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Abstract—In this work1, we study a cognitive radio setting con-
sisting of a primary multiple-antenna transmitter (TX) serving
a single-antenna primary user (PU) and a secondary multiple-
antenna TX serving a secondary user (SU). The main specificity
of this work is that we let the primary TX coordinate its
transmit strategy with the secondary TX, while considering a
realistic channel state information (CSI) scenario where each
TX has solely access to the instantaneous knowledge of its direct
channel and the statistics of the multi-user channel. This setting
gives rise to a Team Decision problem where the TXs aim at
cooperating on the basis of individual information. We develop
a novel coordination scheme where the TXs coordinate without
any exchange of information or any iteration to guarantee the
fulfillment of the primary constraint while maximizing the rate
of the SU. The coordination is done on the basis of statistical
information such that the coordination can be optimized off-
line. The proposed scheme outperforms conventional schemes
from the literature and has low complexity. It can thus be used
in settings with low signal processing capabilities and a weak
backhaul infrastructure.

I. INTRODUCTION

Cognitive radio has been lately suggested as a promising
technology in view of increasing spectral efficiency in wireless
communications [1]. In the underlay cognitive radio approach,
a primary operator allows the simultaneous use of its spectral
resources by an unlicensed secondary system, on condition
that harmful interference emitted by the secondary transmitter
will not exceed a prescribed maximum tolerated level [2].
Under such a setup, efficient schemes have been developed in
multiple-input multiple-output (MIMO) settings to maximize
the rate of the SUs subject to given constraints over the inter-
ference suffered by the PUs [3]–[5]. In practice, it is expected
to be difficult for the secondary TX to obtain accurately the
multi-user CSI. In particular, the CSI exchange between TXs
(if possible) is likely to introduce delay which significantly
impacts the performance of the precoding.

Therefore, an extensive literature has been focused on
designing iterative distributed approaches being robust to im-
perfect CSI or requiring only local CSI [See [6] and references
therein]. Game theoretic iterative approaches have been also
suggested as a way to avoid the need for exchanging the global
multi-user CSI for spectrum sharing approaches [7] as well as
for underlay cognitive radio [8].
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Conventional cognitive radio approaches, however, assume
that the primary TX should not adapt to the presence of the
secondary TX. As the goal of the PU is solely to achieve
its primary rate constraint in any case, it leads to the PU
transmitting with higher power than required, thus pointlessly
limiting the performance of the SU. This is likely to be too
pessimistic as the exchange of long-term information between
TXs does not represent a major hurdle and allows for the
primary TX to adapt to the transmission of the secondary TX.
How to efficiently exploit this multi-user statistical information
is exactly the focus of this work.

Specifically, we propose a new coordination paradigm
where the primary TX exploits its locally available CSI and the
statistical information of the multi-user channel to coordinate
with the secondary TX so as to guarantee its desired quality-
of-service. Each TX knows only the realization of the direct
channel and cooperates with the other TX which hence does
not share the same CSI: this falls in the category of Team
Decision problems [9] discussed in other wireless settings in
[10], [11]. A similar scenario was already investigated in [12].
However, the scheme developed in [12] has high complexity
(it requires multiple iterations of Monte-Carlo averaging) and
it has to be run for each channel realization. It also requires
the exchange of information between the TXs, which is not
possible in our setting.

In particular, our main contributions are as follows.
• Considering a cognitive setting with a rate constraint for

the PU, we develop a statistically coordinated precod-
ing scheme which outperforms conventional approaches
from the literature without requiring any exchange of
the instantaneous channel state between the TXs. The
coordination can be optimized off-line on the basis of
statistical information only and is characterized by low
complexity.

• The proposed statistical coordination approach for Team
Decision problems is very general and can be applied in
other optimization problems in wireless communications.

II. SYSTEM AND CHANNEL MODEL

The cognitive setting studied is composed of a primary
TX (TX p) communicating with a PU while a secondary TX
(TX s) transmits to a SU. Assuming an underlay approach,
both TX p and TX s share the same frequency band. TX j
with j ∈ {s, p} is equipped with Mj antennas while each of
the users is equipped with a single antenna.



