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Content-Centric Opportunistic Networking:
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Abstract—Mobile users are envisioned to exploit direct com-
munication opportunities between their portable devices, in order
to enrich the set of services they can access through cellular or
WiFi networks. Sharing contents of common interest or providing
access to resources or services between peers can enhance a
mobile node’s capabilities, offload the cellular network, and
disseminate information to nodes without internet access. Interest
patterns, i.e. how many nodes are interested in each content
or service (popularity), as well as how many users can provide
a content or service (availability) impact the performance and
feasibility of envisioned applications. In this paper, we establish
an analytical framework to study the effects of these factors
on the delay and success probability of a content/service access
request through opportunistic communication. We also apply our
framework to the mobile data offloading problem and provide
insights for the optimization of its performance. We validate our
model and results through realistic simulations, using datasets of
real opportunistic networks.

I. INTRODUCTION

O
PPORTUNISTIC or Delay Tolerant Networks (DTNs)

consist of mobile devices (e.g. smartphones, laptops) that

can exchange data using direct communication (e.g. Bluetooth,

WiFi Direct) when they are within transmission range. While

initially proposed for communication in extreme environments,

the proliferation of “smart” mobile devices has led researchers

to consider opportunistic networks as a way to support existing

infrastructure and/or novel applications, like file sharing [1],

[2], crowd sensing [3], [4], collaborative computing [5], [6],

offloading of cellular networks [7], [8], [9], etc.

This trend is also shifting the focus from end-to-end to

content-centric communications. Some content- centric ap-

plications for which opportunistic networking has been con-

sidered are: (i) content sharing [1], [10], [11]: the source(s)

of a "content" (e.g. multimedia file, web page) might want

to distribute it (e.g. user generated content) or is willing to

share it with other nodes (e.g. content downloaded earlier);

(ii) service or resource access [5], [6]: nodes offer access

to resources (e.g. Internet access) or services (e.g. computing

resources); (iii) mobile data offloading [7], [8], [9]: the cellular

network provider, instead of serving separately each node

requesting a given "content" (e.g. a popular video, or software
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update), distributes a few copies of the "content" in some relay

nodes (or holders) and they can further forward it to any other

node that makes a request for it.

The performance of these mechanisms highly depends on

who is interested, in what, and where it can be found (i.e.

which other nodes have it). While the effect of node mobility

has been extensively considered (e.g. [1], [10], [12]) content

popularity has been mainly considered from an algorithmic

perspective (e.g [9], [11]), and in the context of a specific

application. Despite the inherent interest of these studies, some

questions remain: Would a given allocation policy work well

in a different network setting? Are there interest patterns that

would make a scheme generally better than others? Key factors

like content popularity and content availability might impact

the performance or even decide the feasibility of a given

application altogether. In this paper, we try to provide some

initial insight into these questions, by contributing along the

following key directions:

• We propose a simple analytical framework that is ap-

plicable to a range of mobility and content popularity

patterns seen in real networks; to our best knowledge, this

is the first application-independent effort in this direction

(Section II).

• We provide closed form expressions for important metrics

that require few statistics about the aggregate node mobil-

ity and content popularity; these results facilitate online

performance prediction and protocol tuning, compared

to approaches requiring detailed per node statistics, as

e.g. [9] (Section III).

• While a detailed application-specific optimization is be-

yond the scope of this paper, we demonstrate how our

analysis can be applied to an example application, mobile

data offloading, and can help optimize its performance in

a generic setting (Section IV).

Finally, we discuss related work in Section V, and conclude

our paper in Section VI.

II. NETWORK MODEL

A. Mobility Model

We consider a network N , where N nodes move in an

area, much larger than their transmission range. Data packet

exchanges between a pair of nodes can take place only when

they are in proximity (in contact). Hence, the time points,

when the contact events take place, and the nodes involved,

determine the dissemination of a message.
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We assume that the sequence of the contact events between

nodes i and j is given by a random point process with rate

λij
1. Analyses of real-world traces suggest that the times

between consecutive contacts for a given pair can often be

approximated (completely or in the tail) as either exponen-

tially [13], [14] or power-law (e.g. pareto) distributed [15].

Both distributions can be described with a main parameter λij

(the contact rate), and our analysis will be applied to both.

Hence, we can describe the network N with the contact

(or meeting) rates matrix Λ = {λij}. Depending on the

underlying mobility process, there might be large differences

between the different λij values in this matrix. Furthermore, it

is often quite difficult, in a DTN context, to know Λ exactly, or

estimates might be rather noisy. For these reasons, we consider

the following simple model for Λ:

Assumption 1. The contact rates λij are drawn from an

arbitrary distribution with probability density function fλ(λ)
with known mean µλ and variance σ2

λ (CVλ = σλ

µλ
).

By choosing the right function fλ the above model can

capture heterogeneity in the pairwise contact rates, or noise

in the estimates. In practice, one would fit the empirical

distribution observed in a given measurement trace with an

f̂λ and use it in the analysis.

B. Content Traffic Model

We assume that each node might be interested in one or

more “contents”. A content of interest might refer to (i) a

single piece of data (e.g. a multimedia file, a google map) [7],

(ii) all messages/data belonging to a category of interests (e.g.

local events, financial news) [2], [16], (iii) updates and feeds

(e.g. weather forecast, latest news) [17], etc.

A number of content-sharing applications and mechanisms

have been proposed in previous literature, from publish-

subscribe mechanisms to “channel”-based sharing and device-

to-device offloading, etc., (e.g. [2], [3], [4], [17]). To proceed

with our analysis we need to setup a simple model of con-

tent/service access that can yet capture different (but of course

not all) content-centric applications and approaches.

The main notation we use in our model and analysis is

summarized in Table I.

1) Content Popularity: We assume that when a node is

interested in a content or service, it queries other nodes it

directly encounters for it. We denote the event that a node

i ∈ N is interested in a contentM (or, equivalently, i requests

M) as: i→M. We further denote the set of all the contents

that nodes are interested in, as: M = {M : ∃i ∈ N , i→M}.
|M| = M , where | · | denotes the cardinality of a set.

Definition 1 (Content Popularity). We define the popularity of

a contentM as the number of nodes N
(M)
p that are interested

in it2:

N (M)
p = |C(M)

p |, where C(M)
p = {i ∈ N : i→M} (1)

1We ignore the contact duration and assume infinite bandwidth; assumptions
that are common (e.g. [1], [9]) and orthogonal to the problem we consider
here.

2This could be an average, calculated over some time window.

We further denote the percentage of contents with a given

popularity value n as

Pp(n) =
1

M

∑

M∈M

I
N

(M)
p =n

, n ∈ [0, N ] (2)

where I
N

(M)
p =n

= 1 when N
(M)
p = n and 0 otherwise.

