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Abstract

This thesis considers transmission of sporadic random samples in three sce-
narios which can be summarized as a single source with remote sensing, dual
and multiple source cases with distributed and remote sensing. The proto-
col and the transmission strategy is reminiscent of reverse ARQ protocols
and we show how it can be used for energy-limited sensors making use of
future broadband cellular networks. To begin with, a low-latency, two-way
parameter modulation-estimation protocol for wide-band channels which is
inspired by the classical scheme in [1] is presented and analyzed in terms of
its asymptotic behaviour with non-coherent detection on both pure line-of
sight and more general fading channels.

We proceed with introducing lower bounds on the reconstruction error
for transmission of two continuous correlated random vectors sent over a
sum channel with and without feedback both for uniform and normal dis-
tributions. Additionally, the novel protocol from the first part is extended
to the dual-source case and its asymptotic performance is analyzed and an
upper bound on the distortion level is derived for two rounds considering
the extreme case of high correlation among the sources for each distribution.

Lastly, lower bounds are derived for the reconstruction error of a sin-
gle normally or uniformly-distributed finite-dimensional vector imperfectly
measured by a network of sensors and transmitted with finite energy to a
common receiver via an additive white Gaussian noise asynchronous multi-
ple access channel. Transmission makes use of a perfect causal feedback link
to the encoder connected to each sensor. The retransmission protocol from
the first part is further extended to this more general network scenario, for
which asymptotic upper-bounds on the reconstruction error are provided.
Both the upper and lower-bounds show that collaboration can be achieved
through energy accumulation under certain circumstances.
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Résumé

Cette thèse porte sur la transmission d’échantillons aléatoires et intempes-
tifs pour trois scénarios de réseaux sans-fils. Un canal point-a-point avec un
capteur à distance, puis un canal a accès-multiple avec deux observations
corrélées provenant de deux capteurs à distance et finalement un canal a
accès-multiple avec de multiples observations bruitées du même échantillon.
Le protocole de transmission étudie dans les trois cas ressemble à un proto-
cole de retransmission (ARQ) inversé. Ce type de protocole trouve son orig-
ine dans le schéma classique propose dans [1]. Un protocole bidirectionnel
à faible latence pour la modulation-estimation à travers des canaux large-
bande est présenté et par la suite analyse en terme de sa performance asymp-
totique avec la détection non-cohérente sur divers canaux radio-mobiles.

Nous continuons par le développement de bornes inférieures sur l’erreur
de reconstructions pour la transmission de deux vecteurs aléatoires corrélés à
travers un canal à accès-multiples.Le nouveau protocole de la première partie
de cette thèse est généralise pour ce cas. Sa performance asymptotique est
analysée et une borne supérieure sur la distorsion à la reconstruction est
présentée pour une transmission en deux rondes.

Finalement, des bornes inférieures sur l’erreur de reconstruction pour la
transmission d’un vecteur de dimension finie mesurée de manière imparfaite
par un réseaux de capteurs sont présentées. La transmission utilise une
liaison de retour causal parfaite vers l’encodeur de chaque capteur.Le pro-
tocole est modifiée pour ce scenario plus général et des bornes supérieures
sur l’erreur de reconstruction de la source commune sont présentées.
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Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
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Chapter 1

Introduction

1.1 Motivation

Claude Shannon in 1948 through his milestone paper [2] showed that sep-
arate source and channel coding does not cause any loss of optimality (in
terms of reliable transmission) as long as the coding block-length tends to
infinity. This result has been proven to hold in very few instances. Never-
theless, because of the optimality in the single-source case, this is the main
reason for treating the source and channel coding separately in traditional
solutions. From a networking standpoint, it is also convenient to separate
the two operations since protocols are simpler to design since digital data can
be multiplexed. However, these practical implementations incur high delays,
that translates to is latency, and large complexity due to the extremely long
block-lengths that have to be used. By combining the efforts of the chan-
nel and source code, a new technique, known as joint source-channel coding
(JSCC), is obtained.It might be expected that this technique will provide
significant improvements in the case of a source with significant redundancy
combined with a channel with high noise levels. This is due to the fact
that in this case traditional, or separated source and channel coding would
first use source coding in order to remove redundancy and afterwards utilize
channel coding to insert additional redundancy. Thus it is not surprising
that this is not the most efficient approach even when the block-length is
allowed to grow boundlessly.

A modern example of a system using joint-source channel approaches
(although not analog) would be the current HDMI standard on top of OFDM
transmission used for short-range wireless transmission of high-definition
video with sub-1 ms latency. This makes use of variable signal levels in the

1



2 Chapter 1 Introduction

transformed source signal (audio/video) with unequal error protection at
the physical layer for the different levels of importance of the source signals.
Here the “analog” information is not encoded using a source code at all aside
from scalar quantization. This significantly minimizes latency and mimics
the linear coding described in the upcoming subsection. The most important
remark to stress is that this approach is used to minimize latency.

Another reason motivating the use of novel joint-source and channel
coding paradigms would be the time scales corresponding to the source and
channel bandwidths. In sensor networks, for instance, the sources may be
characterized by a few independent samples of an analog phenomenon that
need to be transmitted very sporadically across a wide-band channel. This
would be the case arising when we integrate low-cost/power analog sensors
to LTE infrastructure. Here the ergodicity of the source is not a degree of
freedom that can be exploited in the coding system. Interestingly enough,
the ultimate performance (in terms of reconstruction fidelity at the receiver)
achievable by a coding scheme for this reasonably simple problem remains
unknown, although upper and lower bounds on performance are easily found.

The key issue is that digital transmission for small amounts of typically
analog data will induce overhead which is wasteful, especially for massive
networks of simple nodes. Joint source-channel coding (JSCC), which com-
bines the efforts of the channel and source code, addresses such problems.
In this study, we consider JSCC for transmission of multiple spatially dis-
tributed samples of a slowly time-varying random field. Our primary objec-
tive is to provide asymptotic performance measures and realizable, simple
transmission strategies for large one-hop sensor networks. We model systems
where each sensor measures signals with a finite and small number of source
dimensions, in comparison to the number of channel dimensions. This is
motivated by applications such as remote sensing using broadband wireless
infrastructure (e.g. cellular networks) where sensors take sporadic samples
of a random event, feed them back to the network via base stations and sub-
sequently return to an idle state to conserve power. As a result, we do not
consider coding of sequences of samples, but rather exploit spatial expansion
and correlation between a network of sensors with independent observation
noise. Since the applications target wireless networks, it is reasonable to
assume a feedback-based transmission strategy, and both the asymptotic re-
sults as well as the transmission strategy studied here will exploit feedback.
The latter allows for simple and energy-efficient strategies, even if feedback
is not required for optimality.

1.2 Problem Definition and Background

Imagine the simplest scenario of one sensor node tracking a slowly time-
varying random sequence and sending its observations to a receiver over a
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wireless channel. The source is denoted by a random variable U of zero
mean and variance σ2

u = 1, representing a single realization of the random
sequence at a particular time t. The sensor should be seen as a tiny de-
vice with strict energy constraints. The communication channel between
the sender and the receiver is an additive white Gaussian noise channel. An
important question is how to efficiently encode the random variable U for
transmission, and what performance can be achieved upon reconstruction as
a function of the energy used to achieve this transmission. As an example,
the sensor could be sporadically sending analog information (temperature,
magnetic field, current, speed, etc.) to a collecting node. The traffic would
be very low-rate (vanishing) and potentially requiring low-latency. The lat-
ter could arise for two reasons, either reactivity of an actuating element in
the network or to minimize energy consumption in the sensing node itself
by using discontinuous transmission and reception. Here the latency of the
transmission is directly related to the “on”-time of communication circuitry
of the sensing node. This example captures the essence of some so-called
machine-type communications, a term which refers to machines (including
sensors) interconnected via cellular networks and exchanging information
autonomously.

For this scenario, the slowly time-varying characteristic of the source
has two main impacts on the way the coding problem should be addressed:
firstly, the time between two observations is long, and the sensor should not
wait for a sequence of observations to encode it. Therefore, the sensor will
encode only one observation before sending it through the channel. Secondly,
for each source realization the channel can potentially be used over many
signal dimensions, for instance by encoding over a wide-bandwidth in the
frequency-domain. This would be the case for sensors connected directly to
fourth-generation cellular networks. Hence, we can reasonably assume that
there is no constraint on the dimensionality of the channel codebook. The
latter condition amounts to saying that very low-rate codes should be used.
In [3], the authors state three main requirements which need to be satisfied
for the 5G technology to contain machine-type communication (or machine-
to-machine communication, M2M) which can be listed as supporting systems
with a high number of connected devices, maintaining low-rate and low-
latency. This thesis introduces system models and transmission strategies
which try to meet these three main requirements of 5G.

We focus our attention on the case where unitary samples of the source
are transmitted sporadically due to slow time-variation as explained above
in the motivation. We review the related studies in two main groups as the
single and multiple source systems.
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Feedback Link (f(Y(n))

Encoder
Wireless
Channel

DecoderU ÛX(n) Y(n)

Figure 1.1: Single-Source System Model

1.2.1 Single Source Problem

The single-source model is depicted in Figure (1.1) where an encoder maps
one realization of the source U into X , (X1, . . . , XN ) where N denotes
the dimension of the channel input. We will make use of causal feed-
back so that the encoder may also depend on past channel outputs, that
is Xi = f(U, Y1, · · · , Yi−1). X is then sent across the channel corrupted by
a white Gaussian noise sequence Z, and is received as Y. The receiver is a
mapping function which tries to construct an estimate Û of U given Y. The
fidelity criterion that we wish to minimize is the MSE distortion defined as
D , E[(U − Û)2], under the mean energy constraint E[||X||2] ≤ E . It is
well-known that the linear encoder (i.e. X =

√
EU) achieves the best per-

formance under the mean energy constraint for the special case N = 1 [4–6].
In fact, a lower bound on the distortion over all possible encoders and de-
coders is easily derived in [4] using classical information theory, and given
by

D ≥ e−2E/N0 (1.1)

where N0/2 is the channel noise per dimension. Note that, the form of
(1.1) is adapted to a discrete-time complex Gaussian channel with noise
variance N0/2 to make the comparisons easier with our information theoretic
lower bounds in the further chapters. Goblick’s information theoretic bound
given above was derived through defining the channel capacity and the rate-
distortion function in terms of the channel SNR, more precisely he obtained
the minimum distortion in estimating the source message as a function of the
channel SNR which leads to the output SNR in a continuous-time channel
with limited bandwidth. At the end of the procedure the reconstruction
error is composed solely by the quantization process applied to the source.

The e−E/3N0 behaviour for Goblick’s digital scheme was described in
[7, 8]. Figure (1.2) is a pictorial representation of Goblick’s scheme where
the B bit uniform quantization is followed by 2B-ary orthogonal modulation
to transmit the source U using the energy E which achieves the same perfor-
mance with [9]. Several schemes can achieve e−E/3N0 both with and without
coherent detection and for both normally and uniformly distributed U . The
importance of Goblick’s work [4] comes from the method he chose. To the
best of our knowledge the first digital scheme for unlimited bandwidth based
on scalar quantization and orthogonal modulation was described by Gob-
lick in [4], which is also the quantization/modulation strategy used in this
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Figure 1.2: Goblick’s Digital Scheme

thesis, and the performance loss with respect to (1.1) was heuristically ar-
gued to be on the order of 6-9 dB. Unlike Goblick and all three achievable
schemes proposed in this thesis, Wozencraft-Jacobs use [9, pg:623-624] pulse
position modulation (PPM) as shown in Figure (1.3). A comparison in [8]
with best-known joint medium-resolution source-channel codes [10] for high
channel to source bandwidth ratios shows that simple hybrid (yet separated)
joint-source channel techniques can outperform non-linear mappings. Such
optimization for a different power constraint can be found in the literature
for example in [11] and [12], where the authors try to bound the optimal
number of quantization bits that minimizes distortion.

For the case of a point-to-point channel without feedback, the most
recent and significant studies are presented by Merhav in [13,14] for AWGN
channels and discrete-memoryless channels, respectively. In [13,15] the best-
known lower bound for the reconstruction fidelity without feedback, with
coherent detection and unlimited channel bandwidth behaves as e−E/2N0 for
uniformly-distributed U where E is the energy used for transmission of U . In
fact, the author achieves this lower-bound on the MSE through the threshold
he defines on the maximum exponential rate of that the error probability
decay in estimating |U − Û | rather than concentrating on the MSE as the
performance criterion itself. In order to prove this threshold on the error
probability of |U − Û |, he adapts the well-known Ziv-Zakai bound [16] to
his case with M hypotheses instead of 2 and the derivation proceeds as
the Chazan-Zakai bound [17]. Basically, the author defines the following
generalized hypothesis testing problem

Hi : y = x(t, u+ i∆) + z (1.2)

for i ∈ {1, · · · ,M} and the signal model defined as y(t) = x(t, u) + n(t) for
t ∈ [0, T ) where x(t, u) is the waveform with a power of S, parametrized by
u under the assumption of u + i∆ ∈ [−1/2, 1/2). Merhav comes up with
a bound on the error probability of the optimum ML detector in choosing
from M hypotheses through expanding Ziv-Zakai’s derivation. After he
uses this result to obtain the second moment on the estimation error of
U . In the upcoming chapter which focuses on the single source case, we
benefited from the results of [13] to discuss the tightness of our bounds
from our achievable scheme for the no-feedback-case. In a following study
[14], the author generalizes his results to a certain extend and provides



6 Chapter 1 Introduction

Figure 1.3: Pulse-position modulation

both upper and lower bounds for the best achievable exponential decay
of E|Û − U |m, m ≥ 0 in a discrete memoryless channel. Ziv-Zakai and
Chazan-Zakai bounds are extended to the vector parameter estimation case
in [18].

Feedback-based schemes

In two-way systems, for example cellular networks, we could clearly imagine
the use of reliable feedback from the down-link, with vanishing probability
of error (i.e. perfect feedback). The main drawback is the requirement of
energy for receiver which would impact the overall energy budget of the
sensing node. Although it is difficult to model, protocol latency becomes an
issue for overall energy consumption. Some of the earliest work in analog
transmission of low-bandwidth sources assumed feedback as shown in Figure
(1.1) with the presence of the feedback signal f(Y(n)). Through two-way
communication, stochastic control approaches [19, 20] can achieve, at least
asymptotically, the lower bound on distortion in (1.1). This comes at the ex-
pense of delay, since, as in many adaptive systems, the feedback system must
converge to minimize distortion. It is reasonable to assume that both can be
extended to non-coherent detection and even broadband frequency-selective
channels for diversity. However, the underlying estimation strategies will
quickly become quite involved.

As mentioned above following Goblick’s original work, with an addition
of a noiseless feedback link to the system, using coherent detection and
unlimited channel bandwidth, the classical closed-loop schemes described
in [19] asymptotically achieves (1.1). In comparison to [4], the proposed
scheme is differentiated by not being quantized neither coded. The iter-
ative transmission scheme for unitary samples of the source proceeds as
follows for the first couple of iterations. x1 = a1U is transmitted where
U is normally distributed with the following parameters N(0, N0). At the
receiver end, y1 = x1 + n1 is received and v1 = y1/a1 is computed, where
ni, i = 1, 2, · · · , denotes the additive Gaussian white channel noise with zero
mean and variance σ2. Using v1, the first maximum a posteriori probability
(MAP) estimate of U is obtained as Û1 = a2

1v1
1
N0

a2
1

and it is fed back. On the

second iteration the transmitter sends x2 = a2[U − Û1], which is received as
y2 = x2 + n2. The second MAP of U is computed through v2 = y2

a2
+ Û1 as
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Û2 = a2
1v1+a2

2v2
(1 N0)+a2

1+a2
2

and fed back. This procedure could be repeated upto N
iterations and eventually the authors obtain [4, eq. 21] without quantizing
the source nor coding on the channel where they add a perfect feedback link
to the system. It should be noted that both [4] and [19] consider unlimited
channel bandwidth for a normally distributed source and coherent detection
but unlike Goblick’s digital scheme non-coherent detection is not applica-
ble to [19]. As a second drawback, the scheme requires perfect feedback to
achieve (1.1). The paper differs from Schalkwijk’s previous work [21] with
respect to the source statistics where the author uses uniform distribution
with band-limited signals and feedback.

In a fairly recent paper [22], Gallager and Nakiboğlu study the case
treated in the first part of [21] (which is [23]) with no bandwidth constraints
by Schalkwijk and Kailath where the authors aim to benefit from feed-
back using a linear encoding function in a discrete-time additive Gaussian
noise channel (DAMGN) with perfect feedback. In [23], the authors build
a coding scheme upon the Robbins-Monro stochastic approximation proce-
dure and consequently come up with a result of that the error probability
decreases faster than exponentially with signaling duration. In [22], the au-
thors showed that the error probability can decrease with block length, say
n, where the exponential order of the decay is a linear function of n besides
introducing a new lower bound the error probability for the same problem.

The achievable schemes proposed and analyzed based on their asymp-
totic performances in this thesis are inspired by the transmission scheme for
channels with perfect feedback using a blockwise decision by Yamamoto and
Itoh [1] which in fact is the modified Schalkwijk-Barron scheme [24]. The
original paper provides an error exponent for sequential feedback schemes [1]
is applicable to both discrete memoryless channels and AWGN channels.
The modification is made by replacing Viterbi’s sequential decision feed-
back [25] by blockwise decision and a fixed length transmission. One round
of transmission in both of the studies by Yamamoto-Itoh and Schalkwijk-
Barron is composed by two phases which are called as the message mode,
where the source message is transmitted and fed back, and the control mode
where transmission of the control message and feedback occur. Although
the latter shows the same performance with the original Schalkwijk-Barron
scheme for the AWGN case, modified scheme outperforms [24] for the dis-
crete memoryless channel.

1.2.2 Multiple Source Problem

An important generalization to the case of multiple sensing nodes with
spatially-correlated information is as shown in Figure (1.4). In particular we
are interested in the case where correlated random variables are transmitted
over multiple-access channels, where the information of the sources are sent
through an AWGN channel. The main issue is how to do the encoding with
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Figure 1.4: Multi-sensor Sampling and Transmission of a Random-Field

respect to the performance to be achieved upon reconstruction as a function
of the required energy. The key element in the multi-sensor scenario being
to exploit the correlation, which is assumed to be known, both at the trans-
mitter and receiver. Moreover, we aim to determine the operating regimes
for such a multiple-access system in terms of the role correlation plays in
determining the energy efficiency.

The multiple source problem can be seen as the CEO (Central Esti-
mating Officer) problem as named in the literature with some differences.
The original problem is introduced and formulated in [26,27] for a discrete-
memoryless source X. As shown in Figure (1.5), the CEO in a sensor net-
work is interested in the information of a source {X(t)}∞t=1 which cannot
be obtained directly thus the CEO uses L agents which observe a noisy
version of the source independently. The agents send their observations,
Yi(t) = X(t) +Ni(t), to the CEO which is subject to a finite sum rate con-
straint R. Here the Gaussian observation noise is denoted by Ni(t) which
is i.i.d. ∀i = 1, · · · , L and t = 1, · · · , n, · · · . The CEO tries to reconstruct
{X(t)}∞t=1 which results in D(R), the distortion-rate function of the source
X(t). The authors in [27] determined the minimal error frequency asymp-
totically in both L and R. [28] studies a special case of the problem where
they consider the source {X(t)}∞t=1 as an i.i.d Gaussian random variable
and show the asymptotic performance of the distortion as both L and R
tend to infinity. There are many studies in the literature which address this
problem in different settings. [29] discusses the problem in a multi-terminal
source-channel communication system with correlated sources transmitted
over a MAC without being subject to a channel noise and provides the rate-
distortion region of the multi-terminal source coding. [30] can be given as
yet another example which explores the CEO problem where the authors
introduce the rate-region for the quadratic Gaussian case whereas in a quite
recent paper [31] comes up with an upper bound on the rate-distortion region
of the vector Gaussian CEO problem for the noisy observation case.

One of the main differences between the multiple source problem in the
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way that is addressed in Chapter 4 of this thesis and several studies in the
literature briefly mentioned above is that all the results obtained in Chapter
4 are considered in the context of zero-rate, i.e. vanishing rate. Another
major difference can be stated as the focus on the transmission of unitary
samples of the source message instead of doing sequential coding as already
mentioned above in problem definition and will be highlighted in further
chapters. Lastly, we combine the original CEO problem with a multiple-
access channel and discuss the performance of a system with correlated
analog sources over a GMAC with a feedback link from the receiver to each
encoder as will be discussed in detail in Chapter 4.

With respect to the the multiple source scenarios, the authors in [32]
and [33] derive a threshold signal-to-noise ratio (SNR) through the correla-
tion between the sources so that below this threshold, minimum distortion
is attained by uncoded transmission in a Gaussian multiple access chan-
nel with and without feedback, respectively. In these works, the authors
consider transmission of a memoryless bi-variate normal source and the dis-
tortion can be characterized by two regimes as a function of the relationship
between the channel SNR and the correlation between the sources. [32] the
authors set a condition, which basically consists of upper bounds on the
rate-distortion functions of each source and both sources jointly, in order to
achieve distortion pair (D1, D2). Secondly, following [34–36] they prove the
high-SNR distortion asymptotics (D∗1, D∗2) through source-channel separa-
tion which is given by for the symmetric case of D∗1 = D∗2 = D∗(σ2, ρ, P,N)

lim
P/N→∞

√
P/ND∗(σ2, ρ, P,N) = σ2

√
1− ρ2

4 , (1.3)

where ρ ∈ [0, 1] with equal source variance σ2 and equal power constraints
on each source P with noise variance N . And finally, for the uncoded scheme
the authors of [32] present the following result

D∗(σ2, ρ, P,N) = σ2P (1− ρ2) +N

2P (1 + ρ) +N
, (1.4)

having an SNR not exceeding ρ
1−ρ2 . Note that, (1.4) is obtained through

disregarding feedback since feedback is useful only above the given threshold
of SNR for separate source-channel coding as shown in [37].

In a similar vein, [38, 39] approaches to the problem from the point of
view of both the performance and required energy. The paper discusses the
trade off between the energy the system consumes and the achieved distor-
tion in transmitting source message(s) over channels subject to noise. That
is done by defining an information theoretic function called energy-distortion
function E(D) which basically shows the required energy in order to attain
a target distortion D without setting any constraints on the number of chan-
nel uses per source sample. It was shown that the separation based scheme
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Figure 1.5: CEO Network configuration

is optimal for the point-to-point channel however it cannot be carried on to
multiple-source problem with correlated sources. In particular, the authors
consider the case with two correlated Gaussian sources which transmit their
information over a GMAC with perfect feedback and derive a lower bound
on E(D) and an upper bound for Schalkwijk-Kailath (SK) scheme, which is
shown to outperform the source-channel separation by numerical analysis.
In [39, 40], to be able to reduce the consumed energy in a sensor network,
the authors benefit from the feedback link to allow the sensors to cooperate
with each other and again as in [38], no constraints are set on the number
of the channel uses. The paper proves that the source and channel sepa-
ration is optimal for a single sensor and shows that separation is no longer
optimal for a system with multiple sensors thus the author come up with
an upper and a lower-bound on their energy-distortion function E(D). The
two different schemes studied here are an uncoded SK and source-channel
separation with unlimited bandwidth per source sample. For a system with
multiple sensors without feedback, [41] has shown that the optimality of the
uncoded transmission with respect to the trade off between the energy and
distortion.

[42] is yet another example that studies transmitting two correlated
Gaussian sources over a GMAC and aims at achieving the minimum possible
distortion to recover the transmitted information. The authors use joint-
source channel coding to estimate the linear functions of the two sources
which are subject to average power constraints and provide a scheme based
on lattice coding and lower-bounds on the reconstruction error in estimating
the correlated source information through two different settings of this linear
function. In the first case, which is inspired by [35, 43], the choice of the
function allows to reduce the system two a parallel channel and goes around
the dependence as turning it into a conditional independence among the
two sources whereas the second setting allows collaboration between the
transmitters. Besides the two lower bounds a lattice based coding scheme is
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introduced and it was shown that for a high enough SNR, i.e. SNR > 0.5,
for any linear function to be chosen the distortion can be made very close
to the lower bound derived.

