
A Lightweight Framework for Efficient M2M Device
Management in oneM2M Architecture

Soumya Kanti Datta, Christian Bonnet
Mobile Communications Department

EURECOM, Biot, France
Emails: {dattas, bonnet}@eurecom.fr

Abstract—Recent years have witnessed an explosion in the

number and types of physical devices connected to the Internet.
This exponential growth in the volume of objects poses challenges
in terms of managing the connected M2M devices. A unified
approach for efficient management of the M2M devices while
preserving scalability is necessary. This paper proposes an M2M
device management framework that can be deployed in a cloud
system, M2M gateway or even inside a mobile application. CoRE
Link Format is used for lightweight description of smart M2M
devices. The capabilities of CoRE Link are extended to describe
legacy M2M devices as a part of Internet of Things ecosystem.
Open Mobile Alliance Lightweight M2M (OMA LwM2M)
Technical Specifications are used in the framework to provide
M2M service enablement for end users. Self-management of the
M2M device configurations is outlined. The capabilities of the
framework are exposed using RESTful web services. oneM2M
architecture for device management is described which integrates
the proposed framework. Its software implementation is
examined to be ultra-lightweight. Utilization of CoRE Link
settles the heterogeneity of the managed devices and promotes
interoperability. Finally the paper summarizes the contributions
and concludes with future directions.

Keywords—CoRE Link Format; M2M device; M2M endpoint;
OMA LwM2M; oneM2M; Resource description.

I. INTRODUCTION

The Internet of Things (IoT) is extending the Internet
connection to physical devices including sensors, actuators
and RFID tags [16]. With the advancement in technologies,
these devices are enabled with communication and
computation capabilities. Several academic [10] [11] and
industrial initiatives (e.g. IBM Smarter Planet Initiative1) are
now trying to embed sensors and actuators to various walks of
our daily lives utilizing next generation information and
communication technologies. According to Cisco2, around 7
Billion of such M2M devices are already connected to the
Internet to provide advance services to the citizens and
enterprises. As a result of that, many prototypes and services
are being deployed for home automation, personal healthcare,
traffic congestion management, waste management and more.

However the deployment of IoT based solutions in real
world in a very large scale has not been that satisfying. One of
the reasons for that is the lack of unified approach towards
management of the huge volume of physical things. The task

1 http://www.ibm.com/smarterplanet/us/en/?ca=v_smarterplanet
2 http://share.cisco.com/internet-of-things.html

of M2M device management is itself very challenging due to –
(i) heterogeneity of things in terms of communication
technology (e.g. Bluetooth Smart, Zigbee, NFC, Modbus),
measurement capabilities (e.g. temperature, luminosity,
precipitation) and types of data generated (e.g. numerical,
audio, video), (ii) high mobility, (iii) access control for end
users, (iv) network topology being used, (v) self-configuration
management, (vi) lack of uniform description, (vii) managing
legacy devices and (viii) ease of adding and deleting M2M
device description. Such challenges make the M2M device
management a demanding process and a key task in an IoT
ecosystem.

In this paper, we have gathered the requirements (described
above) for automatic device management and accomplish that
through a framework. It utilizes Open Mobile Alliance
Lightweight Machine to Machine (OMA LwM2M) technical
specification [14] for the service enablement for end users. A
key part of efficient device management is the description of
the devices. We have made use of CoRE Link Format3 to
represent the M2M devices and their endpoints using resource
types and attributes. It provides an ultra-lightweight
implementation which is suitable for the huge volume of
devices and maintains the scalability in IoT ecosystems. We
have also extended the capabilities of CoRE Link to describe
legacy objects as well. The contributions of the paper are – (i)
M2M device management framework that is capable of
running from a cloud system, within a capillary network using
M2M gateway and on a direct link to the mobile phone of an
end user, (ii) CoRE Link Format based description of both
smart and legacy devices, (iii) management of smart and legacy
devices, (iv) utilization of OMA LwM2M based M2M service
enablement for end users and (v) integration of the entire
functionalities and components of the proposed framework into
an oneM2M architecture4. A prototype of the architecture is
implemented and evaluation results are provided. The
framework also enables dynamic discovery of M2M device
configurations and provides flexibility to the overall system.

