred. Consequently, deletion operation is a common
task among multiple ransomware families in our data set. Table 4 shows a sequence of
IRPs collected while running a sample from the Filecoder family. The malicious
process uses the IRP MJ DIRECTORY CONTROL function to list the files and then re-
quests to open the file via a Win32 CreateFile. Any create requests are performed
by IRP MJ CREATE function which returns a handle to the file objects. Finally, the file
is deleted by IRP MJ SET INFORMATION when the file is closed. We observed very
similar approaches in other families such as Gpcode, Reveton and Urausy in spite
of differences in other aspects of the attacks.

In the NTFS file system, each file has an entry in the Master File Table (MFT) that
reflects the changes of the corresponding file or folder [10]. The core file’s attributes in
each MFT entry can be found in the $STANDARD INFORMATION attribute, and the
$DATA attribute that contains the content of the corresponding file. The content of the
$DATA attribute could be resident or non-resident in the MFT entry depending on the
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Fig. 2: Disk layout for files with different sizes in NTFS file system. The content of large files is
defined as Non-resident $DATA and is managed by a runlist attribute in each MFT entry. During
a ransomware attack, the clusters are deallocated and the status of the file is changed.

size of a file. Figure 2 shows the disk layout for files with different sizes in the NTFS
file system. The status of a file is determined by both a flag and a $BITMAP in an MFT
entry. $BITMAP manages the information about allocation status of clusters within the
disk.

When a ransomware attack occurs, the malware lists the non-system files and initiates
a delete operation for each of them. The MFT entry for each file is updated by changing
the status flag value of the file from 0x01 to 0x00. Furthermore, the $BITMAP at-
tribute in MFT file is set to zero for the corresponding file. For large files, since multiple
clusters might be allocated, the location of fragmented data is saved in the runlist in
the header of MFT entry. When the file is deleted, the clusters that are used to keep the
file’s data are set to unallocated in $BITMAP attribute in the MFT file. Consequently,
when a file is deleted in a typical ransomware attack, the MFT entry is updated, but
the content of the file is not deleted immediately. Therefore, our analysis suggests that
we can detect ransomware attacks that target users’ files based on the changes in the
MFT table and also recover the content associated with the deleted files due to the en-
gineering of the NTFS file system. Finally, Figure 3 shows the delete operation from
a different perspective- when the malicious process tries to delete a large file that is
fragmented among multiple clusters.

Changing Master Boot Records One of the ransomware families (Seftad) was
developed to attack the Master Boot Records (MBR) which contains the executable
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Fig. 3: A ransomware attack(Gpcode) with a simple delete operation. The clusters used to keep
the file $data are deallocated in an MFT entry.

boot code and the partition table. The MBR is located on the first sector of a hard
disk, and it is loaded into memory at boot time when the system transfer control to the
code stored in the MBR. Samples that target the MBR prevent the infected system from
loading the boot code in the active partition by simply replacing it with a bogus MBR
that displays a message asking for a ransom. Defeating this type of ransomware attack
is quite simple. For example, in early samples, the unlock code was hard-coded into
the binary and could be acquired by reverse engineering. Following this procedure, we
discovered the unlock code in 18 Seftad samples in our data set.

Locking Procedure An important step in a successful ransomware attack is to lock
the desktop of the computer under attack. This is typically done by creating a new
desktop and making it persistent. Ransomware samples simply use CreateDesktop
to create a fresh desktop environment and eliminate unnecessary processes. The new
desktop is created via a DESKTOP SWITCHDESKTOP access mode that enables the
SwitchDesktop function to activate the new desktop and receive input from the
victim. The desktop is assigned to a thread using the SetThreadDesktop function.
A significant number of samples in our data set (61.22%) use very similar approaches
to establish a persistent desktop lock.

A small number of samples (8 variants) in families like Urausy, Reveton, and
Winlock employed another approach to lock the desktop. In these families, the lock
banner is simply downloaded as a HTML page with corresponding images based on the
victim’s geographical location and it is then displayed in full screen in a IE window
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with hidden controls. The banner plays a local law enforcement warning in the language
used in the victim’s geographical location. The warning typically says that the operating
system is locked due to infringement against certain laws (e.g., distributing copyrighted
materials or visiting child pornography sites) in that location.