In one of the further chapters, in Chapter 4, we will show that the
resulting MSE for the special case of a vector channel with a Gaussian
input ( [44, eq: 27]) meets our results of the lower bound derived on the
reconstruction error of a single random vector measured by a network of
sensors and multiple source vectors which are transmitted to a common
receiver over a GMAC with a perfect causal feedback link to the encoder
connected to each sensor. In [44], Guo et al. set the following relationship
between the mutual information of the channel SNR and the minimum mean
squared error (MMSE) in Gaussian channels for both scalar and vector input
signals irrespective of its statistics.

d
dsnrI(snr) = MMSE(snr)

2 . (1.5)

Consider the simple case of a scalar channel with the pair of (X,Y ) de-
noting the input and output signals through the following definition of
Y =

√
snrX+N where snr is non-negative and the noise signal N is normally

distributed with zero mean and unit variance. Thus the mutual informa-
tion in (1.5) is basically I(X;Y ) = I(X;

√
snrX +N) whereas the MMSE is

defined by MMSE(snr) = MMSE(X|
√

snrX +N).
Even though we focus all our attention to the systems with analog source

information, it is worth mentioning of a system with discrete sources, in [45],
a coding strategy based on separate source and channel coding is introduced
for a network information flow with discrete correlated sources. In the de-
scribed model, the authors set the conditions for which perfect reconstruc-
tion of the messages from the encoder nodes can be achieved.

1.3 Outline and Contributions

In the upcoming chapter, we introduce a two-way low-latency protocol for
a single source transmitting analog information over a non-coherent AWGN
channel. In spirit, this is very similar to the first phase of the 4G random-
access procedure described above. The analytical exponential behavior of
the protocol with respect to the reconstruction error for estimating the
source-message is observed and discussed subject to the energy used by
the protocol for different number of rounds. This is followed by the dis-
cussion regarding the effect of the feedback error on the distortion-energy
trade-off made in subsection 2.1.2. Additionally, for the case of one-shot
transmission without feedback, in subsection 2.1.3 we extend Merhav’s re-
cent lower-bounds derived in [13] for the problem addressed here, in order
to provide the tightest numerical lower-bounds on performance. This is fol-
lowed by numerical analysis for a more general wireless channel model in
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Section 2.2. In subsection 2.2.1, we provide adaptations of Goblick’s and
Merhav’s lower-bounds for the more general fading channel models. The
numerical analysis results for a chosen configuration of the fading channel
model are given in Section 2.3 together with the results of the non-coherent
AWGN channel. The numerical results are also contrasted with the best-
known theoretical lower-bounds on the reconstruction fidelity.

In Chapter 3, subsections 3.1.1 and 3.1.2, we describe the considered
system model of the addressed problem for the dual-source case. In Section
3.2 of the same chapter, we proceed with introducing three different lower
bounds on the reconstruction error of estimating the source vectors based on
different ranges in which the correlation coefficient between the two sources
is defined. In Section 3.3, we present new results which aim to show the
benefit of feedback regarding optimality, yet with minimal latency through
a two-way protocol and its asymptotic performance of reconstruction error
is analyzed for two correlated continuous sources. In the final Section 3.4 of
this chapter, we present numerical results to discuss the analytical outcomes
obtained in Sections 3.2 and 3.3. The derivations of the lower bounds and the
distortion terms from the achievable scheme are given in detail in Appendix
6.2.

Following the single and dual-source cases, Chapter 4 treats the most
general problem of a network of sensors measuring a single normally or
uniformly-distributed finite-dimensional vector which is after transmitted
to a mutual receiver over an additive white Gaussian noise asynchronous
multiple-access channel. In Section 4.1, we give a description of the general
model to explain the problem addressed. It is followed by the derivation
of the information-theoretic lower bounds on the reconstruction error in es-
timating both the single vector and its combination with the observation
noise. In Section 4.4, we provide an M -sensor adaptation of Yamamoto’s
protocol [1] for a uniformly-distributed source with uniform observation er-
ror along with the analysis of its asymptotic performance. In Section 4.5, we
present the numerical results for a slightly different protocol and the lower
bounds derived in 4.2. Chapter 5 consists of the comparisons between the
obtained results for each case in the previous chapters 2, 3 and 4 and the
conclusions drawn upon them.



Chapter 2

Point-to-point channel

The main contribution of this chapter is to analyze the use of a retrans-
mission protocol for the transmission of scalar quantized analog samples in
terms of the energy-efficiency as a function of the reconstruction fidelity. It
is shown that there is a very significant benefit at the expense of two-way
exchanges in comparison to a one-shot transmission of the parameter. The
efficient use of such a protocol calls for joint optimization of the parameter
quantization and modulation. It is important to note that in our scenario
we are driven to assume unknown channels (i.e. non-coherent reception) in
the formulation of the problem. Since the information content is very small,
additional overhead for channel estimation is not warranted and thus, it is
unreasonable to assume the channel state (i.e. channel amplitude and phase)
be known to either the transmitter or receiver. In what follows, simplifying
steps in the derivation of lower-bounds will result in equivalent formulations
for known channels, however the proposed schemes will not make use of chan-
nel state information at either end of the transmission chain. The analysis
is carried out for line-of-sight and non line-of-sight channels and we consider
both the case of perfect and imperfect feedback. We furthermore provide
new lower-bounds on the performance of such feedback-based schemes as
well as numerical evaluation of recent bounds [13] for one-shot transmis-
sion. These bounds allow us to assess how close the proposed schemes are
to fundamental limits.

In the upcoming section, we introduce a two-way low-latency proto-
col for a single source transmitting analog information over a non-coherent
AWGN channel. In spirit, this is very similar to the first phase of the 4G
random-access procedure described above. The analytical exponential be-
havior of the protocol with respect to the reconstruction error for estimating

13
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the source-message is observed and discussed subject to the energy used by
the protocol for different number of rounds. This is followed by the dis-
cussion regarding the effect of the feedback error on the distortion-energy
trade-off made in subsection 2.1.2. Additionally, for the case of one-shot
transmission without feedback, in subsection 2.1.3 we extend Merhav’s re-
cent lower-bounds derived in [13] for the problem addressed here, in order
to provide the tightest numerical lower-bounds on performance. This is fol-
lowed by numerical analysis for a more general wireless channel model in
Section 2.2. In subsection 2.2.1, we provide adaptations of Goblick’s and
Merhav’s lower-bounds for the more general fading channel models. The
numerical analysis results for a chosen configuration of the fading channel
model are given in Section 2.3 together with the results of the non-coherent
AWGN channel from Section 2.1. The numerical results are also contrasted
with the best-known theoretical lower-bounds on the reconstruction fidelity.

2.1 Asymptotic Performance of a Novel Two-Way
Protocol

Let us consider now a protocol applied to the transmission of isolated ana-
log samples with non-coherent reception. This will serve as a motivating
example for the use of feedback with low-latency achieving asymptotically
near-optimal distortion performance. In the analysis, we first focus on a
simple non-coherent AWGN channel with a one dimensional source letter.

The protocol consists of two phases, a data phase and a control phase.
In our adaptation the two phases compose one round of the protocol. A
source sample quantized to B bits is encoded into one of 2B N -dimensional
messages Sm, with m = 1, 2, · · · , 2B and each message is transmitted with
equal energy

√
ED,i, where ED,i denotes the energy of the data phase on the

ith round. Upon reception, the receiver computes the maximum-likelihood
message, m̂(YD), based on the N -dimensional observation

YD =
√
ED,iejΦiSm + Z (2.1)

where the subscript D represents the data phase of the protocol. The ran-
dom phase sequence φi is assumed to be i.i.d. with uniform distribution on
[0, 2π). The N -dimensional vector noise sequence zi is complex, circularly
symmetric, has zero-mean and autocorrelation N0IN×N .

This type of transmission can exactly model any low-rate transmission
strategy based on orthogonal modulation. For instance, to further put this
in the context of the random-access procedure 4G-LTE systems, the Sm can
represent the so-called PRACH preamble [46], where m = 0, 1, · · · , 63, and
conveys the 6-bit message (MSG1) described in Section 1.1. The preamble in
4G-LTE is a Zadoff-Chu roots-of-unity sequence which usually occupies N =
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839 signaling dimensions for B = 6 information bits. Orthogonality over
time-dispersive channels is guaranteed through up to 64 cyclic time-shifts of
Sm coupled with the use of a cyclic extension. For very dispersive channels
(i.e. with delay-spreads longer than the cyclic-shift between preambles),
fewer than 64 (and hence longer) cyclic time-shifts can be used at the expense
of using multiple preamble sequences which are quasi-orthogonal.

After the first data phase, the receiver feeds m̂ back to the encoder via
the noiseless feedback link. Let the corresponding error event be denoted
Ei. After the data phase, the encoder enters the control phase and informs
the receiver whether or not its decision was correct via a signal

√
EC,iSc of

energy
√
EC,i if the decision is incorrect and 0 if the decision was correct.

EC,i here denotes the energy of the control phase in the ith round. During the
control phase the receiver observes YC . Let yC = YC

HSC and assume a de-
tector of the form e = I

(
|yC |2 > λEC,i

)
where I(·) is the indicator function

and λ is a threshold to be optimized and included within the interval [0, 1).
Ee→c,i corresponds to an uncorrectable error since it acknowledges an error
as correct decoding and Ec→e,i represents a mis-detected acknowledged er-
ror declaring correct decoding as incorrect. If the receiver correctly decodes
the control signal and it signals that the data phase was correct after the
completion of the first round, with probability Pr(Ec1)(1− Pr(Ec→e,1)), the
protocol halts, otherwise another identical round is initiated by the receiver.
The retransmission probability, i.e. the probability of going on for a second
round, is Pr(E1)(1−Pr(Ee→c,1)). This on-off signaling guarantees that with
probability Pr(Ec1)(1 − Pr(Ec→e,1)) the transmitter will not expend more
than ED,1 joules, which should be close to one. After each data phase, the
receiver computes the ML or MAP message m̂i(Y1, · · · ,Yi) based on all
observations up to round i with error event Ei. The same control phase is
repeated and the protocol is terminated after two rounds. The reconstruc-
tion error of the source message is obtained by calculating the mean squared
error distortion through D = Dq(1−Pe) +DePe which can be bounded fur-
ther for a uniform source U on (−

√
3,
√

3) (i.e. a source with zero mean and
unit variance) by

D (E , N0, N, λ) ≤ 2−2B(1− Pe) + 2Pe (2.2)

where Pe is the total probability of error, Dq represents the distortion caused
by the quantization process and De corresponds to the MSE distortion for
the case where an error was made. The error probability at the end of second
round is defined and consequently bounded by

Pe = Pr(E1) Pr(Ee→c,1) + Pr(E1)(1− Pr(Ee→c,1)) Pr(E2|E1)
+ (1− Pr(E1)) Pr(Ec→e,1) Pr(E2|Ec1)
(a)
≤ Pr(E1) Pr(Ee→c,1) + Pr(E2). (2.3)
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In step (a) the conclusive expression is obtained through bounding Pr(Ec→e,1)
and (1−Pr(Ee→c,1)) by 1. The probability of an uncorrectable error in round
i, which is defined as Pr

(
|
√
EC,i + zc|2 ≤ λEC,i

)
, is obtained as

Pr(Ee→c,i) = 1−Q1

(√
2EC,i
N0

,

√
2λEC,i
N0

)
, (2.4)

where Q1(α, β) is the first-order Marcum-Q function and zC = SHCZ is a
circularly-symmetric Gaussian zero-mean random variable with variance N0.
Furthermore, we have the recent bound on the Q1(α, β) for α > β from [47,
eq:4] which is very useful for bounding (2.4) as

Pr(Ee→c,i) ≤ 1/2 exp
(
−(
√
λ− 1)2EC,i
N0

)
. (2.5)

The probability of a mis-detected acknowledged error is obtained as

Pr(Ec→e,i) = Pr
(
|zC |2 > λEC,i

)
= e−

λEC,i
N0 . (2.6)

Lastly, the probability of making an error on a particular round j, Pr(Ej) ≤
2BP2(j) can be derived using [48, eq:12.1-24]

P2(j) ≤ 1
22j−1 e

−γ/2
j−1∑
n=0

cn

(
γ

2

)n
(2.7)

where cn = 1/n!
∑j−1−n
k=0

(
2j − 1
k

)
and γ represents the signal to noise ratio.

The average energy used by the protocol after two rounds is

E = ED,1 + Pr(E1) (EC,1 + ED,2) . (2.8)

ED,2 here denotes the required energy for retransmission, which is the energy
to be used in the data phase of the second round. Clearly if Pr(E1) is
small, then the protocol achieves marginally more than ED,1 joules per source
symbol.

The detection rule is given using [48, Chapter 12, eq:12.1-16] considering
the two possible decision variables assuming (k) is transmitted as Uk =
|
√
ED,1 +Nk|2 Uk′ = |Nk′ |2 where Uk = |〈Y1,Smk〉|2. An error is committed

if Uk′ is greater than Uk. The union bound on Pe(k) is defined as

Pe(k) ≤
∑

(k′)6=(k)
Pr (uk < uk′ |(k)) (2.9)
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The conditional probability of Uk < Uk′ given (k) is transmitted becomes
for the first round

Pr(Uk < Uk′ |k) = Pr(Uk < Uk′) = Pr(|
√
ED,1 +Nk|2 < |Nk′ |2) (2.10)

whereas for the second round, we have cumulatively the following probability

Pr(Uk < Uk′ |k) = Pr(Uk < Uk′)

= Pr(|
√
ED,1 +Nk,1|2 + |

√
ED,2 +Nk,2|2 < |Nk′,1|2 + |Nk′,2|2)

(2.11)

Bounds on the error probabilities of both rounds are attained through (2.7)
and given by

Pr(E1) ≤ 2B−1e−
ED,1
2N0 , (2.12)

Pr(E2) ≤ 2B−3
(

1 + 3ED,1 + ED,2
N0

)
e−
ED,1+ED,2

2N0 (2.13)

where (2.12) corresponds to (2.10) which is equivalent to P2(1) and (2.13)
is obtained through (2.11) equivalently by P2(2).

For the case of N = 1, i.e. the protocol terminates without retransmis-
sion, we obtain the bound on the reconstruction error in estimating U as
given in the following. The error probability defined by (2.3) consists of the
probability of making an error in the first round Pr(E1) solely, since there
is no use of the control phase given that there will not be a second round

to retransmit the message. Thus, through substitution of Pe ≤ 2B−1e−
ED,1
2N0

into the distortion (2.2), we get the following bound

D (E , N0, 1, λ) ≤ e−2B ln 2 + eB ln 2−
ED,1
2N0 . (2.14)

By setting the two exponentials in (2.14) equal, it can be seen that 2−B

is in the same order of e−
ED,1
6N0 . In other words, the upper bound (2.14) is

obtained as D (E , N0, 1, λ) ≤ 2e−
ED,1
3N0 for a single round. In the same way,

for N = 2 the resulting distortion is bounded by

D (E , N0, 2, λ) ≤ e−2B ln 2 + e(B−1) ln 2−
ED,1
2N0
−(1+λ−2

√
λ)EC,1

N0

+
(

1 + 3ED,1 + ED,2
N0

)
e(B−2) ln 2−

ED,1+ED,2
2N0 (2.15)

through substituting (2.3) with (2.12), (2.13) and (2.5) for i = 1 into the
distortion (2.2). By equating the three exponentials of (2.15) we have that
EC,1 = ED,2

2(1+λ−2
√
λ) . In order for Pr(E1) to be exponentially bounded away

from zero so that E can be made arbitrarily close to ED,1, we define ED,2 =
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(2 − µ)ED,1 where µ is an arbitrary constant satisfying µ ∈ (0, 2). Finally,
we obtain the bound on the distortion at the end of the second round as
given by

D (E , N0, 2, λ) ≤ e−
ED,1(1−µ/3)

N0

(
3 + 3ED,1 + ED,2

N0

)
. (2.16)

Note that, at the end of the second round, 2−B is in the same order of

e−
ED,1(1−µ/3)

2N0 .
It is worth mentioning that (1.1) and the limiting expression in [19, eq.15]

is achieved to within a factor of 1/2 in the energy using only two rounds
and, moreover, with non-coherent reception. Even though it is possible to
obtain exp{−2ED,1

N0
} (i.e. twice better than the performance in (2.16)) by

changing the relationship between the energies used in the different rounds,
this causes the average energy used by the protocol to exceed ED,1, the
energy used in the data phase of the first round. In other words, going on
to further rounds cannot provide asymptotically better results in terms of
distortion unless the energy used by the protocol is increased. This result is
analytically proved in the following subsection 2.1.1 and will be supported
through numerical evaluation of the above bounds in Section 2.3. Closing
the gap with (1.1) using non-coherent reception is, therefore, still open and
a subject of our current effort. In Section 2.1.2, we investigate the case
when the feedback link from the decoder to the encoder is not perfect and
discuss the effect of a possible error in feedback on the exponential behavior
of the reconstruction error. Note that, for modeling systems where both the
transmitter and receiver are subject to the constraints on energy usage, one
would have to consider the energy consumption of the feedback link, and we
also shed some light on this issue in 2.1.2.

2.1.1 Third round and after

Assume that the protocol is not terminated after the second round, so it
goes on one more round to do another retransmission. Hereafter, we will
show that the asymptotic performance (2.16) achieved in two rounds cannot
be improved unless the average energy the protocol consumes is increased.
The probability of error for N = 3 can be simply bounded as in (2.3)

P (3)
e ≤

2∑
i=1

Pr(Ei) Pr(Ee→c,i) + Pr(E3) (2.17)

with

Pr(E3) ≤ 2B−5e−
ED,1+ED,2+ED,3

2N0(
16 + 6ED,1 + ED,2 + ED,2

N0
+ 1/2

(ED,1 + ED,2 + ED,2
N0

)2
)

(2.18)
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which is equivalent to P2(3) representing the cumulative error probability
at the end of the third round where ED,3 denotes the energy used in the
corresponding round. The uncorrectable error in one round is independent
of the uncorrectable error in another round, so that (2.5) can be used also
for the second round with EC,2. The distortion at the end of third round is
bounded as

D (E , N0, 3, λ) ≤ K1e−2B ln 2 +K2e(B+1) ln 2−
ED,1+2(1−

√
λ)2EC,1

2N0

+K3e(B−1) ln 2−
ED,1+ED,2+2(1−

√
λ)2EC,2

2N0 +K4e(B−3) ln 2−
ED,1+ED,2+ED,3

2N0 (2.19)

where K4 = O((ED,1 + ED,2)2). By equating the coefficients in the four
exponentials of (2.19), we obtain the following relationships between the
energies ED,2 = ED,3 = EC,22(1 −

√
λ)2 and EC,1 = 2EC,2. The final form

of the upper bound on the distortion level at the end of the third round
becomes

D (E , N0, 3) ≤ KD3e−
ED,1(1−2µ2/3)

N0 (2.20)

where we defined ED,2 = ED,3 = (1 − µ2)ED,1 to assure the average energy
used by protocol for three rounds to be arbitrarily close to the energy only in
the first round. µ2 is an arbitrary constant satisfying µ2 ∈ (0, 1). This result
proves that the asymptotic performance achieved in two rounds cannot be
improved with more rounds.

2.1.2 The case of imperfect feedback

One might consider the case of an imperfect feedback link in the system
described and analyzed above. Let Pfb,1 denote the following error proba-
bility Pr( ˆ̂m = m|m̂ 6= m) whereas Pfb,2 = Pr( ˆ̂m 6= m|m̂ = m). Here m
denotes the transmitted message, m̂ and ˆ̂m denote the messages decoded
at the receiver and transmitter (after the feedback phase) respectively. The
overall energy used by the protocol in this scenario becomes

E = ED,1+EC,1 Pr(E1) (1− Pfb,1)+ED,2 [Pr(E1)(1− Pfb,1) + (1− Pr(E1))Pfb,2]
(2.21)

whereas the error probability at the end of the second round yields

Pe = Pr(E1)(1− Pfb,1) Pr(Ee→c,1) + Pr(E1)Pfb,1

+ Pr(E1)(1− Pfb,1)(1− Pr(Ee→c,1)) Pr(E2|E1)
+ (1− Pr(E1))(1− Pfb,2) Pr(Ec→e,1) Pr(E2|Ec1)
+ (1− Pr(E1))Pfb,2(1− Pr(Ee→c,1) Pr(E2|Ec1)

(a)
≤ Pr(E1) (Pr(Ee→c,1) + Pfb,1) + Pr(E2). (2.22)
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In step (a), (1−Pfb,1), (1−Pr(Ee→c,1)) and Pr(Ec→e,1) is upper bounded by
1. Clearly, if Pfb,1 = Pfb,2 = 0 this case boils down to the perfect feedback
scenario studied above and the expressions on average energy (2.21) and
error probability (2.22) given above yield (2.8) and (2.3), respectively. Now,
we apply the modified error probability given above to the overall distortion
term (2.2). In order to obtain the same exponential behavior of e−ED,1/N0

like in (2.16), Pfb,1 should be upper-bounded by the uncorrectable error
1
2 exp

{
− (
√
λ−1)2EC,1
N0

}
given earlier by (2.4). With respect to the energy

consumption, we can say that in addition to the error probability in the
first round, vanishing Pfb,2 guarantees the energy consumed by two rounds
of the protocol to be upper bounded by the energy which is used by the data
phase of the first round.

In order to characterize the amount energy required for feedback we
consider an explicit scheme for feedback. The receiver uses waveform Sm̂ on
the feedback link with energy Efb so that the received signal is

Yfb =
√
EfbejΦSm̂ + Z (2.23)

In order to determine if message m was received correctly, the transmitter
projects on waveform Sm and computes the statistic U = |〈Yfb,Sm|2 which
is compared to a threshold λfbEfb. The important feedback probability is
then

Pfb,1 = Pr
(
|〈Yfb,Sm〉|2 ≥ λfbEfb

)
= e
−λfbEfb

N0 . (2.24)

As a result, in order for Pfb,1 to be on the same exponential order as
Pr(Ee→c,1) we require that Efb = 1−µ/2

λfb
Ed,1 and that the energy used by the

protocol approaches λfb+1−µ/2
λfb

Ed,1. The main conclusion is that when we ac-
count for the energy consumption required by the feedback link, it reduces
the reconstruction fidelity in a non-negligible manner under a total energy
constraint. In the primary application scenario considered here, namely
energy-constrained sensors transmitting to cellular basestations, we believe
that this does not pose a significant problem. Basestations are power con-
strained and not short-term energy constrained and if the aggregate down-
link traffic dedicated to feedback for sensors is an order of magnitude less
than other downlink services, this energy consumption is insigificant. If
such schemes were to be used for transmission between energy-constrained
devices, the benefits may be significantly reduced.

