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Abstract

Recently significant progress has been made in the field of person detection

and tracking. However, crowded scenes remain particularly challenging and can

deeply affect the results due to overlapping detections and dynamic occlusions.

In this paper, we present a method to enhance human detection and tracking in

crowded scenes. It is based on introducing additional information about crowds

and integrating it into the state-of-the-art detector. This additional information

cue consists of modeling time-varying dynamics of the crowd density using local

features as an observation of a probabilistic function. It also involves a feature

tracking step which allows excluding feature points attached to the background.

This process is favourable for the later density estimation since the influence of

features irrelevant to the underlying crowd density is removed. Our proposed

approach applies a scene-adaptive dynamic parametrization using this crowd

density measure. It also includes a self-adaptive learning of the human aspect

ratio and perceived height in order to reduce false positive detections. The

resulting improved detections are subsequently used to boost the efficiency of

the tracking in a tracking-by-detection framework. Our proposed approach for

person detection is evaluated on videos from different datasets, and the results

demonstrate the advantages of incorporating crowd density and geometrical

constraints into the detection process. Also, its impact on tracking results have
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been experimentally validated showing good results.

Keywords: Crowd density, local features, human detection, tracking, crowded

scenes

1. Introduction

Automatic detection and tracking of people in video data is a common task in

the research area of video analysis and its results lay the foundations of a wide

range of applications such as video surveillance, behavior modeling, security

applications, and traffic control. Many tracking algorithms use the “Tracking-5

by-detection” paradigm which estimates the tracks of individual objects based

on a previously computed set of object detections. Tracking methods based

on these techniques are manifold [1, 2, 3, 4], but all of them rely on efficient

detectors which have to identify the position of persons in the scene while min-

imizing false detections (clutter) in areas without people. Techniques based on10

background subtraction such as [5] are widely applied thanks to their simplic-

ity and effectiveness but are limited to scenes with few and easily perceptible

components. Therefore, the application of these methods on videos containing

dense crowds is more challenging.

Crowded scenes exhibit some particular characteristics rendering the prob-15

lem of multi-target tracking more difficult than in scenes with few people:

Firstly, due to the large number of pedestrians within extremely crowded scenes,

the size of a target is usually small in crowds. Secondly, the number of pixels

of an object decreases with a higher density due to the occlusions caused by

inter-object interactions. Thirdly, constant interactions among individuals in20

the crowd make it hard to discern them from each other. Finally and as the

most difficult problem, full target occlusions that may occur (often for a long

time) by other objects in the scene or by other targets. All the aforementioned

factors contribute to the loss of observation of the target objects in crowded

videos. These challenges are added to the classical difficulties hampering any25

tracking algorithm such as: changes in the appearance of targets related to
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the camera view field, the discontinuity of trajectories when the target leaves

the field of view and re-appears later again, cluttered background, and similar

appearance of some objects in the scene.

Because of all these issues, conventional human detection or multi-target30

tracking paradigms are not scalable to crowds. That is why, some current solu-

tions in crowd analysis field bypass the detection and the tracking of individuals

in the scene. Instead, they focus on detecting and tracking local features [6, 7],

or particles [8, 9]. The extracted local features are employed to represent the

individuals present in the scene. By this way, tracking of individuals in crowds35

which is a daunting task is avoided. Likewise, alternative solutions that op-

erate on particles tracking, observe that when persons are densely crowded,

individual movement is restricted, thus, they consider members of the crowd

as granular particles. For instance, in [6], Ihaddadene et al. propose to detect

sudden change and abnormal motion variations using motion heat maps and40

optical flow. The proposed approach is based on tracking points of interest in

the regions of interest (masks that correspond to areas of the built motion heat

map). Then, the variations of motion are used to detect abnormal events. For

this purpose, an entropy measure that characterizes how much the optical flow

vectors are organized, or cluttered in the frame is defined in terms of a set of sta-45

tistical measure. Another study that addressed the problem of abnormal crowd

event detection is the social force model proposed by Mehran et al. in [8]. This

method is based on putting a grid of particles over the image frame and moving

them with flow field computed from the optical flow. Then, the interactions

forces are computed on moving particles to model the ongoing crowd behaviors.50

In the same context of crowd behavior analysis, other methods [10, 11] studied

the dynamic evolution of the crowd using biological models.

Most of the proposed works to takle multi-target tracking in crowded scenes

use motion pattern information as priors to tracking. Some of these methods are

applied in unstructured crowd scenes [12], while most of them focus on struc-55

tured scenes [13, 14, 15], where objects do not move randomly, and exhibit clear

motion patterns. In [12], a tracking approach in unstructured environments,

3



where the crowd motion appears to be random in different directions over time

is presented. Each location in the scene can represent motion in different direc-

tions using a topical model. In [13], a Motion Structure Tracker is proposed to60

solve the problem of tracking in very crowded scenes. In particular, tracking and

detection are performed jointly and motion pattern information is integrated in

both steps to enforce scene structure constraints. In [14], a probabilistic method

exploiting the inherent spatially and temporally varying structured pattern of

crowd motion is employed to track individuals in extremely crowded scenes. The65

spatial and temporal variations of the crowd motion are captured by training a

collection of Hidden Markov Models on the motion patterns within the scene.