The rest of the paper is organized as follows. Section II
reviews the state-of-the-art and highlights their limitations.
Section III focuses on the proposed M2M device management
framework. Section IV describes the oneM2M architecture
incorporating the framework with prototype implementation
and evaluation results. Finally we conclude the paper in
Section V.

3 https://tools.ietf.org/html/rfc6690
4 http://www.onem2m.org/technical/candidate-release-august-2014

II. STATE-OF-THE-ART

In this section we discuss the current state-of-the-art that
has considered M2M device and network management. We
also highlight their limitations.

A. M2M network management

Authors Pandey, Kim, Choi and Hong discuss the
management of M2M networks [1]. They have identified the
ongoing standardization efforts in ETSI, TIA, IPSO Alliance
and OMA in relation to the network management,
communication protocols and current status. Various unique
characteristics of the M2M device and applications and their
impacts on network management are presented. The important
contribution is in identifying the M2M network management
requirements which include fault management, automatic
configuration management, remote software upgrade, mobility
management, QoS monitoring, access control and security
management. They have also reported M2M gateway based
configuration management and registration of the M2M
services. In addition to that, the M2M network management is
in-charge of remotely (i) altering the state (online/offline) of
the M2M devices, (ii) configuring specific parameters and (iii)
upgrading the software.

M2M network management issues are further explored in
[2] [3] which advocates for policy-based management. These
papers define an M2M policy information model where users
are policy makers and can create new policies, update the
existing ones and delete if necessary. To ease the task, there is
a policy editor interface. The created policy is translated in
XML format and can be processed by a policy server. Policy
based M2M network management is described as a solution
where M2M devices with preconfigured policies can
automatically respond to the events generated by the network.

B. M2M device management

The authors of [4] argue that a traditional management
gateway can not handle dynamic entry and exit of smart objects
in a network since unless there is software update or patch.
This is due to the fact that current deployment scenarios do not
require dynamic reconfiguration scenarios. Thus the authors
have proposed a new approach – Management by Delegation
Smart Object Aware System (MbDSAS). It utilizes discovery
protocols to dynamically learn about the smart object behavior
and they are stored as lists. Any top level management
application can access those lists though a web service. The
approach is integrated into three layer architecture and the
paper also presents detailed prototype implementation along
with performance evaluation.

OMA Device Management Protocol is presented and
explained in [5]. Managing huge volume of M2M devices over
LTE is a challenging task. The paper discussed SMS based
wake-up mechanism which is remotely used to wake up M2M
devices from sleep mode. This reduces the operating power
consumption and increases the life time of the devices. The
utilization of CoAP over HTTP in OMA-DM is preferred since
the former consumes less power and has a better suited payload
format. Efficient messaging formats (EXI, CoRE Link) are also
outlined. In a nutshell, this paper gives an excellent overview

of how M2M device management should benefit from OMA-
DM Protocol.

A Device Connection Platform (DCP) has been discussed
in [6] which is cloud-based, cost-effective solution to connect
and manage M2M devices and associated applications. The
architecture and deployment scenarios can handle both
infrequent and frequent data exchange among the devices and
the cloud. The paper also reports how the mentioned platform
handles charging and accessing the devices via Internet,
manages subscribed devices and enables access to several
services.

C. Remote entity management

Remote entity management (REM) is explored in [7]. This
paper highlights the possible M2M communication scenarios
between the end users and M2M devices with the core network
utilizing LTE. The REM for service capability in M2M
networks is performed using a dynamic software update model.
The main advantage is that it does not require the M2M
devices to be rebooted.

