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Abstract—We address the problem of noise and interference
corrupted channel estimation in massive MIMO systems. Inter-
ference, which originates from pilot reuse (or contamination),
can in principle be discriminated from the desired channels upon
observing the distributions of path angles and amplitudes. In this
paper we propose novel robust channel estimation algorithms
exploiting path diversity in both angle and amplitude domains,
relying on a suitable combination of a subspace projection and
MMSE estimation. The proposed estimator improves on past
methods in a wide range of system and topology scenarios.

I. INTRODUCTION

Massive MIMO networks, introduced in [1], are widely
believed to be one of the key enablers of the future 5th
generation (5G) wireless systems thanks to their potential to
substantially enhance spectral and energy efficiencies in ideal
setups [1], [2]. However, already in [1], [2], the residual error
in channel estimation due to the unavoidable reuse of identical
training sequences by user terminals in different cells was
identified as a limiting factor to cancel interference in mas-
sive MIMO networks. This effect, called pilot contamination
[3], [4], has a significant detrimental impact on the actual
achievable spectral and energy efficiencies in real systems.
The challenge of significantly reducing the gap between ideal
and practical systems triggered considerable research activities
in this area.

Techniques to avoid and/or mitigate channel contamination
span from design of pilot reuse schemes (e.g. [5], [6]) to
channel estimation techniques based on coordinated training
sequence allocation (e.g. [7], [8]), to multi-cell joint processing
(e.g. [9]), to nonlinear channel estimation techniques leverag-
ing on some fundamental features of massive MIMO systems
(e.g. [7], [10], [11]).

Without seeking to provide a comprehensive overview of
these manifold research directions, we capitalize on the key
properties of massive MIMO systems to substantially mitigate
pilot contamination by channel estimation techniques, while
keeping in mind that further improvements could be attained
via overlaying coordinated pilot sequence allocation.

The key features of massive MIMO channels are the facts
that channels of different users tend to be pairwise orthogonal

when the number of antennas increases and the low-rankness
of the channel covariance matrices pointed out in [7], [12].
The blind signal subspace estimation in [11] capitalizes on the
former property. The latter property, has been utilized in [7],
[12]–[15] assuming the complete knowledge of the channel
covariance matrices.

More specifically, in [11], [16] power control and power
controlled handover guarantee that the signals of the users of
interest in a cell are received with higher powers compared
to the interference. This property along with the pairwise
channel orthogonality allow to blindly estimate the user-of-
interest channel subspace and discriminate between user-of
interest signals and interference based on the channel powers.
Thus, it is possible to remove the pilot contamination effects
based on a projection driven by the channel amplitudes. A
limitation of this approach however is met for edge-of-cell
users when it is hard to distinguish within-cell from out-of-
cell users based on received amplitude alone and in the face
of finite-sample constraints.

In a way completely independent from [11], [16], another
approach based on a linear minimum mean square error
(MMSE) estimator is adopted in [7] to estimate the chan-
nel of interest via projection of the received signals onto
the user-of-interest subspace. This subspace, identified by a
channel covariance matrix (a long-term one, as opposed to
the instantaneous signal correlation matrix of [11], [16]), is
related to the angular spread of the signal of interest [7] and
enables to annihilate the interference from users with non-
overlapping domains of multipath angles-of-arrival (AoA).
Interestingly, this latter approach makes no assumption on
received signal amplitudes and can also discriminate users
that are received with similar powers. Yet, the approach fails
to decontaminate pilots when propagation scattering creates
large angle spread, causing spatial overlap among desired and
interference channels.

In summary the former method [11], [16] annihilates the
interference based on projections driven by the channel am-
plitudes while the latter [7] performs projections driven by
the angular spread of the channel of interest. In this paper, we
point out that the strengths of these two previously unrelated



estimation methods are strongly complementary, offering a
unique opportunity for developing a robust channel estimation
scheme.