The signal received at user i is written as

yi = hH
i,iwisi + hH

i,̄iwīsī + ni, i ∈ {p, s}, (1)

where hi,j ∈ CMj , i, j ∈ {p, s} are distributed as
NC(0Mj

,Ri,j) to model a Rayleigh fading scenario. We
restrict in this work to Rj,j = IMj ,∀j, while the extension
to correlated direct channels will be tackled in future works.
The vector wj ∈ CMj denotes the beamformer at TX j and
it is assumed that wj =

√
Pjui with ‖uj‖2 = 1. Finally, we

consider Gaussian noise ni ∼ CN (0, N0), i = {p, s} and we
assume that the users data symbols to be transmitted are also
Gaussian distributed.

The instantaneous rate of user i is then given by [13]

Ri(wp,ws) = log2

(
1 +

Pi|hH
i,iui|2

N0 + Pī|hH
i,̄i
uī|2

)
. (2)

III. PROBLEM FORMULATION

We consider in this work the realistic CSI configuration
where TX j has instantaneous knowledge of its direct channel
hj,j and of the multi-user covariance matrices Ri,j , i, j ∈
{s, p}. The multi-user covariance matrices are long-term in-
formations and can be exchanged through low capacity/high-
delay links. The Team Decision problem can be formulated
as a functional optimization problem with the appropriate
functional dependencies:

(w?
p,w

?
s) = argmaxE [Rs(wp(hp,p),ws(hs,s))]

subject to E [Rp(wp(hp,p),ws(hs,s))] ≥ τ > 0,

0 ≤ ‖wp(hp,p)‖2 ≤ Pmax
p , 0 ≤ ‖ws(hs,s)‖2 ≤ Pmax

s

(P1)

with, for j ∈ {s, p},

wj : CMj → CMj

hj,j 7→ wj(hj,j)
(3)

Remark 1. The distributed aspect of the team decision problem
is reflected in the particular functional dependencies of the two
precoders. Note further that we will omit in the following to
mention explicitly the dependencies of the beamformers.

Optimization problem (P1) is supposed to be feasible which
means that the PU rate objective satisfies:

E

[
log2

(
1 +

Pmax
p ‖hp,p‖2

N0

)]
≥ τ. (4)

The functional optimization is especially difficult to handle
due to the expectation of the logarithm. Hence, we will con-
sider an approximated problem to develop practical solutions
while keeping the important features of the optimization prob-
lem (P1). Our first step consists in applying Jensen’s inequality
for the expectations over the cross-channels (known at none of
the TXs) by exploiting the convexity of the function log(1+ 1

x ).

This gives

E[Ri(wp,ws)] ≥E

[
log2

(
1 +

|hHi,iwi|2

N0 + Ehi,̄i [|hHi,̄iwī]|2

)]

= E

[
log2

(
1 +

Pi|hHi,iui|2

N0 + Pīu
H
ī
Ri,̄iuī

)]
, E

[
R̃i(wp,ws)

]
.

(5)

Remark 2. It is possible to apply Jensen’s inequality solely for
the cross-channel thanks to the independence of the precoding
vectors from the cross-channels.

Importantly, since we have obtained a lower bound for the
ergodic rates, the approximation comes at the cost of a possible
lower rate for the SU, but preserves the feasibility of the rate
constraint at the PU.

For tractability, we focus on slow power control, which
we denote by P̄j , for j ∈ {s, p}. This yields the following
optimization problem:

(P̄ ?pu
?
p, P̄

?
s u

?
s) = argmaxE

[
R̃s(P̄pup(hp,p), P̄sus(hs,s))

]
subject to E

[
R̃p(P̄pup(hp,p), P̄sus(hs,s))

]
≥ τ, (P1’)

0 ≤ P̄p ≤ Pmax
p , 0 ≤ P̄s ≤ Pmax

s .

IV. PRELIMINARY RESULTS

We start by providing some preliminary results which will
be used in the design of the novel transmission scheme.

Proposition 1. The rate constraint at the PU is fulfilled with
equality by any optimal solution of (P1’), i.e.,

E
[
R̃p(P̄

?
pu

?
p, P̄

?
s u

?
s)
]

= τ. (6)

Proof. The objective E[R̃s(P̄pup, P̄sus)] is monotonically
decreasing with respect to P̄p, while E[R̃p(P̄pup, P̄sus)] is
monotonically increasing and continuous in P̄p. Hence, if
the primary constraint is not fulfilled with equality, one can
increase the objective by reducing power P̄p. This is always
feasible because τ > 0 implies that P̄ ?p > 0.