Disabling certain keyboard shortcuts such as toggling (e.g., Windows key + Tab)
is automatically done once a new desktop is created because no other applications are
open to toggle through. However, disabling special keys is another part of the lock-
ing procedure. This is done by installing hook procedures that monitor keyboard input
events. The number of disabled keys was different in different ransomware families. For
example, 18 variants in Reveton and Urausy disabled Windows keys to prevent the
victims from entering the start menu and 72 variants among 15 families attempted to
disable the Esc Key to prevent the victims from using keyboard shortcuts (e.g., starting
Windows Task Manager) during the attack.

3.2 Mitigation Strategies

API Call Monitoring As discussed in Section 3.1, a significant number of ransomware
samples use Windows API functions to lock the victim’s desktop. Those API calls can
be used to model the application behavior and train a classifier to detect suspicious se-
quence of Windows API calls. This approach is not necessarily novel, but it would allow
us to stop a large number of ransomware attacks that are produced with little technical
efforts. For example, a sequence of GetThreadDesktop, CreateDesktopW and
SwitchDesktop functions can be converted to a sequence of API calls. Of course,
cybercriminals might be able to evade detection using different techniques. For exam-
ple, they may use native APIs to directly lock the system under the attack. However, the
implementation of such ransomware samples requires significant work since the native
APIs are not properly documented and may change among different versions, which
can limit the portability of the attack.

Monitoring File System Activity Our analysis also suggests that it is possible to detect
ransomware attacks – even the ones using deletion and encryption capabilities – based
on our findings in Section 3.1. Our analysis shows that significant changes occur in
the file system activities (e.g., a large number of similar encryption, deletion requests)
when the system is under a ransomware attacks. By closely monitor the MFT table, one
can detect the creation, encryption or deletion of files. For example, when the system
is under a ransomware attack, a significant number of status changes occur in a very
short period of time in MFT entries of the deleted files. For encrypted files, we notice
a large number of MFT entries with encrypted content in the $DATA attribute of files
that do not share the same path (e.g., files within a directory). In our definition, a ma-
licious MFT entry is a MFT entry that is generated or modified in a system under a
ransomware attack. A classifier can be trained on benign and malicious MFT entries to
detect abnormal file system activities when the system is under an attack.

In order to distinguish between benign and malicious file system activity, another
possible approach consists of monitoring all the file system requests that user-mode
processes generate. A system with protection capabilities can intercept all the requests
and discard the suspicious requests before they reach the file system driver.
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Recovering the deleted files from the ransomware attacks would also be possible. If
the $DATA attribute is resident in the MFT entry, the content of the file can be simply
copied to another location. For non-resident $DATA attributes, we need to parse the
RunList in the MFT entry and copy the raw data to another location and perform
the recovery. In any case, early detection of the attack is critical in order to successfully
recover the content of deleted files, since the deallocated clusters can be allocated to new
files and the content of the deleted file will be overwritten. This approach can be applied
to most of the ransomware samples with either customized or standard cryptosystems
since the file level activity is a common characteristic of ransomware samples that target
users’ files.

Using Decoy Resources The attack strategies adopted to encrypt or delete the user files
are very similar among ransomware families. For example, the malicious process ag-
gressively attacks all files (in different paths, and with different extensions) and tries to
encrypt and/or delete them in a very short period of time. Therefore, defining a file sys-
tem activity model that reflects the normal interaction with the file system is possible.
However, cybercriminals could try to evade detection by launching attacks while mim-
icking a normal user behavior. For example, a cybercriminal may avoid aggressively en-
crypting all files and starts by encrypting files with recent access or modification time.
Approaches like this might not be detected by approaches that monitor the behavior of
the system. However, one technique to detect these attacks could be to install decoy
files in multiple locations of the disk that are constantly monitored. The use of decoy
resources to detect security breaches and insider attacks was first proposed in [9,40].
Decoy resources have also been recently used to improve the security of hashed pass-
words [20] and to detect illegally obtained data from file hosting services [28].

In our definition, monitoring decoy files can be an additional layer of defense on
the top of file system activity monitoring to detect ransomware attacks. The decoy files
should be indexed at multiple places in the user environment and should be generated
in a way that is computationally difficult for an adversary to discern them. This ap-
proach can increase the chance of detecting the malicious process in early stages of
the attacks regardless of the fact that the ransomware sample uses novel strategies or
customized/standard cryptosystems.