In other words, Pp(n) defines a probability distribution over

the different contents and associated popularities. In practice,

it can be chosen according to common practices (e.g. skewed,

pareto) [1], [9], [11], or be fitted to real data, if available.

2) Content Availability: We assume that a request for a

content or service is completed, when (and if) a node that holds

(a copy of) the requested content is directly encountered. We

denote the event that a node i holds (a copy of) a contentM
as i←M, and we define the availability N

(M)
a of a content

M as

Definition 2 (Content Availability). The availability of a

content messageM is defined as the number of nodes N
(M)
a

that hold a copy of it.

N (M)
a = |C(M)

a |, where C(M)
a = {i ∈ N : i←M} (3)

The availability of a given content might often (although

not always) be correlated with the popularity of that content.

A cellular network provider might allocate more holders for

popular contents [9]. In a content-sharing setting, where some

nodes might be more willing than others to maintain and share

(“seed”) a content after they’ve downloaded and “consumed”

it, popular content will end up being shared by more nodes.

We will model such correlations in a probabilistic way, as

follows.

Definition 3 (Availability vs. Popularity). The availability of

any content message M is related to its popularity through

the relation

P{N (M)
a = m|N (M)

p = n} = g(m|n) (4)

The above conditional probabilities can describe a wide

range of cases where availability depends on popularity, and

some additional randomness might be present due to factors

like: natural churn in the nodes sharing the content, content-

dependent differences in the sharing policies applied by nodes,

estimation noise, etc. Some special cases of this model include:

(i) uncorrelated availability, where g(m|n) ≡ g(m); (ii)

deterministic availability, where:

N (M)
a = ρ

(

N (M)
p

)

⇔ g(m|n) =

{

1, m = ρ(n)
0, otherwise

where ρ(n) : [1, N ] → [0, N ] can be an arbitrary function.

One such example could be a deterministic approximation of

g(m|n) with its average value, namely ρ(n) = ḡ(n) ≡∑m m·
g(m|n).

III. ANALYSIS OF CONTENT REQUESTS

We will now analyze how different popularity, availability,

and mobility patterns (possibly arising from different applica-

tions, policies, and network settings) affect key metrics like:
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TABLE I: Important Notation

MOBILITY (Section II-A)

λij Contact rate between nodes i and j

fλ(λ) Contact rates distribution

µλ, σ2
λ Mean value/ variance of contact rates, CVλ =

σλ
µλ

CONTENT TRAFFIC (Section II-B)

i→M Node i is interested / requests contentM
M Set of contents in the network, |M| = M .

N(M)
p Popularity of contentM Def. 1

C(M)
p Set of nodes interested in contentM Def. 1

Pp(n) Probability distribution of content popularity Eq. (2)

i←M Node i holds a copy of contentM

N(M)
a Availability of contentM Def. 2

C(M)
a Set of nodes that hold a copy of contentM Def. 2

g(m|n) Availability - Popularity relation Def. 3

ρ(n) Deterministic case for g(m|n)
g(n) The average value of g(·|n)
ANALYSIS (Section III-A)

P req.
p (n) Popularity distribution of a random request Lemma 3.1

P req.
a (n) Availability distribution of a random request Lemma 3.2

Tij Time of next meeting between nodes i and j

TM Content access time

XM Sum of meeting rates of j and nodes ∈ C(M)
a Eq. (6)

(i) the delay to access a content of interest, (ii) the probability

to retrieve a content before a deadline. A key parameter for

these metrics is the number of holders for the requested content

(availability). The higher this number, the sooner a requesting

node will encounter one of them.

While content availability might sometimes be time depen-

dent [11], or the content holders might be chosen based on

their mobility properties [9], we first make two additional

assumptions that allow us to derive simple, useful expressions.

In Section III-C, we relax both these assumptions.

Assumption 2. The popularity N
(M)
p and availability N

(M)
a

of a contentM do not change over time.

Assumption 3. The set of requesters C(M)
p and holders C(M)

a

of a contentM are independent of node mobility.

Assumption 2 is valid (or a good approximation), for

example, when the number of holders is chosen by the cellular

operator [8], [9] or content provider, and other nodes cannot

act as holders or do not have incentives to do so. It is also

valid when a given service (e.g. Internet access, or specific

sensor) is offered only by a certain number of devices [6],

or the “content” refers to a channel or category and not a

particular file [17]. Nevertheless, if a content is disseminating

and new nodes are willing to share it [7], then its availability

might change over time.

Assumption 3 is a reasonable approximation when a mobil-

ity oblivious allocation policy is considered (e.g. [11], or the

homogeneous algorithm of [9]) or when there is no knowledge

of the interests-mobility correlation, if any. Nevertheless, there

exist scenarios where who holds what content might depend

on the contact rates with other nodes [10], [9].

A. Preliminary Analysis

Assume we observe the network for a long time, during

which a large number of requests have been made. Assume

further that we pick one such request randomly, which happens

to be for contentM, and we want to predict its performance.

We need to answer the following two questions:

Q.1 What is the popularity ofM?

Q.2 How fast does a requesting node meetM’s holders?

Q.1 is needed to predict the availability for M, which

according to Assumption 2 does not depend on the exact time

of the request. Given the availability ofM, Q.2 will estimate

the (sum of) contact rates between the requesting node and

the holders, according to Assumptions 1 and 3.

Answering Q.1

It is easy to see that the popularity of M should be

proportional to Pp(n): the higher the number of different

contents with a popularity value n, the higher the chance that

M will be of popularity n. However, the higher the popularity

of a content, the more the requests made for it. Hence, a first

important observation is that the popularity of the content of

such a random request is not distributed as Pp(n) but is also

proportional to the popularity value n.

Consider a stylized example, where only two contents exist

in the network, content A with popularity value 10 and content

B with popularity value 1. Hence, “half” the contents are of

high popularity (10), and “half” of low (1), or in other words

Pp(10) = Pp(1) = 1
2 . However, if we observe the network for

a long time, 10 times more requests will be made, on average,

for content A. Consequently, if we select a request randomly,

there is a 10× higher chance that it will be for content A,

that is, for the content of popularity 10. Normalizing to have

a proper probability distribution gives us the following lemma.

Lemma 3.1. The probability that a random request is for a

content of popularity equal to n is given by

P req.
p (n) =

n

Ep[n]
· Pp(n)

where Ep[n] =
∑

n n · Pp(n) is the average content popular-

ity 3.

Answering Q.2

The answer to question Q.2 consists of two separate steps:

(i) we calculate the number of holders ofM, and then (ii) we

calculate how fast the requesting node can meet these holders.