Using these models, pedestrian movement at each space-time location in a video

can be predicted. Also motion patterns are studied in [15], where floor fields are

proposed to determine the probability of moving from one location to another.70

The idea is to learn global motion patterns and participants of the crowd are

then assumed to move in a similar pattern. Finally, in [16] a spatiotemporal

viscous fluid field is proposed to recognize large-scale crowd event. In particular,

a spatiotemporal variation matrix is proposed to exploit motion property of a

crowd. Also, a spatiotemporal force field is employed to exploit the interaction75

force between the pedestrians. Then, the spatiotemporal viscous fluid field is

modeled by latent Dirichlet allocation to recognize crowd behavior.

Although these solutions have shown promising results, they impose con-

straints on the crowd motion. In particular, targets are often assumed to behave

in a similar manner, in such a way that all of them follow a same motion pattern,80

consequently, trajectories not following common patterns are penalized. Cer-

tainly, this constraint works well in extremely crowded scenes, such as in some

religious events or demonstrations, where the movement of individuals within

the crowd is restricted by others and by the scene structure as well. Thus, a

single object can be tracked by the crowd motion because it is difficult, if not im-85

possible, to move against the main trend. However, the aforementioned methods

are not applicable in cases where individuals can move in different directions.

Furthermore, some of these methods include other additional constraints. For
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example, in [12], Rodriguez et al. use a limited descriptive representation of

target motion by quantizing the optical flow vectors into 10 possible directions.90

Such a coarse quantization limits tracking to only few directions. Also, the floor

fields [15] used by Ali et al. impose how a pedestrian should move based on

scene-wide constraints, which results in only one single direction at each spatial

position in the video.

In addition to these solutions based on exploiting global level information95

about motion patterns to impose constraints on tracking algorithms, similar

ideas have been proposed using crowd density measures. In [17], Hou et al. use

the estimated number of persons in the detection step, which is formulated as a

clustering problem with prior knowledge about the number of clusters. This at-

tempt to improve person detection in crowded scenes includes some weaknesses.100

At least two problems might incur: Firstly, the idea of detection by clustering

features can only be effective in low crowded scenes. It is not applicable in very

crowded cases because of the spatial overlaps that make delineating individu-

als a difficult task. Secondly, using the number of people as a crowd measure

has the limitation of giving only global information about the entire image and105

discarding local information about the crowd.

We therefore resort to another crowd density measure, in which local infor-

mation at pixel level substitutes a global number of people per frame. This

alternative solution based on computing crowd density maps is indeed more ap-

propriate as it enables both the detection and the location of potentially crowded110

areas. To the best of our knowledge, only one work [18] has investigated this

idea. In the referred work, a system which introduces crowd density information

into the detection process is proposed. Using an energy formulation, Rodriguez

et al. [18] show how it is possible to obtain better results than the baseline

method [19]. Although it is a significant improvement of multi-target tracking115

in crowded scenes, the referred work employs confidence scores from person de-

tection as input to the density estimation. It means that the detection scores

are used twice, to detect persons and to estimate crowd density maps which

does not introduce any complimentary information in the process. In addition,
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the proposed crowd density map in [18] involves a training step with large data.120

Thus, human-annotated ground truth detections are required, and the system

is not fully automatic.

In contrast to the previous work, we intend to demonstrate in this paper,

how it is possible to enhance detection and tracking results using fully auto-

matic crowd density maps that characterize the spatial and temporal variations125

of the crowd. The proposed crowd density map is typically based on using local

features as an observation of a probabilistic density function. A feature tracking

step is also involved in the process to alleviate the effects of feature components

irrelevant to the underlying crowd density. Compared to the prior works, our

approach does not depend on any learning step, and does not impose any direc-130

tion to the crowd flow. It models the crowd in a temporally evolving system,

which implies a large number of likely movements in each space-time location of

the video. This additional information is incorporated in a detection and track-

ing framework: First, the proposed space-time model of crowd density is used

as a set of priors for detecting persons in crowded scenes, where we apply the135

deformable part-based models [19]. A filtering step based on the aspect ratio

and the perceived height of a person precedes the fusion of the crowd density

and the detection filter in order to deal with false positive detections of inap-

propriate size. Second, we extend our approach to tracking using Probability

Hypothesis Density (PHD) filter based on the improved detections.140

As in many video surveillance setups, we consider the camera to be static.

This assumption may appear strict but in fact reflects a high number of real

surveillance setups and applications (e.g. numerous applications using back-

ground subtraction). However, there exist approaches for feature tracking on

moving/PTZ cameras (e.g. using global motion estimation / compensation) and145

future work could use them to extend the system to non-static camera views.

The remainder of the paper is organized as follows: In the next Section,

we introduce the human detector we use. Details about our proposed crowd

density map are given in Section 3. In Section 4, we explain how to use this

crowd density information together with a correction filter in order to improve150
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the detection results. In Section 5, an extension of the improved detection

results to tracking using PHD methodology for data-association is presented. A

detailed evaluation of our work follows in Section 6. Finally, we briefly conclude

and give an outlook of possible future works.