2.1.3 Lower-bounds on Distortion

The first set of bounds all rely on channel state knowledge at the receiving
end which clearly is also a bound for the case where the channel phases are
unknown. The simplest bound is Goblick’s bound which in our case of a
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uniform random variable on [−
√

3,
√

3) is given by

DG(E , N0) ≥ 6
πe
e
− 2E
N0 . (2.25)

For the case of a single round without feedback we use the recent bounds
from Merhav in [13] which are adaptations of the Ziv-Zakai lower-bound [16]
on mean-squared error for parameter modulation-estimation. We consider
only the case of zero-rate transmission in the context of [13] and adapt the
results to the normalized uniform distribution considered here. We have the
following bound on the distribution of distortion

Pr
(
|U − Û | >

√
3

M

)
≥
√

3
M

Q

(√
E
N0

M

M − 2

)
. (2.26)

The right-hand side of (2.26) is the weakest version of Shannon’s lower-
bound on M -ary transmission over an AWGN channel [49, eq. 82]. Through
the use of the Chebyshev inequality, this results in the following lower-bound
on the distortion

DM1(E , N0) ≥ max
M

3
√

3
M3 Q

(√
E
N0

M

M − 2

)
. (2.27)

A tighter version makes use of Shannon’s best bound [49, eq. 81] yielding

DM2(E , N0) ≥ max
M

6
√

3
M4

M∑
n=2

Q

(√
E
N0

n

n− 1

)
. (2.28)

As suggested in [13, eq.23] an even tighter version based on [49, eq. 81] is
derived using

DM3(E ,M,N0) = 2
∫ 2
√

3

0
d∆·∆(2

√
3−(

⌊
2
√

3/∆
⌋
−1)∆)·Pr

(
|U − Û | > ∆

)
≥ 2

(∫ √3/M

0
d∆ ·∆(2

√
3− (M − 1)∆) Pr

(
|U − Û | >

√
3/M

)

+
M∑
i=3

∫ √3/(i−1)
√

3/i
d∆ ·∆(2

√
3− (i− 1)∆) Pr

(
|U − Û | >

√
3/(i− 1)

))

=
√

3
M4 (5M + 1)

M∑
n=2

Q

(√
E
N0

n

n− 1

)

+
√

3
M−1∑
i=2

( 5i− 4
(i− 1)4 −

5i+ 1
i4

) i∑
n=2

Q

(√
E
N0

n

n− 1

)
(2.29)

for any suitably large M . All bounds are plotted in comparison to the
proposed transmission strategies in Section 2.3.
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Relationships with classical conjectures on optimal signal sets

It is worth pointing out that certain classical and more recent results on
the validity of conjectures on optimal signal sets are strongly related to the
problem at hand and could provide tighter numerical lower-bounds on the
reconstruction fidelity. In Merhav’s bounding technique for the parameter
modulation-estimation problem he relies on zero-rate lower-bounds on the
probability of error (e.g. in [13, eq. 21]) in characterizing the tail-function
of the estimation error at discrete values of its argument. For coherent de-
tection on AWGN channels, it was long conjectured that the regular simplex
was an optimal signal set for M -ary signaling in M−1 dimensions (i.e. with-
out a bandwidth constraint). This was disproved by Steiner in [50] for the
so-called Strong Simplex Conjecture which corresponds to the average energy
constraint used here. The so-called Weak Simplex Conjecture is the classical
conjecture [51] for equal-energy signaling which still has not been disproved
and is valid for M = 2, 3. It is largely considered to be true for all M , and
from a numerical perspective, was shown to be valid for M ≤ 8 in [52]. From
a numerical perspective, the use of the constructive techniques in [52] for
finding optimal signal sets could be used instead of Shannon’s lower bound
in (2.29). Although this will not provide an asymptotic difference, it could
lead to tighter bounds for low signal-to-noise ratios. For the equal-energy
case, it may be sufficient to use the error probability of the regular simplex
in (2.29), at least if we limit the sum to M ≤ 8. Even if the Weak Simplex
Conjecture is false, it is highly unlikely that any other signal set will provide
a noticeable numerical difference in (2.29).

The equivalent equal-energy conjecture for non-coherent detection [53]
also remains unproven. But it is reasonable for numerical purposes to use
the error probability of orthogonal modulation with non-coherent detection
as an approximate lower-bound. Using [53, eq. 28] instead of Shannon’s
lower bound in (2.29) we obtain

DM4(E ,M,N0) ≥
√

3
M3 (5M + 1)PM +

√
3
M−1∑
i=2

( 5i− 4
(i− 1)3 −

5i+ 1
i3

)
Pi

(2.30)

where

Pi =
i−1∑
n=1

(−1)n+1
(
i− 1
n

)
1

n+ 1 exp
[
− n

n+ 1
E
N0

]
(2.31)

which, strictly speaking, is only a true bound for equal-energy signaling and
M = 2, subject to the validity of the classical conjecture. Note that (2.30)
will have the same asymptotic behavior as (2.29).
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Comments on variable-energy signaling

It is reasonable to expect that the use of variable-energy signaling (even
orthogonal) can help close the 1.76dB asymptotic gap between (2.14) and
(2.29) and the 3dB gap between (2.15) and (2.25). This is because with
equal-energy signaling, erroneous decisions can lead to distortions at the
peak or on the order of a bit with equal probability. A more judicious choice
of energy distribution across the signal set would choose the energy difference
between points according to their pairwise distortion. High distortion error
events would then be less likely than low distortion error events.

2.2 More General Wireless Channels

Consider a general multi-channel wireless model instead of the AWGN chan-
nel studied in Section 2.1 where the channel amplitude and phase correspond
to that of a multi-dimensional Ricean channel with a ratio of the non-line-
of-sight amplitude total signal amplitude α. Let L be the total number of
statistically independent observations or diversity order of the transmitted
signals and let L′ ≤ L be the number of observations over which the average
received energy is spread. To a first-order approximation, L′ represents the
number of coherence bandwidths and L/L′ would represent the number of
receive antennas. For example, L = 4, L′ = 2 would correspond to a dual-
antenna receiver with two coherence bandwidths. In this case the output
signal in the data phase of round i on channel l (generalizing (2.1)) becomes

Y′d,l =
√
ED,i/L′

(√
(1− α)ejΦi,l +

√
αhi,l

)
Sm + Zl, l = 0, · · · , L− 1

(2.32)
where hi ∼ NC(0, 1) and α is a constant defined in the range [0, 1].

For this channel model, only the statistics of the mis-detected acknowl-
edged error event is unchanged and is as given by (2.6). The probability of
an uncorrectable error becomes

Pr(Ee→c,i)

= Pr
(
L−1∑
l=0
|
√

(1− α)EC,i/L′ejΦi,l +
√
αEC,i/L′hi,l + zc,l|2 ≤ λLEC,i/L′

)

= 1−QL

(√
2L(1− α)EC,i
αEC,i + L′N0

,

√
2Lλ(1− α)EC,i
αEC,i + L′N0

)
. (2.33)

The error probabilities Pr(E1) and Pr(E2) corresponding to the first and
second rounds, respectively are derived using an adaptation of [48, eq:12.1-
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22], which is given by

PM (j) = 1−
∫ ∞

0

1− e−v(1+αγ)
jL−1∑
k=0

(v(1 + αγ))k

k!

M−1

[
v

( 1 + αγ

γ(1− α)

)] jL−1
2

e
−v− γ(1−α)

(1+αγ) IjL−1

(
2
√
vγ(1− α)

1 + αγ

)
(2.34)

where j is the round index, In is the modified Bessel function of order n,
v = u

2E(N0+αE) and γ = E/L′N0. u is the first decision variable with a
non-central chi-square distribution having 2L degrees of freedom and non-
centrality parameter s2 = E(1 − α). Note that above probability reduces
to [48, eq:12.1-22] for α = 0. In the fading channel case, the protocol provides
a more significant improvement when going from one to two rounds, due to
the added diversity. Here it should be expected that the use of more than
two rounds could be even more beneficial, unlike the AWGN case. The use
of many rounds, however, will incur a non-coherent combining loss, despite
the added diversity.

The upper bound on the reconstruction error given in Section 2.1 by
(2.2) is adapted to the current model and by substituting (2.34) and (2.33)
we obtain the following bound on the distortion at the end of the second
round.

D (E , N0, 2, λ) ≤ 2−2B(1− Pe) + 2Pe
≤ 2−2B + 2 [PM (1) Pr(Ee→c,1) + PM (2)] (2.35)

In the upcoming section, we provide numerical evaluation results of the
upper bound given above for different values of α for 0.5 and 0.1 since it is
not possible to give an analytical result and discuss the improvement to be
gained in two rounds through comparing (2.35) versus the distortion to be
achieved in a single round without feedback, i.e. D ≤ 2−2B + 2PM (1).

2.2.1 Lower-bounds on Distortion

We consider the same two lower bounds on performance considered in the
previous sections. Merhav’s bounding technique must be computed numeri-
cally in this case. as the upper bound introduced above and the other one is
presented in an analytical form. Merhav’s results were derived for Rayleigh
fading which is generalized here to channels with a line-of-sight component
and more degrees-of-freedom. Secondly we adapt the classical bound from
Goblick [4] for a fading channel. Both of these techniques assume that the
channel is known to the receiver and the distortion is averaged over all re-
alizations of the random channel coefficients.

Merhav’s bound (2.29) is

DM3(E ,M,N0) ≥ EaDM3(aE ,M,N0) (2.36)
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where a =
∑L−1
i=0 |

√
1− α +

√
αhi,l|2 is a non-central chi-square distributed

random variable with the non-centrality parameter (1 − α)L, 2L degrees
of freedom and with the variance of the 2L underlying Gaussian random
variables given by σ2 = α/2. Its p.d.f. is given below.

f(a) = 1
α

(
a

(1− α)L

)L−1
2

exp
(
−a+ (1− α)L

α

)
IL−1

(
2
√
a(1− α)L

α

)
(2.37)

The behavior of the lower-bound (2.36) will be presented numerically in the
upcoming section.

The wireless adaptation of the Goblick bound given by (1.1) tries to
capture the scenario considered in the achievable scheme above, namely
that a finite number of channel of realizations (or block-fading model) is
exploited by the transmission strategy. To this end, we consider observations
comprising N signaling dimensions split into R blocks of size N/R. Let xi
be the codeword in block i and constrain its energy as E||xi||2 ≤ E/R. Each
block witnesses an independent and identically distributed fading amplitude.
We show in Appendix 6.1.1 that the distortion is bounded below by

D ≥ (1 + 4αE/RN0)−LR exp
{
−2(1− α)LE/N0

1 + 4αE/RN0

}
(2.38)

2.3 Numerical Results

In this section, we present numerical evaluation results for the bounds in
Sections 2.1 and 2.2. In Figure (2.1) we show the bound given by (2.15) for
two rounds and different values of B from 2 to 10. The convex hull of these
curves should be compared with the Goblick-bound given by (2.25) which
is valid for systems with feedback. The curves labeled as the single-round
scheme without feedback represent (2.14). The convex hull of these curves
should be compared with the Merhav bounds which are valid only without
feedback. Note that, in Figure (2.1) Merhav bound 1, 2 and 3 represent
the lower bounds given by equations (2.27), (2.28) and (2.29) , respectively.
Firstly we see the significant effect of using the novel feedback protocol with
respect to the reconstruction fidelity. The latter clearly provides an improve-
ment in terms of distortion or approximately 3 dB in energy efficiency. We
do not quite see the predicted 3dB gap (around 4.5 dB for 14-bits) in energy-
efficiency with respect to the outer-bound with a known channel, even with a
very high-resolution quantization level. Tighter bounding techniques for the
case with feedback in addition to variable-energy schemes should therefore
be considered for future work. The tightest of the Merhav bounds is clearly
(2.29) but also does not quite predict the 1.7 dB asymptotic gap. Although
not shown, numerical analysis also confirmed the asymptotic result given
in Section 2.1 by (2.16) regarding the use of twice as much energy in the
second round in comparison to the first.
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Figure 2.1: Numerical evaluation of the upper and lower bounds on distor-
tion for different values of B in an AWGN channel.

The upper-bound in (2.35) is depicted in Figures (2.2), (2.3) and (2.4)
for several values of B for the cases α = 0.1 and α = 0.5 and both high
(L = 4) and low diversity orders L = 1. In all cases we see a very significant
effect (≥10dB in energy-efficiency) in using a two-round feedback protocol
compared to a one-shot transmission, and this even in the case of a strong
line-of-sight component (α = 0.1). Bound types of lower-bounds are looser
in the case of the fading channels, and especially in the high-diversity case
(Figure (2.4)). This can be attributed to the non-coherent combining loss
which is not captured by the bounds which assume known channels. This
motivates the search for better lower-bounds assuming unknown channels in
their formulation.
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Figure 2.2: Numerical evaluation of the distortion for B from 3 to 6 in a
wireless channel for α = 0.1, L = 1
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Figure 2.3: Numerical evaluation of the distortion for B from 3 to 6 in a
wireless channel for α = 0.5, L = 1
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Figure 2.4: Numerical evaluation of the derived bounds for B from 3 to 6
in a wireless channel for α = 0.5, L = 4



30 Chapter 2 Point-to-point channel



Chapter 3

Transmission of Correlated
Dual-Source over a MAC

In this chapter, we consider a simple transmission strategy for a network
of sensors able to mesure a physical phenomenon from different locations.
Furthermore, we envisage a scenario where sensors operate under tight en-
ergy constraints over a wireless transmission medium which motivates the
use of low-latency coding method. The multi-sensor scenario reflected in
Figure (1.4) is an important generalization which is considered here. In par-
ticular, we are interested in the case where two correlated random variables
are transmitted over multiple-access channels, where the information of the
sources are sent through an AWGN channel. The main issue is how to do
the encoding with respect to the performance to be achieved as a function
of the required energy upon reconstruction. The key element in the multi-
sensor scenario being to exploit is the correlation, which is assumed to be
known, both at the transmitter and receiver. We focus our attention on the
case where unitary samples of the source are transmitted sporadically due
to slow time-variation, and consequently we cannot perform vector quan-
tization. Moreover, we aim to determine the operating regimes for such a
multiple-access system in terms of the role correlation plays in determining
the energy efficiency.

In this chapter, we introduce three different lower bounds on the recon-
struction error of estimating the source vectors based on different ranges in
which the correlation coefficient between the two sources is defined, right af-
ter we describe the system model of the addressed problem in Section 3.1. In
Sections 3.3, 3.3.1 and 3.3.2, we present new results which aim to show the
benefit of feedback regarding optimality, yet with minimal latency through

31



32 Chapter 3 Transmission of Correlated Dual-Source over a MAC

a two-way protocol and its asymptotic performance of reconstruction error
is analyzed for two correlated continuous sources. We conclude the chapter
with the numerical evaluation of the derived bounds. All the derivations
can be found in detail in Appendix 6.2.

3.1 Model Description

3.1.1 Channel model

Let us begin with the description of the system model for the addressed
problem. The considered system for the multiple-access is depicted in Figure
(3.1) where we note that the encoders can make use of an ideal feedback
link. The received signal Y = {Yi; i = 1, ..., N} and the energy constraints
are given as

Yi = X1,ie
iφ1,i +X2,ie

jφ2,i + Z1,i + Z2,i (3.1)

1
K

N∑
i=1

E[|Xm,i|2] ≤ Em (3.2)

for m = 1, 2 and i, j = 1, ..., N , respectively. K is the dimensionality of the
source vectors and is assumed to be finite (i.e. it cannot grow without bound
with N). The criteria to satisfy is chosen as the squared-error distortion
measure, which is defined by d(um, ûm) = (um − ûm)2. φm = {φm,i; i =
1, ..., N} denotes the random phases which are assumed to be unknown both
to the transmitter and the receiver. The encoding functions are arbitrary
mappings, (Um, Y1, Y2, · · · , Yi−1)→ Xm,i for each channel input in the case
of causal feedback, and Um → Xm,i without feedback. Interested reader is

Figure 3.1: Correlated sources over GMAC with feedback.

encouraged to see [54, Section 9] for the results of the parallel channel.
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3.1.2 Source model

Here, we give the description of the source model which is used for both the
lower bounds on the reconstruction error in estimating the source messages
presented in Section 3.2 and the upper bounds derived for the achievable
scheme described and analyzed in Sections 3.3 and 3.3.2. The correlational
relationship between the sources U1,U2 dimension of K is defined through
the following expression

U2 = ρU1 +
√

1− ρ2U′2 (3.3)

where we denote the first source by U1 and the second source by U2. U′2
here is an auxiliary random vector. Note that the first source U1 and the
auxiliary vector U′2 are independent of each other. For the distributions of
the two sources, two different types will be considered. In the first case, U1
is defined to be uniformly distributed over (−

√
3,
√

3) and the second source
U2 is defined to have a contaminated uniform distribution with above given
equality (3.3), based on U1 and U′2 which is also uniform on (−

√
3,
√

3). So,
we have one uniform and one near-uniform source having covariance equal
to the correlation coefficient ρ between them. Secondly, in order to cover a
more general case, correlated sources U1 and U2 are defined to be standard
normal random variables, guaranteed by the auxiliary random variable U′2
is also normally distributed with zero mean and unit variance.

3.1.3 Discussion

In order to highlight the essence of the behaviour of the general case, we
consider first the special case of a single source U dimension of K, whose
message is sent over a Gaussian channel by being split into two parts through
two different codebooks. Let us call the encoded parts of U as X1 and X2.
The estimate Û is received after X1 and X2 are merged again before being
decoded. In the following, I(U; Û) is derived using two different expansions
and the corresponding distortion D is lower bounded.

I(U; Û) ≤ N log
(

1 + KE
NN0

)
(3.4)

and also
I(U; Û) ≥ h(U)− h(U− Û) (3.5)

which varies based on the source distribution, since the entropy is directly
related to the distribution type. The derivations of (3.4) and (3.5) are
provided in Appendix 6.2.1. Combining above given two expansions, we
obtain Shannon’s lower-bound on distortion as

D ≥ Cd(1 + KE
NN0

)−
2N
K (3.6)
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which predicts that the energy used by the two transmitters can be accu-
mulated where

Cd =
{

1 Gaussian,
6
πe Uniform.

(3.7)

Asymptotically in N , (3.6) yields D ≥ Cde
− 2E
N0 . In the upcoming section

3.2, it is shown that benefiting from the correlation between the sources, it
is possible to achieve the behaviour of (3.6) and also the energy efficiency
with two highly correlated sources.

3.2 Distortion Bounds in a Multiple-Access Chan-
nel

After the detailed description of the system model, we introduce outer
bounds on reconstruction error of each source in a multiple-access chan-
nel. In order to avoid the repetitions as giving the derivations of the outer
bounds, we will use the notation m to represent one of the sources and m′

will be used to indicate the other source.
Throughout the section, the two different expansions of a mutual infor-

mation (one of which is based on the output signal and the other one is based
on the sources) are derived and equated in order to obtain a lower bound on
the distortion level. For that reason, the first expansions on the output sig-
nals are applicable to both sources. Naturally, the second expansions vary
depending on the source number and distribution. Furthermore, we note
that the bounds are valid for both the use of feedback-based encoders and
those without feedback.

3.2.1 Lower Bound I

In order to obtain a lower bound on the reconstruction error in estimating
U1,U2, we derive a relatively simple mutual information between the mth

source Um and the output signal Y through two different expansions, which
depends on the sum energy and turns out to be appropriate for the cases of
high correlation between the sources. Two different expansions of I(Um; Y)
are derived first of which is based on the output signal where the second
expansion depends on the sources. The two expansions of I(Um; Y) are
given by

I(Um; Y) ≤ N log
(

1 + K(Em + Em′)
NN0

)
, (3.8)

I(Um; Y) ≥ h(Um)− h(Um − Ûm), (3.9)

respectively. The derivations of both expansions given above can be found
in Appendix 6.2.2 together with the source entropies for m = 1, 2 and both
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source distributions. Equating the two expansions of the same mutual in-
formation provides the below given bound on distortion level for the mth

source

DI,m ≥ CI,m
(

1 + K(Em + Em′)
NN0

)− 2N
K

(3.10)

where

CI,m =
{

1 if m = 1, 2 for Gaussian
6
πe if m = 1, 2 for Uniform

(3.11)

Asymptotically in N , (3.10) is obtained as

DI,m ≥ CI,me
−

2(Em+Em′ )
N0 . (3.12)

3.2.2 Lower Bound II

The main difference between this case and the previous one treated high
correlation is the mutual information term to be used in order to come up
with a bound on the distortion level corresponding each source. Hence the
mutual information between the source Um and the output signal Y will
be expanded through two different ways when the information of the other
source Um′ is given, so that the output signal expansion yields dependent
on the individual energy. The aim is to obtain a different bound when the
sources are not strongly correlated since Um does not have the information
of Um′ due to correlation. The two expansions of I(Um; Y|Um′) are given
as

I(Um; Y|Um′ ,Φm,Φm′) ≤ N log
(

1 + KEm
NN0

)
, (3.13)

I(Um; Y|Um′ ,Φm,Φm′) ≥ h(Um|Um′)− h(Um − Ûm). (3.14)

The derivations of (3.13) and (3.14) are given in Appendix 6.2.3. The general

form of the distortion bound is obtained as DII,m ≥ CII,m
(
1 + KEm

NN0

)− 2N
K

and asymptotically in N it becomes

DII,m ≥ CII,me
− 2Em

N0 , (3.15)

where CII,m is a constant depends on the source given as

CII,m =


(1− ρ2) if m = 1, 2 for Gaussian
36(1−ρ2)
π2e2 if m = 1, for Uniform

6(1−ρ2)
πe if m = 2 for Uniform

(3.16)
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3.2.3 Lower Bound III

In addition to the lower bounds I and II, the product distortion term DIII =
D1D2 is bounded as given in the following form

DIII ≥ CIII exp
(
−2(Em + Em′)

N0

)
, (3.17)

where

CIII,m =

1− ρ2, for Gaussian
36(1−ρ2)
e2π2 , for Uniform

(3.18)

The derivation of the bound (3.17) given above can be found in Appendix
6.2.4. Combining all three bounds (3.12), (3.15) and (3.17) introduced
above, we obtain the following overall bound for the uniform case first and
second source

D1 ≥


DI,1 if 6(1−ρ2)

πe ≤ min(D2, e
− 2E2
N0 ),

DII,1 if D2 ≥ e
− 2E2
N0 and 6(1−ρ2)

πe ≥ e−
2E2
N0 ,

DIII/D2 if 6(1−ρ2)
πe ≥ min(D2, e

− 2E2
N0 ),

(3.19)

D2 ≥


DI,2 if 1− ρ2 ≤ min((πeD1)/6, e−

2E1
N0 ),

DII,2 if D1 ≥ 6
πee
− 2E1
N0 and 1− ρ2 ≥ e−

2E1
N0 ,

DIII/D1 if 1− ρ2 ≥ min((πeD1)/6, e−
2E1
N0 ),

(3.20)

respectively. And we have following overall bound for the Gaussian case
through combining all three bounds (3.12), (3.15) and (3.17) introduced
above, we obtain the following overall bound

Dm ≥


DI,m if 1− ρ2 ≤ min(Dm′ , e

−
2Em′
N0 ),

DII,m if Dm′ ≥ e
−

2Em′
N0 and 1− ρ2 ≥ e−

2Em′
N0 ,

DIII/Dm′ if 1− ρ2 ≥ min(Dm′ , e
−

2Em′
N0 ).

(3.21)

The bounds given above predict that energy accumulation cannot be achieved
when the distortion resulting from the estimation of one source realization
using the other (i.e. 1−ρ2) is more than the point-to-point distortion (Gob-
lick bound e−2E/N0 , [4]) incurred during transmission.

3.3 Two-Way Protocol with Correlated Analog Sources

As in the original work [1] and its non-coherent version studied in [55], the
protocol comprises a data phase and a control phase, which can be repeated
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up to two rounds. The total energy to be used by protocol is fixed and we
will denote the energy used in the data phase of the ith round by the jth
source by ED,i,j , where i, j = 1, 2. In the same way, EC,i,j denotes the energy
used in the control phase of the ith round by the jth source. The energy in
the control and data phases of the ith round are defined as the sum energy
on both sources. The quantized source sample of the jth source is encoded
into 2B messages with dimension N .

In the data phase, the first source sends its message m1(U1) to the
receiver with energy ED,1,1. The receiver detects m̂1 and feeds it back. And
the second source sends m2(U2) with energy ED,1,2. The energy in the control
phase of the ith round is defined as EC,i = EC,i,1 +EC,i,2 and the total energy
in the data phase is ED,i = ED,i,1 + ED,i,2. This encoding rule allows the
second source to exploit the correlation of its sample with that of its peer
and the energy used is chosen according to the likelihood of the estimate fed
back from the receiver. After the estimation and feedback of m̂2, data phase
of the first round ends and the encoders enter the control phase to inform
the receiver about the correctness of its decision, as in the single source case.
For that, each source sends ACK/NACK signals regarding its own message
to the decoder. According to the control signals, either the protocol halts
or goes on another round to do the retransmission of the message which
were not acknowledged in the control phase. For the second data phase, the
destination instructs the sources to retransmit and re-detect its message.