Towards answering (i), Lemma 3.2 maps the popularity of the

content involved in a random request (derived in Lemma 3.1)

to the number of holders for this content. This number is a

random variable dependent both on the popularity distribution

Pp(n), and on the availability function g(m|n).

Lemma 3.2. The probability that a random request is for a

content of availability equal to m is given by

P req.
a (m) =

Ep[n · g(m|n)]

Ep[n]

Proof. For a random request for contentM, using the property

of conditional expectation, we can write [18]:

P req.
a (m) =

∑

n

P{N (M)
a = m|N (M)

p = n} · P req.
p (n)

3We use subscript p to denote an expectation over the popularity distribution
Pp(n), and n denotes the random popularity values.
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TABLE II: Performance Metrics when fλ ∼ Gamma with

µλ, CVλ and Pp(n) ∼ P areto(n0, α = 2).

ρ(n) = c · n E[TM] = 1
µλ·CV 2

λ

[

c·n0

CV 2
λ

· ln

(

1

1−
CV 2

λ
c·n0

)

− 1

]

ρ(n) = c · ln(n) P {TM ≤ T T L} = 1 − 1

(1+ln(γ))·γln(n0)

where γ = (1 + µλ · CV 2
λ · T T L)

c

CV 2
λ

where P req.
p (n) is defined in Lemma 3.1. Substituting, from

Def. 3 and Lemma 3.1, the above terms, we successively get

P req.
a (m) =

∑

n

g(m|n) · n

Ep[n]
· Pp(n)

=

∑

n g(m|n) · n · Pp(n)

Ep[n]
=

Ep[n · g(m|n)]

Ep[n]

which proves the Lemma.

Having computed the statistics for the content availability,

we can now calculate how fast the requesting node, say j,

meets any of the holders i (i.e. nodes i ∈ C(M)
a ). As discussed

in Section II-A, the inter-contact intervals are shown to be

either exponentially or pareto distributed:

Exponential Inter-Contact Times. Let Tij denote the inter-

contact times between node j and a node i ∈ C(M)
a , and let Tij

be exponentially distributed with rate λij . If we denote with

TM the first time until j meets any of the nodes i ∈ C(M)
a (and,

thus, accesses the content), then: TM = min
i∈C

(M)
a
{Tij},

i.e. TM is distributed as a minimum of exponential random

variables, and it holds that [18]:

TM ∼ exp (XM) ⇔ P{TM > t} = e−XM·t (5)

where

XM =
∑

i∈C
(M)
a

λij (6)

Pareto Inter-Contact Times. Inter-contact times between

node j and a node i ∈ C(M)
a are pareto distributed with shape

and scale parameters αij and t0, respectively:

Tij ∼ pareto(αij)⇔ P{Tij > t} =
(

t0

t

)αij
(7)

Then, it can be shown for TM = min
i∈C

(M)
a
{Tij} that

(Appendix A):

TM ∼ pareto(AM)⇔ P{TM > t} =
(

t0

t

)AM

(8)

where AM =
∑

i∈C
(M)
a

αij .

Remark: In this case the contact rates will be λij =
1

E[Tij ] = 1
t0
·
(

1− 1
αij

)

, αij > 1. However, for simplicity,

we can use the parameters αij instead of the rates λij , and,

correspondingly, a distribution fα(α), instead of fλ(λ).
Clearly, knowing XM (resp. AM) is needed to proceed

with the desired metric derivation. Based on the preceding

discussion, XM (resp. AM) is a random variable that depends

on: (i) the number of content holders m (i.e. the cardinality

of set C(M)
a in Eq.(6)), and (ii) the meeting rates with the

holders. Applying Assumption 3, it holds that, conditioning

on m, XM (Eq. (6)) is a sum of m i.i.d. random variables

λij ∼ fλ(λ), i.e

XM ∼ fmλ(x) = (fλ ∗ fλ · · · ∗ fλ)m , (9)

where ∗ denotes convolution, and mean value [18]:

E[XM|N (M)
a = m] = Emλ[x] = m · µλ (10)

Similarly, for Pareto intervals (fa(α), µα):

AM ∼ fmα(x) = (fα ∗ · · · ∗ fα)m , Emα[x] = m · µα

For brevity, the analysis of the following section will refer

to the case of exponential inter-contact times. The analysis for

the Pareto case is similar; we will present the corresponding

results in Section III-B3.

B. Performance Metrics

We consider two main performance metrics: the average

delay and delivery probability. Based on the analysis of

Section III-A, we derive results under generic content traffic

(i.e. Pp(n) and g(m|n)) and mobility (i.e. fλ(λ)) patterns.

1) Content Access Delay:

Result 1. The expected content access delay can be computed

with the expression

E[TM] =
1

Ep[n]
·Ep

[

n ·
∑

m

Emλ

[

1

x

]

· g(m|n)

]

Proof. The time TM a node j needs to access a content M
is exponentially distributed with rate XM. However, XM is

a random variable itself, distributed with fmλ(x) (Eq. (9)).

Thus, we can write for the expected content access delay:

E[TM] =
∑

m

E[TM|N
(M)
a = m] · P

req.
a (m)

=
∑

m

∫

E[TM|XM = x, N
(M)
a = m] · fmλ(x)dx · P

req.
a (m)

=
∑

m

∫

1

x
· fmλ(x)dx · P

req.
a (m) (11)

The last equality follows from the fact that the expectation

of an exponential random variable with rate x is 1
x
.

Expressing the integral in Eq. (11) as an expectation over

the fmλ(x) and substituting P req.
a (m) from Lemma 3.2, gives

E[TM] =
∑

m

Emλ

[

1

x

]

· Ep[n · g(m|n)]

Ep[n]

=
1

Ep[n]
·
∑

m

Emλ

[

1

x

]

·Ep[n · g(m|n)] (12)

Rearranging the expectations and summation in Eq. (12) we

get the expression of Result 1.

If the functions fλ(λ), g(m|n) and Pp(n) are known,

the expected delay E[TM] can be computed directly from

Result 1, as shown in the following example.
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Example Scenario: The contact rates (fλ) follow a gamma

distribution, as suggested in [19], with µλ and CVλ. Content

popularity Pp(n) is Pareto distributed, as observed in [20],

with scale and shape parameters n0 and α = 2, respectively.
Finally, we consider a (deterministic) allocation of holders,

ρ(n) = c·n (see Section II-B2). Then a closed form expression

for E[TM ] is given in the first row of Table II.

However, in a real implementation, it might not be always

possible to know the exact distributions of the contact rates

(fλ) and/or the availabilities (g(m|n)), needed to compute

the expression of Result 1. In the following theorem, we

derive an expression for E[TM ] that requires only the average

statistics (which are much easier to estimate or measure in a

real scenario), namely (i) the mean value of the contact rates,

µλ, and (ii) the average availability for contents of a given

popularity, g(n).