2. Human detection using Deformable Part-Based Models155

Human detection is a common problem in computer vision as it is a key

step to provide semantic understanding of video data. Accordingly, it has been

studied intensively and different approaches have been proposed (e.g. [20], and

[19]) which are often gradient-based. In most of the proposed methods, the

problem is formulated via binary sliding window classification, where an image160

pyramid is built and a fixed window size is scanned at all locations and scales to

localize individuals. In this context, the deformable part-based models [19] has

recently shown excellent performance. It is an enriched version of Histograms of

Oriented Gradients (HoG) [20], that achieves much more accurate results and

represents the current state-of-the-art. The detector uses a feature vector over165

multiple scales and a number of smaller parts within a Region of Interest (RoI)

to get additional cues about an object (see Figure 1).

Figure 1: Exemplary human detections using the part-based models [19]: Blue boxes describe

object parts which also contribute to the overall detection (red).

In this framework, an object hypothesis specifies the location of each filter in

a feature pyramid z = (p0, ..., pn) with pi = (xi, yi, li) as the position and level
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of the i-th filter. The detection score is given as the score of all filters minus a170

deformation cost plus a bias b:

score(p0, ..., pn) =
n∑
i=0

F ′i ·Ψ(H, pi) −
∑n
i=1 di ·Ψd(dxi, dyi) + b (1)

with (dxi, dyi) as the displacement of the i-th part relative to its anchor position

and Ψd(dx, dy) as deformation features weighted by the vector di.

In this work we use the implementation from [21] which is trained on samples

of the INRIA and PASCAL person datasets. The output of the detector is a175

set of RoIs for a given detection threshold. These must then be processed by

an additional non-maximum suppression (NMS) step which is essentially based

on maintaining regions with high detection scores while removing detections

overlapping with these more than a given threshold.

Although human detection using the deformable part-based models has be-180

come a quite popular technique, its extension to crowded scenes has a limited

success. In fact, the density of people substantially affects their appearance in

video sequences. Especially in dense crowds, people occlude each other and only

some parts of each individual’s body are visible. Therefore, accurate human de-

tection in such scenarios with dynamic occlusions and high interactions among185

the targets remains a challenge.

To improve the detection performance in crowded scenes, some methods (e.g.

[18], and [22]) rely only on head detections and discard the rest of the body.

This is less error-prone but also focuses on a smaller amount of information

characterizing a human. Although improved accuracy can be obtained using190

these solutions, the large amount of partial occlusions in high dense crowds

still present big challenges to such detection methods. In order to adapt the

detector to these situations, it is important to include additional information

about crowds in the scene. In the following, we present details on our proposed

local crowd density measure which conveys rich information about the spatial195

distributions of persons in order to enhance the detection process.
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3. Crowd Density Estimation

(a) (b) (c)

(d) (e)

Figure 2: Illustration of the proposed crowd density map estimation using local features

tracking: (a) exemplary frame, (b) FAST local features (c) feature tracks (d) distinction

between moving (green) and static (red) features - red features at the lower left corner are

due to text overlay in the video (e) estimated crowd density map.

Crowd density analysis has been studied as a major component for crowd

monitoring and management in visual surveillance systems. In this paper, we

explore a new promising research direction which consists of using crowd density200

measures to complement person detection. For this, generating locally accurate

crowd density maps is more helpful than computing only an overall density [23]

or a number of people [24] in a whole frame. In the following, our proposed

approach for crowd density estimation [25] is presented. First, local features are

extracted to infer the contents of each frame under analysis. Then, we perform205

local features tracking using the Robust Local Optical Flow algorithm from [26]

and a point rejection step using forward-backward projection. To accurately

represent the motion within the video, the estimation of optical flow between

consecutive frames is extended to long-term trajectories. The generated feature
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tracks are thereby used to remove static features. Finally, crowd density maps210

are estimated using Gaussian symmetric kernel function. An illustration of

the density map modules is shown in Figure 2. The remainder of this section

describes each of these system components.

3.1. Extraction of local features

One of the key aspects of crowd density measurements is crowd feature215

extraction. Under the assumption that regions of low crowd density tend to

present less dense local features compared to a high-density crowd, we propose

to use local feature as a description of the crowd by relating dense or sparse local

features to the crowd size. Thus, the proposed crowd density map is estimated

by measuring how close local features are.220

For local features, we select Features from Accelerated Segment Test (FAST)

[27], Scale-Invariant Feature Transform (SIFT) [28], and Good Features to Track

(GFT) [29]. The reason behind selecting these features for crowd measurement

is as follows: FAST was proposed for corner detection in a reliable way. It

has the advantage of being able to find small regions which are outstandingly225

different from their surrounding pixels. In addition, FAST was used in [30]

to detect dense crowds from aerial images and the derived results demonstrate

a reliable detection of crowded regions. SIFT is another well-known texture

descriptor, for which interest point locations are defined as maxima/minima of

the difference of Gaussians in scale-space. Under this respect, SIFT is rather230

independent of the perceived scale of the considered object which is appropriate

for crowd measurements. These two aforementioned features are compared to

the classic feature detector GFT, which is based on the detection of corners

containing high frequency information in two dimensions and typically persist

in an image despite object variations.235

3.2. Local features tracking

Using the extracted features to estimate the crowd density map without a

feature selection process might incur two problems: First, the high number of

10



local features increases the computation time of the crowd density. As a second

and more important effect, the local features contain components irrelevant to240

the crowd density. Thus, there is a need to add a separation step between

foreground and background entities to our system. This is done by assigning

motion information to the detected features. Based on the assumption that

only persons are moving in the scene, these can then be differentiated from

background by their non-zero motion vectors.245

Motion estimation is performed using the Robust Local Optical Flow (RLOF)

[26] [31], which computes accurate sparse motion fields by means of a robust

norm1. A common problem in local optical flow estimation is the choice of

feature points to be tracked. Depending on texture and local gradient infor-

mation, these points often do not lie on the center of an object but rather250

at its borders and can thus be easily affected by other motion patterns or by

occlusions. While RLOF handles these noise effects better than the standard

Kanade-Lucas-Tomasi (KLT) feature tracker [32], it is still subject to errors.