The output signal based on the N dimensional observation of the jth
source in the data phase is given as

Yd =
√
ED,1,jejΦjSmj + Zj . (3.22)

We assume the random phases Φj to be distributed uniformly on [0, 2π), the
channel noise Zj to have zero mean and equal autocorrelation N0IN×N for
j = 1, 2 and Smj are the N -dimensional messages, where m = 1, 2, · · · , 2Bj
and j = 1, 2. We have a detector of the form for the jth source as ej =
I
(
|yc,j |2 > λjEC,1,j

)
with yc,j = Yc,j

HSc,j λ1 and λ2 are threshold values
to be optimized and included within the interval [0, 1). For simplification,
we will assume λ1 and λ2 to be equal to the same value λ. We denote
the error events in the first round and on the jthsource with E1,j . Let
e1,j and c1,j denote erroneous and correct decoding in the first round on
Uj , respectively. Accordingly Ec→e,1 and Ee→c,1 are used to denote a mis-
detected acknowledged error and an uncorrectable error, respectively. The
probability of an uncorrectable error in the first round is taken as the sum of
the probability of errors of each source as Pr(Ee→c,1) =

∑2
j=1 Pr(Ee→c,1,j).
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The probability of an uncorrectable error Ee→c for Uj is given by

Pr(Ee→c,1,j) = Pr(|
√
EC,1,j + zc,j |2 ≤ λEC,1,j)

= 1−Q1

(√
EC,1,j
N0/2

,

√
λEC,1,j
N0/2

)
(a)
≤ 1/2 exp

(
−(
√
λ− 1)2EC,1,j

N0

)
. (3.23)

using the recent bound on the Q1(α, β) given in [47, eq:4] in step (a). The
total probability of a mis-detected acknowledged error to occur in the first
round is obtained in the same way by; Pr(Ec→e,1) =

∑2
j=1 Pr(Ec→e,1,j). And

the probability of a mis-detected acknowledged error Ec→e for Uj is

Pr(Ec→e,1,j) = exp
{
−λEC,1,j

N0

}
. (3.24)

• Detection Rule

The receiver chooses

(m̂1, m̂2) ∼ argmax
(m̂1,m̂2)s.t.(m̂1,m̂2)∈Jm

|U(1)
m |2 (3.25)

in the first round, whereas the detection rule is cumulatively given by

(m̂1, m̂2) ∼ argmax
(m̂1,m̂2)s.t.(m̂1,m̂2)∈Jm

|U(1)
m |2 + |U(2)

m |2 (3.26)

for the second round where |U(1)
m |2 = |U(1)

m1 |2 + |U(1)
m2 |2 and |U(2)

m |2 =
|U(2)

m1 |2 + |U(2)
m2 |2. As defining the error probabilities per round/source, in

the upcoming subsections, we will make use of the rule defined above.

3.3.1 Asymptotic Performance of Uniform Sources

The structure of the sources is defined as in (3.3) where U1 and U ′2 are
independent of each other and uniformly distributed over (−

√
3,
√

3) and
the second source U2 is defined as U2 = ρU1 +

√
1− ρ2U ′2 based on U1

and an auxiliary random vector U ′2 which is also uniform on (−
√

3,
√

3).
Depending on the value of ρ, the distribution of the second source U2 can be
either a triangular distribution or a contaminated uniform distribution. In
the case of a high correlation, i.e.

√
1− ρ2 < θ2−B where θ is an arbitrary

constant, the effect of the auxiliary random variable U ′2 will be very small.
On the contrary, for a low correlation between U1 and U2, U ′2 will have a
significant effect so the second source will have a triangular distribution as
a sum of the two uniform random vectors. We will focus on the extreme
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case of a very high correlation between the two sources. So, here we have
one uniform and one almost uniform (contaminated uniform) source having
covariance equal to the correlation coefficient ρ between them.

The source messages are quantized as depicted in Figure (3.2), where
each tail of the distribution is considered as one quantization bin and the
interior part, which is composed by the remaining 2B − 2 bins, is uniformly
quantized. Note that for a full correlation between the sources the ’contam-
ination’ in the source distribution vanishes and the shape given by Figure
(3.2) becomes a rectangular.

Figure 3.2: Pictorial representation of quantization process for the defined
distribution with the allocation of the quantization bins

At the end of the second round, the protocol is terminated with distortion
bounded as

D = Dq(1− Pe) +DePe ≤ Dq +De,1Pe,1 +De,2Pe,2 (3.27)

where Pe is the total probability of error which consists of Pe,1 and Pe,2.
Pe,1 and Pe,2 indicate the probability of error on one of the sources and both
sources, respectively. Both probabilities include the uncorrectable error in
the first round. Pe,1 is defined by

Pe,1 =
⌈
2B
√

1− ρ2
⌉

Pr(Ee→c,1)P2(1) +
⌈
2B
√

1− ρ2
⌉
P2(2) (3.28)

On the other hand for the case where both sources to be in error at the end
of the first or the second round, the probability of error is achieved as

Pe,2 =
⌈
2B
√

1− ρ2
⌉

2B Pr(Ee→c,1)2P2(2) +
⌈
2B
√

1− ρ2
⌉

2BP2(4) (3.29)

where

P2(L, γ) = 1
22L−1 e

−γ
L−1∑
n=0

(
1
n!

L−1−n∑
k=0

(
2L− 1
k

))
γn
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in round L given by the formula [48, eq:12.1-24] where γ represents the
SNR. Explicitly, in the first round for only one source being in error, the
error probability is obtained by P2(1) whereas P2(2) gives the probability
for both sources being in error. Accordingly P2(2) and P2(4) represent the
probabilities in the second round. Further detail on the derivation of the
error probabilities (3.28) and (3.29) can be found in Appendix 6.2.5.

Dq represents the distortion caused by the quantization process and De

corresponds to the MSE distortion for the case where an error was made.
Splitting the distortion for the erroneous case, where De,1 denotes the dis-
tortion for one source in error and in the same way De,2 denotes the case
when both sources incorrectly decoded. Let us denote the estimation error
by e, so that its variance E[u−û|l in error]2 for l = 0 yields the quantization
distortion given by

Dq ≤ (2B − 2)−2
(

12 + 1− ρ2

ρ2 − 4
√

3(1− ρ2)
ρ

)
+ 3(1− ρ2)3/2

8ρ3 . (3.30)

De,1 is defined and bounded as follows

De,1 = E
[
(um − ûm)2 |um in error

]
≤ 6

(
2−2B+2 + 5(1− ρ2) + 2−B+3

√
1− ρ2

)
(3.31)

for the mth source where m = 1, 2. Note that for m = 2 above given
expression (3.31) becomes an equality. Finally, for the worst case when
both sources are in error we have the following expansion and it is bounded
as given by

De,2 =
2∑

m=1
E
[
(um − ûm)2 |um in error

]
≤ 14 + 12ρ2 + 3(1− ρ2)/4 + 6ρ

√
1− ρ2 (3.32)

Through combining (3.28), (3.29), (3.30), (3.31), (3.32) with (3.27), we
get the following bound on distortion as

D ≤ K1Dq +
(
K2

√
1− ρ2eB ln 2 +K3ε(ρ)

)
e

(B−3) ln 2−
ED,1+EC,1(

√
λ−1)2

2N0 De,2

+
(
K4

√
1− ρ2eB ln 2 +K5ε(ρ)

)
e
−
ED,1+2EC,1(

√
λ−1)2

4N0 De,1

+
(
K6

√
1− ρ2eB ln 2 +K7ε(ρ)

)
e

(B−7) ln 2−
ED,1+ED,2

2N0 De,2

+
(
K8

√
1− ρ2eB ln 2 +K9ε(ρ)

)
e
−
ED,1+ED,2

4N0 De,1 (3.33)
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whereK1,K4,K5 areO(1), K2,K3 areO(ED,1), K6,K7,K8,K9 areO((ED,1+
ED,2)3) with ε(ρ) ∈ [0, 1) which arose from the ceiling functions in (3.28) and
(3.29).

For a high level of correlation between the sources we set the relations
of the energies as EC,1 = ED,2

(1−
√
λ)2 and ED,2 = (2 − µ)ED,1 where µ is an

arbitrary constant satisfying µ ∈ (0, 2). And the asymptotic bound for a
high correlation level becomes

Dhigh ≤ e
−
ED,1(1−µ/3)

N0 β(ED,1, ρ) (3.34)

where

β(ED,1, ρ) =

 96 + 3
ρ2 e
−
ED,1
2N0

14 +
(

1
2e
−
ED,1
2N0 + 2ρ2

)2


2/3

which arose from the distortion terms together with the ceiling functions.To
simplify the calculations the energy used by a source on a particular phase
is assumed to be half of the energy on the corresponding round, e.g. ED,1 =
2ED,1,1 = 2ED,1,2. Note that the exponential behaviour observed in (3.34) is
the same as a single source yields in [55]. Furthermore, there is a difference of
factor 1/2 between the exponentials of (3.34) and the information theoretic
bounds (3.12), (3.15) and (3.6).

The average energy E used by the protocol given by (6.27) in Appendix
6.2.6 can be made arbitrarily close to ED,1 with vanishing Pe,1 and Pe,2,
guaranteed by the interval in which ε(ρ) is defined.

3.3.2 Asymptotic Performance of Gaussian Sources

The structure of the sources is defined as in (3.3) where U1 and U ′2 are
independent of each other and normally distributed with zero mean and
unit variance. Here U ′2 is used as an auxiliary random variable to define the
relationship between the two sources U1 and U2 with the joint probability
density function given below

f(u1, u2) = 1
2π
√

1− ρ2 exp
[
−u

2
1 − 2ρu1u2 + u2

2
2(1− ρ2)

]
(3.35)

for −∞ < u1 <∞ and ∞ < u2 <∞. The definition of U2 ensures that the
covariance between the sources equals the correlation coefficient ρ.

• Quantization

The messages m1 and m2 will be discretized through uniform quantization,
i.e. the bins are located equidistantly from each other and for each source the
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reconstruction points xj,n are the midpoints of the intervals Ij,n which define
each of the bins for the jth source with n = 2, ..., 2B − 1. The quantization
intervals corresponding to the tails of the bell curve (Ij,1 and Ij,2B for j =
1, 2) are considered as one bin for each side as shown in Figure (3.3). The rest
of the partitioning is made for each source as Ij,n = [−∆ + ∆(n)

2B−1−1 ,−∆ +
∆(n+1)
2B−1−1 [, with ∆ = 2

√
B ln 2. Let us set the quantization levels for each

source as xj,1 = −∆ and xj,2B = ∆.

Figure 3.3: Uniform Quantization of Uj

Definition (m,n) is called a compatible pair if |ρU1 − U2| < θ is satisfied
for ∀u1, u2 ∈ B where θ is an arbitrary constant.
This definition assures that, during the quantization process, the correlation
between the two sources would not allow the second source to fall in a bin
further than a certain distance. Jm represents the set that n is assumed to be
contained. Outside of this set, the pair (m,n) becomes incompatible with the
corresponding probability of error (1 − Pr(|U ′2| < θ

√
1− ρ2)). In this case,

the probability of having an error can be composed by three different events;
both sources to be detected wrong, û1 detected correctly as û2 detected
wrong or vice versa. These three events are summarized in two cases as
only one source to be in error or both. The overall distortion at the end of
the second round is defined as D = Dq(1− Pe) +DePe and bounded by

D ≤ Dq + (1− Pr(|U ′2| > θ
√

1− ρ2)) (De,c,1Pe,c,1 +De,c,2Pe,c,2)

+ Pr(|U ′2| > θ
√

1− ρ2)De,ic,1Pe,ic,1 + Pr(|U ′2| > θ
√

1− ρ2)De,ic,2Pe,ic,2

(a)
≤ Dq+De,c,1Pe,c,1+De,c,2Pe,c,2+Pr(|U ′2| > θ

√
1− ρ2) (De,ic,1 +De,ic,2Pe,ic,2)

(3.36)

where ic and c in the subscripts represent the incompatible and compatible
pairs, respectively. Pe,ic,j is the error probability of j incompatible sources
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being in error whereas Pe,c,j represents the error probability of those which
are compatible. De,ic,j and De,c,j denote the corresponding distortions for
each case, respectively. Note that, error probabilities and the corresponding
distortion levels for the case of both sources being in error are assumed to be
equivalent, i.e. Pe,c,2 = Pe,ic,2 = Pe,2 and De,c,2 = De,ic,2 = De,2. It should
be also noted that in step (a) of eq. (3.36), the probability of error only one
incompatible source to be in error is upper bounded by 1.

Pe,1 and Pe,2 are defined by

Pe,1 ≤
⌈
2Bθ

√
1− ρ2

⌉
Pr(Ee→c,1)P2(1, ED,1

2 )

+
⌈
2Bθ

√
1− ρ2

⌉
P2(2, ED,1 + ED,2

2 ) (3.37)

Pe,2 ≤
⌈
2Bθ

√
1− ρ2

⌉
2B Pr(Ee→c,1)2P2(2, ED,1)

+
⌈
2Bθ

√
1− ρ2

⌉
2BP2(4, ED,1 + ED,2) (3.38)

Pr(Ee→c,1), error probability of an uncorrectable error to occur in the first
round, is defined as

∑2
j=1 Pr(|

√
EC,1,j + zc,j |2 ≤ λEC,1,j).

Quantization distortion Dq is defined by

Dq =
2B∑
m=1

2B∑
n=1

∫
I1,m

∫
I2,n

[
(u1 − û1(m))2 + (u2 − û2(n))2

]
f(u1, u2)du2du1

(3.39)
which can be upper bounded by K1e

−2B ln 2 through substituting the value
of ∆. In order to emphasize the exponential term the rest of the factors
are given by the coefficient K1 which represents O(B). Basically, the range
within [−∆,∆] is uniformly quantized whereas the tails are bounded as Q
functions. In the same way, for the distortion term De,2, which is caused by
the channel when both sources are in error regardless of being compatible
or incompatible, is defined as given below.

De,2 < 2
(
4∆2 Pr(|uj | < ∆)

)
+ 2

(∫ ∞
∆

(uj + ∆)2f(uj)duj +
∫ −∆

−∞
(uj −∆)2f(uj)duj

)
(3.40)

We used uniform quantization for the area between the quantization levels
under the bell curve and the tails are bounded using an approriate bound
on Q functions. The distortion caused by one source to be in error are given
below for compatible and incompatible pairs

De,c,1 <
2B∑
n=1

∫
Ij,n

(uj − ûj(n))2f(uj)duj + |2θ2
√

1− ρ2|2, (3.41)
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De,ic,1 <
2B∑
n=1

∫
Ij,n

(uj − ûj(n))2f(uj)duj

+
∫ ∞
u′2=θ

(
θ
√

1− ρ2 +
√

1− ρ2u′2

)2
f(u′2||U ′2| > θ

√
1− ρ2)du′2 , (3.42)

respectively. But basically, regardless of being compatible both De,c,1 and
De,ic,1 contain one source which is correctly decoded. Therefore both dis-
tortion terms include Dq for one of the sources. The inner part under the
bell-curve, i.e. the range between the quantization levels, and the tails
are treated separately also for the case of 1 source being in error condi-
tioned to be inside (for De,c,1) or outside (for De,ic,1) of the compatible zone
(|ρU1 − U2| < θ). For further detail in the derivations of the bounds above,
see 6.2.7.

The overall distortion at the end of the second round (3.36) is obtained
by substituting error probabilities (3.37) and (3.38) with corresponding dis-
tortion terms and given in the explicit form as follows

D ≤ K1Dq +K2De,ic,1e
− θ

2(1−ρ2)
2

+
(
K3θ

√
1− ρ2eB ln 2 +K4ε(ρ)

)
De,2e

(B−3) ln 2−
ED,1+EC,1(

√
λ−1)2

2N0

+
(
K5θ

√
1− ρ2eB ln 2 +K6ε(ρ)

)
De,c,1e

−
ED,1+2EC,1(

√
λ−1)2

4N0

+
(
K7θ

√
1− ρ2eB ln 2 +K8ε(ρ)

)
De,2e

(B−7) ln 2−
ED,1+ED,2

2N0

+
(
K9θ

√
1− ρ2eB ln 2 +K10ε(ρ)

)
De,c,1e

−
ED,1+ED,2

4N0

+
(
K11θ

√
1− ρ2eB ln 2 +K12ε(ρ)

)
De,2e

B ln 2− θ
2(1−ρ2)

2 −
ED,1+EC,1(

√
λ−1)2

2N0

+
(
K13θ

√
1− ρ2eB ln 2 +K14ε(ρ)

)
De,2e

B ln 2− θ
2(1−ρ2)

2 −
ED,1+ED,2

2N0 (3.43)

where K2 = 1/2, K3,K4,K5,K6,K11 and ,K12 are O(ED,1) and the rest of
the factors are O((ED,1 + ED,2)3) with ε(ρ) ∈ [0, 1). For simplification in cal-
culations, the energy used by a source on a particular phase is assumed to be
half of the energy on the corresponding round, e.g. ED,1 = 2ED,1,1 = 2ED,1,2.
Equating the order of the exponentials for the case of low correlation, i.e.
θ > 2

√
B ln 2

(1−ρ2) , we can set the relations of the energies as EC,1 = ED,2
2(
√
λ−1)2

and ED,2 = (2− µ)ED,1 where µ is an arbitrary constant within the interval
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(0, 2).

Dlow ≤ e
−
ED,1(1−µ/4)

2N0 γ(ED,1, ρ) + e
−
ED,1(1−µ/3)

2N0 δ(ED,1, ρ)

+ e
−
ED,1(3−µ)

4N0 ϑ(ED,1, ρ) (3.44)

Dhigh ≤ e
−
ED,1(1−µ/3)

N0 α(ED,1) +K6e
−
ED,1(9−2µ)

4N0 +K10e
−
ED,1(7−µ)

4N0 (3.45)

Under this condition, the distortion (3.43) yields the bound (3.44) where
γ, ω and ϑ are functions of ED,1 and ρ and arose fromK3,K4, K5,K6,K9,K10
and K7,K8, respectively. On the other hand for the highly correlated
sources, we set the relations of the energies as EC,1 = ED,2

(1−
√
λ)2 and ED,2 =

(2 − µ)ED,1 where µ is an arbitrary constant satisfying µ ∈ (0, 2) and the
final bound becomes as given by (3.45) whereas α is a function of ED,1 which
arose from K4, K8, K12, K14 together with the distortion terms and given

by α(ED,1, ρ) =
(

4
√
ED,1
πN0

+ 16ED,1
N0

)−2/3
. The amount of energy used by the

protocol is arbitrarily close to the energy consumed by the first data phase
assured by vanishing error probability in this round. The exponential be-
haviour observed in (3.45) is the same with a single source yields in [55].
Note that there is a difference of factor 1/2 in the exponentials of the sig-
nificant term in (3.45) and the information theoretic bound given by (3.12)
where both upper and lower bounds represent the case of highly correlated
sources.

3.4 Numerical Evaluation for the Dual-Source Case

The numerical evaluation of the distortion bounds for the dual-source case
are given by Figure (3.4). In this plot, the red curves represent the outer
bounds (3.20) derived in Section 3.2 for different values of B, where we
have chosen 1− ρ2 = 2−2B. The blue curves are the upper bound (3.27) on
distortion analyzed in Section 3.3. The green curves are drawn for a protocol
terminated after the first round which is the case without feedback. We see
from the lower-bounds that the energy accumulation remains feasible even
at distortions below that of a uniform quantizer with B-bits (the asymptotes
of the proposed scheme). In practice, this suggests that the quantizer bin
size should be chosen such that the difference in amplitude between the two
sources should be on the order of the quantization error (i.e. 1-bit deviation
between the sources). We also see that the asymptotic performance does
not emerge for small values of B using the derived bounds, necessitating
further numerical study of the proposed scheme in this case in order to



46 Chapter 3 Transmission of Correlated Dual-Source over a MAC

better judge the gap from the lower-bounds. Nevertheless, the improvement
using feedback is very significant, even for small values of B.

Additionally, in order to make a comparison between the lower bounds
only, we present the numerical evaluation of the bounds derived in sub-
sections (3.2.1), (3.2.2) and (3.2.3) for the uniform case. Note that, the
lower bound III is evaluated for its squared root for equal distortions per
source where the horizontal line in each plot represents 2−2B or equaiva-
lently (1 − ρ2) which is the distortion resulting from the estimation of one
source realization using the other. Clearly, increasing B (or equivalently
increasing ρ) directly effects the significance moreover the usefulness of the
bounds. Lower bound II (low correlation bound) becomes useless as B in-
creases whereas the product bound dominates the high correlation bound in
the high SNR regime.

Figure 3.4: Numerical evaluation of the derived upper and lower bounds
on distortion for different values of B for uniform/contaminated uniform
dual-source case.
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Figure 3.5: Numerical evaluation of the lower bounds I, II and III for B = 3.
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Figure 3.6: Numerical evaluation of the lower bounds I, II and III for B = 6.
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Figure 3.7: Numerical evaluation of the lower bounds I, II and III for B = 9.
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Chapter 4

Distributed Sensing and
Transmission in a MAC

This chapter focuses on the problem of transmitting correlated analog sources
over a Gaussian multiple-access channel with a feedback link from the re-
ceiver to each encoder. The main results of this chapter are firstly the
derivation of lower-bounds governing both the reconstruction error of a sin-
gle random vector imperfectly measured by a network of sensors and multiple
source vectors which are transmitted to a common receiver via an additive
white Gaussian noise asynchronous multiple-access channel with a perfect
causal feedback link to the encoder connected to each sensor. The bounds
are expressed both for a uniform random-vector source with uniformly-
distributed observation noise and for a Gaussian source with Gaussian ob-
servation noise. Secondly, we extend a retransmission protocol inspired by
the classical scheme in [1] applied to the transmission of single and bi-variate
analog samples analyzed in Section 2 and 3 to the more general network with
M noisy observations of a common random sample. We restrict the second
analysis to uniform one-dimensional sources. The simple two-round trans-
mission scheme combines uniform quantization and orthogonal modulation,
for which we provide asymptotic upper-bounds on the reconstruction error
as a function of the total received energy and observation noise level. Both
the upper and lower-bounds show that a trade-off exists between the source
SNR and channel SNR indicating the extent to which collaboration to be
achieved through energy accumulation.

Finally, we investigate the practical performance of the proposed retrans-
mission protocol through numerical evaluation of the upper-bounds in the
non-asymptotic energy regime, which corresponds to using low-order quan-

51
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tization in the sensors. In order to improve the performance of the protocol,
we introduce a minor modification in the feedback strategy which allows the
error-free performance to be achieved quickly. Comparisons with a one-shot
transmission not exploiting feedback are made in order to judge the benefit
of the protocol in the non-asymptotic regime for a few network sizes.

The outline of the chapter is as follows: in the following subsection 4.1,
we give a description of the general model to explain the problem addressed.
It is followed by the derivation of the information-theoretic bounds on the
reconstruction error outlined above. In Section 4.4, we provide an M -sensor
adaptation of Yamamoto’s protocol for a uniformly-distributed source with
uniform observation error along with the analysis of its asymptotic per-
formance. In Section 4.5, we present the numerical results for a slightly
different protocol and the lower bounds derived in 4.2.

4.1 Problem Definition and Model description

Let us begin with the description of the system which is shown in Figure
(4.1). In a similar vein to the source-construction studied in [56, 57], we
describe a general model which includes the first source as the mutual el-
ement of the whole system and combined with M other sources through a
correlational relationship. The construction of the sources is given by the
following linear expression.

Vj = ρU +
√

1− ρ2U′j (4.1)

Here we denote the M auxiliary random vectors representing the observa-

Figure 4.1: Pictorial representation of the described system

tion noise in each sensor by U′j and the observation of the mutual source
U by Vj , both dimension of K with j = 1, 2, ...,M . Note that the mu-
tual source U and the observation noise vectors U′j are independent of each
other. Each realization of Vj is mapped into Xj , (X1,j , . . . , XN,j) which
is a representation of an N -dimensional waveform XN

j (t) using a suitable
basis for t ∈ [0, T ] whose power is constrained as 1

T E
∫ T

0 |xNj (t)|2dt ≤ KPj
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or equivalently E
∑N
i=1[|Xi,j |2] ≤ KPjT = KEj where Ej is the energy per

dimension of the jth source letter. Xj is then sent across the channel cor-
rupted by a white complex circularly symmetric Gaussian noise sequence
Z, and is received as the output signal Y. The receiver constructs an es-
timate Û(Y) of U given Y. The transmitted sequence Xj is encoded as
Xi,j = fi,j(Vj , Y1, · · · , Yi−1), where the function fi,j is an arbitrary map-
ping for the jth sensor in dimension i and depends on perfect knowledge of
past observations in the case of causal feedback. The latter models an ideal
causal feedback path from the receiver. Note that, in case of no feedback
the encoding function is given as Xi,j = fi,j(Vj). The dimension of the
channel input is denoted by N and can be assumed to be large, whereas K
is assumed to be finite and small.