Theorem 3.3. A lower bound for the expected content access

delay is given by

E[TM] ≥ 1

µλ · Ep[n]
· Ep

[

n

g(n)

]

Proof. In Result 1 we can express Emλ

[

1
x

]

as Emλ[h(x)],
where h(x) = 1

x
. Since h(x) is a convex function, applying

Jensen’s inequality, i.e. h (E[x]) ≤ E[h(x)], gives

Emλ

[

1

x

]

≥ 1

Emλ[x]
=

1

m · µλ

(13)

where, in the equality, we used Eq. (10).

Substituting Eq. (13) in the expression of Result 1, gives

E[TM] ≥ 1

µλ · Ep[n]
· Ep

[

n ·
∑

m

1

m
· g(m|n)

]

(14)

The sum in Eq. (14) is the expectation over g(·|n), i.e.

∑

m

1

m
· g(m|n) = Eg

[

1

m

]

(15)

Applying, as before, Jensen’s inequality, we get

∑

m

1

m
· g(m|n) = Eg

[

1

m

]

≥ 1

Eg[m]
=

1

g(n)
(16)

where we used for Eg[m] the notation g(n).
Combining Eq. (16) and Eq. (14), the expression of the

theorem follows directly.

2) Content Access Probability:

One often needs to also know the probability that a node can

access a content by some deadline, i.e. P{TM ≤ T T L}. E.g,
a node might lose its interest in a content (e.g. news) after

some time, or in an offloading scenario a node might decide

to access a content directly to the base station.

Result 2. The probability a content to be accessed before a

time T T L can be computed with the expression

P{TM ≤ T T L} = 1− Ep

[

n ·∑m Emλ

[

e−x·T T L
]

g(m|n)
]

Ep[n]

Proof. Conditioning on the values of N
(M)
a and XM, as in

Eq. (11), we can write:

P {TM ≤ T T L} =

=
∑

m

∫

P {TM ≤ T T L|XM = x, N
(M)
a = m} · fmλ(x)dx · P

req.
a (m)

= 1 −
∑

m

∫

e
−x·T T L · fmλ(x)dx · P

req.
a (m) (17)

where the last equality follows because TM is exponentially

distributed with rate XM = x. After some similar steps as in

Theorem 3.3, the final result follows.

The expression of Result 2 for the example scenario of

Section III-B1, with a different allocation function ρ(n) =
c · ln(n), is given in the second row of Table II.

Theorem 3.4. An upper bound for the probability to access

a content by a time T T L is given by

P{TM ≤ T T L} ≤ 1− 1

Ep[n]
·Ep

[

n · e−g(n)·µλ·T T L
]

Proof. The bound follows easily by observing that h(x) =
e−x·T T L is a convex function, and applying Jensen’s inequal-

ity and the methodology of Theorem 3.3.

3) Pareto Inter-Contact Times:

When inter-contact times between node pairs are better

approximated with a pareto distribution (see also Eq. (7)) and

the distribution of the different shape parameters αij is fα(α),
then the expressions for the performance metrics (i.e. expres-

sions corresponding to Results 1 and 2, and Theorems 3.3

and 3.4) are given in Table III. The detailed proofs for the

expressions can be found in Appendix B.

C. Extensions

In this section, we study how the results of Section III-B can

be modified, when we remove the Assumptions 2 and 3. We

state here only the main findings and sketches of the proofs;

the detailed proofs can be found in the Appendices.

1) Popularity / Availability Time Dependence:

Let us assume a scenario where, initially, some nodes hold

some content items (e.g. data files), in which some other nodes

are interested. This can be, for example, a content sharing

scenario with contents being, e.g., some google maps. When

a node interested in a content item, meets a holder and gets

the content, it can hold it in its memory and act as a holder

too. Specifically, we describe such scenarios as:

Definition 4.

I. When a requester accesses a content, acts as a holder for

it.

II. The initial content popularity and availability patterns are

given by Pp(n) and g(m|n).
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TABLE III: Performance metrics for Pareto distributed Inter-Contact times

Exact expressions Bounds

E[TM] t0 +
t0

Ep[n]
· Ep

[

n ·
∑

m

Emα

[

1

x − 1

]

· g(m|n)

]

t0 +
t0

Ep[n]
· Ep

[

n

g(n) · µα − 1

]

P {TM ≤ T T L} 1 −
1

Ep[n]
· Ep

[

n ·
∑

m

Emα

[(

t0

T T L

)x]

· g(m|n)

]

1 −
1

Ep[n]
· Ep

[

n ·

(

t0

T T L

)g(n)·µα

]

Fig. 1: Markov Chain for the dissemination of a content with

initial popularity and availability n and m, respectively.

Result 3. Under time changing availability / popularity

(Def. 4), the expected content access delay is approximately

given by

E[TM] =
1

µλ ·Ep[n]
·Ep

[

ln

(

1 +
n

g(n)

)]

Sketch of proof: Let us consider a content M of initial

popularity N
(M)
p (0) = n and availability N

(M)
a (0) = m.

When the first requester accesses the content, the number of

holders will increase to m + 1 and the remaining requesters

will be n − 1. Building a Markov Chain as in Fig. 1, where

each state denotes the number of holders, it can be shown

for the expected delay of moving from state m + k to state

m+k+1, k ∈ [0, 1], that it holds E[Tk,k+1] ≈ 1
(m+k)·(n−k)·µλ

.

Computing the times E[Tk,k+1] and averaging over all the

contents, gives the expected delay.

The model of Def. 4 can be further extended, e.g. for scenar-

ios where nodes might act as holders (with some probability)

or holders can also drop some contents. We defer such a study

as a part of a future work.

2) Mobility Dependent Allocation:

Definition 5 (Mobility Dependent Allocation). The probability

πij a node i to be a holder for a content in which a node

j is interested, is related to their contact rate λij such that

πij = π(λij), where π(·) is a function from R
+ to [0, 1].

Result 4. Under Def. 5, Theorems 3.3 and 3.4 and Result 3

hold if we replace µλ with µ
(π)
λ , where

µ
(π)
λ =

Eλ[λ · π(λ)]

Eλ[π(λ)]

where Eλ[·] denotes an expectation taken over the contact

rates distribution fλ(λ) (Assumption 1).