This is why we establish a forward-backward verification scheme where the re-

sulting position of a point is used as input to the same motion estimation step255

from the second frame towards the first one. Points for which this “reverse

motion” does not result in their respective initial position are discarded. For

all other points, motion information is aggregated to form longterm trajectories

by connecting motion vectors computed on consecutive frames. This results in

a set of pk trajectories in every time step k:260

Tk = {T1, ..., Tpk |

Ti = {Xi(k −∆ti), Yi(k −∆ti), ..., Xi(k), Yi(k)}} (2)

where ∆ti denotes temporal interval between the start and the current frames of

a trajectory Ti. (Xi(k−∆ti), Yi(k−∆ti)), and (Xi(k), Yi(k)) are the coordinates

of the feature point in its start and current frames respectively.

The advantage of using trajectories in our system instead of computing the

1www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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motion vectors between two consecutive frames is that outliers are filtered out265

and the overall motion information is more reliable and less affected by noise.

3.3. Kernel density estimation

After generating trajectories, our following goal is to remove static features.

These are identified by comparing the displacements of the generated trajecto-

ries to a small constant ζ. It proceeds by comparing the overall average motion270

Γi of a trajectory Ti to a certain threshold ζ which is set according to im-

age resolution and camera perspective. Moving features are then identified by

the relation Γi > ζ while the others are considered as part of the static back-

ground. Using long-term trajectories, the separation between foreground and

background entities is improved and the number and position of the tracked fea-275

tures undergo an implicit temporal filtering step which makes them smoother.

After filtering out static features, the crowd density map is defined via kernel

density estimate based on the positions of local features. The observation can be

formulated as the more local features come towards each other, the higher crowd

density is perceived. For this purpose, a probability density function (pdf) is

estimated using a Gaussian kernel density. At a frame Ik, if we consider a set of

mk local features extracted at their respective locations {(xi, yi), 1 ≤ i ≤ mk},

the corresponding density map Ck is defined as follows:

Ck(x, y) =
1√
2πσ

mk∑
i=1

exp−(
(x− xi)2 + (y − yi)2

2σ2
) (3)

where σ is the bandwidth of the 2D Gaussian kernel.

The resulting crowd density map characterizes the spatial and temporal vari-

ations of the crowd. The spatial variation arises across the frame thanks to the

probability density function and temporal variation occurs over the video by280

the motion information included in the process. Overall, this spatio-temporal

crowd information introduced by density maps conveys rich information about

the distributions of pedestrians in the scene which could complement the detec-

tion process.

12



4. Integration of crowd density and geometrical constraints into hu-285

man detector

In this Section, we present our proposed extension of human detection algo-

rithm described in Section 2 to crowded scenes. As a major improvement, we

propose a variation of the standard non-maximum suppression (NMS) by using

the crowd density measure presented in Section 3 to improve human detection290

performance in crowds. In addition, some geometrical constraints are intro-

duced in a first filtering step to remove false positive detections. The remainder

of this section is organized as follows: First, we present our proposed density-

based NMS in crowd-context constraints (Section 4.1). Then, the geometrical

constraints introduced in a filtering step are defined (Section 4.2). In Section295

4.3, a summary of our proposed integration algorithm is presented.

4.1. Crowd Context Constraint

The usage of detection thresholds in many human detectors is problematic

in real-world applications. Beforehand it is not always clear to the user how to

adapt the algorithm to a new scene and how to choose the threshold value. While300

lower values usually increase the number of detections and allow recognizing

more persons, they also increase the number of false positives. On the other

hand, higher thresholds only detect more reliable candidate regions but might

cause the detector to miss some people in the scene.

This is especially difficult in heterogeneous scenes with crowded and non-305

crowded regions and is due to the fact that high crowd scenes present many

challenges that are not present in low-crowd scenes. These include the large

number of persons, small target size, occlusions because of object interactions.

The impact of these difficulties on the detection results is highly dependent

on the crowd size i.e. the higher the crowd density, the more difficult it is310

to detect people. As a result, low detection thresholds would be suitable in

crowded scenes and higher values ensure less false positives in non-crowded

spaces. It is therefore important to find a way of automatically setting the
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detection threshold τ according to the probability that people are present in a

certain position of the image. As discussed in Section 3, crowd density maps315

provide this information. Therefore, we propose to use this local information

regarding the crowd density in order to adjust the detection threshold.