We consider two cases for the distribution of U. In the first case, both the
U′j and U are uniformly distributed with zero mean and unit variance, i.e.
defined in the range (−

√
3,
√

3). Depending on the level of correlation, Vj

defined by (4.1) has a contaminated uniform distribution. We will consider
the case where Vj , U and U′j are standard normally distributed which is
equivalent to having the parameters N (0, 1). The output signal is given in
the following by

Yi =
M∑
j=1

Xi,je
iφi,j + Zi, (4.2)

for j = 1, 2, ...,M and i = 1, ..., N .
The criteria for source-channel code design is chosen as the squared-error

distortion measure, which is d(ui, ûi) = (ui − ûi(y))2 for i = 1, 2, · · ·K in
estimating U , and the average distortion is defined as

D = 1
K

E
[
K∑
i=1

d(ui, û(y))
]
. (4.3)

φj = {φi,j ; i = 1, ..., N} denotes the random phase sequences which are
assumed to be i.i.d. uniform over [0, 2π) and unknown to the transmitter
and receiver. The latter models an asynchronous network and the fact that
a coherent reception model is unrealistic for sporadic information transfer.
These assumptions are implicitly relaxed in the lower bounds on the distor-
tion discussed in the following section but are applied in the coding strategy
considered in Section 4.4. On another aspect, in a system as in Figure (4.1)
one could aim at reconstructing Vj ’s as studied in Section 4.3. In that case,
the performance measure is defined by the set {Dj} corresponds to each Vj

due to the squared-error distance between their estimates; i.e. for a single
Vj we get 1

KE
[∑K

i=1 d(vi,j − v̂j(y))
]
.
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4.2 Estimation of U

In order to obtain a bound on the fidelity of estimating the random vec-
tor U, we obtain upper and lower bounds on a cut-set mutual information
functional I(U; Y|{Vj}S) based on a subset S ⊆ 1, 2, · · · ,M and its com-
plement Sc. {Vj}S denotes the subset of Vj ’s for j ∈ S. The bounds which
are derived based on the source and output signal expansions of the mutual
information I(U; Y|{Vj}S) are summarized as

I(U; Y|{Vj}S) ≥ −h({Vj}S) + h({Vj}S |U) + h(U)− h(U− Û), (4.4)

I(U; Y|{Vj}S) ≤ N log
(

1 +
K
∑
j∈Sc Ej

NN0

)
, (4.5)

respectively. The derivations of the bounds given above can be found in
detail in Appendix 6.3.1 for both uniform and normal distributions.

Combination of (4.4) and (4.5) allows us to express the distortion level
for estimating the mutual random vector U as

D ≥ max
|S|

CD
1− ρ2

1 + (|S| − 1)ρ2

(
1 +

K
∑
j∈Sc Ej

NN0

)− 2N
K

(4.6)

where CD is a constant which varies based on the distribution type and
defined as

CD =
{

( 6
πe)
|S|+1, for U ∼ U(−

√
3,
√

3)
1, for U ∼ N (0, 1).

The general bound given above by (4.6) includes two parameters; the corre-
lation coefficient ρ and the energy term and is valid for all 0 ≤ |S| ≤M . In
the source-channel coding scheme proposed in the following section which
targets broadband networks and small amounts of analog information, we
are mostly interested in the case where N � K, or where the channel band-
width is significantly higher than the source bandwidth. For N → ∞ and
Ej = E ∀j, (4.6) becomes

D ≥ max
|S|

CD
1− ρ2

1 + (|S| − 1)ρ2 exp
(
−2(M − |S|)E

N0

)
(4.7)

which can easily be simplified to

D ≥



CD
(

1−ρ2

1+(M−1)ρ2

)
, 1+(M−2)ρ2

1+(M−1)ρ2 ≥ e
− 2E
N0

...

CD
(

1−ρ2

1+(i−1)ρ2

)
e
− 2(M−i)E

N0 , 1+(M−i−1)ρ2

1+(M−i)ρ2 ≥ e
− 2E
N0

...

CD exp
(
−2ME

N0

)
, 1− ρ2 ≤ e−

2E
N0 .

(4.8)
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The above result brings to light the effect of collaboration between the sen-
sors which is achieved either through the spatial expansion in the channel
or in the source. To see this, we note that the condition for the ith source
1+(M−i−1)ρ2

1+(M−i)ρ2 ≥ e
− 2E
N0 is equivalent to saying that the distortion in each sensor

node induced by the observation process is more significant than the lowest
distortion offered by the channel when estimating Vj (which is Dc ≥ e

− 2E
N0 )

in the absence of the signals from the other sensors. Note that this is the clas-
sical point-to-point optimal distortion derived in [4]. A comparable trade-off
regarding the collaboration effect due to the source or channel can be seen
in [32, 33] for the case K = N . As mentioned in the introduction, another
example is the Gaussian sensor network application [58, sections VI and
VII] (again for K = N) or the CEO (Central Estimating Officer) problem
studied in [26,27,59], where estimation fidelity decays linearly with the size
of the network in a manner similar to (4.6).

For the case |S| = M (first line of (4.8)), the distortion is simply that of
the conditional estimator of U with prior knowledge of Vj for j = 1, · · · ,M
that is E

{
||U− Û||2|Vj , j = 1, · · · ,M

}
. This can be alternatively derived

using the results of [44]. Let us now consider the vector channel model
Y =

√
snrHX + N analyzed in [44], where X and Y are the input and

output signals, H is a deterministic matrix and N represents the channel
noise in the described model. The source component of our system (i.e. up
to the input of the channel encoder) can be simply considered as a special-
case of the estimation problem treated in [44, eq.19] through the following
definition for the Gaussian construction,

Y′ = ρ√
1− ρ2 HX + N. (4.9)

Here in (4.9), our mutual source U from the model (4.1) is replaced by the
vector X, the auxiliary random vector U′j in other words the observation
noise is represented by the channel noise N, where the output signal Y′ =
Y/
√

1− ρ2 corresponds to the vector of Vj ’s in our model. Attaining the
corresponding vectors, we obtain the mean square error in estimating mutual
source U conditioned on a set of Vj ’s given above by (4.7) which is no
different than estimating HX in the original work as

E
{
||U− Û||2|{Vj}

}
= 1− ρ2

1 + (M − 1)ρ2 (4.10)

since H is an all-one matrix and where Û is the conditional mean estimate.

4.3 Estimation of the set of Vj’s

Another way of approaching to the multiple-source problem is the estimation
of Vj ’s instead of the mutual element U. In contrast to the previous section
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which provides a lower bound on the best estimator of the common random
variable, in this part we provide lower bounds on the sum and product mean
squared error of subsets of sources for individual estimators.

4.3.1 Bound on product distortion ∏M
j=1 Dj

Another way of approaching to the multiple-source problem is the estimation
of Vj ’s instead of the mutual element U. The product distortion D1D2...DM

is bounded using two different expansions of I(Vj ; Y) for both uniformly and
normally distributed sources, where Vj is the whole set with j = 1, 2, ...,M .
The resulting lower bound on

∏M
j=1Dj is obtained as

M∏
j=1

Dj ≥ Cp
(

1 + KME
NN0

)−2N/K
(4.11)

with

Cp =

(1− ρ2)M (1 + Mρ2

1−ρ2 ), for Gaussian(
6(1−ρ2)
πe

)M
, for Uniform.

where Ej = E ∀j. Let N →∞, the lower bound (4.11) becomes

M∏
j=1

Dj ≥ Cp exp
(
−2ME

N0

)
. (4.12)

Lower bound (4.12) can be simplified to D ≥ (Cp)1/M exp
(
− 2E
N0

)
by taking

the M th root for equal distortions per source, i.e. Dj = D ∀j, which is the
Goblick bound [4] achieved for a point to point channel. The derivations
are given in detail in Appendix 6.3.2.

4.3.2 Bound on some subset of Vj’s

In addition to the lower bound (4.12) on the product distortion in estimating
Vj ’s introduced in the previous subsection, in this final information theoretic
part, we introduce an alternative lower bound on the squared-error distortion
in estimating Vj ’s.The mutual information that is used to obtain the lower
bound on the reconstruction error is I(Vj ; Y|{Vl}S) where {Vl}S denotes
the set of Vj ’s (any subset to be chosen) which excludes j, i.e. {Vl ∈ S, S ⊂
{1, ...,M} − j}. First expansion of I(Vj ; Y|{Vl}S) based on the output
signal proceeds in the same way for both distribution types as follows

I(Vj ; Y|{Vl}S) ≤ N log
(

1 +
K
∑
j∈Sc Ej

NN0

)
. (4.13)
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Note that the expansion given above is independent of the source distribu-
tion. We obtain the following second expansion based on the source entropies
as

I(Vj ; Y|{Vl}S) ≥ −h({Vl}S)+h({Vl}S |Vj)+h(Vj)−h(Vj−V̂j). (4.14)

The derivations of (4.13) and (4.14) can be found in detail in the Appendix
6.3.3. The two bounds on the same mutual information I(Vj ; Y|{Vl}S)
given by (4.13) and (4.14) are equated to obtain the following lower-bound
on the sum distortion

∑
j∈Sc

Dj ≥ Csum

(
1 +

K
∑
j∈Sc Ej

NN0

)− 2N
K

. (4.15)

where Csum is a constant differs based on the source distribution and given
as

Csum =


(1−ρ2)

1+(|S|−1)ρ2 (2− ρ2 + |S|), for Gaussian
(1−ρ2)

1+(|S|−1)ρ2 ( 6
πe)
|S|+1, for Uniform.

for S ∈ [1,M − 1]. Asymptotically in N , we obtain

∑
j∈Sc

Dj ≥ Csum exp
(
−2(M − |S|)Ej

N0

)
. (4.16)

Note that in this case due to the definition of {Vl}S , the size of the set S
cannot exceed M − 1, which clearly means that unlike the lower bound on
the reconstruction error in estimating the mutual source U given by (4.7)-
(4.8), the lower bounds given above by (4.12) and (4.16) always have the
exponential behaviour for any values of M . For the special case of |S| = 0,∑
j∈Sc Dj yields

∑
j∈Sc

Dj ≥

exp
(
−2MEj

N0

)
, for Gaussian

6
πe exp

(
−2MEj

N0

)
, for Uniform

(4.17)

since we lose the prior knowledge of {Vl}S which effects the expansion on
the source entropies given above by (4.14). The detailed derivation is given
in Appendix 6.3.3.

4.4 Achievable Scheme for a network with Uni-
form sources

The two-way protocol introduced in [55] for a single source and its extension
to dual-source studied in detail in [56] is generalized to large networks where
the same approach is applied to a scheme with M sources for M ≥ 2. As
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depicted in Figure (4.1), there is one mutual source which is represented
by U , and M other auxiliary random variables which are combined in pairs
linearly through (4.1) each of which includes U through a correlational rela-
tionship and are distributed uniformly included within the range (−

√
3,
√

3).

Figure 4.2: Two-round protocol

The protocol consists of two phases which composes one round and pro-
ceeds as depicted in Figure (4.2). First phase is called the data phase, in
which the first transmission occurs and in return feedback of the messages
are received from the decoder by each encoder. The quantization process
is depicted in Figure (3.2). We assume that the source sample of the jth
source which is uniformly quantized is subsequently encoded into 2Bj mes-
sages with dimension N where Bj ’s are equal to the same value B. Each
tail of the distribution is considered as one quantization bin and the inte-
rior part, which consists of 2B − 2 bins, is uniformly quantized. Note that,
for a full correlation between the sources, i.e. ρ = 1, the ’contamination’
in the source distribution vanishes and the shape given by Figure (3.2) be-
comes a rectangular. We fix the total energy that is used by protocol and
for the sake of simplicity the energy used in one round is allocated equally
among Vj ’s for j = 1, 2, ...,M , e.g. for the data phase of the first round the
aggregate energy is denoted by ED,1 where ED,1 =

∑M
j=1 ED,1,j as ED,1,j rep-

resents the energy on each source. The chosen method is 2B-ary orthogonal
modulation with non-coherent reception. In the data phase, the jthsource
sends its message mj = Q(Vj) to the receiver with energy ED,1,j . The aggre-
gated source messages are denoted by m which is a vector of the messages
(m1,m2, ...,mM ) with dimension M . Note that, all messages from different
sources are mutually orthogonal. The receiver decodes m̂j and feeds it back.
The output signal based on the N dimensional observation of the jth source
is given as

Ydj =
√
ED,1,jejΦjSmj + Zdj . (4.18)
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We assume the random phases Φj to be distributed uniformly on [0, 2π),
the channel noise Zdj to have zero mean and equal autocorrelation N0IN×N
for j = 1, 2, ...,M and Smj are the N -dimensional messages, with m =
1, 2, · · · , 2B. At the receiver end, we consider the following exhaustive search
as depicted in Figure (4.3). To decode the first m1, there are 2B possibilities
whereas mj>1 is constrained to 2B( 2

√
1−ρ2

ρ+
√

1−ρ2
) since it cannot fall outside

of the interval V1 +
√

1− ρ2(U ′j − U ′1). The detection rule is given using

Figure 4.3: Pictorial representation of detection

[48, Chapter 12,eq:12-1-16] considering the following M possible decision
variables assuming (m1,m2, ...,mM ) is transmitted.

Um′ =
M∑
j=1
| < Yj ,Smj > |2

=
∑

j:mj=m′j

|
√
ED,1,j +Nj |2 +

∑
j:mj 6=m′j

|Nj |2. (4.19)

Here < ., . > denotes the inner product.
According to (4.19), the receiver chooses m̂ = argmaxm̂′ Um′ . After the

estimation and feedback of m̂j to each encoder, data phase of the first round
ends and the encoders enter the control phase to inform the receiver about
the correctness of its decision by sending an ACK/NACK signal regarding its
own message to the decoder. During the control phase the receiver observes
Yc with Ycj =

√
EC,1,jAjejΦjScj + Zcj for jth source where Aj takes the

value 0 for an ACK signal and 1 for a NACK and EC,1,j denotes the energy
of the control phase in the first round on one source. So the encoders inform
the receiver whether or not its decision was correct via a signal

√
EC,1,jScj of

energy
√
EC,1,j if the decision is incorrect and 0 if the decision was correct.

The detector, which is basically the receiver’s estimate of Aj , is given for
the jth source as

Âj = I
(
|yc,j |2 > λEC,1,j

)
(4.20)

with yc,j = YH
c,jSc,j where I(·) is the indicator function and λ is a threshold

to be optimized that is included within the interval [0, 1). Pr(Ee→c,1|k in error)
denotes the total probability of uncorrectable error given that k sources are
in error in the first round where the probability for a single source is bounded
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by the recent bound introduced in [60, eq. 12]

Pr(Ee→c,1,j) = Pr(|
√
EC,1,j + zc,j |2 ≤ λEC,1,j)

= 1−Q1

(√
EC,1,j
N0/2

,

√
λEC,1,j
N0/2

)
(a)
≤ 1/2 exp

(
−(
√
λ− 1)2EC,1,j

N0

)
. (4.21)

Using the bound given above, the probability yields for k sources

Pr(Ee→c,1|k in error) ≤
(1

2

)k
exp

(
−k(
√
λ− 1)2EC,1
MN0

)
(4.22)

where EC,1,j = EC,1/M ∀j. In the case of at least one NACK out of M
control signals is received, the protocol goes on one more round for retrans-
mission, otherwise it is terminated. And the second data phase starts after
the sources are instructed by the destination in order to do the retransmis-
sion. Note that the scheme could be generalized to more than two rounds.

The probability of error for binary orthogonal signaling P2(k) is defined
in [48, eq:12-1-24] through the following equality

P2(k) = 1
22k−1 e

−γCk (4.23)

with Ck defined as

Ck =
k−1∑
n=0

(
1
n!

k−1−n∑
l=0

(
2k − 1
l

))
γn (4.24)

where γ denotes the SNR. Using (4.23), the union bound on Pe(m), the
probability of error at the end of the first round, is given by

Pe(m) ≤
∑

m6=m′
Pr(Um < Um′ |m)

= 2B
⌈

2B+1
√

1− ρ2

ρ+
√

1− ρ2

⌉M−1

P2(M)

+
M−1∑
k=1

(
M

k

)⌈
2B+1

√
1− ρ2

ρ+
√

1− ρ2

⌉k
P2(k). (4.25)

The decision variables (4.19) are used to bound the conditional proba-
bility (4.25). Second round decision variables are represented by U(2)

m′ and
given by

U(2)
m′ = Um′ +

M∑
j=1
| < Y(2)

j ,Smj > |2. (4.26)
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This is analogous to soft or chase-combining in HARQ mechanisms. As in
the first round, the receiver chooses m̂ = argmaxm̂′ U(2)

m′ over all possible
sequences, thereby disregarding the messages which were hypothesized to be
correct after the control phase. Let us consider two different cases of error
events as all M sources to be in error and at least one out of M sources to
be correctly decoded. We denote the corresponding error probability and
distortion term by Pe,M and De,M for the first case. In the same way Pe,k and
the distortion De,k are used to represent the case where k corresponds to the
number of the sources in error with the values k = 1, ...,M − 1. Pe,k which
is the case of any of k sources being in error including the uncorrectable
error after the first round, or k being in error at the end of the second round
consists of P2(2k) and P2(k) from (4.23) is given by

Pe,k ≤∑
m′ 6=m

dH(m′,m)=k

(
Pr(Um < Um′ |m) Pr(Ee→c,1|k in error) + Pr(U(2)

m < U(2)
m′ |m)

)

=
(
M

k

)⌈
2B+1

√
1− ρ2

ρ+
√

1− ρ2

⌉k
Pr(Ee→c,1|k in error)P2(k)

+
(
M

k

)⌈
2B+1

√
1− ρ2

ρ+
√

1− ρ2

⌉k
P2(2k) (4.27)

where dH(x,y) denotes the Hamming distance between two vectors x and y.
Pe,M represents all of the M sources being in error after the first or second
round. In the same way, P2(M) and P2(2M) shape together Pe,M as given
in the following form.

Pe,M ≤∑
m′ 6=m

dH(m′,m)=M

(
Pr(Um < Um′ |m) Pr(Ee→c,1|M in error) + Pr(U(2)

m < U(2)
m′ |m)

)

= 2B
⌈

2B+1
√

1− ρ2

ρ+
√

1− ρ2

⌉M−1

Pr(Ee→c,1|M in error)P2(M)

+ 2B
⌈

2B+1
√

1− ρ2

ρ+
√

1− ρ2

⌉M−1

P2(2M). (4.28)

When the message vector m is decoded correctly, the reconstruction error
Dq is caused solely by the quantization process and the source observation
error. Let us denote the estimation error by eq =

∑M
1 eq,j , so that its second

moment E[(u − û)2|l in error] for l = 0 yields the quantization distortion
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with the following expansion using the chosen estimator û = 1
M

∑M
j=1 v̂j/ρ,

Dq = E

 1
ρM

M∑
j=1

(
√

1− ρ2u′j + eq,j)

2

. (4.29)

The squared distortion when k out of M sources are decoded in error is
calculated through

De,k = E
[
(u− û)2|k in error

]

= E

 1
M

 ∑
j s.t.
v̂j 6=vj

(u− v̂j/ρ) +
∑
j s.t.
v̂j=vj

(u− v̂j/ρ)




2

(4.30)

for k = 1, 2, ...,M−1 by using the chosen estimator and bounded considering
the furthest distance between u and its estimate for the cases when v̂j is
correctly and incorrectly decoded. Lastly, De,M = E

[
(u− û|2)M in error

]
is given as

De,M = E

 1
ρM

M∑
j=1

(ρu− v̂j)

2

. (4.31)

See Appendix 6.3.4 for the detailed derivations and resulting bounds. Note
that, Dq and De,k (1 < k < M) are in the exponential order of 2−2B while
De,M is upper bounded by an order of 1. Using the chosen estimator û and
the definitions given above from (4.27) to (4.31), the protocol terminates
with the following distortion at the end of the second round.

D(E , N0, 2, λ) ≤ Dq +
M−1∑
k=1

De,kPe,k +De,MPe,M . (4.32)

The derivation of the bound (4.32) can be found in detail in Appendix 6.3.4.
Substituting Pe,k (4.27) and Pe,M (4.28) along with their corresponding dis-
tortions De,k (4.30), De,M (4.31) in addition to the quantization distortion
Dq (4.29) into (4.32), we obtain the following form of the upper bound in
the distortion at the end of the second round as

D ≤ Dq +De,M

(
K1

√
1− ρ2

ρ+
√

1− ρ2 e
(B+1) ln 2 +K2ε(ρ)

)M−1

e
(B−2M+2) ln 2−

ED,1+2EC,1(
√
λ−1)2

2N0

+De,M

(
K3

√
1− ρ2

ρ+
√

1− ρ2 e
(B+1) ln 2 +K4ε(ρ)

)M−1

e
(B−4M+2) ln 2−

ED,1+ED,2
2N0
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+
M−1∑
k=1

De,k

(
M

k

)(
K5(k)

√
1− ρ2

ρ+
√

1− ρ2 e
(B+1) ln 2 +K6(k)ε(ρ)

)k

e
−
k(ED,1+2EC,1(

√
λ−1)2)

2MN0

+
M−1∑
k=1

De,k

(
M

k

)(
K7(k)

√
1− ρ2

ρ+
√

1− ρ2 e
(B+1) ln 2 +K8(k)ε(ρ)

)k
e
−
k(ED,1+ED,2)

2MN0

(4.33)

where K1,K2 are O((ED,1)M−1), K3,K4 are O((ED,1 + ED,2)M−1) whereas
K5(k) andK6(k) areO((ED,1)k−1), K7(k) andK8(k) correspond toO((ED,1+
ED,2)k−1) with ε(ρ) ∈ [0, 1).

In order to have a vanishing Pe(m) in the first round, we set the relations
of the energies as EC,1 = ED,2

2(1−
√
λ)2 and ED,2 = (2 − µ)ED,1 where µ is an

arbitrary constant satisfying µ ∈ (0, 2), so that the average energy used by
the protocol can be made arbitrarily close to ED,1 guaranteed by vanishing
union error probability Pe(m) given that k < M . Further detail regarding
the average energy consumed by the two rounds of the protocol can be found
in Appendix 6.3.4.

For the case of high correlation, i.e. when 2B+1√1− ρ2 < θ where
θ ∼ O(1), we obtain the asymptotic bound with respect to B on distortion
as

Dhigh ≤ α(ρ,M) exp
{
−ED,1(1− µ/3)

N0

}

+
M−1∑
k=1

β(k, ρ,M) exp
{
−(2M + 3k − µ(2M + k))ED,1

2MN0

}
. (4.34)

Because of the quantizer construction, 1 − ρ2 is considered as in the same
order of 2−2B and consequently should be chosen to behave as exp

{
−ED,1

N0

}
.

As a result we obtain the same collaboration effect as in (4.8) albeit with
a factor 2 gap in energy efficiency. The latter may be due to simplifying
steps in the outer-bound. Furthermore, we notice that condition for exploit-
ing collaboration between the sources is based on relationship between the
observation error variance (1 − ρ2) and the aggregate energy as opposed to
the individual source energies. The significant term is isolated in the bound
given above in order to be emphasized, where

α(ρ,M) =
(

29/2 + 2
√

3
ρ2M

+ ρ2M + 12ρ2 + 12ρ
√

1− ρ2 + 3(1− ρ2)
ρ2M

)
(
(K ′1 +K2ε(ρ))M−12−2M+2 + (K ′3 +K4ε(ρ))M−12−4M+2

)
(4.35)
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which arose from the distortion terms corresponds to K2, K4 in (4.33) and
β also denotes a function of k, ρ and M which is given by

β(k, ρ,M) =
9M + 16k
(M2ρ2)/3

(
M

k

)[
(K ′5(k) +K6(k)ε(ρ))k + (K ′7(k) +K8(k)ε(ρ))k)

]
(4.36)

arose from the distortion terms corresponds toK5, K6, K7 andK8 which rep-
resents the lower order terms. Note that K ′n(k) = θKn(k) for n = 1, 3, 5, 7.

4.5 Practical Adaptation and Numerical Evalua-
tion

4.5.1 Lower Bounds

This part presents the comparison of the lower bounds on the reconstruction
error in estimating Vj ’s as a product (Section 4.3.1) and as a sum (Section
4.3.2) for both uniformly and normally distributed sources.