Sketch of proof: Since the requesters-holders contact rates

are mobility dependent, the contact rates between them are not

distributed with the contact rates distribution fλ(λ), but with
a modified version of it, i.e. with a distribution:

fπ(λ) =
1

Eλ[π(λ)]
· π(λ) · fλ(λ)

Hence, Eq. (9) and Eq. (10) need to be modified as:

XM ∼ fmπ(x) = (fπ ∗ fπ · · · ∗ fπ)m

E[XM|N (M)
a = m] = Emπ[x] = m · Eλ[λ · π(λ)]

Eλ[π(λ)]
= m · µ(π)

λ

Example Scenario: The holders of a content M are

selected taking into account their contact rates with the re-

questers, as following: Each node i (candidate to be a holder)

is assigned a weight wi =
∏

j∈C
(M)
p

λij . Using such weights,

the selection of holders that rarely meet the requesters is

avoided. Then, each node is selected to be one of the N
(M)
a

holders with probability pi = wi
∑

i
wi

. With respect to Def. 5,

it turns out that this mechanism is (approximately) described

by π(λ) = c · λ. Substituting π(λ) in Result 4, gives

µ
(π)
λ =

Eλ[λ · π(λ)]

Eλ[π(λ)]
=

Eλ[λ2]

Eλ[λ]
= µλ · (1 + CV 2

λ ) (18)

D. Model Validation

As a first validation step, we compare our theoretical

predictions to synthetic simulation scenarios conforming to the

models of Section II, in order to consider (a) various mobility

and content traffic patterns, and (b) large networks.

Simulation Scenarios: We assign to each pair {i, j} a

contact rate λij , which we draw randomly from a distribution

fλ(λ), and create a sequence of contact events (Poisson

process with rate λij)
4. Then, we create M contents and assign

to each of them a popularity value (N
(M)
p ), drawn from the

distribution Pp(n). According to the given function g(m|n),

we assign the availability values (N
(M)
a ). Finally, for each

content M, we randomly choose the N
(M)
p nodes that are

interested in it and its N
(M)
a holders.

Mobility / Popularity patterns: In most of the scenarios

we present, we use the gamma distribution for the contact

rates (i.e. fλ(λ)), since it has been shown to match well

characteristics of real contact patterns [19]. Also, content

popularity in mobile social networks has been shown to follow

4We present here only scenarios where the inter-contact times are expo-
nentially distributed. Similar behavior has been observed in simulations of
scenarios with Pareto distributed inter-contact-times.
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(b) P {TM ≤ T T L}

Fig. 2: (a) E[TM] and (b) P{TM ≤ T T L} in scenarios with

varying content popularity (α: shape parameter) and ρ(n) =
0.2 · n.

TABLE IV: Simulation results for scenarios where g(m|n) ∼
Binomial with g(n) = 0.2 · n, and T T L = 0.05.

E[TM] (x103) α = 0.5 α = 1 α = 2 α = 3
lower bound 22.3 31.6 52.2 66.4
simulation (CVλ = 0.5) 23.9 34.8 57.3 75.0
simulation (CVλ = 1) 25.0 36.2 61.9 81.4

P {TM ≤ T T L} α = 0.5 α = 1 α = 2 α = 3
upper bound 0.89 0.81 0.66 0.56
simulation (CVλ = 2) 0.87 0.79 0.62 0.52

a power-law distribution, e.g. [20]. Therefore, we select Pp(n)
to follow Discrete (Bounded) Pareto or Zipf distributions,

similarly to the majority of related works [11], [9], [1].

In Fig. 2 we present the simulation results, along with our

theoretical predictions, in scenarios of N = 10000 nodes

with varying mobility and content popularity patterns. The

mean contact rate is µλ = 1 and content popularity follows

a Bounded Pareto distribution with shape parameter (i.e.

exponent) α and n ∈ [50, 1000]. The availability function

is ρ(n) = 0.2 · n (i.e. deterministic). An almost perfect

match between simulation results (markers) and the theoretical

predictions (dashed lines) of Results 1 and 2 can be observed.

In Fig. 2(a), the lower bound (continuous line) of Theorem 3.3

is very tight for low mobility (i.e. small CVλ) and/or content

popularity (i.e. small α) heterogeneity. For the delivery prob-

ability P{TM ≤ T T L} (Fig. 2(b)), we present the results

for two different values of T T L in scenarios with CVλ = 2.
Here, the upper bound (continuous line) of Theorem 3.4 is very

close to the simulation results, despite the very heterogeneous

mobility.

In Table IV we present results of the above scenarios,

where the availability - popularity correlation g(m|n) follows

a binomial distribution with mean g(n) = 0.2 · n. It can be

seen that the bounds are tight in most of the scenarios, though

(as expected) less tight than in the deterministic g(m|n) case

(i.e. ρ(n)).
In Fig. 3(a) we compare Result 3 with simulations on

scenarios conforming to Def. 4: Pp(n) is a Bounded Pareto

distribution with α = 2, and fλ(λ) ∼ Pareto. It can be seen

that our theoretical prediction (approximation) achieves good

accuracy even in these very heterogeneous mobility scenarios.

Results for scenarios with mobility-dependent availability

(Def. 5) are presented in Fig. 3(b). Pp(n) is selected as before

and fλ(λ) ∼ Gamma with µλ = 1, CVλ = 0.5. The allocation

2 4 6 8 10 12 14 16
0.02

0.03

0.04

0.05

0.06

CV
λ

E
[T

M
]

 

 
simulations
theory (approximation)

(a) E[TM]

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

α (shape parameter)

P
{ 

T
M

 ≤
 T

T
L

 }

 

 

 TTL  =0.01
 TTL  =0.05
upper bound

(b) P {TM ≤ T T L}

Fig. 3: (a) E[TM] in scenarios under Def. 4 and (b) P{TM ≤
T T L} in scenarios under Def. 5. ρ(n) = 0.2 · n.

of holders is made as in the example in Section III-C2. The

upper bounds of Result 4 are tight in all scenarios, similarly

to the case without mobility dependence (Fig. 2(b)).

Finally, we need to mention that we have also performed a

large number of other scenarios, with similar conclusions.

IV. CASE STUDY: MOBILE DATA OFFLOADING

The results of Section III can be used to predict the

performance of a given content allocation policy or content-

sharing scheme. In this section, we show how these results

could be also used to design / optimize policies. We focus

on an application that has recently attracted attention, that of

mobile data offloading using opportunistic networking [7], [8],

[9]. Nevertheless, the same methodology applies for a range

of other applications where the number of content/service

providers must be chosen.

In a mobile data offloading scenario, the cellular network

provider distributes content copies only to some of the nodes

interested in this content (holders), in order to reduce the

cellular traffic (possibly offering some incentives to the holder

nodes). The remaining (interested) nodes must then retrieve the

content from the designated holders during direct encounters.

A tradeoff is involved between the amount of traffic offloaded

and the average delay for non-holders. In some cases, an

additional QoS constraint might exist: if the delay to access a

content exceeds a T T L, a requesting node will download it

from the infrastructure [7], [8], [9].