In the detection step of a video sequence of N frames {I1, ..., IN}, we obtain

a set of candidate RoIs for a given threshold τ : D(τ) = {D1, ...,DN}, where

Dk = {dk1 , ..., dknk
} is the set of detections at frame k. dkj denotes the jth de-

tection at this frame and is defined as dkj = {xkj , ykj , wkj , hkj }, where (xkj , y
k
j )

is the upper left position of the RoI dkj and wkj , h
k
j are the respective width

and height. Using a pre-defined range of detection thresholds given by an

lower/upper boundary τmin/τmax, we apply the following linear density-scaled

adaptive rule to automatically select acceptance threshold value of the detector:

τdyn = τmax + (τmin − τmax) · Ĉk(dkj ), j ∈ {1...nk} (4)

with

Ĉk(dkj ) =

hk
j−1∑
p=0

wk
j−1∑
q=0

Ck(xkj + p, ykj + q)

wkj · hkj
(5)

as the average crowd density value of detection dkj .

To obtain the dynamic threshold τdyn for every candidate dkj in Dmin, the av-

erage crowd density Ĉk(dkj ) is computed as in (5) and inserted into (4) for all320

regions.

4.2. Geometrical Constraints

Due to the part-based nature of the used human detector, it is possible that

certain human parts which actually lie on different persons are matched together

in one candidate RoI which then comprises all of them (highlighted in yellow325

in Figure 3 (a)) or that a region is chosen even though it is much too large to

surround one person (shown in red in Figure 3 (a)). If the score of such detection

is higher than the scores of the individual objects’ detections, the NMS step

will keep it instead of the correct individual detections which might otherwise
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(a) (b)

Figure 3: Exemplary effects of the proposed correction filters on a frame from PETS dataset

[33]: (a) detections without filtering, (b) filtering according to aspect ratio and perceived

height. While the unfiltered detections might include too large candidates (red) and also

detections comprising several persons at correct height (yellow), the aspect ratio and perceived

height allow removing most of them.

be recognized. Accordingly, in this case a false positive detection and a number330

of missed detections are generated which result in a decrease in the detection

performance. We propose to overcome this problem by applying geometry-based

pre-filters in order to filter out inaccurate detections of inappropriate size. The

design of geometrical correction filters is based on the perceived height and the

aspect ratio.335

Since the perceived size of a person is affected by perspective distortions, any

detected RoI for person farther away accounts for a smaller portion compared

to closer persons. Based on that, we design a filter that uses the height of

a candidate RoI to indicate the likelihood of human presence. Also, as some

detections could comprise multiple persons at once, we propose to use the aspect

ratio as a correction measure. Given the set of candidate RoIs Dk, following [34]

we assume the relationship between a person’s position and his/her perceived

height to be:

hkj = αk−1 · ykj + βk−1, j ∈ {1...nk} (6)

where αk−1 and βk−1 parameters are computed using a standard regression.
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Also, the aspect ration is defined as:

γk−1 = median

{
wij
hij

}
1≤i≤(k−1),1≤j≤ni

(7)

αk−1, βk−1, and γk−1 parameters are computed over all accepted detections

{D1, ...,Dk−1} and updated at each frame.

These proposed correction filters use the previous detections to predict the

height and the ratio of a new candidate, allowing the algorithm to operate on-line

without any previous learning step. By applying these two geometrical filters340

simultaneously, a detection candidate is accepted only if it fits the aspect ratio

and the height according to the y-coordinate of its center. As the used NMS

step is greedy and overlap-oriented, it is now possible to filter out an unlikely

large or small region and to detect other objects in the same area which would

have been suppressed otherwise. An example of these correction filters can be345

seen in Figure 3 (b) where false positive detections from the previous images

are suppressed.

4.3. Summary of the integration algorithm

Algorithm 1 shows in pseudo-code an overview of our proposed human de-

tection algorithm in crowds by integrating crowd density and geometrical con-350

straints into the state-of-the-art human detector. The implementation of this

algorithm can be efficiently done as follows: Firstly, a set of candidate RoIs

D is computed for the minimal detection threshold τmin. This set contains

all possible detections which can be extracted for the given threshold range

[τmin...τmax]. To filter out inaccurate detections of inappropriate size, the two355

proposed geometrical filters are applied. A detection dkj is accepted only if it fits

the predicted ratio and height with an error less than certain thresholds (∆γ ,

∆h) i.e. only if ( (wkj /h
k
j ) ≤ γk−1 ±∆γ) and (hkj ≤ h̃kj ±∆h), where h̃kj denotes

the predicted height of the bounding box, computed from (6).

After applying these two geometrical filters, we obtain a set of new detec-360

tions D′k and their corresponding scores S ′k. At this stage, we often get multiple

overlapping detections, thus we use a greedy procedure for eliminating repeated
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Algorithm 1 Proposed Human Detection in Crowds
Input:

• I = {Ik}1≤k≤N , N frames of a given video sequence V and their corresponding crowd

density maps C = {Ck}1≤k≤N .

• D = {Dk}1≤k≤N : a set of preliminary candidate detections and their corresponding

scores S = {Sk}1≤k≤N .