In order to make M2M devices interact directly with the
Internet, the devices should be configured with an entire IP-
based stack. The paper [8] investigates integration of IP-based
network management protocols into resource constrained M2M
devices. Lightweight SNMP and NETCONF integrations have
been described along with the key challenges which include
message framing issue, session establishment and security. The
main advantage of this work is that, M2M devices with such
capabilities can be directly managed by end users over the
Internet facilitating remote M2M device management.

Apart from the above, a survey conducted by Thoma,
Braun, Magerkurth and Antonescu about management of
things and services can be found at [9]. It highlights that self-
management; interoperable solutions and management of
things are not so widespread within the IoT community.

D. Limitations

The limitations of the state-of-the-art are given below.
• In case of [1], it provides a high level description of

the requirements. There is no technical contribution in
terms of how the physical devices and the network
they belong to could be managed. However, the paper
does not discuss any prototype implementation details
or performance evaluation. Similarly [2] and [3] do
not discuss any insight about the impact on the policy
based management when the number of M2M devices
scale to millions.

• The authors of [4] have not shown how the mentioned
approach could fit into a standard IoT architecture like
ETSI. In case of [6], it is not clear how each
individual device is represented in the DCP and how
the representation is updated when necessary

• The work [5] just contains high level overview. There
is no discussion on architecture or prototype
implementation or experimental evaluation to prove
the effectiveness of M2M device management in LTE
networks. Similarly [8] is centered on individual

devices employed in IoT. It does not consider
describing devices and endpoints and how to manage
them in an IoT ecosystem.

Apart from the points above, there is a lack of work on
self-management of the M2M devices which is a key point in
M2M communications. Also there is no way to manage legacy
devices in an IoT ecosystem. Utilization of OMA based
Lightweight M2M from IoT architecture is also not present.
Our framework has been designed and developed to mitigate
these limitations.

III. M2M DEVICE MANAGEMENT FRAMEWORK

In this section we describe M2M device and endpoint
description, internal structure of the framework, its operational
phases and the novel aspects of this work.

A. M2M device and endpoint description

Lightweight description of M2M devices is the key to
implement an efficient and scalable device management
framework. We utilize CoRE Link Format to describe the
M2M devices and their endpoints. Our unique contribution is
to extend the same description to legacy devices also. These are
the objects that cannot respond to a GET request and
communicates over a wired communication protocol like
Modbus. To manage such legacy objects, they must be
connected either to an intermediate gateway (IG) or a proxy
which can interact with rest of the M2M elements over
RESTful manner [12]. The IG or proxy is actually configured
to represent the legacy devices. Apart from that, CoRE Link
format settles the heterogeneity of devices in terms of
measurement capabilities, generated data and communication
technologies. Also it promotes interoperability among various
components of the architecture.

We define a function set common to both the smart and
legacy devices to represent them, their endpoints and other
high level configurations as portrayed in Table I.

TABLE I. CORE LINK BASED FUNCTION SET
Function Set Root Path Resource Type

Device /d wg.dev
Endpoint /e wg.endpoint

Configuration /cf wg.config

The function set “Device” represents the M2M device
description and can be accessed by querying at the root path
“/d”. Table II portrays device resource description.

TABLE II. DEVICE RESOURCE DESCRIPTION
Type Path RT IF

Location /d/loc ipso.loc.gps /
ipso.loc.xy /
ipso.loc.sem

p

Id /d/id wg.dev.id rp
Name /d/n wg.dev.name p
Model /d/mdl wg.dev.model p

destination /d/dst wg.dev.destination p
Lifetime /d/lft wg.dev.lifetime p
proxy-out /d/po wg.dev.proxy-out rp
proxy-in /d/pi wg.dev.proxy-in rp

The “location” attribute is taken from IPSO Alliance
Framework5. This attribute can be expressed using the GPS co-
ordinates, semantic value or X-Y value with respect to a certain
position and is used to keep track on the mobility of the
devices. Among the rest, destination denotes the URI
associated with the device. This URI is used to access the
attached endpoints (e.g. sensors and actuators). The lifetime is
used as a period to check whether the managed device is still
present. In case of a legacy device, the proxy-out and proxy-in
are used to generate the above description and to communicate
with actuators and sensors respectively. The proxy attributes
are our unique contribution and used to incorporate legacy
objects into intelligent IoT systems [12]. It is to be noted that
the proxy attributes are not needed for smart devices.