Hence, the objective in offloading optimization problems is

how the cellular network provider should choose the set of

holders for each content in order to optimize a performance

metric, under a given constraint (e.g. energy or buffer size)

and a given popularity distribution Pp(n).

We study cases with and without QoS constraints in Sec-

tions IV-A and IV-B, respectively. For simplicity, we use the

expressions of Theorems 3.3 and 3.4 as approximations for

E[TM] and P{TM ≤ T T L}. Since, these expressions imply

that (a) the exact mobility patterns are not known (i.e. only

µλ is needed) and (b) contents with the same popularity are

equivalent, our goal is to select the number of holders for each

content with a given popularity. In other words, we try to find

the optimal allocation function g(m|n).
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A. Case 1: no QoS constraints

When no QoS constraints exist, the cellular operator decides

the maximum amount of traffic that it wishes to serve directly

over the infrastructure. Under this constraint, which can be

translated as a constraint on the number of holders for different

contents, the objective is to minimize the expected delay

E[TM]. The following result, formalizes this optimization

problem and provides with the optimal solution for g(m|n).

Result 5. The minimum expected content access delay, under

the constraint of an average number of cM copies per content,

i.e.:

min{E[TM]} s.t.
∑

M

N (M)
a = M · cM , N (M)

a ≥ 0

can be achieved when the allocation function, g(m|n), is

deterministic and equal to

ρ∗(n) =
cM

Ep[
√

n]
· √n

Proof. Using as an approximation for E[TM] the expression

of Theorem 3.3, we can write

E[TM] = 1
µλ·Ep[n] ·Ep

[

n
g(n)

]

Jensen’s inequality used in Eq. (16), becomes equality when

g(m|n) is deterministic. This suggests that among all the

functions g(m|n) with the same average value g(n), the

minimum delay can be achieved in the case: ρ(n) = g(n).
Thus, the E[TM] minimization problem becomes equivalent

to

min{Ep

[

n

ρ(n)

]

} =
∑

n

n

ρ(n)
· Pp(n) =

∑

n

n

ρn

· Pp(n) (19)

where we expressed the expectation as a sum and denoted

ρn = ρ(n).
Moreover, we can express the content copies constraint as

cM =

∑

M
N(M)

a

M
= Ep[ρ(n)] =

∑

n ρn · Pp(n) (20)

Using Eq. (19) and Eq. (20), the optimization problem be-

comes

min
ρ
{
∑

n

n

ρn

· Pp(n)} s.t.
∑

n

ρn · Pp(n) = cM (21)

where ρ denotes the vector with components ρn.

The optimization problem of Eq. (21) is convex and, thus,

it can be solved with the method of Lagrange multipliers [21].

Hence, we need to find the values of ρ for which it holds that

∇
(

∑

n

n

ρn

· Pp(n)

)

+∇λ0

(

∑

n

ρn · Pp(n)− cM

)

= 0

where λ0 is the langrangian multiplier. Here, the constraint

ρn ≥ 0 needs also to be taken into account. However, it is

proved to be an inactive constraint (the solution satisfies it)

and thus we omit it at this step for simplicity. Similarly, we

assume a large enough network, i.e. always holds ρn ≤ N .

The differentiation over ρn gives

ρn =
1√
λ0

· √n (22)

Substituting Eq. (22) in the constraint expression
∑

n ρn ·
Pp(n) = cM (Eq. (21)), we can easily get

√

λ0 =

∑

n

√
n · Pp(n)

cM
=

Ep[
√

n]

cM
(23)

Then, substituting Eq. (23) in Eq. (22), gives

ρ(n) = ρn =
cM

Ep[
√

n]
· √n (24)

Finally, the values of Eq. (24) satisfy the Karush-Kuhn-Tucker

conditions, which means that the solution of Eq. (24) is a

global minimum [21].

Result 5 is a generic result, since it holds under any content

popularity pattern. We also note that an allocation policy

of ρ(n) ∝ √n has also been shown to achieve optimal

results in (conventional) peer-to-peer networks [22]. This is

an interesting finding, given the inherent differences between

the two settings (e.g. node mobility).

Finally, our result is also consistent in scenarios with mobil-

ity dependent holders allocation. For example, after choosing

the number of copies for a content (Result 5), the selection

of holders can be made, taking into account mobility utility

metrics, e.g. meeting frequency [10] or node centrality [1].

B. Case 2: QoS constraints

In cases where a maximum delay T T L is required, the

objective is to minimize the traffic load served by the infras-

tructure. The metric used in related work, e.g. [9], is the data

offloading ratio, Roff., which is defined as the percentage of

content requests that are served by nodes. Since requests are

served by the infrastructure only after the time T T L elapses,

it follows that in our framework: Roff. = P{TM ≤ T T L}.
Hence the optimization problem is equivalent to

max P{TM ≤ T T L} s.t.
∑

M

N (M)
a = M ·cM, N (M)

a ≥ 0

Using the same notation and arguments as in the Section IV-A

and the expression of Theorem 3.4 as an approximation for

P{TM ≤ T T L}, the above optimization problem becomes:

min
ρ(n)
{Ep

[

n · e−ρ(n)·µλ·T T L
]

} s.t. Ep[ρ(n)] = cM (25)

with ρ(n) ≥ 0, or, equivalently:

minρ {∑n n · e−ρn·µλ·T T L · Pp(n)}
s.t.

∑

n ρn · Pp(n) = cM , ρn ≥ 0 (26)

The optimization problem of Eq. (26) is convex. Although a

closed form solution, as in Result 5, cannot be derived5, it can

be solved numerically, using well known methods.

5The difference here is that the constraint ρn ≥ 0 is active.
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Fig. 4: Content access delay E[TM] of different allocation

policies ρ(n) = ck · nk, where ck = cM

Ep[nk]
.

C. Performance Evaluation

To investigate whether the policies suggested as optimal by

our theory indeed perform better, we conducted simulations

on various synthetic scenarios and on traces of real networks,

where node mobility patterns usually involve much more

complex characteristics than our model (Assumption 1).

The results in the majority of scenarios considered have

been encouragingly consistent with our theoretical predictions.

Hence, we only present here a small, representative sample.

Specifically, we consider the following traces coming from

state-of-the-art mobility models or collected in experiments.

TVCM mobility model [23]: Scenario with 100 nodes divided

in 4 communities of unequal size. Nodes move mainly inside

their community and leave it for a few short periods.

SLAW mobility model [24]: Network with 200 nodes moving

in a square area of 2000m (the other parameters are set as in

the source code provided in [24]).

Cabspotting trace [25]: GPS coordinates from 536 taxi cabs

collected over 30 days in San Francisco. A range of 100m is

assumed.