Output: Selected detections D ′′

Initialize: Set (α0, β0, γ0) parameters to −∞
for k = 1 to N do

Dk = {dk1 , ..., dknk
}, Skk = {sk1 , ..., sknk

}

1. Filtering:

if (αk−1 = −∞)

D′k ← Dk, S′k ← Sk
else

(D′k, S′k) ← Apply filtering (Dk, Sk, αk−1, βk−1, γk−1)

end if

2. nms-based-density:

D′k = {d′k1 , ..., d′kmk
}, S′k = {s′k1 , ..., s′kmk

}

• Indexk1 ← Sort confidence scores S′k
• for each position i ∈ Indexk1 do

Compute ratio of overlap ϑkij between detections at

Indexk1(i) and at Indexk1(j), (i+ 1) ≤ j ≤ mk

end for

• Indexk2 ← Remaining index after removing all overlapped detections more than

a certain threshold ∆o = 0.5

• Ck ← Normalize Density Map Ck to [0...1]

• For all pixels x ∈ Ik, compute detection thresholds using a predefined range of

detection thresholds [τmin...τmax] and the normalized Ck

• IndexkF = {}

• for c = 1 to length (Indexk2) do

τdyn(d′k
Indexk

2 (c)
) ← average of detection threshold values of all pixels belonging

to the RoI

if (s′k
Indexk

2 (c)
≥ τdyn), then IndexkF ← {Index

k
F , c}

end for

• D′′k ← D
′
k{IndexkF }

3. (αk, βk, γk) ← Update Filtering Parameters ({D′′l}1≤l≤k)

end for
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detections. It proceeds by sorting the detections D′k according to their corre-

sponding scores and greedily selecting the highest scoring ones while skipping

overlapped detections that are covered by more than 50% by a bounding box365

of a previously selected detection. The following step consists of thresholding

the remaining detections using the computed dynamic threshold according to

the crowd density. Finally, the filtering parameters αk, βk, and γk are updated

according to the new selected detections D′′k . In the following, Dk denotes the

selected detections.370

5. Tracking-by-detection using Probability Hypothesis Density

To demonstrate the impact of improving detection results on tracking, we use

PHD filter [35] in a tracking-by-detection framework. Other tracking methods

such as Multiple Hypotheses tracking (MHT) [36] or Joint Probabilistic Data

Association Filter (JPDAF) [37] could also be applied but schematically this375

will not result in a fundamentally different approach because all these methods

rely on a previous accurate detection step before combining the given detections

to tracklets. The choice of a PHD tracker instead of other methods is driven by

two main reasons: a) its known sensitivity towards missed detections (in order

to show improvements by the enhanced detection step) and b) its provable Bayes380

optimality [38] which makes it superior to MHT.

For implementation, we use a Gaussian-Mixture Probability Hypothesis Den-

sity (GM-PHD) filter [39] which assumes a linear motion model and expresses

the PHD function Θ(x) at time step k as a mixture of Gaussians with their

respective mean and covariance values µ
(i)
k ,Σ

(i)
k :

Θk(x) =

Jk∑
i=1

w
(i)
k N(x;µ

(i)
k ,Σ

(i)
k ) (8)

This filter models the PHD function Θ(x) at time step k as a mixture of Gaus-

sians and propagates them in an estimation step from the previous state x’

according to the object motion model f(x|x’). A survival probability pS(x’)385
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can account for exit points in a scene. Additionally, birth distributions Nb(x)

are added in the estimation step for all detections in order to account for new

objects:

Θk|k−1(x) = Nb(x) +

Jk∑
i=1

pS(x’) · f(x|x’) ·Θk−1|k−1(x’). (9)

In the following correction step, the PHD function is adapted according to

the currently received measurement set Dk:390

Θk|k(x) = (1− pdet(x)) ·Θk|k−1(x) +∫ pdet(x)·L
dk
i

(x)·Θk|k−1(x)

C+
∫
pdet(x)·L

dk
i

(x)·Θk|k−1(x)dx
ddki (10)

where the detection probability pdet and the clutter rate C characterize the used

human detector, and Ldki (x) is the likelihood for a given measurement dki and

a state x.

In the used GM-PHD filter, this correction step is performed by generating395

(Jk−1 + |Dk|) · (1 + |Dk|) new Gaussian distributions. While their mean and

covariance values are chosen according to the position of the respective state

and detection, the weights of the corrected curves are computed as follows:

w
[j]
k (dki ) =


(1− pdet) · w[j]

k|k−1, no detection

pdet(x)·L
dk
i

(x)·w[j]

k|k−1

C+
∫
pdet(x)·L

dk
i

(x)·w[j]

k|k−1
dx
, for dki ∈ Dk

(11)

In order to keep the overall number of Gaussians at a suitable level, merging

and pruning procedures as proposed in [40] are carried out.400

The standard PHD filter does not apply any image information in order to

distinguish between objects. In our framework we use a feature-based label tree

extension as proposed in a previous work [4]. This extension uses image color

information to distinguish objects and performs especially well in case of near

objects and occlusions which are present in our scenarios. After this step, object405

extraction is done by reporting hypotheses with a weight of Θ(x) > Textract

(usually set to Textract = 0.5). From (11), it can be seen that the PHD filter
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is sensitive to missed detections. In case no current detection confirms a state

estimate, its weight is reduced by the constant factor (1 − pdet). Should it fall

below Textract, it will not be reported and the corresponding track will not be410

continued in this frame. In the following, we will demonstrate how the idea of

using crowd density information to complement detection subsequently improves

tracking performance.