Similar to the M2M devices, the endpoints are described as
portrayed in Table III. The “senml” attribute either contains the
requested sensor metadata or pushed actuator control metadata.
We have a uniform representation of metadata exchange for
both sensor and actuator using Sensor Markup Language [12],
[13].

TABLE III. ENDPOINT RESOURCE DESCRIPTION

Type Path RT IF

id /e/id wg.endpoint.id rp

name /e/n wg.endpoint.name p

device /e/d wg.endpoint.device p

senml /e/senml wg.endpoint.senml rp

The initial configuration combing the device and endpoint
resources must be available as configuration resource
description. During bootstrapping, a GET request is sent to
retrieve this description which is portrayed below. This is used
to expose the M2M device and endpoint configuration to the
end users.

TABLE IV. CONFIGURATION RESOURCE DESCRIPTION

Type Path RT IF

Device /cf/d wg.dev p

Endpoint /cf/e wg.endpoint p

B. Device management framework

Figure 1 depicts the proposed M2M device management
framework. It simplifies the management tasks by exposing the
functionalities through RESTful web services. Thus complex
policy based techniques are not required.

The perception layer contains the real M2M devices
containing sensors, actuators or RFID tags as endpoints. The
framework itself is composed of three layers of web services
namely service enablement layer, configuration storage layer
and proxy layer.

• Proxy Layer – This is a novel aspect of the framework
which allows management of non-smart or legacy

5
 http://www.ipso-alliance.org/wp-content/media/draft-ipso-app-framework-

04.pdf

M2M devices in IoT ecosystems. Current
standardization efforts do not consider such scenarios
but inclusion of legacy devices into IoT ecosystems is
crucial. The proxy layer is composed of two RESTful
web services – proxy-in and proxy-out to manage
sensors and actuators respectively. The proxy layer
creates the CoRE Link based configurations and is
responsible for registering and un-registering legacy
devices. The proxies are dependent on the
communication protocol used by the legacy devices.

Fig. 1. M2M device management framework.

• Configuration Storage Layer – This contains a web
service called “Configuration Storage API”. The smart
devices directly connect to this API during the
bootstrap phase and the API extracts the resource
descriptions from the devices or (proxies in case of
legacy devices). The layer houses a database and stores
the device, endpoint and configuration resources in
separate tables. The API translates the CoRE Link
based descriptions to appropriate storage format. This
layer also keeps track of the configuration “lifetime”
attribute. During that period, if it does not receive an
announcement that the device is still present or
configuration update, it will delete that device
configuration.

• Service Enablement Layer – It is composed of
several web services which allow the end users to (i)
read, write & update configurations, (ii) enable device
discovery, (iii) receive notification and (iv) implement
proper access control6. These capabilities correspond to
OMA LwM2M technical specification [14] and allow
remote management of M2M devices from mobile
devices of end users. The functionalities of these web
services are explained below.

6
 Discussion on access control is out of scope of the paper.

C. Deployment scenarios

 The overall framework is highly generic in nature which
allows it to be efficiently deployed in M2M gateways, cloud
based systems or even inside a mobile application depending
on use case and requirements. For a large enterprise consisting
of dozens of smart objects using various different technologies
to communicate, M2M gateway can be employed for efficient
device management. Using the proxy layer, the gateway can
include legacy devices along with smart devices. Cloud based
management is required when we consider the M2M devices
deployed in a smart city. The proposed framework will offer a
scalable solution to manage the thousands of devices. For a
smart home with limited number of M2M devices can utilize a
smartphone or tablet to manage them. The framework in that
case will be implemented inside a mobile application which
can interact with objects using a personal area network. For
every scenario mentioned above, the devices must register
themselves to the framework. Following is the mechanism for
that.