Infocom trace [26]: Bluetooth sightings of 98 mobile and static

nodes (iMotes) collected in an experiment during Infocom

2006.

1) Case 1: no QoS constraints: In each scenario, we

compare different allocation functions ρ(n) = ck · nk, where

ck = cM

Ep[nk] is a normalization factor such that the constraint

Ep[ρ(n)] = cM is satisfied.

In Fig. 4 we present simulation results in scenarios for the

TVCM (Fig. 4(a)) and Cabspotting (Fig. 4(b)) traces. Content

popularity (Pp(n)) follows a Zipf distribution with n ≤ 30
and exponent α = {1, 2, 3}. The availability constraint is set

to cM = 10. It can be seen that the optimal delay E[TM] is
achieved for k = 0.5, as Result 5 predicts (despite the fact that

we used the expression of the lower bound as an approximation

for the expected delay E[TM]).
2) Case 2: QoS constraints: To evaluate the performance

of the allocation function ρ(n) that follows after solving

Eq. (26) (i.e. optimal allocation), we compare the offloading

ratio Roff it achieves with the offloading ratios of the follow-

ing policies:

Random: We randomly select a content and give a copy of it

to a node. We repeat M · cM times.

Square Root: We select ρ(n) ∝ √n (i.e. the allocation that
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(b) Infocom, T T L = 10000

Fig. 5: Offloading Ratio Roff. of different allocation policies

ρ(n).

achieves the minimum expected delay E[TM ]).
Log: We select ρ(n) ∝ log n.

Random policy has been used in related work as a base-

line [9] and square root policy is the optimal policy when the

metric of interest is the content access delay (Section IV-A).

Finally, we observed that the optimal policy (Eq. (26)), in the

scenarios considered, allocated copies only to the 10%− 20%
highest popularity contents. The log policy allocates in a

similar manner the copies (e.g. no copies to contents with

low popularity).

Simulation results on the SLAW and Infocom scenarios are

presented in Fig. 5(a) and 5(b), respectively. The parameters

in these scenarios are: M = 50 messages, Pp ∼ Zipf with

n ∈ [1, 30] and α = 1, total copies M · cM = {50, 100}. As
it can be seen our optimal policy (leftmost bar) achieves the

highest offloading ratio Roff.. The random policy is clearly

inferior than the others. Between square root and log policies,

it is the latter that achieves better performance. These results

indicate that, to maximize Roff., it is better to allocate the

available resources only for popular contents, and serve the

non-popular exclusively through the infrastructure.

V. RELATED WORK

Content-centric applications were introduced in opportunis-

tic networking under the publish - subscribe paradigm [2],

[17], [16], [10], for which several data dissemination tech-

niques have been proposed. In [2], authors propose a mecha-

nism that identifies social communities and the nodes-“hubs”,

and builds an overlay network between them in order to

efficiently disseminate data. SocialCast [16] based on informa-

tion about nodes interests, social relationships and movement

predictions, selects the set of holders. Similarly to the above

approaches, ContentPlace [10] uses both community detection

and nodes social relationships information, to improve the

performance of the content distribution.

Under a different setting, [1], [11] study content sharing

mechanisms with limited resources (e.g. buffer sizes, number

of holders). In [1], authors analytically investigate the data

dissemination cost-effectiveness tradeoffs, and propose tech-

niques based on contact patterns (i.e. λij ) and nodes interests.

Similarly, CEDO [11] aims at maximizing the total content

delivery rate: by maintaining a utility per content, nodes make

appropriate drop and scheduling decisions.
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Recently, further novel content-centric application have

been proposed, like location-based applications [3], [4] and

mobile data offloading [7], [8], [9]. The latter category, due to

the rapid increase of mobile data demand, has attracted a lot

of attention. In the setting of [7], content copies are initially

distributed (through the infrastructure) to a subset of mobile

nodes, which then start propagating the contents epidemically.

Differently, in [8] the authors consider a limited number of

holders, and study how to select the best holders-target-set for

each message. In [9], the same problem is considered, and

(centralized) optimization algorithms are proposed that take

into account more information about the network: namely,

size and lifetimes of different contents, and interests, privacy

policies and buffer sizes of each node.

In the majority of previous studies, although node interests

and content popularity are taken into account, the focus

has been on the algorithms and the applications themselves.

We believe that our study complements existing work, by

providing a common analytical framework for a number of

these approaches that can be used both for predicting the per-

formance of proposed schemes, as well as proposing improved

ones.

VI. CONCLUSION

The increasing number of mobile devices and traffic de-

mand, renders content-centric applications through opportunis-

tic communication very promising. Hence, motivated by the

lack of a common analytical framework, we modeled and

analyzed the effects of content popularity / availability patterns

in the performance of content-centric mechanisms.

As a part of future work we intend to study, in more

detail, extensions of our model and to investigate further

characteristics of content traffic patterns, like traffic locality in

location based social networks, and their performance effects.

APPENDIX A

MINIMUM OF PARETO DISTRIBUTED RANDOM VARIABLES

For the random variable TM = min
i∈C

(M)
a
{Tij}, where

each Tij is a random variable distributed with a Pareto

distribution with scale parameter t0 and shape parameter αij ,

it holds that:

P{TM > t} =
∏

i∈C
(M)
a

P{Tij > t} =
∏

i∈C
(M)
a

(

t0

t

)αij

=

(

t0

t

)

∑

i∈C
(M)
a

αij

(27)

which means that TM follows a Pareto distribution with scale

and shape parameters t0 and AM =
∑

i∈C
(M)
a

αij , respectively

APPENDIX B

PROOFS FOR THE PERFORMANCE METRICS EXPRESSIONS

OF THE PARETO CASE

A. Content Access Delay

The expectation of a Pareto random variable

(pareto(t0, αij)) is t0α
α−1 . Hence, in the derivation of

Eq. (11), one only needs to change the integral in the last

equality as:

E[TM] =
∑

m

∫

x · t0

x− 1
· fmα(x)dx · P req.

a (m) (28)

Substituting P req.
a (m) from Lemma 3.2 and proceeding as in

the exponential case, we subsequently get:

E[TM] =
∑

m

∫

x · t0

x− 1
· fmα(x)dx · Ep[n · g(m|n)]

Ep[n]

=
t0

Ep[n]
· Ep

[

n ·
∑

m

Emα

[

x

x− 1

]

· g(m|n)]

]

=
t0

Ep[n]
· Ep

[

n ·
∑

m

(

1 + Emα

[

1

x− 1

])

· g(m|n)]

]

=
t0

Ep[n]
· Ep

[

n + n ·
∑

m

Emα

[

1

x− 1

]

· g(m|n)]

]

= t0 +
t0

Ep[n]
·Ep

[

n ·
∑

m

Emα

[

1

x− 1

]

· g(m|n)

]

(29)

which the exact expression for E[TM] in Table III.