Figure 4.4: Numerical evaluation of the lower bounds (4.12) and (4.16) for
M = 2 and B = 5.
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Figure 4.5: Numerical evaluation of the lower bounds (4.12) and (4.16) for
M = 4 and B = 5.
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Figure 4.6: Numerical evaluation of the lower bounds (4.12) and (4.16) for
M = 8 and B = 5.
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Figures (4.4), (4.5) and (4.6) represent the numerical evaluation of the
lower bounds given by (4.12), (4.16) and (4.17) for three different cases of
M = 2, 4, 8, respectively with Dj = D, ∀j. Note that the curves labeled as
the product bound are drawn for the M th root of (4.12) for equal distortions
per source where as the curves labeled as the sum bound are drawn based
on the maximization of (4.16) and (4.17) over |S| = 0, ...,M − 1. For all
three cases, it can be clearly seen that the product bound dominates the
sum bound for both types of source distributions in the high energy regime.

4.5.2 Achievable Scheme

In this subsection we consider the performance of the protocol described in
the previous section with a minor adaptation allowing finer control of the
probability of going to the second round. We introduce the condition that
the receiver decides to continue with the second round only if it detects
L or more errors after the control phase, including the extreme case of
L = M which corresponds to detecting errors from all sources. Based on
this adaptation, the bound on the distortion to be achieved at the end of
the second round given above by (4.32 is modified as follows

D′(E , N0, 2, λ) ≤ Dq+
L−1∑
k=1

De,kP
(1)
e,k +

M−1∑
k=L

De,kP
(1)
e,k Pr(Ee→c,1|k in error)

+
M−1∑
k=1

De,kP
(2)
e,k +De,MPe,M (4.37)

where P (1)
e,k =

(
M

k

)⌈
2B+1

√
1−ρ2

ρ+
√

1−ρ2

⌉k
P2(k) and P

(2)
e,k uses P2(2k) with the

same factor in front which represent the first and second rounds of Pe,k,
respectively. The curves labeled as without feedback represent the case
where the protocol halts after the first round of transmission, i.e. after the
data phase of the first round. Since there will not be a second round for
retransmission, there is no use of the control phase in the first round either.
The following upper bound on the distortion at the end of the first round is
numerically evaluated and given in Figures from (4.7) to (4.9).

D′(E , N0, 1, λ) ≤ Dq +
M−1∑
k=1

De,kP
(1)
e,k +De,MP

(1)
e,M . (4.38)

where
(
M

k

)
2B
⌈
2B+1

√
1−ρ2

ρ+
√

1−ρ2

⌉k
P2(M).

The motivation for this adaptation is to bring the distortion down to Dq

as quickly as possible, since as long as a few sources are decoded correctly, D
will be proportional to 2−2B. It is only when a significant number of sources
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are in error that we make use of the extra energy in the second round to
bring the distortion close to Dq. In Figures (4.7)-(4.8) and (4.9) we show the
behaviour of the protocol for M = 2, 4, 8 and B = 7 bits compared to the
lower bound on D in (4.7) for uniform statistics on one-dimensional U and
U′j . The relationship between the correlation coefficient and the number of
the quantization bins enabled us to present the curves labeled as the outer
bound in Figures (4.7)-(4.8) and (4.9) . The quantization distortion 2−2B

is considered in the order of (1− ρ2) which is the distortion induced by the
observation noise in (4.7). Clearly, increasing B (or equivalently increasing
ρ) directly effects the significance of the lower bound. We first see that, as
in the single-source [61] and dual correlated source problems [56, 57] we do
not quite approach the asymptotic gain of 4.7 dB over the case when only 1
round is used (i.e. one-shot transmission without feedback having exponent
e
− E

3N0 as opposed to e−
E
N0 ). We can, however, obtain somewhere between 2-3

dB for moderate energies. Secondly, we see that increasing M has the effect
of allowing for lower distortions around the asymptote, Dq, since the latter
decreases linearly with M . However, the energy-efficiency of the protocol
does not decrease linearly with M due to the non-coherent combining loss,
which can even be seen when going from M = 4 to M = 8. We note that
the lower-bounds do improve linearly with M due to the bounding step (a)
in (6.36). It would be worthwhile to derive a lower-bound which does not
remove the unknown parameter to determine if this effect is unavoidable.
Moreover, if we were to consider spatial-expansion (i.e. increasing M) with
fixed total energy, we would have a loss in energy efficiency which increases
with M .
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Figure 4.7: Numerical evaluation of the upper bound (4.37) for M = 2 and
B from 5 to 7.
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Figure 4.8: Numerical evaluation of the upper bound (4.37) for M = 4 and
B from 5 to 7.
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Figure 4.9: Numerical evaluation of the upper bound (4.37) for M = 8 and
B from 5 to 7.
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Chapter 5

Conclusions

Firstly, we introduced a low-latency, two-way protocol for the transmission of
a single random variable over a wide-band channel and analyzed its asymp-
totic behavior with non-coherent detection on both pure line-of-sight and
more general fading channels. The protocol and transmission strategy could
be used for future energy-limited sensors making use of broadband cellular
networks. We showed that the gap between the classical Goblick bound [4]
and the bound obtained by our proposed feedback scheme cannot be closed
(i.e. an improvement in terms of the asymptotic performance cannot be
achieved) by repeating the protocol more than two rounds to less than 3
dB. The improvement over a one-shot transmission is on the order of 3-4
dB and asymptotically 4.7 dB. We have also included a discussion regarding
the case of imperfect feedback and its effect on the trade-off between the
required energy for the protocol and the reconstruction error in estimating
the source message. We showed that in this case, if the energy consumption
required by the feedback link is accounted , this reduces the reconstruc-
tion fidelity. Additionally, numerical evaluation of Merhav’s recent lower-
bounds [13] for one-shot transmission are included and the tightest variant
using his techniques is determined. Both the bounds and performance evalu-
ation of the feedback protocol have been extended to a multi-channel fading
model. The improvement of the feedback protocol over one-shot transmis-
sion is even more significant than in the line-of-sight case. We further suggest
that tighter bounding techniques which rely on unknown channels should be
found for the fading channel. Furthermore, schemes using variable-energy
transmission should be considered to close the gap with the lower-bounds.

We proceeded with the derivation of lower bounds on the reconstruction
error for the transmission of two correlated analog sources in the presence

73
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of causal feedback. The bounds are specialized to the case of wide-band
channels. All our derivations are applied to sum-channel with both uni-
formly and normally distributed sources. We then introduced a low-latency
two-way protocol for the transmission of two correlated random variables
over a wide-band channel and analyze its asymptotic behaviour with non-
coherent detection for uniform and Gaussian distribution. We show that
the transmission of two highly correlated sources can achieve the energy-
efficiency of a single source with the same total energy, at least in certain
regimes governing the level of correlation. The high correlation case yields
the exponential behaviour of the single-source case and benefits from en-
ergy accumulation, or the collaboration of the two sources. Low-correlation
results insignificantly reduced energy-efficiency.

The final part of the thesis covered an adaptation of two-way low-latency
feedback protocol for minimal distortion studied in Sections 2 and 3 to a
large network scenario with multiple sources. Specifically, we have provided
lower-bounds on the reconstruction error of arbitrary multi-sensor trans-
mission strategies which can serve in a subsequent step to determine the
optimality of particular multiple-access and encoding strategies. To this
end, we have proposed one such collaborative strategy exploiting correla-
tion between sensors. Asymptotic upper-bounds on the reconstruction error
have been provided for the proposed protocol. Both the upper and lower-
bounds show that collaboration can be achieved through energy accumula-
tion and bring to light a trade-off in source and channel SNR allowing it
to occur. The practical performance of the proposed retransmission pro-
tocol was investigated through numerical evaluation of the upper-bounds
in the non-asymptotic energy regime, which corresponds to using low-order
quantization in the sensors. The performance of the protocol was improved
through the introduction of a minor modification in the feedback strategy
which allows the error-free performance to be achieved quickly. Compar-
isons with a one-shot transmission not exploiting feedback show that gains
with one round of feedback are on the order to 2-3 dB in comparison to a
feedback-less system and are often to within 5 dB from the lower-bound.
It is further shown that an increase in the size of the network brings bene-
fit in terms of performance, but that the gain in terms of energy efficiency
diminishes quickly at finite energies due to a non-coherent combining loss.
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Appendix

6.1 Appendix for Point-to-point Channel

6.1.1 Wireless Adaptation of the Goblick Bound

In order to come up with a lower bound the distortion level of the wireless
channel with feedback, we begin with the model Yr,i =

√
hrXr,i + Zr,i,

i = 1, · · · , N/R, r = 1, · · · , R. We start with two different expansions of
the mutual information I(U; Y| {Hr = hr, r = 1, · · · , R}) which are equated
and given as follows.

I(U; Y| {Hr = hr}) = h(U|{Hr = hr})− h(U− Û ({Hr = hr}) |Y, {Hr = hr})
(a)= h(U)− h(U− Û ({Hr = hr}) |Y, {Hr = hr}, Û ({Hr = hr}))
≥ h(U)− h(U− Û ({Hr = hr}))

= 1
2 log 2πe− 1

2 log(2πeD(h))

= 1
2 log(1/D(h)) (6.1)
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where D(h) represents D ({Hr = hr}).

I(U; Y| {Hr = hr}) = h(Y| {Hr = hr})− h(Y|U, {Hr = hr})

=
R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N

1 , · · · , Y N
r−1, {Hr = hr})

−
R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N

1 , · · · , Y N
r−1,U, {Hr = hr})

=
R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N

1 , · · · , Y N
r−1, {Hr = hr})

−
R∑
r=1

N/R∑
i=1

h(Yr,i|Y i−1
r , Y N

1 , · · · , Y N
r−1,U,X, {Hr = hr})

=
R∑
r=1

N/R∑
i=1

h(Xr,i

√
hr + Zr,i|Y i−1

r , Y N
1 , · · · , Y N

r−1, {Hr = hr})

−
R∑
r=1

N/R∑
i=1

h(Zr,i)

≤
R∑
r=1

N/R∑
i=1

log 2πe
(
N0 + Er,i|hr|2

)
−

R∑
r=1

N/R∑
i=1

log 2πeN0

(b)=
R∑
r=1

N

R
log

(
1 + R

N

Er|hr|2

N0

)

≤
R∑
r=1

Er|hr|2

N0
. (6.2)

In step (a) given the independence between U and {Hr = hr}, the condi-
tional entropy equals the entropy of the source. And in step (b) we used the
following property log(1 + x) ≤ x. Equating the two expansions (6.1) and
(6.2) yields

D(h) ≥ e−2
∑R

r=1 Er|hr|
2/N0 (6.3)

which can be re-written as D(h) ≥ e
−2 E

RN0

∑R

r=1 |hr|
2

with Er = E/R ∀r.
Let us define the right-hand side of the inequality as the moment generating
function of |h|2 with t = −2E/N0.

M|h|2(t) =
R∏
r=1

(1 + 4αE/RN0)−L exp
{
−2(1− α)LE/RN0

1 + 4αE/RN0

}
(6.4)

The final form of the lower bound (6.3) is given in Section 2.2.1 by (2.38).
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6.2 Appendix for Dual-Source Case Derivations

6.2.1 Appendix I

Hereafter, we give the derivation of I(U; Û) in two different expansions in
order to bound the reconstruction error, first of which is based on the sources
and given as

I(U; Û) = h(U)− h(U|Û)
≥ h(U)− h(U− Û) (6.5)

where h(U) = K log 2
√

3 for a uniform source and h(U) = K
2 log 2πe for a

standard normal U . Second part of (6.5) is mutual for both distirbutions
since we bound it by the Gaussian entropy as follows

h(U− Û) =
K∑
i=1

h(Ui − Ûi)

≤
K∑
i=1

1
2 log(E[(Ui − Ûi)2])

≤ K

2 log(2πeD). (6.6)

Consequently, substituting corresponding source entropies into (6.5) we get

I(U; Û) ≥


K
2 log(1/D) for Gaussian
K
2 log

(
6
πe

1
D

)
for Uniform

(6.7)

Secondly, the same mutual information is expanded based on the output
signals as follows

I(U; Û) ≤ I(X1,X2; Y|Φ)
= h(Y|Φ)− h(Y|X1,X2,Φ)

≤
N∑
i=1

h(Yi|Φ)− h(Z)

≤ N
(

N∑
i=1

log(E[Y 2
i ])− log(NN0)

)

= N log
(

1 + KE
NN0

)
(6.8)

which is applicable to both distributions. Equating the two different expres-
sions of I(U; Û) yields the lower bound (3.6).
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6.2.2 Appendix II-Lower Bound I

The mutual information I(Um; Y) is derived through two different expan-
sions where the first expansion is

I(Um; Y) ≤ I(Um; Y,Φm,Φm′)
= h(Y|Φm,Φm′)− h(Y|Um,Φm,Φm′)

=
N∑
i=1

h(Yi|Y i−1,Φm,Φm′)−
N∑
i=1

h(Yi|Y i−1,Um,Φm,Φm′)

(a)
≤

N∑
i=1

h(Yi|Y i−1,Φm,Φm′)

−
N∑
i=1

h(Yi|Y i−1,Um,Xme
jφm ,Xm′e

iφm′ ,Φm,Φm′)

=
N∑
i=1

h(Yi|Y i−1,Φm,Φm′)−
N∑
i=1

h(Zi)

≤
N∑
i=1

log
(

1 + Em,i + Em′,i
NN0

)

≤ N log
(

1 +
∑N
i=1(Em,i + Em′,i)

NN0

)

≤ N log
(

1 + K(Em,i + Em′,i)
NN0

)
. (6.9)

where in step (a), Xme
jφm is introduced due conditioning on (Y i−1,Um,Φm)

in the case of a feedback link between the decoder and the encoder and
simply (Um,Φm) when no feedback is present. Xm′e

iφm′ can added since
conditioning reduces differential entropy. For the second expansion of the
same mutual information we have

I(Um; Y) = h(Um)− h(Um − Ûm|Y)
≥ h(Um)− h(Um − Ûm). (6.10)

The required entropies for m = 1, 2 in the Uniform case, we have

h(U1) = K log 2
√

3, (6.11)

h(U2) = h(ρU1 +
√

1− ρ2U′2)

≥ K

2 log
(

2
2
K

(K log |ρ|+h(U1) + 2
2
K
h(
√

1−ρ2U′2
)

= K

2 log
(

2
2
K
K log |ρ|2

√
3 + 2

2
K
K log 2

√
3|1−ρ2|

)
= K log 2

√
3. (6.12)
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The source entropy of a Gaussian source is independent of the source num-
ber.

h(Um) = K

2 log 2πe. (6.13)

The final term required to derive the second expansion of (6.10), which is
common for both distributions, is given by

h(Um − Ûm) ≤
K∑
j=1

h(Um,j − Ûm,j)

≤ K

2 log

2πe 1
K

K∑
j=1

E[(Um,j − Ûm,j)2]


≤ K log

(√
2πeDm

)
. (6.14)

Substituting (6.11) and (6.14) for m = 1 into (6.10), yields the second
expansion of the desired mutual information for the first source. In the
same way, (6.11) and (6.14) with m = 2 is substituted into (6.10) for the
second source U2. Finally, combining (6.13) and (6.14) and applying it to
(6.10) results in

I(Um; Y) ≥


K
2 log(1/Dm) for Gaussian
K
2 log

(
6
πe

1
Dm

)
for Uniform

(6.15)

.
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6.2.3 Appendix III- Lower Bound II

First expansion on the output signals is independent of the source distribu-
tion.

I(Um; Y|Um′) ≤ I(Um; Y|Um′ ,Φm,Φm′)
= h(Y|Um′ ,Φm,Φm′)− h(Y|Um,Um′ ,Φm,Φm′)

=
N∑
i=1

h(Yi|Y i−1,Um′ ,Φm,Φm′)−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Φm,Φm′)

(b)=
N∑
i=1

h(Yi|Y i−1,Um′ ,Xm′e
iφm′ ,Φm,Φm′)

−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Xme
jφm ,Xm′e

iφm′ ,Φm,Φm′)

(c)=
N∑
i=1

h(Xm,ie
jφm,i + Zi|Y i−1,Um′ ,Φm,Φm′)−

N∑
i=1

h(Zi)

≤
N∑
i=1

h(Xm,ie
jφm,i + Zi)−

N∑
i=1

h(Zi)

≤ N log
(

N∑
i=1

log(V ar(Xm,ie
jφm,i + Zi))− log(V ar(Z))

)

= N log
(

1 + KEm
NN0

)
. (6.16)

In the first part of step (b), Xm′e
iφm′ comes from conditioning on (Y i−1,Um′ ,Φm′)

in the case of feedback and from conditioning on (Um′ ,Φm′) when no feed-
back is present. Similarly the second half of step (b) stems from conditioning
on (Y i−1,Um,Um′ ,Φm,Φm′). And in (c), Xm′e

iφm′ is subtracted from the
output signal, which provides Xme

jφm together with the noise term in the
next step. For the second expansion based on the sources, we have for the
Uniform case

I(Um; Y|Um′) = h(Um|Um′)− h(Um|Um′ ,Y)
= h(Um|Um′)− h(Um − Ûm|Um′ ,Y)
≥ h(Um|Um′)− h(Um − Ûm). (6.17)
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The conditional entropy h(Um|Um′) is obtained for m = 1, 2

h(U1|U2) = −I(U1; U2) + h(U1)
= −h(U2) + h(U2|U1) + h(U1)
(d)
≥ −K2 log 2πe+K log 2

√
3|1− ρ2|+K log 2

√
3

= K log
(

12
√
|1− ρ2|√
2πe

)
(6.18)

h(U2|U1) = h(ρU1 +
√

1− ρ2U2′ |U1)

= h(
√

1− ρ2U2′)

= K log 2
√

3|1− ρ2| (6.19)

,respectively. In step (d) of (6.18), the entropy of U2 is bounded by the
entropy of a standard gaussian random vector. The conditional entropy of
one source given the other is obtained as

h(U1|U2) = −I(U1; U2) + h(U1)
(e)= −h(U2) + h(U2|U1) + h(U1)
= h(U2|U1)

= K

2 log(1− ρ2)2πe (6.20)

where in the step (e), we used the equality of the entropies between two
standard normal random vectors. Consequently, the second expansion of
I(Um; Y|Um′) on the source entropies can be summarized as

I(Um; Y|Um′) ≥


K
2 log

(
(1−ρ2)
Dm

)
for Gaussian and m = 1, 2

K
2 log

(
36(1−ρ2)
π2e2

1
D1

)
for Uniform and m = 1

K
2 log

(
6(1−ρ2)
πe

1
D2

)
for Uniform and m = 2

(6.21)
.
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6.2.4 Appendix IV- Lower Bound III

The mutual information I(Um,Um′ ; Y) is obtained as

I(Um,Um′ ; Y) ≤ I(Um,Um′ ; Y|Φ)
= h(Y|Φ)− h(Y|Um,Um′ ,Φ)

= h(Y|Φ)−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Φ)

(e)
≤

N∑
i=1

h(Yi|Φ)−
N∑
i=1

h(Yi|Y i−1,Um,Xm,Um′ ,Xm′ ,Φ)

=
N∑
i=1

h(Yi|Φ)−
N∑
i=1

h(Zi). (6.22)

Note that, in (e) the additional terms in the second differential entropy
stem from conditioning on (Y i−1,Um,Um′ ,Φm,Φm′) in the case of feedback
and (Um,Um′ ,Φm,Φm′) when no feedback is present. The variance of the
received signal Yi becomes

∑N
i=1 V ar(Yi) = K(Em + Em′) + NN0 and the

desired mutual information is obtained as

I(Um,Um′ ; Y|Φ) ≤ N log(1 + K(Em + Em′)
NN0

). (6.23)

We also have for the uniform contaminated uniform construction the follow-
ing expansion

I(Um,Um′ ; Y) ≥ I(Um,Um′ ; Ûm, Ûm′)
≥ h(Um,Um′)− h(Um − Ûm)− h(Um′ − Ûm′)

≥ K

2 log 144(1− ρ2)− K

2 log(2πe)2Dp

= K

2 log
(

36(1− ρ2)
π2e2Dp

)
(6.24)

where Dp = D1D2. On the other hand, for the Gaussian case, we get

I(Um,Um′ ; Y) ≥ I(Um,Um′ ; Ûm, Ûm′)
≥ h(Um,Um′)− h(Um − Ûm)− h(Um′ − Ûm′)

≥ K

2 log(2πe)2(1− ρ2)− K

2 log(2πe)2DmDm′

= K

2 log
(

(1− ρ2)
Dp

)
. (6.25)
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6.2.5 Appendix V- Probability of Error for the Achievable
Scheme Dual-Source Case

The probability of the error is bounded by

Pe = Pr(E1,1, E
c
1,2) Pr(Ee→c,1,1) + Pr(Ec1,1, E1,2) Pr(Ee→c,1,2)

+ Pr(E1,1, E1,2) Pr(Ee→c,1,1) Pr(Ee→c,1,2)
+ {Pr(E1,1, E1,2)(1− Pr(Ee→c,1,1) Pr(Ee→c,1,2))
+ Pr(E1,1, E

c
1,2)(1− Pr(Ee→c,1,1))

+ Pr(Ec1,1, E1,2)(1− Pr(Ee→c,1,2))}Pr(E2|E1)
+ (1− Pr(E1,1, E1,2)) Pr(Ec→e,1,1) Pr(Ec→e,1,2) Pr(E2|Ec1)
(a)= Pr(Ee→c,1,j){Pr(E1,1, E

c
1,2) + Pr(Ec1,1, E1,2)}

+ Pr(Ee→c,1,j)2 Pr(E1,1, E1,2)
+ Pr(E2|E1){Pr(E1,1, E1,2)(1− Pr(Ee→c,1,j)2) + (Pr(E1,1, E

c
1,2)

+ Pr(Ec1,1, E1,2))(1− Pr(Ee→c,1,j))}
+ Pr(E2|Ec1)[Pr(Ec1,1, Ec1,2) Pr(Ec→e,1,j)2]
(b)
≤ Pr(Ee→c,1,j){Pr(E1,1, E

c
1,2) + Pr(Ec1,1, E1,2)}

+ Pr(Ee→c,1,j)2 Pr(E1,1, E1,2)
+ Pr(E2|E1){Pr(E1,1, E1,2) + Pr(E1,1, E

c
1,2) + Pr(Ec1,1, E1,2)}

+ Pr(E2|Ec1) Pr(Ec1,1, Ec1,2)
(c)= Pr(Ee→c,1,j)Pe,1,1 + Pr(Ee→c,1,j)2Pe,2,1 + Pr(E2) (6.26)

In step (a) the probability of an uncorrectable Pr(Ee→c,1,j) and mis-detected
acknowledged error Pr(Ee→c,1,j) are assumed to be equal for both sources
whereas in (b) the probability of being decoded correctly, i.e. (1−Pr(Ee→c,1,j)),
and the mis-detection is upper bounded by 1. In the final step (c), the prob-
ability of only one source and both of the sources to be in error in the first
round is denoted by Pe,1,1 and Pe,2,1, respectively.

6.2.6 Appendix VI- Average Energy

The protocol uses the average energy given by

E = ED,1,1 + ED,1,2 + EC,1,1 Pr(E1,1, E
c
1,2) + EC,1,2 Pr(Ec1,1, E1,2)

+ (EC,1,1 + EC,1,2) Pr(E1,1, E1,2)

+ ED,2
{

Pr(E1,1, E
c
1,2) + Pr(Ec1,1, E1,2) + Pr(E1,1, E1,2)

}
≤ ED,1 +

(EC,1
2 + ED,2

)
{Pr(E1,1, E

c
1,2) + Pr(Ec1,1, E1,2)}

+ (EC,1 + ED,2) Pr(E1,1, E1,2) (6.27)
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6.2.7 Appendix VII- Distortion Terms for the Dual-Source
Case

The distortion caused by quantization process Dq, by channel itself when
both sources are in error De,2 are given by

Dq =
2B∑
m=1

2B∑
n=1

∫
I1,m

∫
I2,n

[
(u1 − û1(m))2 + (u2 − û2(n))2

]
f(u1, u2)du2du1

=
2B∑
m=1

∫
I1,m

(u1 − û1(m))2
2B∑
n=1

∫
I2,n

f(u1, u2)du2du1

+
2B∑
n=1

∫
I2,n

(u2 − û2(n))2
2B∑
m=1

∫
I1,m

f(u1, u2)du1du2

=
2B∑
m=1

∫
I1,m

(u1 − û1(m))2f(u1)du1 +
2B∑
n=1

∫
I2,n

(u2 − û2(n))2f(u2)du2

=
∫ ∞

∆
(u1 −∆)2f(u1)du1 +

∫ ∞
∆

(u2 −∆)2f(u2)du2

+
∫ −∆

−∞
(u1 + ∆)2f(u1)du1 +

∫ −∆

−∞
(u2 + ∆)2f(u2)du2

+
2B−1∑
m=2

∫
I1,m

(u1 − û1(m))2f(u1)du1 +
2B−1∑
n=2

∫
I2,n

(u2 − û2(n))2f(u2)du2

≤ 4
(
e−∆2/2

(
∆√
2π

+ 1 + ∆2

2

))
+ 2∆2

(2B − 2)2

(a)
≤ K1e

−2B ln 2, (6.28)

De,2 < 2
(

4∆2 Pr(|uj | < ∆) +
∫ ∞

∆
(uj + ∆)2f(uj)duj

+
∫ −∆

−∞
(uj −∆)2f(uj)duj

)

≤ 4
(

2∆2(1− e−∆2/2) + e−∆2/2(∆
√

2/π + 1) + ∆2e−∆2/2

+2∆
( 1√

2π
+ 1−∆

2 e−∆2/2
))

= (32B ln 2 + 4
√

2B ln 2/π) + 4e−2B ln 2(1− 4B ln 2 + 2
√

2B ln 2/π)
(6.29)

respectively. Note that in step(a) of (6.28) the value of ∆ is substituted
and to emphasize the exponential term the rest of the factors are given
by the coefficient K1 which represents O(B). In the same way, for the
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distortion caused by channel when both sources are in error regardless of
being compatible or incompatible, above bound on De,2 is obtained. The
reconstruction error expressions when only one source is in error are derived
for compatible and incompatible pairs, respectively.