D. M2M device registration phase

 This phase is used to provision initial configuration from
the M2M device to the configuration storage API. We assume
that the device is already configured with bootstrap information
which corresponds to “Factory Bootstrap” procedure of OMA
LwM2M technical specification [14]. The operational sequence
for both smart and legacy devices registration is presented in
Figure 2.

 For a smart device, it is quite straight forward. It connects
to the web service of configuration storage API which
approves the request. Then the device pushes the CoRE Link
based description. The interactions take place in a RESTful
manner. In case of a legacy device, it connects to the respective
proxy at first which is treated as the registration request. Then
it uploads the raw configuration and the proxy translates that
into CoRE Link description. Thus the proxy must be
configured with the additional intelligence during its bootstrap.
This step is followed by registration of end user applications
running on smartphones or tablet to the framework. This is
handled by the access control web service at service
enablement layer. The access control mechanisms also
determine which user has access to which M2M devices and
provides a secure access to those devices.

Fig. 2. M2M device registration phase.

E. Service enablement phase

 Authorized end users can access the M2M device
configurations using the other web services of service
enablement layer. The end users can discover the
configurations of the M2M devices and endpoints by sending a
get request using device and/or endpoint ID. The web service
internally queries the database and replies with the full
configuration if a match is found. To update any description,
“Write Configuration” is used. In this case, the end users send a
PUT command which is initially routed to M2M configuration
resource. This further checks whether the requested device is
still attached (using lifetime) and if so, whether the requested
description is allowed to be updated. The notification web
service allows pushing information when there is a change in
configuration in the M2M devices. If the client enables these
services, push notifications are sent if (i) configuration is
updated, (ii) new M2M device registers for a user and (iii) any
device un-registers. This enables the users to be aware of the
state of the devices.

F. Self-management of M2M devices

Self-management of M2M devices is an important
requirement in IoT based services. This is necessary as many
of the devices may be mobile. Thus a lifetime attribute is
added to the M2M device configuration (based on the OMA
LwM2M specifications). The value of lifetime depends on
actual use case and can be updated by the end users. Each
device must announce itself or update its configuration to the
framework once during the lifetime otherwise the device is
removed from the configuration storage layer. It corresponds
to a device being un-registered and a notification is sent to the
corresponding end user.

G. Un-registration phase

The devices can send a un-registration request to the
framework using “DELETE” configuration. In that case the,
configuration storage API deletes the descriptions of the M2M
devices identified by the device ID and may notify the
corresponding end user. Also, if a device does not announce
itself during the ‘lifetime’, it is automatically unregistered.

IV. INTEGRATING M2M DEVICE MANAGEMENT FRAMEWORK IN

ONEM2M ARCHITECTURE

The entire framework and the operational phases mentioned
above are fully integrated into an architecture based on recently
released oneM2M recommendations [15]. The functional
architecture components are presented in Figure 3 and broadly
categorized into field and infrastructure domains. The elements
of each domain are composed of two entities. An Application
Entity (AE) contains the application logic for the end-to-end
M2M solutions e.g. application for automated driving, fitness
monitoring. Each AE must have a unique identity. On the
other hand, a Common Service Entity (CSE) represents a set of
common service functions of the M2M ecosystem. The M2M
device management framework is included in the CSE. The
following subsections further illustrate the components.

A. Application Service Node

An application service node (ASN) contains at least one AE
and a CSE. In this case, the ASN-AE and ASN-CSE are
embedded into the mobile application running in the
smartphones or tablets. There are two cases two consider here.
Firstly, the mobile application provides a user interface through
which the end users can interact with the framework located
outside the application. In that case the ASN-AE just contains a
user interface (UI) and the ASN-CSE implements the modules
for parsing CoRE Link description to show it in UI. Secondly,
the mobile application includes the entire framework in ASN-
CSE which will include the proxy and configuration storage
layers.