Applying Jensen’s inequality for the convex function

h(x) = 1
x−1 , gives:

Emα

[

1

x− 1

]

≥ 1

m · µα − 1
(30)

and, thus:

E[TM] ≥ t0 +
t0

Ep[n]
·Ep

[

n ·
∑

m

1

m · µα − 1
· g(m|n)

]

= t0 +
t0

Ep[n]
·Ep

[

n ·Eg

[

1

m · µα − 1

]]

≥ t0 +
t0

Ep[n]
·Ep

[

n · 1

g(n) · µα − 1

]

(31)

where for the last line we applied Jensen’s inequality for the

expectation Eg

[

1
m·µα−1

]

.

B. Content Access Probability

In the Pareto case, the integral in Eq. (17) changes as:
∫ (

t0

T T L

)x · fmα(x)dx, for T T L ≥ t0, because for a Pareto

random variable x ∼ pareto(t0, α) it holds that P{x ≤
T T L} = 1 −

(

t0

T T L

)α
. Following the same methodology as

before and observing that the function h(x) =
(

t0

T T L

)α
is

convex, the expressions of Table III follow similarly.

APPENDIX C

PROOF OF RESULT 3

Proof. To calculate the average performance, we need to

modify the previous analysis as following: Consider a con-

tent M of initial popularity N
(M)
p (0) = n and availability

N
(M)
a (0) = m, i.e. initially n nodes are looking for the

content and m nodes hold the content. When the first requester

access the content, the number of holders will increase to m+1
and the remaining requesters will be n−1. Building a Markov
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Chain as in Fig 1, where each state denotes the number of

holders, it can be shown for the expected delay of moving

from state m + k to state m + k + 1, k ∈ [0, 1], that it holds

E[Tk,k+1] ≈ 1

(m + k) · (n− k) · µλ

(32)

where m + k are the nodes holding the content, n − k the

remaining requesters and µλ the mean contact rate.

From the above analysis, it follows straightforward that the

expected time till the first requester to access the message is

E[T 1] = E[T0,1] and till the ℓth requester to access it is

E[T ℓ] =

ℓ−1
∑

k=0

E[Tk,k+1] (33)

Let us now define the sum of delays E[T ℓ] (i.e. delivery

delays for each requester) for a messageM with initial avail-

ability N
(M)
a (0) = m and initial popularity N

(M)
p (0) = n,

as:

S(TM|m, n) =

n
∑

ℓ=1

E[T ℓ|m, n] (34)

From Eq. (32) and Eq. (33), we can write for S(TM|m, n):

S(TM|m, n) ≈
n
∑

ℓ=1

ℓ−1
∑

k=0

1

(m + k) · (n− k) · µλ

=

n−1
∑

k=0

(n− k) · 1

(m + k) · (n− k) · µλ

=
1

µλ

·
n−1
∑

k=0

1

m + k

=
1

µλ

·
m+n−1
∑

k=m

1

k
(35)

and using the approximation of the harmonic sum6, we get

S(TM|m, n) ≈ 1

µλ

· ln
(

1 +
n

m− 1

)

≈ 1

µλ

· ln
(

1 +
n

m

)

(36)

Averaging over all the content in the network, we can write

for the expected content access delay:

E[TM] =

∑

M S(TM)
∑

MN
(M)
p

(37)

or, since (i) (by definition) there are M · Pp(n) contents in

the network, and (ii) we do not differentiate between contents

with the same popularity/availability:

E[TM] =

∑

n S(TM|n) · (M · Pp(n))
∑

M n · (M · Pp(n))
=

∑

n S(TM|n) · Pp(n)

Ep[n]

=

∑

n S(TM|n, m) · g(m|n) · Pp(n)

Ep[n]

≈
∑

n
1

µλ
· ln
(

1 + n
m

)

· g(m|n) · Pp(n)

Ep[n]
(38)

where in the last line we substituted from Eq. (36).

6
∑N

k=1
≈ ln(N)+γ+O

(

1
N

)

, where γ is the Euler-Mascheroni constant.

We can further use Jensen’s inequality (since the function

h(x) = ln
(

1 + n
x

)

is convex) or the respective approximation,

and finally write:

E[TM] ≈ 1

µλ ·Ep[n]
·Ep

[

ln

(

1 +
n

g(n)

)]

(39)

which proves the result.

APPENDIX D

PROOF OF RESULT 4 AND EXAMPLE

Proof. Def. 5 says that who holds a content and who is

interested in it is not independent of their mobility patters. The

contact rates between the requester of a content and the holders

of it, are not distributed with the contact rates distribution

fλ(λ), since the requesters-holders contact rates are mobility

dependent. It can be shown that the requesters-holders contact

rates are distributed as [27]

fπ(λ) =
1

Eλ[π(λ)]
· π(λ) · fλ(λ) (40)

Hence, Eq. (9) and Eq. (10) need to be modified as:

XM ∼ fmπ(x) = (fπ ∗ fπ · · · ∗ fπ)m (41)

and

E[XM|N (M)
a = m] = Emπ[x] = m · Eλ[λ · π(λ)]

Eλ[π(λ)]
= m ·µ(π)

λ

(42)

Then, it can be easily seen that following the same analysis,

we get the same expressions as in Theorems 3.3 and 3.4 and

Result 3 where, now, the mean contact rate µλ is replaced by

the mean mobility dependent requesters-holders contact rate

µ
(π)
λ .

Example Scenario: For each contentM, its holders are

selected taking into account their contact rates with the re-

questers with the following mechanism: Each node i candidate

to be a holder is assigned a weight wi =
∏

j∈C
(M)
p

λij . Then,

each of them is selected to be one of the N
(M)
a holders

with probability pi = wi
∑

i
wi

. Now, for the node pair {i, j}
(i ∈ C(M)

a , j ∈ C(M)
p ) it holds that

πij =
wi
∑

i wi

=

∏

k∈C
(M)
p

λik
∑

i

∏

k∈C
(M)
p

λik

=
λij ·

∏

k∈C
(M)
p \{j}

λik
∑

i

∏

k∈C
(M)
p

λik

(43)

for which, when the node popularity N
(M)
p = |C(M)

p | is large
enough, we can write

πij ≈
λij · c1

c2
(44)

where c1, c2 take approximately the same value ∀i, j, i.e.

π(λ) = c · λ, c = c1

c2
. Substituting π(λ) in Result 4, gives

µ
(π)
λ =

Eλ[λ · π(λ)]

Eλ[π(λ)]
=

Eλ[λ2]

Eλ[λ]
= µλ · (1 + CV 2

λ ) (45)
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