Thus, we aim to properly merge the two projections in
complementary domains keeping the individual benefits while
exploiting potential synergies. This is done in this paper
by proposing two novel schemes exploiting the asymptotic
properties of massive MIMO arrays. Thus, we propose a first
scheme that effectively combines projections in the angular
and amplitude domains and outperforms considerably over
known schemes. On the light of the previous observations, it
is apparent the interest of exploiting the low-rankness of user
channels also without knowledge of the channel covariance
matrices and possibly based on observations of a single or few
coherence time intervals. Then, we propose a second method
suitable for terminals moving at vehicular speed. Numerical
analysis shows that high performance at relatively high speed
is achieved at the price of a larger number of antennas.

II. SIGNAL AND CHANNEL MODELS

We consider a network of L time-synchronized cells, with
full spectrum reuse. Each base station is equipped with M
antennas. There are K single-antenna users in each cell simul-
taneously served by their base station. The cellular network
operates in time-division duplexing (TDD) mode, and due
to channel reciprocity, the downlink channel is obtained by
uplink training. Each base station estimates the channels of its
K users during a coherence time interval. The pilot sequences
inside each cell are assumed orthogonal to each other in order
to avoid intra-cell interference. However the same pilot pool
is reused in other cells, giving rise to pilot contamination
problem. The pilot sequence assigned to the k-th user in a
certain cell is denoted by

sk = [ sk1 sk2 · · · skτ ]T , (1)

where τ is the length of pilot. Without loss of generality we
assume unitary average power of pilot symbols, i.e.,

sTk1
s∗k2

=

{
0, k1 �= k2,
τ, k1 = k2,

The channel vector between the k-th user located in the l-th
cell and the j-th base station is denoted by h

(j)
lk . The following

multipath channel model is adopted:

h
(j)
lk = β

(j)
lk

B∑
b=1

a(θ
(j)
lkb)e

iϕ
(j)
lkb , (2)

where B is the arbitrary number of i.i.d. paths, and eiϕ
(j)
lkb is

the i.i.d. random phase, which is independent over channel
indices l, k, j, and path index b. a(θ) is the steering (or phase
response) vector by the array to a path originating from the
angle of arrival θ. β(j)

lk is the path-loss coefficient

β
(j)
lk =

√
α

d
(j)
lk

γ , (3)

in which γ is the path-loss exponent, d(j)lk is the geographical
distance between the user and the j-th base station, and α is
a constant.

We define

H
(j)
l � [h

(j)
l1 |h(j)

l2 | · · · |h(j)
lK ], (4)

and the pilot matrix

S �
[
s1| s2| · · · | sK

]T
. (5)

We assume that power control is adopted and the transmitted
symbols of user k in cell l are amplified by a factor

√
Plk

such that the average received power of the target base station
l is MP = Plk‖h(l)

lk ‖2, where P is a constant common to all
users in all cells.

During the training phase, the received signal at the base
station j is

Y(j) =
L∑

l=1

H
(j)
l AlS+N(j), (6)

where N(j) ∈ C
M×τ is the spatially and temporally white

additive Gaussian noise (AWGN) with zero-mean and element-
wise variance σ2

n, and

Al = diag{
√

Pl1,
√

Pl2, ...,
√

PlK}. (7)

Then, during the uplink data transmission phase, each user
transmits C data symbols.

W(j) =
L∑

l=1

H
(j)
l AlXl + Z(j), (8)

where Xl ∈ C
K×C is the matrix of transmitted symbols of

all users in the l-th cell. The symbols are i.i.d. with zero-
mean and unit average element-wise variance. Z(j) ∈ C

M×C

is the AWGN noise with zero-mean and element-wise variance
σ2
n. Note that the block fading channel is constant during the

transmission for the τ pilot symbols and the C data symbols.
For ease of exposition, we define an equivalent channel

vector h̃
(j)
lk �

√
Plkh

(j)
lk , and the matrix H̃

(j)
l � H

(j)
l Al. In

the following we will study different estimation methods of
such equivalent channels of interest.