A prototype Android application called “Connect and
Control Things” (CCT) is developed considering both the
cases. Porting the framework in Android is very easy as it
supports CoRE Link descriptions through JSON and database
using SQLite. Android also supports creation of capillary
network using Bluetooth which allows Bluetooth based legacy
devices to communicate with the mobile application. The
resulting application is lightweight in terms of memory and
CPU requirements.

B. Middle Node

A middle node (MN) contains only CSE and not AE. It
communicates with an infrastructure node (IN) and an ASN.
The M2M gateway corresponds to the MN. The MN-CSE
implements the proposed framework. In this case, the web
services are categorized as north and south interfaces. The
north interface corresponds to the service enablement layer and
facilitates interaction with ASN (end user mobile application).
The notifications are sent using Google Cloud Messaging
(GCM) which is a push notification framework for Android
applications [12]. The south interface included the proxy layer
and configuration storage layer and facilitates interaction with
physical devices.

Fig. 3. M2M device management framework integrated into oneM2M

architecture.

In the prototype implementation, we considered a legacy
sensor device connected to the proxy over Modbus protocol.
The proxy is pre-configured with an API which translates the

raw sensor configuration into CoRE Link. A smart device is
also taken into account which follows the mentioned
registration process. The MN-CSE is running on a Raspberry
Pi currently.

C. Infrastructure Node

An infrastructure node (IN) provides an M2M service in
the infrastructure domain. IN contains a CSE and none or
more AE. This node interacts with one or more MNs and/or
one or more ASNs. IN basically corresponds to a cloud
system. The IN-CSE in this case contains the proposed
framework. It can obtain the M2M device configurations
from smart devices capable of communicating over Wi-Fi, 3G
or LTE. Otherwise, it can also gather the configurations from
various M2M gateways deployed around a smart city. In this
case the ASN connects to the IN-CSE to read, write, discover
or receive notifications. This implementation is ongoing.

D. Evaluation

The size of configuration of each M2M device including
the endpoint is less than 1KB. Therefore smartphones, tablets
and even M2M gateways with gigabytes of internal memory
will be able to support and manage numerous such devices.
The software implementations of the framework for M2M
gateway and Android application require couple of megabytes
of memory. It further assures the ultra-lightweight nature of
the proposed mechanisms.

V. CONCLUSION

In a nutshell, the paper identifies the limitations of current
literature on M2M device management. Germinating from the
limitations, we have proposed a framework to efficiently
manage both smart and legacy device. This is an important
feature for IoT ecosystems. The core configuration storage is
exposed to end users and physical devices using appropriate
web services. The end users can perform a wide range of
operations including read & write configurations to authorized
devices; discover configurations and receive notifications.
Another novel aspect is the self-management of configurations
using a lifetime attribute. It takes care of the devices with high
mobility. The overall framework is integrated into oneM2M
architecture which is a distinct contribution of the paper over
current literature. Use of CoRE Link ensures interoperability
among the architecture elements. It is shown that framework
can be operational from cloud systems, M2M gateway or a
mobile application. This is another novel aspect of this work.
Our evaluation shows that the software implementation has
limited memory footprint and the device descriptions are ultra-
lightweight. This takes care of the scalability issue if number of
managed devices grows exponentially. Our future efforts are
focused on implementation of the mentioned IN-CSE and
access control to devices.

ACKNOWLEDGMENT

The work is sponsored by French research project Data
Tweet.

REFERENCES
[1] Pandey, S.; Mi-Jung Choi; Myung-Sup Kim; Hong, J.W., "Towards

management of machine to machine networks," Network Operations and
Management Symposium (APNOMS), 2011 13th Asia-Pacific, vol., no.,
pp.1,7, 21-23 Sept. 2011.