Proposition 2. The optimal solution of (P1’) is obtained when
one of the two TXs emits with full power, i.e., when P̄ ?p =
Pmax
p or P̄ ?s = Pmax

s .

Proof. Let us consider an optimal solution and write P̄ ?i =
α?i P̄

? for some α?i ≥ 0. It is trivial that both the rate of
the PU and the rate of the SU are increasing in P̄ ?. If none
of the two TXs transmits with full power, this means that it
is possible to transmit with P̄

′
> P̄ ?. The transmission us-

ing (α?pP̄
′
u?p, α

?
sP̄

′
u?s) is feasible and achieves a larger objec-

tive, which contradicts the optimality of (P̄ ?pu
?
p, P̄

?
s u

?
s).

V. STATISTICALLY COORDINATED PRECODING

A. General Approach

To tackle the difficult optimization problem (P1’), we re-
strict the space of possible precoding decisions to a codebook
of precoding strategies {S1, . . . ,SK}. Strategy Sj refers



in fact to a couple (P̄
Sj
p u

Sj
p , P̄

Sj
s u

Sj
s ). The restriction to

a codebook of strategies renders the optimization problem
tractable as it allows to exhaustively evaluate the performance
of each transmit strategy so as to choose the most efficient
one. This means finding a strategy S ? which fulfills ∀j,

E
[
R̃s(P̄

S ?

p uS ?

p , P̄S ?

s uS ?

s )
]
≥E
[
R̃s(P̄

Sj
p uSj

p , P̄
Sj
s uSj

s )
]

(7)

while satisfying at the same time the primary rate constraint.
In principle, any codebook can be used, and adding elements
to the codebooks leads to a performance improvement. This
requires however the computation of the expectations in (7),
which in general cannot be done in closed form.

In order to be able to evaluate analytically (7), we restrict in
the following to a particular codebook made of two strategies,
denoted by S and P . These two precoding strategies are
designed based on the results obtained in Section IV and
such that the expectations can be computed in closed-form.
Specifically, we use the fact that the primary constraint is
fulfilled with equality (Proposition 1) and that at least one
of the TXs emits with full power (Proposition 2).

B. Precoding Strategy P

In this precoding strategy –primary oriented–, TX p trans-
mits with its full power P̄p = Pmax

p and using the matched
precoder uMF

p defined as

uMF
p ,

hp,p
‖hp,p‖

. (8)

The secondary TX then transmits using the statistical ZF
precoder usZF

s equal to

usZF
s , argmin

u
uHRp,su. (9)

It remains to choose P̄s so as to fulfill the rate constraint at
the PU. Replacing the precoder expressions of (8) and (9) and
the power of the primary TX in the rate constraint gives

E

[
log2

(
1 +

P̄max
p ‖hp,p‖2

N0 + P̄sλmin(Rp,s)

)]
≥ τ (10)

where λmin(Rp,s) denotes the minimum eigenvalue of matrix
Rp,s. For clarity, we also introduce

γ̄p ,
P̄max
p

N0 + P̄sλmin(Rp,s)
. (11)

The only random variable inside (10) is hp,p which is dis-
tributed as NC(0,Rp,p=IMp

). Hence, the expectation in (10)
can be computed using [14, eq. (41)] as

E[log2

(
1 + γ̄p‖hp,p‖2

)
] = log2(e)e

1
γ̄p

M−1∑
k=0

Γ(−k, 1
γ̄p

)

γ̄kp
(12)

where Γ(·) is the incomplete Gamma function [15, eq.
(8.350.2), p. 949] defined as

Γ

(
α,

1

γ̄

)
,
∫ ∞
x

tα−1e−tdt. (13)

It remains then to determine P̄s to fulfill the ergodic rate con-
straint with equality. This can be easily done by bisection using
(12). Indeed, the ergodic rate of the PU is non-increasing in
the power P̄s and the rate constraint is fulfilled by assumption
for P̄s = 0. If the constraint is also fulfilled for P̄s = Pmax

s ,
the secondary TX transmits with its full power. Otherwise,
a simple bisection algorithm over P̄s converges to a power
level P̄s fulfilling (10) with equality.