III. MMSE CHANNEL ESTIMATION

We briefly recall the MMSE channel estimator in a multi-
cell multi-user setting. We rewrite (6) in a vectorized form,

y(j) = S
L∑

l=1

h̃
(j)
l + n(j), (9)

where y(j) = vec(Y(j)), n(j) = vec(N(j)), and h̃
(j)
l =

vec(H̃
(j)
l ). The pilot matrix S is given by

S � ST ⊗ IM =
[
s1 ⊗ IM · · · sK ⊗ IM

]
. (10)

We define the covariance matrices R̃
(j)
lk � E{h̃(j)

lk h̃
(j)H
lk } ∈

C
M×M , and R̃

(j)
l � E{h̃(j)

l h̃
(j)H
l } ∈ C

MK×MK . By assum-
ing that the channel vectors of different users are mutually



uncorrelated, which is also valid for our channel model (2),
we may obtain

R̃
(j)
l = diag{R̃(j)

l1 , ..., R̃
(j)
lK}. (11)

A linear MMSE estimator for h(j)
j is given by

̂̃
h
(j)MMSE

j = R̃
(j)
j S

H

(
S(

L∑
l=1

R̃
(j)
l )S

H
+ σ2

nIτM

)−1

y(j),

= R̃
(j)
j

(
τ(

L∑
l=1

R̃
(j)
l ) + σ2

nIKM

)−1

S
H
y(j).(12)

As shown in our previous works [7], [13], the above MMSE
estimator can fully eliminate the effects of interfering channels
when M → ∞, under the condition that the multipath AoAs
of interference and desired channels have disjoint angular
supports.

IV. AMPLITUDE BASED PROJECTION

We now briefly review the method in [11], [16]. The
eigenvalue decomposition (EVD) of W(j)W(j)H is written
as

W(j)W(j)H = U(j)Λ(j)U(j)H , (13)

where U(j) ∈ C
M×M = [u

(j)
1 |u(j)

2 | · · · |u(j)
M ] is a unitary

matrix and Λ(j) = diag{λ(j)
1 , · · · , λ(j)

M } with its diagonal
entries sorted in a non-increasing order. By extracting the first
K columns of U(j), i.e., the eigenvectors corresponding to the
strongest K eigenvalues, we obtain an orthogonal basis

E(j) � [u
(j)
1 |u(j)

2 | · · · |u(j)
K ] ∈ C

M×K . (14)

The basic idea in [11], [16] is to use the orthogonal basis
E(j) as an estimate for a basis of the channel subspace H̃

(j)
j ,

which includes all desired user channels in cell j. Then, by
projecting the received signal onto the subspace spanned by
E(j), most of the signal of interest is preserved. In contrast,
the interference signal is canceled out thanks to the asymptotic
property that the user channels are pairwise orthogonal as the
number of antennas tends to infinity. Thus after the amplitude
based projection, the estimate of H̃(j)

j is given by:

̂̃
H

(j)AM

j =
1

τ
E(j)E(j)HY(j)SH , (15)

̂̃
h
(j)AM

j = vec(
̂̃
H

(j)AM

j ), (16)

where “AM” means amplitude. Note that this method works
well when the desired channels and interference channels
are separable in power domain, i.e., the instant powers of
any desired channels are higher than that of any interference
channels. In practice however, this assumption is idealized. In
order to improve the robustness of amplitude-based projection
in the presence of strong interference, we propose to take the
first κ(j) eigenvectors in U(j) to form E(j), where κ(j) is the
number of eigenvalues in Λ(j) that are greater than μλ

(j)
K . μ

is a design parameter that satisfies 0 ≤ μ < 1. In section VII
we let μ = 0.2.