De,c,1 <
2Bj∑
n=1

∫
Ij,n

(uj − ûj(n))2f(uj)duj + |2θ2
√

1− ρ2|2

=
∫ ∞

∆
(uj −∆)2f(uj)duj +

∫ −∆

−∞
(uj + ∆)2f(uj)duj

+
2B−1∑
n=2

∫
Ij,n

(uj − ûj(n))2f(uj)duj + 4θ2(1− ρ2)

≤ 2e−∆2/2
(

∆√
2π

+ 1 + ∆2

2

)
+ ∆2

(2B − 2)2 + 4θ2(1− ρ2)

(b)
≤ K1e

−2B ln 2/2 + 4θ2(1− ρ2), (6.30)

De,ic,1 <
2B∑
n=1

∫
Ij,n

(uj − ûj(n))2f(uj)duj

+
∫ ∞
u′2=θ

(
θ
√

1− ρ2 +
√

1− ρ2u′2

)2
f(u′2||U ′2| > θ

√
1− ρ2)du′2

=
∫ ∞

∆
(uj −∆)2f(uj)duj +

∫ −∆

−∞
(uj + ∆)2f(uj)duj

+
2B−1∑
n=2

∫
Ij,n

(uj − ûj(n))2f(uj)duj + 3θ2(1− ρ2) + (1− ρ2)

≤ 2e−∆2/2
(

∆√
2π

+ 1 + ∆2

2

)
+ ∆2

(2B − 2)2 + 3θ2(1− ρ2) + (1− ρ2)

(c)
≤ K1e

−2B ln 2/2 + 3θ2(1− ρ2) + (1− ρ2). (6.31)

Given the symmetry of the normal distribution De,c,1 and De,ic,1 are derived
and given in a general form for both sources where j = 1, 2. To simplify
the calculations, the quantization levels and the number of quantization
bins are assumed also to be equal to each other. Thus, the quantization
distortion (6.28) can be bounded by Dq ≤ K1e

−2B ln 2. Accordingly, both
De,c,1 and De,ic,1 compose the quantization distortion on one source since
they represent one correctly and one incorrectly decoded, this is why in steps
(b) and (c) the upper bound on Dq derived in (6.28) is used for the source
which is decoded correctly.
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6.3 Appendix for Multiple-Source Case Derivations

6.3.1 Appendix VIII- Estimation of U

The first expansion of I(U; Y|{Vj}S) based on the sources, we have two
different derivations for the two distribution types.

I(U; Y|{Vj}S) = h(U|{Vj}S)− h(U|Y, {Vj}S)
= −I(U; {Vj}S) + h(U)− h(U− Û|Y, {Vj}S)
≥ −h({Vj}S) + h({Vj}S |U) + h(U)− h(U− Û). (6.32)

For the case where U and whole set of Uj ’s are uniformly distributed, the
above expansion (6.32) becomes

I(U; Y|{Vj}S) ≥ −K2 log
(

(2πe)|S|(1− ρ2)|S|(1 + |S|ρ2

1− ρ2 )
)

+ |S|K log(2
√

3(1− ρ2)) +K log 2
√

3− K

2 log(2πeD)

= K

2 log

( 6
πe

)|S|+1 1
(1 + |S|ρ2

1−ρ2 )D

 (6.33)

whereas the same expansion yields for the Gaussian case

I(U; Y|{Vj}S) ≥ −K2 log
(

(2πe)|S|(1− ρ2)|S|(1 + |S|ρ2

1− ρ2 )
)

+ |S|K2 log(1− ρ2)2πe+ K

2 log(2πe)− K

2 log(2πeD)

= K

2 log

 1
(1 + |S|ρ2

1−ρ2 )D

 (6.34)

where |S| denotes the size of the set Vj and using the following bound on
entropy h(U− Û)

h(U− Û) ≤
K∑
j=1

h(Uj − Ûj)

≤ K

2 log

2πe
K

K∑
j=1

E[(Uj − Ûj)2]


≤ K log

(√
2πeD

)
. (6.35)
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The second expansion of (6.32) based on the output signals is given by

I(U; Y|{Vj}S)
(a)
≤ I(U; Y|{Vj}S ,Φ)
= h(Y|{Vj}S ,Φ)− h(Y|U, {Vj}S ,Φ)

=
N∑
i=1

h(Yi|Y i−1, {Vj}S ,Φ)−
N∑
i=1

h(Yi|Y i−1, {Vj}S ,U,Φ)

(b)
≤

N∑
i=1

h(Yi|Y i−1, {Vj}S , {Xi
je
iφj}S ,Φ)

−
N∑
i=1

h(Yi|Y i−1, {Vj}S ,U, {Xi
je
iφj}S , {Xi

je
iφj}Sc ,Φ)

=
N∑
i=1

h(Yi −
∑
j∈S

Xi,je
iφi,j |Y i−1, {Vj}S , {Xi

je
iφj}S ,Φ)

−
N∑
i=1

h(Yi −
∑
j∈S

Xi,je
iφi,j −

∑
j∈Sc

Xi,je
iφi,j |

Y i−1, {Vj}S ,U, {Xi
je
iφj}S , {Xi

je
iφj}Sc ,Φ)

=
N∑
i=1

h(
∑
j∈Sc

Xi,je
iφi,j + Zi|Y i−1, {Vj}S , {Xi

je
iφj}S ,Φ)

−
N∑
i=1

h(Zi)

≤
N∑
i=1

log
(

1 +
∑
j∈Sc Ei,j
N0

)

≤ N log
(

1 +
∑N
i=1

∑
j∈Sc Ej

NN0

)

≤ N log
(

1 +
K
∑
j∈Sc Ej

NN0

)
(6.36)

where (a) is a result of the fact that U and Φ are independent condi-
tioned on {Vj}S . In the both terms of step (b), we introduce {Xi

je
iφj}S

which comes for free due to the feedback in the system, i.e. conditioning
on (Y i−1, {Vj}S ,Φ) and simply ({Vj}S ,Φ) when no feedback is present.
{Xi

je
iφj}Sc can be added in the same step since conditioning reduces en-

tropy.
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6.3.2 Appendix IX- Bound on product Distortion ∏M
j=1 Dj

For the first expansion based on the output signals, we have

I({Vj}; Y)
(a)
≤ I({Vj}; Y|Φ)

= h(Y|Φ)− h(Y|{Vj},Φ)

=
N∑
i=1

h(Yi|Y i−1,Φ)−
N∑
i=1

h(Yi|Y i−1, {Vj},Φ)

(b)=
N∑
i=1

h(Yi|Y i−1,Φ)−
N∑
i=1

h(Yi|Y i−1, {Vj}, {Xi
je
iφj},Φ)

=
N∑
i=1

h(
M∑
j=1

Xi,je
iφi,j + Zi|Y i−1,Φ)

−
N∑
i=1

h(Yi −
M∑
j=1

Xi,je
iφi,j |Y i−1, {Vj}, {Xi

je
iφj},Φ)

=
N∑
i=1

h(
M∑
j=1

Xi,je
iφi,j + Zi|Y i−1,Φ)−

N∑
i=1

h(Zi)

≤
N∑
i=1

log
(

1 +
∑M
j=1 Ei,j
NN0

)

≤ N log
(

1 +
∑N
i=1

∑M
j=1 Ei,j

NN0

)

≤ N log
(

1 + KME
NN0

)
(6.37)

where (a) is a result of the fact that Vj and Φ are independent and (b) results
from the feedback in the system which allows us to introduce {Xi

je
iφj} with-

out having any effect on the equality due to conditioning on (Y i−1, {Vj},Φ)
and simply ({Vj},Φ) when no feedback is present. On the other hand, the
second expansion of I({Vj}; Y) is derived for normally distributed Vj ’s as

I({Vj}; Y) = h({Vj})− h({Vj}|Y)
= h({Vj})− h({Vj − V̂j}|Y)
≥ h({Vj})− h({Vj − V̂j})

≥ K

2 log
(

(1− ρ2)M (2πe)M (1 + Mρ2

1− ρ2 )
)
− K

2 log

(2πe)M
M∏
j=1

Dj


= K

2 log

(1− ρ2)M (1 + Mρ2

1−ρ2 )∏M
j=1Dj

 (6.38)



6.3 Appendix for Multiple-Source Case Derivations 89

which yields

I({Vj}; Y) = h({Vj})− h({Vj}|Y)
= h({Vj})− h({Vj − V̂j}|Y)
≥ h({Vj})− h({Vj − V̂j})

= h({ρU1 +
√

1− ρ2U′j})− h({Vj − V̂j})

≥ h({ρU1 +
√

1− ρ2U′j}|ρU1)− h({Vj − V̂j})

= h({
√

1− ρ2U′j})− h({Vj − V̂j})

≥ KM

2 log
(
12(1− ρ2)

)
− K

2 log

(2πe)M
M∏
j=1

Dj


= K

2 log
((

6(1− ρ2)πe
)M 1∏M

j=1Dj

)
(6.39)

for the uniform case.

6.3.3 Appendix X- Estimation of the set of Vj’s

The first expansion of I(Vj ; Y|{Vl}S) on the output signals is given as

I(Vj ; Y|{Vl}S)
(a)
≤ I(Vj ; Y|{Vl}S ,Φ)

= h(Y|{Vl}S ,Φ)− h(Y|Vj , {Vl}S ,Φ)

=
N∑
i=1

h(Yi|Y i−1, {Vl}S ,Φ)−
N∑
i=1

h(Yi|Y i−1,Vj , {Vl}S ,Φ)

(b)
≤

N∑
i=1

h(Yi|Y i−1, {Vl}S , {Xi
je
iφj}S ,Φ)

−
N∑
i=1

h(Yi|Y i−1,Vj , {Vl}S , {Xi
je
iφj}Sc , {Xi

je
iφj}S ,Φ)

(c)=
N∑
i=1

h(Yi −
∑
j∈S

Xi,je
iφi,j |Y i−1, {Vl}S , {Xi

je
iφj}S ,Φ)

−
N∑
i=1

h(Yi −
∑
j∈Sc

Xi,je
iφi,j −

∑
j∈S

Xi,je
iφi,j |

Y i−1, {Vj}Sc , {Vl}S , {Xi
je
iφj}Sc , {Xi

je
iφj}S ,Φ)
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(d)
≤

N∑
i=1

h(
∑
j∈Sc

Xi,je
iφi,j + Zi|Y i−1, {Vl}S , {Xi

je
iφj}S ,Φ)−

N∑
i=1

h(Zi)

≤
N∑
i=1

log
(

1 +
∑
j∈Sc Ei,j
NN0

)

≤ N log
(

1 +
∑N
i=1

∑
j∈Sc Ei,j

NN0

)

≤ N log
(

1 +
K
∑
j∈Sc Ej

NN0

)
(6.40)

where (a) is a result of the fact that Vj and Φ are independent conditioned on
{Vl}S .. In step (b), {Xi

je
iφj}S comes from conditioning on (Y i−1, {Vl},Φ)

in the case of feedback and from conditioning on ({Vj},Φ) when no feedback
is present. In (c),

∑
j∈S Xi,je

iφi,j is subtracted from the output signal which
yields

∑
j∈Sc Xi,je

iφi,j together with the noise term in the following step (d).
For S ∈ [1,M−1], the second expansion is obtained for the Gaussian sources
as

I(Vj ; Y|{Vl}S) = h(Vj |{Vl}S)− h(Vj |Y, {Vl}S)
= −I(Vj ; {Vl}S) + h(Vj)− h(Vj − V̂j |Y, {Vl}S)
≥ −h({Vl}S) + h({Vl}S |Vj) + h(Vj)− h(Vj − V̂j)

= −K2 log
(

(2πe)|S|(1− ρ2)|S|
(

1 + |S|ρ2

1− ρ2

))

+ K

2 log
(
(2πe)|S|(1− ρ2)|S|(2− ρ2 + |S|)

)
+ K

2 log(2πe)− K

2 log(2πeD)

= K

2 log
(

1
D

(1− ρ2)(2− ρ2 + |S|)
1 + (|S| − 1)ρ2

)
. (6.41)

whereas for the uniform case, same mutual information yields

I(Vj ; Y|{Vl}S) = h(Vj |{Vl}S)− h(Vj |Y, {Vl}S)
= −I(Vj ; {Vl}S) + h(Vj)− h(Vj − V̂j |Y, {Vl}S)
(a)
≥ −h({Vl}S) + h({Vl}S |Vj) + h(Vj)− h(Vj − V̂j)
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≥ −h({Vl}S) + h({Vl}S |ρU +
√

1− ρ2U′j ,U)

+ K

2 log
(

2
K
2 h(ρU) + 2

K
2 h(
√

1−ρ2U′j)
)
− h(Vj − V̂j)

= −h({Vl}S) + h({
√

1− ρ2U′l}S |ρU +
√

1− ρ2U′j ,U)

+ K

2 log
(

2
K
2 h(ρU) + 2

K
2 h(
√

1−ρ2U′j)
)
− h(Vj − V̂j)

(b)= −h({Vl}S) + h({
√

1− ρ2U′l}S) + K

2 log
(

2
K
2 h(ρU) + 2

K
2 h(
√

1−ρ2U′j)
)

− h(Vj − V̂j)

≥ −K2 log
(

(2πe)|S|(1− ρ2)|S|(1 + |S|ρ2

1− ρ2 )
)

+ K

2 log(12(1− ρ2))|S|

+ K

2 log(12)− K

2 log(2πeD)

= K

2 log

( 6
πe

)|S|+1 1
D(1 + |S|ρ2

1−ρ2 )

 (6.42)

(a) is caused by the independence between U′j and Vj and in step (b) the
conditioning is dropped due to the independence among U and U′j ’s included
within the set S. Equating (6.40) and (6.42) yields the lower bound given
by (4.16) for uniformly distributed sources and setting (6.41) equal to (6.42)
brings out the Gaussian case of the same bound. For the special case of
|S| = 0, since we lose the condition of I(Vj ; Y|{Vl}S), the first expansion
of I(Vj ; Y) is given as

I(Vj ; Y) = h(Vj)− h(Vj |Y)
= h(Vj)− h(Vj − V̂j |Y)
≥ h(Vj)− h(Vj − V̂j). (6.43)

with

h(Vj − V̂j) ≤
K∑
j=1

h(Vj,i − V̂j,i)

≤ K

2 log

2πe
K

K∑
j=1

E[(Vj,i − V̂j,i)2]


≤ K log

(√
2πeDj

)
. (6.44)
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The source entropies are given by h(Vj) = K log
√

2πe and

h(Vj) = h(ρU +
√

1− ρ2U′j)

≥ K

2 log
(

2
2
K

(K log |ρ|+h(U) + 2
2
K
h(
√

1−ρ2U′j
)

= K

2 log
(

2
2
K
K log |ρ|2

√
3 + 2

2
K
K log 2

√
3|1−ρ2|

)
= K log 2

√
3. (6.45)

for normally and uniformly distributed sources, respectively. Subsituting
h(Vj) and h(Vj − V̂j) into I(Vj ; Y), we obtain

I(Vj ; Y) ≥


K
2 log(1/Dj) for Gaussian
K
2 log

(
6
πe

1
Dj

)
for Uniform.

(6.46)

S being an empty set also changes the expansion on the output signals as
follows.

I(Vj ; Y) ≤ I(Vj ; Y|Φ)
= h(Y|Φ)− h(Y|Vj ,Φ)

=
N∑
i=1

h(Yi|Y i−1,Φ)−
N∑
i=1

h(Yi|Y i−1,Vj ,Φ)

≤
N∑
i=1

h(Yi|Y i−1,Φ)−
N∑
i=1

h(Yi|Y i−1,Vj , {Xi
je
iφj}Sc ,Φ)

=
N∑
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h(Yi|Y i−1,Φ)−
N∑
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h(Yi −
∑
j∈Sc

Xi,je
iφi,j |Y i−1,Vj , {Xi

je
iφj}Sc ,Φ)

≤
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h(
∑
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Xi,je
iφi,j + Zi|Y i−1,Φ)−

N∑
i=1

h(Zi)

≤ N log
(

1 +
K
∑
j∈Sc Ej

NN0

)
. (6.47)

Through setting (6.46) and (6.47) equal, we obtain the lower bound given
by (4.17) in Section 4.3.2.

6.3.4 Appendix XI- Derivation of the Bounds on Distortion
and the Average Energy of the Protocol

Hereafter we give the derivations of the distortion terms Dq (4.29), De,k

(4.30), De,M (4.31) and D(E , N0, 2, λ) (4.32) together with the average en-
ergy consumed by the protocol in more detail. The quantization distortion
Dq = E[(u − û)2|l in error] for l = 0 where l denotes the number of
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the sources decoded incorrectly. Since the chosen estimator is defined as
û = 1

M

∑M
j=1 v̂j/ρ, we get

Dq = E[(u− 1
M

M∑
j=1

v̂j/ρ)2]

(a)= E

 1
ρM

M∑
j=1

(
√

1− ρ2u′j + eq,j)

2

= 1− ρ2

ρ2M
V ar(u′j) + 1

ρ2M
V ar(eq) + 2

√
1− ρ2

ρ2M2

∑
E[u′jeq,j ]

(b)
≤ 1− ρ2

ρ2M
+
√

3
ρ2M

(
2−2B+1 +

√
3(1− ρ2)/2

)
+ 2−B+1(1− ρ2)

ρ2 (6.48)

where eq = 1
ρM

∑M
j=1 eq,j and in step (a) we substituted the definition of v̂j as

ρu+
√

1− ρ2u′j +eq,j . In step (b) the variances and the covariance of u′j and
eq are substituted. The derivations of De,k and De,M proceed similarly with
a difference of conditioning in the expectation. De,k is bounded through the
peak distortion between u and its estimate for the possible cases when vj is
correctly and incorrectly decoded, i.e. for v̂j = vj and v̂j 6= vj , respectively.

De,k = E
[
(u− û)2|k in error

]

= E

 1
M

 ∑
j s.t.
v̂j 6=vj

(u− v̂j/ρ) +
∑
j s.t.
v̂j=vj

(u− v̂j/ρ)




2

= E

 1
ρ2M2

 ∑
j s.t.
v̂j 6=vj

(ρu− v̂j) +
∑
j s.t.
v̂j=vj

(ρu− v̂j)


2

(a)= k

ρ2M2E
[
(ρu− v̂j)2|v̂j 6= vj

]
+ M − k

ρ2M2 E
[
(ρu− v̂j)2|v̂j = vj

]
≤ 3(M + 8k)(1− ρ2) + 2−B+2((M + 2k)

√
1− ρ2 +M2−B)

M2ρ2/3 . (6.49)

In step (a), the distortion terms for correct and incorrect decoding are
weighed by the corresponding numbers which are M −k and k, respectively.
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Finally for De,M we have

De,M = E
[
(u− û)2|M in error

]
(a)= E

 1
ρM
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2
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2ρ
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+ 12
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ρ2M
. (6.50)

In step (a), the definition of the estimator û = 1
M

∑M
j=1 v̂j/ρ is substituted.

D(E , N0, 2, λ) , the distortion achieved at the end of the second round of
the protocol which consumes the average energy E is defined and bounded
as

D(E , N0, 2, λ) = Dq(1− Pe) +
M−1∑
k=1

De,kP
(1)
e,k Pr(Ee→c,1|k in error)

+De,MP
(1)
e,M Pr(Ee→c,1|M in error)

+ Pr(E1)
M−1∑
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De,kP
(2)
e,k (E1)(1− Pr(Ee→c,1|k in error))

+ Pr(E1)De,MP
(2)
e,M (E1)(1− Pr(Ee→c,1|M in error))

+ Pr(Ec1) Pr(Ec→e,1)
(
M−1∑
k=1

De,kP
(2)
e,k (Ec1) +De,MP

(2)
e,M (Ec1)

)
(a)
≤ Dq +
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(1)
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e,k (E1) + Pr(Ec1)

M−1∑
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(2)
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)
+
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Pr(E1)De,MP

(2)
e,M (E1) + Pr(Ec1)De,MP

(2)
e,M (Ec1)

)
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= Dq +
M−1∑
k=1

De,kP
(1)
e,k Pr(Ee→c,1|k in error)

+De,MP
(1)
e,M Pr(Ee→c,1|M in error) +

M−1∑
k=1

De,kP
(2)
e,k +De,MP

(2)
e,M

≤ Dq +
M−1∑
k=1

De,kPe,k +De,MPe,M (6.51)

where Pe is the probability of at least one source being in error upon comple-
tion of the protocol, Pr(E1) is the probability of at least one source being in
error after the first round of the protocol (event E1) whereas its complement
is denoted by Pr(Ec1). In step (a) the probabilities of error to be detected
given k and M sources are in error and the probability of mis-detection
(Pr(Ec→e,1)) are bounded by 1. The probability of not making an error at
the end of the second round, i.e. (1 − Pe), is also upper bounded by 1 in
the same step. P (1)

e,l is the notation for Pr(l in error after round 1) whereas
P

(2)
e,l denotes Pr(l in error after round 2) for l = 1, 2, ...,M .

The average energy used by protocol can be derived and bounded as

E = ED,1 +
M−1∑
k=1

kEC,1
M

P
(1)
e,k + EC,1P

(1)
e,M

+ ED,2

[
M−1∑
k=1

P
(1)
e,k (1− Pr(Ee→c,1|k in error))

+P (1)
e,M (1− Pr(Ee→c,1|M in error))

]
+ ED,2

[(
1−

(
M−1∑
k=1

P
(1)
e,k + P

(1)
e,M

))
Pr(Ec→e,1)

]
≤ ED,1 + EC,1Pe(m) + ED,2[Pe(m) + Pr(Ec→e,1)] (6.52)
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Chapter 7

Résumé

Claude Shannon en 1948 grâce à son oeuvre [2] a montré qu’un codage sé-
paré source-canal pour un système point-a-point ne provoque aucune perte
d’optimalité (en termes de transmission fiable) dans la mesure que la longueur
des mots de code tend vers l’infini. Ce résultat a été prouvé dans très peu
d’autre topologies de transmission. Néanmoins, en raison de l’optimalité
dans le cas d’une source unique, c’est la raison principale que l’on traite le
codage source et canal séparément dans les reseaux sans-fils modernes. Du
point de vue de la mise en réseau, il est également pratique de séparer les
deux opérations afin de simplifier les protocoles, car les données numériques
peuvent être multiplexés. Cependant, ces implémentations pratiques engen-
drent des retards élevés, qui se traduit par la latence, et une grande com-
plexité en raison des encodages extrêmement longs. En combinant le codage
canal et source, connue sous le nom de codage-canal source commune, la la-
tence peut être limitée. On pourrait s’attendre à ce que cette technique
fournira des améliorations significatives en termes de latence dans le cas
d’une source avec une redondance importante combiné avec un canal avec
des niveaux de bruit élevés. Cela est dû au fait que dans ce cas, le codage
source-canal traditionnel, ou séparé, devrait d’abord utiliser le codage source
afin d’éliminer la redondance et ensuite utiliser codage de canal pour insérer
une redondance supplémentaire. Ainsi, il ne est pas surprenant que ce ne
est pas l’approche la plus efficace, même lorsque la longueur des blocs est
croit sans limite.