[2] Kamal, R.; Siddiqui, M.S.; Haw Rim; Choong-seon Hong, "A policy
based management framework for machine to machine networks and
services," Network Operations and Management Symposium
(APNOMS), 2011 13th Asia-Pacific , vol., no., pp.1,4, 21-23 Sept. 2011.

[3] Siddiqui, M.S.; Ahmed, S.H., "Policy-based network management in a
machine-to-machine (M2M) network," Multitopic Conference (INMIC),
2012 15th International , vol., no., pp.387,393, 13-15 Dec. 2012.

[4] Marotta, M.A; Carbone, F.J.; Cardoso de Santanna, J.J.; Rockenbach
Tarouco, L.M., "Through the Internet of Things -- A Management by
Delegation Smart Object Aware System (MbDSAS)," Computer
Software and Applications Conference (COMPSAC), 2013 IEEE 37th
Annual , vol., no., pp.732,741, 22-26 July 2013.

[5] Gligoric, N.; Krco, S.; Drajic, D.; Jokić, S.; Jakovljevic, B., "M2M
device management in LTE networks," Telecommunications Forum
(TELFOR), 2011 19th , vol., no., pp.414,417, 22-24 Nov. 2011.

[6] Cackovic, V.; Popovic, Z., "Device Connection Platform for M2M
communication," Software, Telecommunications and Computer
Networks (SoftCOM), 2012 20th International Conference on , vol., no.,
pp.1,7, 11-13 Sept. 2012.

[7] Yao-Chung Chang; Ting-Yun Chi; Wei-Cheng Wang; Sy-Yen Kuo,
"Dynamic software update model for remote entity management of
machine-to-machine service capability," Communications, IET , vol.7,
no.1, pp.32,39, Jan. 4 2013.

[8] Sehgal, A.; Perelman, V.; Kuryla, S.; Schonwalder, J., "Management of
resource constrained devices in the internet of things," Communications
Magazine, IEEE , vol.50, no.12, pp.144,149, December 2012.

[9] Thoma, M.; Braun, T.; Magerkurth, C.; Antonescu, A-F., "Managing
things and services with semantics: A survey," Network Operations and
Management Symposium (NOMS), 2014 IEEE , vol., no., pp.1,5, 5-9
May 2014.

[10] Sanchez, L.; Gutierrez, V.; Galache, J.A.; Sotres, P.; Santana, J.R.;
Casanueva, J.; Munoz, L., "SmartSantander: Experimentation and
service provision in the smart city," Wireless Personal Multimedia
Communications (WPMC), 2013 16th International Symposium on,
pp.1-6, 24-27 June 2013.

[11] Yongmin Zhang, Interpretation of Smart Planet and Smart City [J].
CHINA INFORMATION TIMES, 2010(10):38-41.

[12] Datta, S.K.; Bonnet, C.; Nikaein, N., "An IoT gateway centric
architecture to provide novel M2M services," Internet of Things (WF-
IoT), 2014 IEEE World Forum on , vol., no., pp.514,519, 6-8 March
2014.

[13] Datta, S.K.; Bonnet, C.; Nikaein, N., "CCT: Connect and Control
Things: A novel mobile application to manage M2M devices and
endpoints," Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2014 IEEE Ninth International Conference on ,
vol., no., pp.1,6, 21-24 April 2014.

[14] http://technical.openmobilealliance.org/Technical/technical-
information/release-program/current-releases/oma-lightweightm2m-v1-0

[15] TS-0001-oneM2M-Funtional-Architecture-V-2014-08 -
http://www.onem2m.org/images/files/deliverables/TS-0001-oneM2M-
Functional-Architecture-V-2014-08.pdf

[16] Luigi Atzori, Antonio Iera, Giacomo Morabito, The Internet of Things:
A survey, Computer Networks, Volume 54, Issue 15, 28 October 2010,
Pages 2787-2805.