V. ANGULAR AND AMPLITUDE BASED PROJECTION

The non-overlapping angular support condition enables the
MMSE estimate (12) to converge to interference-free scenario.
In practice this assumption is challenged by various scattering
environments. When the AoAs have overlapping support, the
interference persists and the MMSE estimate suffers from
pilot contamination. We hereby propose to project the estimate
onto the subspace given by E(j) obtained in section IV. The
modified estimator is given by:

̂̃
h
(j)AA

j = E
(j)

E
(j)H

R̃
(j)
j

(
τ(

L∑
l=1

R̃
(j)
l ) + σ2

nIKM

)−1

S
H
y(j),

(17)
where E

(j) � IK ⊗ E(j). The superscript “AA” denotes
Angular and Amplitude domain decontamination. In the case
of overlapping angular support, this approach eliminates a
large amount of interference and noise, as long as there exists
a non-negligible power gap between signal of interest and
interference. On the other hand, when the power gap is too
small (e.g., for the cell-edge users) while the angular supports
are disjoint, this scheme benefits from the angular domain
projection. As a result we obtain a robust channel estimate
able to cope with a much wider range of topologies.

VI. AMPLITUDE AND DFT BASED PROJECTION

Note that, although the proposed method allows for robust-
ness with respect to potential overlap between desired and
interference users in the AoA and amplitude domains, it still
makes use of long term covariance matrix estimates that are
challenging to obtain in practice for massive MIMO systems.
Additionally, it does not capitalize on the appealing feature of
the amplitude based projection, i.e., the fact that the projection
subspace estimation is based on the observation in a single
coherence time. We now propose a low-complexity alternative
of the angular and amplitude based projection method that
performs the angular projections based on a small number
of channel observations. Recall that for an equi-spaced linear
antenna array, the steering vector has a Fourier structure. The
multipath from different angles exhibit asymptotic orthogonal-
ity as the number of antennas grows [7] [12]. If we apply a
discrete Fourier transform (DFT) to a channel vector which
exhibits finite angular support, we will observe that the power
spectrum in frequency domain is concentrated in a cluster
of spatial frequencies. An example is given in Fig. 1 where
two users have disjoint angular supports and their powers are
concentrated in different frequencies clusters. In this case,
we can remove most of the interference by filtering out the
undesired frequency components.

Let us define the DFT matrix

F �
[
f0| f1| · · · |fM−1

]
=

⎡⎢⎢⎢⎣
ω0·0 ω0·1 · · · ω0(M−1)

ω1·0 ω1·1 · · · ω1(M−1)

...
...

. . .
...

ω(M−1)·0 ω(M−1)·1 · · · ω(M−1)(M−1)

⎤⎥⎥⎥⎦ , (18)
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Fig. 1. Frequency spectrum of two users, with non-overlapping angular
support.

where ω � e−2πi/M and fm � [ω0, ω1·m, · · · , ω(M−1)·m]T .
Without loss of generality we focus on the channel between

user k in cell j and its base station, i.e., h̃(j)
jk . Assume we have

N previous channel realizations h̃
(j)
jk (n), 1 ≤ n ≤ N, of the

current channel1 h̃
(j)
jk . We define a set of indices

Fjk =

{
m

∣∣∣∣∣
N∑

n=1

|fHm h̃
(j)
jk (n)|2 > ξ

N∑
n=1

|h̃(j)
jk (n)|2,

0 ≤ m ≤ M − 1

}
. (19)

Each element m of Fjk corresponds to a vector fm such
that the empirical mean of the channel power in the subspace
spanned by fm is greater than a certain fraction ξ of the total
empirical mean of the channel power. We also denote by FFjk

the matrix obtained from F by suppressing the columns with
indices that do not belong to Fjk.

Additionally, we introduce the projection matrix

Πjk = FFjk
FH

Fjk
. (20)

Finally, we introduce the block-diagonal matrix

F̃j � diag{Πj1,Πj2, · · · ,ΠjK}. (21)

In cell j, a low-complexity channel estimator that utilizes
both angular and amplitude domain projections is given as

̂̃
h
(j)AD

j = F̃j
̂̃
h
(j)AM

j , (22)

The superscript “AD” is the acronym for amplitude and DFT
based decontamination.