6. Experimental Results

6.1. Datasets and Experiments415

The proposed approach is evaluated within challenging crowded scenes from

multiple datasets. In particular, we select some videos from PETS [33], UCF

dataset [41], and Data-Driven Crowd Analysis dataset [42]. These videos are

annotated for all frames using Viper [43] (except for UCF-879 where the anno-

tation comprises only the first 200 frames).420

To demonstrate the effectiveness of the proposed detection algorithm, we

compare our results to the baseline algorithm [19]. In particular, two detection

thresholds (as τmin and τmax) are tested for the baseline algorithm, whereas

the proposed method uses a dynamically chosen threshold between these values

according to the crowd density. Additional tests were conducted to assess the425

impact of the correction filters. For quantitative evaluations, we use the CLEAR

metrics [44]: the Multi-Object Detection Accuracy (MODA) and the Multi-

Object Detection Precision (MODP).

For the evaluation of the tracking performance, we use the OSPA-T metric

proposed in [45]. To demonstrate the impact of improving detection results430

on tracking, we compare the tracking results in terms of this metric using the

baseline detector to the results using our improved detector.

6.2. Results and Analysis

For the detection part, the results using static detection thresholds τmin,

τmax (baseline method) are compared to the proposed dynamic threshold τdyn ∈435
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sequence name τmax τmin τdyn Filtering τdyn+ Fil-

tering

S1.L1.13-57 (FAST): 0.59/0.59 0.63/0.63

S1.L1.13-57 (SIFT): 0.48/0.65(∗) 0.36/0.57(∗) 0.59/0.60 0.48/0.66 0.61/0.63

S1.L1.13-57 (GFT): 0.60/0.60 0.62/0.63

S1.L1.13-59 (FAST): 0.60/0.67 0.60/0.68

S1.L1.13-59 (SIFT): 0.56/0.68(∗) 0.25/0.61(∗) 0.60/0.67 0.56/0.69 0.60/0.68

S1.L1.13-59 (GFT): 0.59/0.67 0.61/0.68

S1.L2.14-31 (FAST): 0.40/0.59 0.47/0.63

S1.L2.14-31 (SIFT): 0.33/0.63(∗) 0.09/0.57(∗) 0.40/0.59 0.32/0.65 0.47/0.63

S1.L2.14-31 (GFT): 0.40/0.59 0.47/0.63

S2.L3.14-41 (FAST): 0.34/0.56 0.35/0.57

S2.L3.14-41 (SIFT): 0.29/0.54(∗) 0.04/0.56(∗) 0.34/0.54 0.29/0.54 0.35/0.55

S2.L3.14-41 (GFT): 0.34/0.54 0.36/0.55

UCF-879 (FAST): 0.41/0.55 0.59/0.58

UCF-879 (SIFT): 0.44/0.58(∗) 0.34/0.54(∗) 0.42/0.55 0.41/0.62 0.57/0.58

UCF-879 (GFT): 0.43/0.55 0.58/0.58

INRIA879-42 (FAST): 0.35/0.55 0.42/0.47

INRIA879-42 (SIFT): 0.27/0.54(∗) 0.06/0.55(∗) 0.35/0.55 0.20/0.42 0.38/0.45

INRIA879-42 (GFT): 0.35/0.55 0.41/0.44

Table 1: MODA / MODP results for three different feature types used in the crowd density

estimation (FAST / SIFT / GFT) and for different test videos.

{τmin...τmax} in Table 1. We set τmin to (-1.2) and τmax to (-0.5), these values

have been found empirically suitable for highly-resp. lowly crowded scenes. As

shown, the results using (-0.5) as detection threshold are not satisfactory, also

by decreasing the threshold to (-1.2), the results are even worse. That is why,

we consider that using adjustable detection threshold between these two limits440

based on local density is a more appropriate method. As shown in the table,

the automatic choice of the detection threshold already gives better results than

both configurations of the baseline method. Regarding the final results (in the

last column), the proposed system using a dynamically chosen detection thresh-

old together with a filtering step based on geometrical characteristics gives the445

best results for all test videos. These results demonstrate that integrating both

proposed steps (filtering and dynamic threshold) into human detector performs

favorably better than implementing them separately which justifies that filtering

has to be performed first to suppress false detections and to emphasize correct

ones. The choice of the feature detector in general does not seem critical to the450
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(a) (b) (c) (d)

Figure 4: Exemplary visual results comparing the performance of crowd-sensitive threshold

to the baseline method: (a) baseline algorithm at τmax, (b) baseline algorithm at τmin, (c)

estimated crowd density map, (d) proposed method using dynamically chosen τdyn computed

from the density values and correction filter according to aspect ratio and perceived height.

From top to bottom: Frames from PETS, UCF 879, and INRIA 879-38.

performance, expect slight improvement using FAST compared to others.

Figure 4 shows exemplary visual results which also indicate that the per-

formance increases by the proposed method. Although the PETS sequences

provide all the same view (View 1), they still pose different problems to the

detector. Changing lighting conditions, shadows and different crowd densi-455

ties between the test sequences are challenging and in all cases the proposed

method improves the detection results over the baseline method. Due to the

higher crowd density and the tilted camera view, the UCF-879 sequence is even

more challenging. However, the proposed method considerably enhances the

detection compared to the baseline method. For the INRIA 879-38 sequence,460
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the camera view is almost completely downward and people are walking very

near to the camera which changes their aspect ratio considerably at different

positions. Additionally, for this specific perspective, many detection candidates

comprising the head of one person and the body of another are generated. As

the correction filter does not apply a prior-knowledge about the shape of a per-465

son but is only estimated on previous detections, it is misled in this situation.