4 Financial Incentives

Since the ultimate goal of ransomware attacks is to get money from victims, the pay-
ment method is an important aspect of the attacks. Cybercriminals continuously strive
to find more reliable charging methods by improving two important properties: (1) the
difficulty of tracing the recipient of the payments, and (2) the ease of exchanging pay-
ments into a preferred currency. Table 5 provides a breakdown of the charging methods
used by ransomware families over the past years. Our analysis suggests that sending
SMS to premium numbers is not necessarily used in old types of ransomware attacks.
For example, the charging method in Calelk is still based on using premium num-
bers. The premium rate numbers were hard-coded in the ransomware sample or were
downloaded from the C&C servers in each infection. This class of ransomware attacks
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Table 5: Summary of types of charges in 15 ransomware families.
Families Type of Charge

Premium
Number

Untraceable
Payments

Online
Shopping

Bitcoin
Transactions

Reveton X X
Cryptolocker X X
CryptoWall X
Tobfy X
Seftad X
Winlock
Loktrom X
Calelk X
Urausy X X
Krotten X
BlueScreen X
kovter X X
Filecoder X
GPcode X
Weelsof X
Number of Samples 132 (9.71%) 1,199 (88.22%) 14(1.03%) 28 (2.86%)
Number of Variants 18 (19.35%) 75 (80.64%) 4 (4.30%) 4 (4.3%)

requires the least amount of technical background and when propagated in a large scale
the revenue could be significant.

A large fraction of ransomware samples (88.22%) used prepaid online payment sys-
tems such as Moneypak, Paysafecard, and Ukash cards, since they provide limited pos-
sibilities to trace the money. These services are not tied to any banking authority and
the owner of the money is anonymous. The ransomware business model takes advan-
tage of these systems since there are no records of the vouchers to trace cybercriminals.
In a typical scenario, once a ransomware criminal receives the vouchers, in order to
monetize them, he can sell vouchers in underground voucher exchange forums, ICQ, or
other untraceable communication channels for a lower price than the nominal value of
the vouchers. We also found some unconventional methods used for charging victims.
We found two variants of Kevtor family that forced users to buy a software package
which unlocked the compromised computer. Figure 4 represents the amount charged per
family based on our data set. The amount of money required by ransomware owners to
unlock the computer changes based on variants and families. For examples, 48.43% of
samples among top six families demanded between 150 to 250 dollars.

4.1 Bitcoin as a Charging Method

Bitcoin provides some unique technical and privacy advantages for miscreants behind
ransomware attacks. Bitcoin transactions are cryptographically signed messages that
embody a fund transfer from one public key to another and only the corresponding
private key can be used to authorize the fund transfer. Furthermore, Bitcoin keys are
not explicitly tied to real users, although all transactions are public. Consequently, ran-
somware owners can protect their anonymity and avoid revealing any information that
might be used for tracing them.

We performed an analysis of the use of Bitcoins in recent ransomware attacks where
victims had to buy Bitcoins in order to access their resources. We acquired the Bitcoin
addresses by searching the web as well as public forums [31] that conducted discus-
sions on Cryptolocker attacks. Victims typically participated in the discussions



15

Reveton Cryptolocker Winlock Weelsof Uraust
Top Ransomware Families

0

100

200

300

400

500

600

Am
ou

nt
 o

f R
an

so
m

 re
qu

es
te

d 
pe

r F
am

ily

Fig. 4: The amount of ransom money among common ransomware families. Around 89.2% of
Cryptolocker victims paid more than 100 dollars. One reason is the significant increase in the
value of Bitcoin between mid-September and mid-November. We observed more changes in the
amount of requested ransom in Cryptolocker probably due to low stability in Bitcoin exchange
rates.
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(a) The number of Bitcoins per address.
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(b) The total number of transactions per Bitcoin
address

Fig. 5: 20.1% of Bitcoin addresses received no more than one Bitcoin probably because victims
were charged less due to a dramatic increase of Bitcoin value in late November 2013. Further-
more, approximately 73% of Bitcoin addresses had only two transactions. The incoming trans-
action is made by victims to pay the ransom and the outgoing transaction is performed by the
ransomware owner to send the Bitcoin to another addresses in order to make tracing infeasible.

by posting information about their infection and the Bitcoin addresses to which they
were required to send the ransom. We collected 1,872 Bitcoin addresses during the ex-
periments. We automatically queried the transactions from publicly accessible Bitcoin
block explorer websites [8] and parsed the results into a database.