Un exemple moderne d’un système utilisant des approches de canal joint-
sources (numérique) serait la norme HDMI actuelle utilisant une transmis-
sion OFDM sans fil à courte distance pour la vidéo haute définition avec une
latence inférieure a 1ms. Cette technique exploite les niveaux variables du

97
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signal source transformé (audio / vidéo) avec une protection d’erreur non-
uniforme dans la couche physique qui varie en fonction des différents niveaux
d’importance des signaux de source. Ici, l’information analogique n’est pas
codé en utilisant un code source autre que la quantification scalaire. La
latence est donc limitée et le schéma resemble au codage linéaire décrit par
Goblick dans [4]. La remarque la plus importante à souligner est que cette
approche est utilisée pour minimiser la latence.

Une autre raison motivant l’utilisation de nouvelles joint-source et canal
paradigmes de codage serait les échelles de temps correspondants aux largeurs
de bande de la source et du canal. Dans les réseaux de capteurs, par ex-
emple, les sources peuvent être caractérisées par quelques échantillons in-
dépendants d’un phénomène analogique qui doivent être transmis de façon
très sporadique à travers un canal à large bande. Ce serait le cas lorsque
nous intégrons des capteurs analogiques à faible coût / puissance au sein
de l’infrastructure LTE. Ici, l’ergodicité de la source ne est pas un degré de
liberté qui peut être exploitée par le système de codage. Curieusement, la
performance ultime (en termes de reconstruction fidélité au récepteur) réal-
isables par un système de codage pour ce problème simple à formuler reste
inconnue, bien que limites supérieures et inférieures sur la performance sont
faciles à trouver.

Ce qui est sûr c’est que la transmission numérique des petites quan-
tités de données généralement analogiques induira des surcoûts protoco-
laires, en particulier pour les réseaux massifs de nœuds simples, si on se
limite aux techniques mis-en-place aujourd’hui. Le codage conjoint source-
canal, qui combine les efforts du code canal et le code source, peut-être utile
de ce point-de-vue. Dans cette étude, nous considérons la transmission de
plusieurs échantillons spatialement répartis d’un champ aléatoire lentement
variable dans le temps. Notre objectif principal est de fournir des mesures
de la performance asymptotique et des stratégies de transmission réalisables
et simples pour les grands réseaux de capteurs à un bond de transmission
vers le centre de fusion (un canal à accés-multiples). On modélise les sys-
tèmes où chaque capteur mesure des signaux avec un nombre fini et petit
de dimensions de la source, par rapport au nombre de dimensions de canal.
Ceci est motivé par des applications telles que la télédétection en utilisant
l’infrastructure sans-fil à large bande (par exemple les réseaux cellulaires)
où les capteurs prélèvent des échantillons sporadiques d’un événement aléa-
toire, les envoient au réseau via des stations de base et reviennent ensuite à
un état de repos pour économiser l’énergie. En conséquence, nous ne con-
sidérons pas le codage des séquences d’échantillons, mais plutôt exploitons
l’expansion spatiale et la corrélation entre les noueds du réseau avec un bruit
d’observation indépendante. Tenant compte que les applications ciblent les
réseaux sans fil, il est raisonnable de supposer qu’une stratégie de transmis-
sion basé sur un canal de retour. Par conséquant les résultats asymptotiques
ainsi que la stratégie de transmission étudié pourraient exploiter un canal
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de retour. Ce dernier permet de stratégies simples et économes en énergie,
même si les évaluations ne sont pas nécessairement optimale.

Imaginez le cas le plus simple d’un noeud avec un capteur qui suit une
séquence aléatoire lentement variable dans le temps et qui envoi ses observa-
tions à un récepteur à travers un canal sans fil. La source est indiquée par un
variable aléatoire U de moyenne nulle et de variance σ2

u = 1, représentant une
seule réalisation de la séquence aléatoire à un moment donné t. Le capteur
doit être considéré comme un petit appareil avec des contraintes énergétiques
strictes. Le canal de communication entre l’émetteur et le récepteur est un
canal à bruit blanc gaussien additif. Une question importante est de savoir
comment coder de manière efficace le variable aléatoire U pour la transmis-
sion. L’efficité est mesuré dans ce cas en termes de la relation entre l’erreur
de reconstruction et l’énergie utilisée pour réaliser cette transmission. A
titre d’exemple, le capteur peut sporadiquement envoyer des informations
analogiques (température, champ magnétique, le courant, la vitesse, etc.)
à un noeud de collecteur. Le trafic serait à très faible taux (quasi nul) et
pouvant nécessiter faible latence. Celle-ci pourrait se produire pour deux
raisons, soit la réactivité d’un élément d’actionnement dans le réseau ou pour
minimiser la consommation d’énergie dans le noeud de détection même en
utilisant la transmission et la réception discontinue. Ici, le temps de la-
tence de la transmission est directement liée au temps d’activation d’un
circuit de communication du noeud de détection. Cet exemple fait ressor-
tir l’essence de certains communications entre machines, ce que l’on appele
le MTC (”machine-type communications”) ou M2M (”machine-to-machine
communications”), un terme qui fait référence aux machines (y compris les
capteurs) interconnectées via des réseaux cellulaires et qui échangent des
informations de façon autonome.

Pour ce scénario, la caractéristique de variation lente dans le temps
de la source a deux principaux impacts sur la façon dont le problème de
codage doit être adressée: premièrement, le temps entre deux observations
est longue, et le capteur ne doit pas attendre une séquence d’observations
pour encoder. Par conséquent, le capteur code seulement une observation
avant de l’envoyer à travers le canal. Ensuite, pour chaque source réalisation
le canal peut potentiellement être utilisé par de nombreuses dimensions dans
l’espace des signaux, par exemple par codage sur une bande-passante large
dans le domaine fréquentiel. Ce serait le cas pour les capteurs reliés directe-
ment aux réseaux cellulaires de quatrième génération. Par conséquent, on
peut raisonnablement supposer qu’il n’y ait pas de contrainte sur la dimen-
sionalité utilisée pour le codage de canal. Cette dernière condition revient à
dire que les codes à rendement très faible devraient être utilisés. Dans [3],
les auteurs affirment trois principales exigences qui doivent être satisfaites
pour que la technologie 5G puissent accomoder les communications entre
machines, le support d’un très grand nombre de périphériques connectés, le
maintien de taux réduit et à faible latence. Cette thèse présente des modèles
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de systèmes et stratégies de transmission qui tentent de répondre à ces trois
principales exigences de la 5G.

Nous concentrons notre attention sur le cas où les échantillons unitaires
de la source sont transmis de façon sporadique en raison de ralentir le
temps de variation comme expliqué ci-dessus dans la motivation. Dans
le problème d’une source unique, un codeur associe une réalisation de la
source U dans X , (X1, . . . , Xn) où N désigne la dimension de l’entrée
du canal. Nous allons faire usage d’une voie de retour causale afin que le
codeur puisse aussi dépendre de sorties de canal dernières, c’est-à-dire que
Xi = f(U, y1, · · · , Yi−1). X est ensuite envoyé à travers le canal corrompu
par une séquence de bruit blanche et gaussien, Z, et est reçu comme Y.
Le récepteur est une fonction qui tente de construire une estimé Û de U
étant donné Y. Le critère de la fidélité que nous souhaitons minimiser est
l’erreur quadratique moyen ( ”mean-squred error” ou MSE) défini comme
D , E[(U − Û)2], sous une contrainte d’énergie E[||X||2] ≤ E . Une borne
inférieure sur la distorsion sur tous les encodeurs et décodeurs possibles est
facilement dérivés dans [4] utilisant la théorie de l’information classique, et
donnée par

D ≥ e−2E/N0 (7.1)
où N0/2 est bruit du canal par dimension. Notez que par rapport à la forme
d’origine,(7.1) est adapté à un canal gaussien complexe en temps discret
avec variance de bruit N0/2 afin de rendre les comparaisons plus faciles avec
notre informations théoriques bornes inférieures dans les autres chapitres.

Pour le cas d’un canal point-à-point sans retour, les études les plus ré-
centes et importantes sont présentés par Merhav dans [13,14] pour les canaux
AWGN et des canaux discret sans mémoire, respectivement. Dans [13, 15]
la borne inférieure la plus serrée sur la MSE avec une détection cohérente
et une bande passante du canal illimitée se comporte comme e−E/2N0 pour
U uniformément distribuée. E est l’énergie utilisée pour la transmission de
U . En fait, l’auteur réalise cette limite inférieure sur la MSE en bornant la
distribution complementaire de l’erreur,|U − Û |, plutôt que de se concentrer
sur le MSE comme critère de performance elle-même. Afin de prouver des
resultats sur la distribution de |U − Û |, il généralise la borne classique de
Ziv-Zakai [16] en passant de deux à un nombre arbitraire,M , d’hypothèses.
et le produit de dérivation que le Chazan-Zakai liés [17]. Dans le chapitre
II, nous utilisons les résultats de [13] pour discuter de l’efficacité de notre
schema de transmission pour le cas sans voie de retour.

7.0.5 Les systèmes exploitant une voie de retour

Dans les systèmes à deux voies, par exemple les réseaux cellulaires, nous
pourrions imaginer clairement l’utilisation de la transission ultra-fiable de
la liaison descendante (c’est à dire un retour parfait). Le principal incon-
vénient est l’exigence de l’énergie pour le récepteur qui aurait un impact le
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budget énergétique globale du noeud de détection. Même s’il est difficile
de modéliser, la latence du protocole devient un problème pour la consom-
mation globale d’énergie. Certains des premiers travaux de la transmission
analogique des sources à faible bande passante suppose la présence du sig-
nal de retour f(Y(n)), c’est-à-dire le signal observé sans distortion. Grâce
à une communication dans les deux sens, les approches de contrôle stochas-
tique [19,20] peut atteindre, au moins asymptotiquement, la borne inférieure
sur la distorsion dans (7.1). Ceci est au détriment du retard, puisque, comme
dans de nombreux systèmes adaptatifs, le système avec un retour doit con-
verger pour minimiser la distorsion. Il est raisonnable de supposer que les
deux peuvent être étendus à la détection non-cohérente et canaux sélectifs
en fréquence large bande, même pour la diversité. Cependant, les stratégies
d’estimation sous-jacentes vont rapidement devenir très compliqué.

Les régimes réalisables proposés et analysés sur la base de leurs per-
formances asymptotiques dans cette thèse sont inspirés par le schéma de
transmission pour les canaux avec retour parfait proposé par Yamamoto et
Itoh [1] qui est en fait le schéma Schalkwijk-Barron modifiée [24]. Le docu-
ment d’origine [1] est applicable aux canaux à temps discret et AWGN. Un
cycle de transmission dans les deux études réalisées par Yamamoto-Itoh et
Schalkwijk-Barron est composé de deux phases que l’on appelle le mode de
message, où le message de la source est transmis et réinjectée, et le mode de
commande où la transmission du message de commande et la rétroaction se
produisent.

7.0.6 Les cas de sources multiples

En ce qui concerne le problème de sources multiples. nous sommes parti-
culièrement intéressés dans le cas où les variables aléatoires corrélées sont
transmis sur des canaux à accès multiple, où l’information des sources sont
envoyés via un canal AWGN. La question principale est de savoir comment
faire le codage par rapport à la performance à atteindre lors de la recon-
struction en fonction de l’énergie nécessaire. L’élément clé dans le scénario
multi-capteur étant d’exploiter la corrélation, qui est supposé être connu, à
la fois sur l’émetteur et le récepteur. En outre, nous cherchons à déterminer
les régimes de fonctionnement d’un tel système à accès multiple en termes
de corrélation joue le rôle dans la détermination de l’efficacité énergétique.

Le problème de sources multiples peut être considérée comme le prob-
lème CEO tel qu’il figure dans la littérature avec quelques différences. Le
problème initial est introduit et formulé dans [26, 27] pour un discret sans
mémoire source X. Le CEO dans un réseau de capteurs se intéresse à
l’information d’une source {X(t)}∞t=1 qui ne peut être obtenu directement
ainsi le CEO utilise L agents qui observent une version bruyante de la source
indépendante. Les agents envoient leurs observations, Yi(t) = X(t) +Ni(t),
au directeur général qui est soumis à un taux de somme finie contrainte R.
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Ici, le bruit d’observation gaussien est notée Ni(t) qui est iid ∀i = 1, · · · , L
et t = 1, · · · , n, · · · . Le CEO tente de reconstituer {X(t)}∞t=1 qui se traduit
par D(R), la fonction de distorsion des taux de la source X(t) . Les au-
teurs dans [27] déterminé la fréquence d’erreur minime asymptotiquement
dans L et R. [28] étudie un cas particulier du problème et qui considèrent la
source {X(t)}∞t=1 comme une variable aléatoire gaussienne iid et de montrer
l’asymptotique la performance de la distorsion à la fois L et R ont tendance
à l’infini. Il existe de nombreuses études dans la littérature qui traitent de
ce problème dans différents contextes. [29] aborde le problème dans un sys-
tème de communication source-canal multi-terminal avec sources corrélées
transmis sur un MAC sans être soumis à un bruit de canal et fournit la
région taux de distortion du codage de source multi-terminal. [30] peut être
donné comme un autre exemple qui explore le problème de CEO où les au-
teurs introduisent le taux-région pour le cas gaussien quadratique tandis que
dans un document assez récent [31] arrive avec une limite supérieure sur le
taux -distortion région du vecteur gaussien problème de CEO pour le cas
d’observation bruyant.

Une des principales différences entre le problème de sources multiples
dans la façon dont est traitée au chapitre 4 de cette thèse et plusieurs études
dans la littérature brièvement mentionné ci-dessus, ce est que tous les ré-
sultats obtenus au chapitre 4 sont considérés dans le contexte de taux zéro,
savoir, un taux de fuite. Une autre différence majeure peut être déclaré que
l’accent mis sur la transmission d’échantillons unitaires du message source au
lieu de faire le codage séquentiel comme déjà mentionné ci-dessus dans la déf-
inition du problème et sera mis en évidence dans d’autres chapitres. Enfin,
nous combinons le problème de CEO d’origine avec un canal d’accès multiple
et discutons de la performance d’un système avec des sources analogiques
corrélées sur une GMAC avec un lien de rétroaction du récepteur à chaque
codeur comme on le verra en détail au chapitre 4.

Dans l’un des autres chapitres, dans le chapitre 4, nous allons montrer
que le MSE qui en résulte pour le cas particulier d’un canal de vecteur avec
une entrée gaussienne ( [44, eq: 27]) répond à notre résultats de la limite
inférieure dérivée de l’erreur de reconstruction d’un vecteur aléatoire simple
mesurée par un réseau de capteurs et de multiples vecteurs de sources qui
sont transmis à un récepteur commun sur une GMAC avec une rétroaction
lien de causalité parfaite au codeur connecté à chaque capteur. Dans [44],
Guo et al. définir la relation suivante entre l’information mutuelle du canal
et le SNR erreur quadratique moyenne minimum (MMSE) dans des canaux
gaussien pour les deux signaux d’entrée et scalaires du vecteur indépendam-
ment de ses statistiques.

d
dsnrI(snr) = MMSE(snr)

2 . (7.2)

Considérons le cas simple d’un canal scalaire avec la paire de (X,Y ) désig-
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nant les signaux d’entrée et de sortie à travers la définition suivante de
Y =

√
SNRX + N où snr est non-négatif et le signal de bruit N est nor-

malement distribué avec zéro écart moyen et de l’unité. Ainsi l’information
mutuelle dans (7.2) est fondamentalement I(X;Y ) = I(X;

√
snrX+N) alors

que le MMSE est défini par MMSE(snr) = MMSE(X|
√

snrX +N).

7.0.7 Les principaux résultats

Tout d’abord, nous introduisons une faible latence, protocole bidirectionnel
pour la transmission d’une seule variable aléatoire sur un canal à large bande
et analysé son comportement asymptotique avec détection non cohérente sur
les deux canaux en ligne de visée et plus généraux purs évanouissement. La
stratégie de protocole et de la transmission pourrait être utilisé pour les
capteurs limités en énergie futurs faisant usage de réseaux cellulaires à large
bande. Nous montrons que l’écart entre le Goblick classique lié [4] et la
limite obtenue par notre système de rétroaction envisagée ne peuvent pas
être fermé en répétant le protocole plus de deux tours à moins de 3 dB.
L’amélioration par rapport une transmission one-shot est de l’ordre de 3 à 4
dB et asymptotiquement 4,7 dB. Nous incluons également une discussion sur
le cas des évaluations imparfaite et son effet sur le compromis entre l’énergie
nécessaire pour le protocole et l’erreur de reconstruction dans l’estimation
du message source. On montre que dans ce cas, si la consommation d’énergie
requise par la liaison de rétroaction est représenté, ce qui réduit la fidélité
de reconstruction. En outre, l’évaluation numérique des dernières limites in-
férieures de Merhav [13] pour la transmission one-shot sont inclus et la vari-
ante plus serré en utilisant ses techniques est déterminée. Tant l’évaluation
des limites et de la performance du protocole de rétroaction ont été étendues
à un modèle d’évanouissement multi-canal. L’amélioration du protocole de
retour sur une transmission de tir est encore plus important que dans le cas
de ligne de vue. Nous suggérons en outre que les techniques de délimitation
plus strictes qui se appuient sur les canaux inconnus doivent être trouvées
pour le canal à évanouissement. En outre, les systèmes utilisant la transmis-
sion à énergie variable devraient être considérées pour combler l’écart avec
les limites inférieures.

Nous procédons à la dérivation des limites inférieures sur l’erreur de re-
construction pour la transmission de deux sources analogiques corrélées en
présence de rétroaction causalité. Les bornes sont spécialisés pour le cas de
canaux à large bande. Tous nos dérivations sont appliqués à résumer-canaux
avec des sources à la fois uniforme et normalement distribués. Nous intro-
duisons ensuite un protocole faible latence bidirectionnelle pour la trans-
mission de deux variables aléatoires corrélées sur un canal à large bande
et d’analyser son comportement asymptotique avec détection non-cohérente
uniforme et distribution gaussienne. Nous montrons que la transmission de
deux sources fortement corrélés peut atteindre l’efficacité énergétique d’une
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source unique avec la même énergie totale, au moins dans certains régimes
qui régissent le niveau de corrélation. Le cas de corrélation élevé donne le
comportement exponentiel de l’affaire et bénéficie d’accumulation d’énergie,
ou la collaboration des deux sources d’une source unique. Résultats faible
corrélation insignifiante réduit l’efficacité énergétique.

La dernière partie de la thèse couvre une adaptation de deux voies à
faible latence protocole de rétroaction pour une distorsion minimale à un
grand scénario de réseau avec de multiples sources. Plus précisément, nous
introduisons de nouvelles limites inférieures sur l’erreur de reconstruction des
stratégies de transmission multi-capteurs arbitraires qui peuvent servir dans
une étape ultérieure pour déterminer l’optimalité des stratégies particulières
d’accès multiple et d’encodage. À cette fin, nous proposons une stratégie de
collaboration tels exploiter corrélation entre capteurs. Haut-bornes asymp-
totiques sur l’erreur de reconstruction sont prévus pour le protocole proposé.
Les deux-limites supérieure et inférieure montrent que la collaboration peut
être atteint grâce à l’accumulation de l’énergie et de mettre en lumière un
compromis dans la source et le canal SNR qui lui permet de se produire. La
performance pratique du protocole de retransmission proposé a été étudiée
par l’évaluation numérique de la Haute-limites dans le régime de l’énergie
non-asymptotique, qui correspond à l’aide de poids faible quantification dans
les capteurs. Les performances du protocole est améliorée par l’introduction
d’une modification mineure de la stratégie de contre-réaction qui permet
la la performance sans erreur à atteindre rapidement. Les comparaisons
avec une transmission one-shot ne pas exploiter les évaluations montrent
que gagne avec un tour de rétroaction sont de l’ordre de 2 à 3 dB par rap-
port à un système de rétroaction-moins et sont souvent moins de 5 dB de la
borne inférieure. Il est en outre montré que l’augmentation de la taille du
réseau apporte des avantages en termes de performances, mais que le gain
en termes d’efficacité énergétique diminue rapidement à des énergies finies
en raison d’une perte combinant non cohérente.



Bibliography

[1] H. Yamamoto and K. Itoh, “Asymptotic performance of a modified
Schalkwijk-Barron scheme for channels with noiseless feedback,” IEEE
Transactions on Information Theory, vol. 25, pp. 729–733, November
1979.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, pp. 379–423,623–656, July, October
1948.

[3] F. Boccardi, R. W. Heath, A. E. Lozano, T. L. Marzetta, and
P. Popovski, “Five disruptive technology directions for 5G,” CoRR,
vol. abs/1312.0229, 2013. [Online]. Available: http://arxiv.org/abs/
1312.0229

[4] T. Goblick, “Theoretical limitations on the transmission of data from
analog sources,” IEEE Transactions on Information Theory, vol. 11,
pp. 558–567, October 1965.

[5] P. Elias, “Networks of Gussian channels with applications to feedback
systems,” IEEE Transactions on Information Theory, vol. 13, pp. 493–
501, July 1967.

[6] M. Gastpar, “To code or not to code,” Ph.D. dissertation, EPFL, Dec.
2002.

[7] F. Abdallah and R. Knopp, “Source-channel coding for very-low band-
width sources,” in Information Theory Workshop, 2008. ITW ’08.
IEEE, may 2008, pp. 184 –188.

[8] F. Abdallah, “Source-channel coding techniques applied to wireless net-
works,” Ph.D. dissertation, University of Nice-Sophia Antipolis, Dec.
2008.

[9] J. Wozencraft and I. M. Jacobs, Principles of Communication Engi-
neering. Wiley, New York, 1965.

105



106 Bibliography

[10] V. Vaishampayan and I. Costa, “Curves on a sphere, shift-map dynam-
ics, and error control for continuous alphabet sources,” IEEE Transac-
tions on Information Theory, vol. 49, pp. 1658–1672, July 2003.

[11] B. Hochwald and K. Zeger, “Tradeoff between source and channel cod-
ing,” IEEE Transactions on Information Theory, vol. 43, pp. 1412–
1424, Sept. 1997.

[12] B. Hochwald, “Tradeoff between source and channel coding on a Gaus-
sian channel,” IEEE Transactions on Information Theory, vol. 44, pp.
3044–3055, Nov. 1998.

[13] N. Merhav, “On optimum parameter modulation-estimation from a
large deviations perspective,” IEEE Transactions on Information The-
ory, vol. 58, pp. 7215–7225, December 2012.

[14] ——, “Exponential error bounds on parameter modulation-estimation
for discrete memoryless channels,” IEEE Transactions on Information
Theory, vol. 60, pp. 832–841, February 2014.

[15] ——, “Data processing inequalities based on a certain structured class
of information measures with application to estimation theory,” IEEE
Transactions on Information Theory, vol. 58, pp. 5287–5301, July 2012.

[16] J. Ziv and M. Zakai, “Some lower bounds on signal parameter estima-
tion,” IEEE Transactions on Information Theory, vol. 15, pp. 386–391,
November 1969.

[17] D. Chazan, M. Zakai, and J. Ziv, “Improved lower bounds on sig-
nal parameter estimation,” IEEE Transactions on Information Theory,
vol. 15, pp. 386–391, November 1969.

[18] K. Bell, Y. Steinberg, Y. Ephraim, and H. Van Trees, “Extended ziv-
zakai lower bound for vector parameter estimation,” IEEE Transactions
on Information Theory, vol. 43, pp. 624–637, March 1997.

[19] J. Schalkwijk and L. Bluestein, “Transmission of analog waveforms
through channels with feedback,” IEEE Transactions on Information
Theory, vol. 13, pp. 617–619, October 1967.

[20] J. Omura, “Optimum linear transmission of analog data for channels
with feedback,” IEEE Transactions on Information Theory, vol. 14, pp.
38–43, January 1968.

[21] J. Schalkwijk, “A coding scheme for additive noise channels with
feedback–II: Band-limited signals,” IEEE Transactions on Information
Theory, vol. 12, pp. 183–189, April 1966.



Bibliography 107
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