C. Precoding Strategy S

In this precoding strategy –secondary oriented–, TX s
transmits with its full power P̄s=Pmax

s and using the matched
precoder uMF

s defined as

uMF
s ,

hs,s
‖hs,s‖

. (14)

The primary TX then transmits with the statistical ZF precoder

usZF
p , argmin

u
uHRs,pu. (15)

It remains to choose P̄p so as to fulfill the ergodic primary
rate constraint. Replacing the precoder expressions of (14) and
(15) and the power of the secondary TX in the primary rate
constraint gives

E

[
log2

(
1 +

P̄p|hH
p,pu

sZF
p |2

N0 + P̄max
s (uMF

s )
H
Rp,suMF

s

)]
≥ τ. (16)

We can once more use Jensen’s inequality for convex functions
for the expectation over hs,s to obtain that

E

[
log2

(
1 +

P̄p|hH
p,pu

sZF
p |2

N0 + P̄max
s (uMF

s )
H
Rp,suMF

s

)]

≥E

log2

1 +
P̄p|hH

p,pu
sZF
p |2

N0+Ehs,s

[
P̄max
s (uMF

s )
H
Rp,suMF

s

]
 (17)

≥ E

[
log2

(
1 +

P̄p|hH
p,pu

sZF
p |

2

N0 + P̄max
s

1
M tr(Rp,s)

)]
. (18)

The beamforming vector usZF
p depends only on the long-

term CSI such that the random variable |hH
p,pu

sZF
p |2 can be

seen to be exponentially distributed. Similarly to precoding
strategy P , we start by introducing for clarity γ̄s as

γ̄s ,
P̄p

N0 + P̄max
s

1
M tr(Rp,s)

. (19)

Using this notation, the lower-bound in (18) is easily shown
to be equal to [14, eq. (34)]

E
[
log2

(
1 + γ̄s|hH

p,pu
sZF
p |2

)]
= log2(e)e

1
γ̄s E1

(
1

γ̄s

)
. (20)

In the same way as for strategy P , it is possible to use the
closed-form expression (20) to control the power used at TX p
and find by bisection the minimal power P̄p such that

E
[
log2

(
1 + γ̄s|hH

p,pu
sZF
p |2

)]
≥ τ. (21)



Remark 3. In contrast to strategy P , strategy S reduces the
feasibility region since the secondary TX transmits with full
power which reduces the rate of the PU. Hence, a preliminary
condition before using strategy S is to verify that it allows to
fulfill the PU rate constraint, i.e., that P̄max

p satisfies (21).

VI. STATISTICALLY COORDINATED PRECODING

We have described two precoding strategies which will form
the building blocks for our algorithm. It remains now to show
how to combine them to obtain an efficient solution to the
optimization problem (P1’).

Given the statistical parameters of a channel, we study
whether it is possible to fulfill the primary constraint using
precoding strategy S . If equation (21) is satisfied when using
P̄p = Pmax

p , this means that it is possible to fulfill the primary
constraint using precoding strategy S . This equation requires
only the knowledge of statistical information and not of the
instantaneous channel realizations. Hence, it can be verified at
the two TXs whether equation (21) can be satisfied.

If this criterion is satisfied, both TXs transmit according
to precoding strategy S . Otherwise, both TXs transmit ac-
cording to precoding strategy P . The choice between the two
precoding schemes is done by computing (21) and we call
therefore this step the statistical handshake as it allows for the
TXs to coordinate on the basis of statistical information. This
coordination step needs only to be run again when the CSI
statistics have changed. For the sake of clarity, the different
steps of the algorithm are put together in the table below.

Algorithm 1 Statistically Coordinated Precoding Scheme

• Handshake: Verify whether coordination criterion (21)
holds with P̄p = Pmax

p . If this is the case use precoding
strategy S , otherwise use precoding strategy P .

• Precoding strategy P:
– TX p transmits with uMF

p in (8) and P̄p = Pmax
p

– TX s transmits with usZF
s in (9) and a power level P̄s

fulfilling (10) with equality (obtained by bisection)
• Precoding strategy S :

– TX s transmits with uMF
s in (14) and P̄s = Pmax

s

– TX p transmits with usZF
p in (15) and a power level

P̄p fulfilling (21) with equality (obtained by bisection)

VII. SIMULATIONS

We will now evaluate the performance of the novel coordi-
nation algorithm via Monte-Carlo simulations. In particular,
we compare our scheme to the conventional interference
temperature approach. Hence, we will first adapt this approach
in the case of an ergodic rate constraint for the PU. We also
provide an upperbound to evaluate the potential losses.