The number of Bitcoins collected by cybercriminals during Cryptolocker attack
is previously reported [35]. Our main focus in this part is to provide insights into how
cybercriminals employed Bitcoin to collect the ransom fee based on the transactions
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history. One of the questions we wanted to answer was whether it is possible to de-
tect illicitly-gained Bitcoins based on the transaction history of a Bitcoin address. Our
analysis suggests that identifying these Bitcoins is getting significantly difficult since
cybercriminals have started to use evasive approaches to protect their privacy (e.g., mul-
tiple independent Bitcoin addresses, small Bitcoin amounts, short activity period, small
transaction records) after receiving large volumes of Bitcoins from victims. One reason
to use multiple independent addresses with small Bitcoin amounts could be that con-
cealing the source of thousands of illicitly-obtained Bitcoins is a critical task if cyber-
criminals want to transfer the Bitcoins via recognized exchanges without being noticed.
In fact, this is the main evolution in employing Bitcoin in ransomware attacks to make
the potential tracing procedures more difficult in the Bitcoin network.

Our analysis on Bitcoin transactions shows that 84.46% of Bitcoin addresses had no
more than six transactions. Furthermore, a significant fraction of these Bitcoin addresses
(68.93%) were active for at most 10 days. These addresses were directly used to receive
Bitcoins from victims. Another type of addresses had more transactions and were active
for a longer period of time (e.g., more than 10 days). These addresses were used to
aggregate the collected ransom fees. Figure 5(a) shows the CDF of number of Bitcoin
per Bitcoin address. In 48.9% of Bitcoin addresses that we analyzed, a Bitcoin address
received at most two Bitcoins. These transactions have occurred in early steps of the
attacks when two Bitcoins were worth roughly 200 dollars equal to the ransom fee
required by cybercriminals to send the decryption key.

As shown in Figure 5(b), approximately 72.9% of Bitcoin transactions belong to
Bitcoin addresses with two transactions. The incoming transaction was made by victims
to pay the ransom and, the outgoing transaction was performed by cybercriminals. The
collected Bitcoins were transferred through tens of temporary intermediate accounts
or split into many small amounts in order to be recombined in a new account later to
decrease possibilities of tracing the money.
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Fig. 6: The duration of activity for Bitcoin addresses. Approximately 50% of Bitcoin addresses
have zero to five days of active life.
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As provided in Figure 6, our observation also suggests that Bitcoin addresses that
were used to collect Bitcoins from victims have a relatively short duration of activity.
This is due to the fact that the accumulated Bitcoins had to be transferred to other
accounts within a few hours or a few days probably to use mix services and conceal the
source of the money.

5 Related Work

Ransomware and Underground Economy Various security vendors have reported
the threat potential of ransomware attacks based on the number of infections that they
observed [6,29,37]. The use of cryptography to mount extortion based attacks was first
introduced in [38]. Employing Microsoft Cryptographic API (MS CAPI) calls to design
cryptovirus samples was presented by Young [39]. Young demonstrated how to use MS
CAPI to generate keys and encrypt the user’s data.

The first step to analyze specific ransomware families was made by Gazet by ana-
lyzing three primitive ransomware families [18]. He concluded that while these early
families were designed for massive propagation, they did not fulfill the basic require-
ments (e.g., sufficiently long encryption keys) for mass extortion.

The presence of scareware as rogue security software has been also studied over the
past few years. Stone-Gross et al. performed an analysis of underground economy of
fake antivirus software. They built an economic model that showed how cybercriminals
performed refunds and chargebacks in order to conceal their criminal nature for a longer
period of time [36]. Cova et al. provided an analysis of fake antivirus structure and
measured the number of victims and the profits gained based on the web servers used
by several fake antivirus groups [13].