VII. NUMERICAL RESULTS

This section contains numerical results of our different
channel estimation schemes compared with prior methods. In
the simulation, we have L = 7 hexagonally shaped adjacent
cells in the network. The radius of the cell is 1000 meters and
the path loss exponent is γ = 3. In each cell, the base station

1With a slight abuse of notation, for the current realization we drop the
temporal index.

serves simultaneously K = 4 users, which are randomly and
uniformly distributed within the cell. Define a normalized
channel estimation error

ε � 10log10

⎛⎜⎜⎜⎝ 1

KL

L∑
j=1

K∑
k=1

∥∥∥∥̂̃h(j)

jk − h̃
(j)
jk

∥∥∥∥2∥∥∥h̃(j)
jk

∥∥∥2
⎞⎟⎟⎟⎠ , (23)

where ̂̃
h
(j)

jk represents the estimate of the uplink channel
between the k-th user located in the j-th cell and its base
station. In all simulations presented in this section, we assume
that the channel covariance matrix is estimated using 1000
exact channel realizations. The multipath angle of arrival of
any channel (including interference channel) follows a uniform
distribution centered at the angle of line-of-sight (LOS). The
angular spread is 30 degrees. The channel is assumed coherent
over C = 500 transmitted symbols. In the implementation of
the amplitude and DFT based projection we set N = 100 and
ξ = 10−2/M .

−10 −8 −6 −4 −2 0 2 4 6 8 10
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

SNR [dB]

E
st

im
at

io
n 

E
rr

or
 [d

B
]

 

 
LS estimation
Pure MMSE
Pure amplitude
Amplitude + DFT
Angular + amplitude

Fig. 2. Estimation performance vs. SNR, M = 200, 7-cell network, with 4
users per cell.

In Fig. 2 and Fig. 3 we show the channel estimation error as
a function of SNR at the base station as well as the number
of BS antennas. In the figures, “LS estimation” and “Pure
MMSE” stand for the estimation errors of an LS estimator
and an MMSE estimator (12) respectively. “Pure amplitude”
denotes the case when we apply blind decontamination method
(15) only. “Angular + amplitude” represents the performance
of the proposed estimator (17). As we may observe, the
traditional LS estimator suffers from severe pilot contamina-
tion. The pure amplitude-based method and the pure MMSE
method alleviate the pilot interference, yet saturate with SNR
and the number of antennas. These saturation effects come
from the overlapping of interference and desired channels
in power and angular domains respectively. The “Angular +
amplitude” approach outperforms these two known methods
as it discriminates against interference in both amplitude and
angular domains. The low-complexity method “Amplitude +
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Fig. 3. Estimation performance vs. number of antennas, SNR = 0 dB, 7-cell
network, with 4 users per cell.

DFT” keeps improving with the number of antennas, due to the
diminishing leakage effect of DFT projection [17]. Eventually
it will outperform pure MMSE in massive MIMO regime in
terms of channel estimation error.
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Fig. 4. Per-cell rate vs. number of antennas, SNR = 0 dB, 7-cell network,
with 4 users per cell.

Fig. 4 illustrates the uplink per-cell rate as a function of BS
antennas. The simulation parameters remain the same as in
Fig. 3. The base station is equipped with a zero-forcing (ZF)
receiver which is computed based on the acquired channel
estimates. As can be seen, the “Angular + amplitude” approach
has the best performance. It is interesting to note that the
“Amplitude + DFT” method keeps the same slope, even though
it requires no knowledge on channel covariance.

It is worth noting that the performances of all the proposed
algorithms strongly depend on the accuracy of prior knowledge
and channel properties such as the coherence time. The impact
of these parameters will be object of further studies.

VIII. CONCLUSIONS

In this paper we proposed two novel robust channel es-
timation algorithms exploiting path diversity in both angler
and amplitude domains. The first method called angular and
amplitude based projection is robust also for a limited number
of antennas but requires channel stationarity. The second esti-
mator called amplitude and DFT based projection is suitable
for higher mobility users. However, since it is based on
asymptotic properties of massive MIMO channels, it requires
a higher number of antennas to achieve the same performance.
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