Accordingly, in this specific case its contribution is smaller.

Since the part-based model represents the current state-of-the-art detector,

we consider extending it to operate in crowded scenes and improving its perfor-

mance is a substantial contribution of this paper. As advantages of our method,470

the proposed extensions do not need any preliminary learning phase and can be

applied on-line. However, it is important to mention that our proposed method

is applied best for medium density crowded scenes. It is difficult to perform well

for extremely crowded scenes, because the continuous application of a detection

algorithm in individual frames will face some difficulties with the small visual475

information. For such videos, learning scene-specific motion patterns as a global

entity will be preferred. Also, only head detection could be more appropriate in

such videos, because our method relies on body detection and also the geomet-

rical filters are based on perceived height, which could not work well in these

specific cases. To illustrate that, we show our results in one frame from a high480

crowded video where only heads are visible, see Figure 5.

Figure 5: Detection results from one frame of a video in Data-Driven Crowd Analysis dataset

[42]
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For tracking, the generated results using the same tracker configuration for

all videos to ensure comparability are shown in Table 2. Generally, the results

of the proposed method using a dynamical detection threshold and correction

filtering are better compared to the baseline method. The gain is especially485

high for the sequences PETS S1.L2.14-31 and INRIA-879-42 but an overall

major improvement can be observed in all videos.

sequence name original (τ = −0.5) proposed method

S1.L1.13-57 (FAST): 63.64

S1.L1.13-57 (SIFT): 65.26(∗) 62.69

S1.L1.13-57 (GFT): 61.06

S1.L1.13-59 (FAST): 62.36

S1.L1.13-59 (SIFT): 64.81(∗) 64.61

S1.L1.13-59 (GFT): 64.05

S1.L2.14-31 (FAST): 66.39

S1.L2.14-31 (SIFT): 75.27(∗) 70.82

S1.L2.14-31 (GFT): 71.00

S2.L3.14-41 (FAST): 87.65

S2.L3.14-41 (SIFT): 88.19(∗) 88.44

S2.L3.14-41 (GFT): 87.36

UCF-879 (FAST): 86.89

UCF-879 (SIFT): 89.92 86.95

UCF-879 (GFT): 86.46

INRIA-879-42 (FAST): 73.22

INRIA-879-42 (SIFT): 81.15(∗) 75.55

INRIA-879-42 (GFT): 73.56

Table 2: Averaged OSPA-T values for test sequences and different feature types (FAST /

SIFT / GFT). We use a cut-off parameter c = 100, α = 30 and a distance order of d = 2.

These results are consistent with our expectations as the tracker relies on

improved detections and lower clutter. OSPA-T values change more between

different features than the MODA/MODP values due to the filtering effect of490

the PHD tracker. As the tracker can deal with clutter and also missed detections

to some extent, detection improvements enhance the tracking performance but

not with the same impact. So it is possible that the tracking results may vary

over different feature types, although these may generate similar MODA/MODP

results.495
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The OSPA-T metric for different configurations over one complete scene

(PETS S1.L2.14-31) is shown in Fig. 6 (a). For this scene with challenging

lighting conditions and medium crowd density, the detection performance is

increased considerably by the proposed method. The diagram shows that the

tracking performance of our method is mostly better than using the baseline500

algorithm. Visual examples are given in Fig. 6 (b)-(e) where it can be seen that

our method is visibly able to track objects for a longer time and also maintains

more tracks than the baseline method.

7. Conclusion

In this paper, we proposed an extension of the part-based human detector by505

incorporating local crowd density and geometrical correction filters in the non-

maximum suppression step and used the resulting detections for tracking. The

crowd density information is represented as a new statistical model of spatio-

temporal local features that varies temporally over the video and spatially across

the frame. By means of automatically estimating crowd density maps, the510

detection threshold is adjusted according to this contextual information. In

order to cope with false positive detections of inappropriate size, dynamically-

learning correction filters exploiting the aspect ratio and the perceived height of

detections are proposed. None of the proposed extensions need a training phase

and both can be applied on-line. An extensive evaluation on several datasets515

shows the effectiveness of incorporating crowd density into the detection process.

Also, tracking performance based on the improved detections is tested.

There are several possible extensions of this work: First, including more

contextual information in addition to the crowd density to improve human de-

tection and tracking in crowded scenes might be investigated. Second, since520

the incorporation of the crowd density model into the tracking is performed by

providing improved detection results, a more elegant approach could formulate

both detection and tracking as a joint framework and crowd density informa-

tion could be integrated in both steps to enforce scene constraints. Finaly,
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the improved detections can be employed for high level analysis such as crowd525

change detection. This can be achieved using some crowd descriptors defining

the topological structure of the detected bounging box over the time.
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Figure 6: (a) OSPA-T distance over full sequence PETS S1.L2.14-31 (b)-(e) Exemplary visual

tracking results of our proposed method compared to the baseline method from this scene:

(b) baseline method, (c) proposed method using FAST features, (d) proposed method using

SIFT features, (e) proposed method using GFT
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