Bitcoin Privacy Bitcoin has also recently received considerable interest regarding
the security and anonymity in security research. Meiklejohn et al. developed a clus-
tering heuristic that was used to cluster Bitcoin addresses belonging to a particular
user [24]. They discussed the potential anonymity in the Bitcoin protocol and the ac-
tual anonymity achieved by users. Reid et al. constructed two graphs based on publicly
available transaction history [17]. They used the properties of these graphs to illustrate
how information leakage can be used to de-anonymize the system’s users. Using this
technique, they described the flow of stolen money from MyBitcoin. Recently, Ron et
al. performed an analysis over the user graph and provided an in-depth analysis of the
largest transactions in Bitcoin history [32]. In another work, Möser performed an analy-
sis of the anonymity and transaction graph of three Bitcoin mix services. He found that
all the three Bitcoin mix services had a distinct transaction graph pattern, but some of
them were more successful than others [27]. In order to characterize the popularity of
illicit goods, Christin performed an analysis by extracting data from Silk Road market-
place [11]. Although the work does not examine the Bitcoin block chain, it provides an
estimation of the market value of such transactions.

A closer and concurrent work to our interest was performed by Spagnuolo et al. that
parsed the blockchain and clustered the Bitcoin addresses that were likely to belong
to certain users or groups [35]. They labeled the users based on the information that
was scraped from openly available resources. They were able to label Bitcoin addresses



18

on real-world cases such as Silk Road and Cryptolocker ransomware. We also used
public repositories to extract Bitcoin addresses that belong to cybercriminals behind
ransomware attacks. However, unlike Stagnuolo et al. work [35], our goal is to charac-
terize the Bitcoin addresses used for malicious intents based on the transaction history
rather than de-anonymizing the Bitcoin users.

6 Conclusion

In this paper, we performed a long-term analysis of ransomware families with a special
focus on their destructive functionality. The characterization of ransomware attacks was
based on 1,359 ransomware samples among 15 families that have emerged over the last
few years. Our results show that a significant number of ransomware families share very
similar characteristics in the core part of the attacks, but still lack reliable destructive
functions to successfully target victims’ files.

We also describe how a malicious process interacts with the file system when a com-
promised computer is under a ransomware attack. We observed that suspicious file sys-
tem activity of multiple types of destructive ransomware families can be reliably moni-
tored. When looking at the execution traces of the malware programs, we observed that
the way malicious processes generate requests to access file system was significantly
different from benign processes. We also observed that different classes of ransomware
attacks with multiple levels of sophistication share very similar characteristics from file
system perspective due to the nature of these attacks. Unlike recent discussions in se-
curity community about ransomware attacks, our analysis suggests that implementing
practical defense mechanisms is still possible, if we effectively monitor the file system
activity for example the changes in Master File Table (MFT) or the types of I/O Request
Packets (IRP) generated on behalf of processes to access the file system. We propose a
general methodology that allow us to detect a significant number of ransomware attacks
without making any assumptions on how samples attack users’ files.

7 Acknowledgements

This work is supported by the National Science Foundation (NSF) under grant CNS-
1116777, and Secure Business Austria.

References

1. Minotaur Analysis - Malware Repository. minotauranalysis.com.
2. VX Vault - Online Repository of Malware Samples. vxvault.siri-urz.net.
3. Malware Tips - Your Security Advisor. http://malwaretips.com/forums/

virus-exchange.104/.
4. MalwareBlackList - Online Repository of Malicious URLs. http://www.

malwareblacklist.com.
5. Police ransomware threat assessment. Europol Public Information, 2014.
6. AJJAN, A. Ransomware: Next-Generation Fake Antivirus. http://

www.sophos.com/en-us/medialibrary/PDFs/technicalpapers/
SophosRansomwareFakeAntivirus.pdf, 2013.

minotauranalysis.com
vxvault.siri-urz.net
http://malwaretips.com/forums/virus-exchange.104/
http://malwaretips.com/forums/virus-exchange.104/
http://www.malwareblacklist.com
http://www.malwareblacklist.com
http://www.sophos.com/en-us/medialibrary/PDFs/technical papers/SophosRansomwareFakeAntivirus.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/technical papers/SophosRansomwareFakeAntivirus.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/technical papers/SophosRansomwareFakeAntivirus.pdf


19

7. BAYER, U., KRUEGEL, C., AND KIRDA, E. TTAnalyze: A Tool for Analyzing Malware. In
Proceedings of the European Institute for Computer Antivirus Research Annual Conference
(April 2006).