A. Interference Temperature Approach

We consider in this reference scheme that the primary TX
transmits using uMF

p and P̄max
p . Because of the absence of

coordination between the TXs, this is necessary to be sure to

fulfill the ergodic rate constraint at the PU. We consider then
an interference temperature constraint where the secondary TX
maximizes its signal strength subject to a constraint on the
average interference level, which we denote by I. We then fix
the beamformer of the secondary TX as

uTP
s , argmax

u

uHhs,sh
H
s,su

uHRp,su
(22)

and the power is then given by

P̄s =
I

E [(uTP
s )HRp,suTP

s ]
. (23)

It remains then to determine the maximal interference temper-
ature I, i.e., such that

E

[
log2

(
1 +

Pmax
p ‖hH

p,p‖2

N0 + I

)]
= τ. (24)

Such an interference level I can be easily found by bisection
as described in Section V.

B. Upperbound
Optimal precoders are not easily derived as they strike a

trade-off between maximizing the signal strength and minimiz-
ing the interference. However, an upperbound can be obtained
by considering that it is possible to achieve the optimal value
in both cases. It then remains to find the slow power control
solving:

max
P̄s,P̄p

E

[
log2

(
1 +

P̄s‖hH
s,s‖2

N0 + P̄pλmin(Rs,p)

)]

subject to E

[
log2

(
1 +

P̄p‖hH
p,p‖2

N0 + P̄sλmin(Rp,s)

)]
≥ τ,

0 ≤ P̄p ≤ Pmax
p , 0 ≤ P̄s ≤ Pmax

s .

(25)

Similarly to Proposition 2, it is straightforward that one of
the TXs will transmit with its full power. Hence, we try
whether the ergodic constraint is fulfilled using P̄s = Pmax

s

and P̄p = Pmax
p . If this is the case, the secondary TX transmits

with full power and the primary TX finds by bisection a
power level to fulfill the ergodic constraint with equality.
Otherwise, the primary TX transmits with full power and it is
the secondary TX which finds its power level by bisection to
fulfill the ergodic constraint with equality.
Remark 4. We consider the same partial CSI assumptions
when computing this upper-bound. Considering full CSI
knowledge would lead to a very loose upperbound.

C. Simulation Results
We now compare the performance of our algorithm to

the interference temperature approach and to the upperbound
presented above. We use Monte-Carlo simulations with 10000
channel realizations for a network with Mp = Ms = 3 anten-
nas per TX and with the correlation matrices being written as
follows for a given ρ ∈ [0, 1]:

Rp,p = Rs,s = I3, Rp,s = Rs,p =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 . (26)
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Fig. 1: Ergodic rate of the primary user
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Fig. 2: Ergodic rate of the secondary user

Considering ρ= 0.5 and τ = 0.5 bps/Hz, we show in Fig. 1
the rate of the PU while the rate of the SU is shown in Fig. 2.
As expected all three approaches satisfy the rate constraint
at the PU. The outerbound achieves exactly the PU rate
constraint following the centralized power control in (25). The
proposed algorithm allows to control the rate of the PU and
translates this improved coordination in a strong performance
improvement for the SU. Note that the upperbound achieves
a lower PU rate as the goal of the optimization is not to
maximize the rate of the PU. However, it outperforms as
expected both alternative approaches in terms of the SU rate.

In fact, using small values of τ , our approach becomes then
very close to the upper-bound. For large values of τ , there is
then not much room for the secondary TX and our approach
becomes less efficient. In particular, it is then even slightly-

outperformed by the interference temperature approach which
uses a more efficient definition of the statistical ZF. This is
not a fundamental limitation and will be investigated in the
future.

VIII. CONCLUSIONS

Considering a realistic CSI configuration where each TX
has only access to its own channel, we propose a scheme
where the secondary TX and the primary TX coordinate on
the basis of the statistical information of the channel. The
proposed scheme outperforms conventional approaches from
the literature at the price of only low CSI and computation
requirements as it is not necessary for the TXs to share any
instantaneous CSI, and the coordination can be optimized
off-line. The proposed approach is a novel method to deal
with Team Decision problems and has the potential to be
generalized to many other network configurations. Although
the proposed method is practically interesting, getting closer
to the optimal solution is an interesting and challenging topic
for future research.
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