8. BLOCKCHAIN.INFO. Bitcoin Block Explorer. https://blockchain.info.
9. BOWEN, B. M., HERSHKOP, S., KEROMYTIS, A. D., AND STOLFO, S. J. Baiting inside

attackers using decoy documents. Springer, 2009.
10. CARRIER, B. File System Forensic Analysis. Addison-Wesley Professional, 2005.
11. CHRISTIN, N. Traveling the silk road: A measurement analysis of a large anonymous online

marketplace. In Proceedings of WWW 2013 (May 2013).
12. CISCO, INC. Ransomware on Steroids: Cryptowall 2.0. http://blogs.cisco.com/

security/talos/cryptowall-2, 2015.
13. COVA, M., LEITA, C., THONNARD, O., KEROMYTIS, A. D., AND DACIER, M. An Anal-

ysis of Rogue AV Campaigns. In Proceedings of the International Conference on Recent
Advances in Intrusion Detection (2010), pp. 442–463.

14. CUCKOO FOUNDATION. Cuckoo Sandbox: Automated Malware Analysis. www.
cuckoosandbox.org, 2014.

15. DELL SECUREWORKS. Cryptolocker Ransomware. http://www.
secureworks.com/cyber-threat-intelligence/threats/
cryptolocker-ransomware/, 2014.

16. DONOHUE, B. Reveton Ransomware Adds Pass-
word Purloining Function. http://threatpost.com/
reveton-ransomeware-adds-password-purloining-\function/
100712, 2013.

17. FERGAL, R., AND MARTIN, H. An analysis of anonymity in the bitcoin system. In Security
and Privacy in Social Networks (2012).

18. GAZET, A. Comparative analysis of various ransomware virii. Journal in Computer Virology
6, 1 (February 2010), 77–90.

19. HOGLUND, G., AND BUTLER, J. Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional, 2005.

20. JUELS, A., AND RIVEST, R. L. Honeywords: Making password-cracking detectable. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security
(2013), ACM, pp. 145–160.

21. KREBS, B. Inside a Reveton Ransomware Operation. http://krebsonsecurity.
com/2012/08/inside-a-reveton-ransomware-operation/, 2012.

22. LANZI, A., BALZAROTTI, D., KRUEGEL, C., CHRISTODORESCU, M., AND KIRDA, E.
Accessminer: Using system-centric models for malware protection. In Proceedings of the
17th ACM Conference on Computer and Communications Security (2010), CCS ’10, ACM,
pp. 399–412.

23. MALWARE DON’T NEED COFFEE. Guess who’s back again ? Cryp-
towall 3.0. http://malware.dontneedcoffee.com/2015/01/
guess-whos-back-again-cryptowall-30.html, 2015.

24. MEIKLEJOHN, S., POMAROLE, M., JORDAN, G., LEVCHENKO, K., MCCOY, D.,
VOELKER, G. M., AND SAVAGE, S. A fistful of bitcoins: Characterizing payments among
men with no names. In Proceedings of the 2013 Conference on Internet Measurement Con-
ference (2013), IMC ’13, pp. 127–140.

25. MICROSOFT, INC. Microsoft Security Intelegence Report Vol. 16. http://www.
microsoft.com/security/sir/default.aspx, 2013.

26. MICROSOFT, INC. File System Minifilter Drivers. https://msdn.microsoft.com/
en-us/library/windows/hardware/ff540402%28v=vs.85%29.aspx,
2014.

https://blockchain.info
http://blogs.cisco.com/security/talos/cryptowall-2
http://blogs.cisco.com/security/talos/cryptowall-2
www.cuckoosandbox.org
www.cuckoosandbox.org
http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolocker-ransomware/
http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolocker-ransomware/
http://www.secureworks.com/cyber-threat-intelligence/threats/cryptolocker-ransomware/
http://threatpost.com/reveton-ransomeware-adds-password-purloining-\function/100712
http://threatpost.com/reveton-ransomeware-adds-password-purloining-\function/100712
http://threatpost.com/reveton-ransomeware-adds-password-purloining-\function/100712
http://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
http://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
http://malware.dontneedcoffee.com/2015/01/guess-whos-back-again-cryptowall-30.html
http://malware.dontneedcoffee.com/2015/01/guess-whos-back-again-cryptowall-30.html
http://www.microsoft.com/security/sir/default.aspx
http://www.microsoft.com/security/sir/default.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff540402%28v=vs.85%29.aspx


20
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