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Abstract In the Web of Data, licenses specifying the terms of use and reuse are
associated not only to datasets but also to vocabularies. However, even less support
is provided for taking the licenses of vocabularies into account than for datasets,
which says it all. In particular, this paper addresses the following issue: checking
the compatibility among the set of licenses assigned to the vocabularies used to
constitute a dataset, and the license that is intended to be associated to the dataset
itself. We provide a framework called LIVE able to support data publishers in such
compatibility checking step, taking into consideration both the licenses associated
to the vocabularies and those assigned to the data.

1 Introduction

The license of a dataset in the Web of Data can be specified within the data, or outside
of it, for example in a separate document linking the data. In line with the Web of Data
philosophy [11], licenses for such datasets should be specified in RDF, for instance
through the Dublin Core vocabulary1. In the latest years, a number of approaches have
been proposed to model licenses in RDF, define licensing patterns [16,15], deal with
self-referential licenses [12], or define composite licenses for query results containing
heterogeneously licensed material [10]. Despite such approaches, still a lot of effort is
needed to enhance the association of licenses to data on the Web, and to process licensed
material possibly in an automated way. The scenario becomes even more complex when
another essential component in the Web of Data is taken into account: the vocabularies.
Several open issues arise concerning licensed vocabularies, and as a consequence, the
(possibly licensed) data defined through such vocabularies. Consider for instance the
following scenario: a data producer chooses a vocabulary V to create his RDF dataset,
and such vocabulary is associated with a license l1 prohibiting commercial reuse of the
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data (Non-Commercial license); then the data publisher, after creating her own dataset,
assigns it to an open license l2. What is the connection between these two licenses? Are
they compatible? When only one vocabulary is used, then answering such questions may
appear straightforward, but this is not the case when several licensed vocabularies are
used together to build a dataset. All these issues have to be addressed in an automated
way, such that the data provider is supported in assigning a license to her dataset and
verifying its compatibility with the licenses associated to the adopted vocabularies. The
research question we answer in this paper is how to develop an automated framework
that verifies the compatibility of the licenses associated to the exploited vocabularies
with respect to the dataset license?

We present an online framework called LIVE2 (LIcenses VErification) that exploits
and extends the formal approach to licenses composition proposed in [10,7] with the
aim to verify the compatibility of a set of heterogeneous licenses. LIVE, after retrieving
the licenses associated to the vocabularies used in the dataset under analysis, supports
data providers in verifying whether the license assigned to the dataset is compatible with
those of the vocabularies, and returns a warning when this is not the case.

The remainder of the paper is as follows. Section 2 discusses the existing literature
about licenses. Section 3 summarizes the main insights of the logic for licenses com-
patibility we adopt, and Section 4 presents the framework whose time performances
evaluation is provided in Section 5.

2 Related Work

In the Web scenario, a number of works address the problem of representing and/or
reasoning over licensing information. Iannella presents the Open Digital Rights Language
(ODRL) 3 for expressing rights information over content. Gangadharan et al. [3] address
the issue of service license composition and compatibility analysis basing on ODRL-S.
Truong et al. [18] address the issue of analyzing data contracts, based on ODRL-S again.
Krotzsch and Speiser [12] present a semantic framework for evaluating ShareAlike
recursive statements. Gordon [4] presents a legal prototype for analyzing open source
licenses compatibility using the Carneades argumentation system. Finally, Rodiguez-
Doncel et al. [15] propose the License Linked Data Resources pattern which provides a
solution to describe existing licenses and rights expressions both for open and not open
scenarios. All these works either propose new ways to model licenses information or
new formal frameworks to deal with rights. In this paper, we do not address none of
these issues, and we adopt the formal framework proposed in [10]. Also Pucella and
Weissman [14] propose a logic to check whether the user’s actions follow the licenses’
specifications. However, as they do not deal with compatibility, do not provide a deontic
account of licenses’ conclusions, and their logic is not able to handle conflicting licenses,
we choose and adapt the deontic logic of [10], which better suits our needs. Up to our
knowledge, the issue of licensed vocabularies has never been addressed. More precisely,
no available framework deals with such licenses and verifies in an automated way their
potential compatibility with the license associated to datasets.

2 The online tool is available at http://www.eurecom.fr/~atemezin/licenseChecker/
3 http://odrl.net/1.1/ODRL-11.pdf



3 Licenses compatibility evaluation: the logic

In this section, we introduce the defeasible deontic logic we rely on to check the
compatibility among licenses. The logic is basically the one developed in [5,6,17,10],
i.e., it is an instance of the general multi-modal defeasible logic presented in these works.
However, the formal language is different because we have here deontic modalities for
each license, but the proof theory is technically the same. The logic presented in this
paper is an extension of the logic proposed in [10] and later extended in [7]. The main
conceptual difference between the logic presented in [10,7] and the one introduced in
this paper is the following: the former is used to compute the deontic components of
a so-called composite licenses which aggregates the components of all the licenses to
be composed, ensuring the absence of possible inconsistencies; while the latter is used
to verify the compatibility among different licenses, and the result is a yes/no answer,
not a license, i.e., the composite one. In addition to these differences concerning the
formal framework, the originality of the paper lies in the design and implementation of
the online LIVE framework that verifies in an automated way the compatibility of the
licenses associated to the vocabularies and the one associated to the selected dataset.

Furthermore, the reader may argue why we need deontic logic to compute the
compatibility among licenses. First, deontic logic is needed because without it we
cannot distinguish between Obligatory(Action) and Forbidden(Action). Second,
dealing with licenses compatibility requires reasoning about all deontic provisions,
handling and solving normative conflicts arising from deontically incompatible licenses,
and exceptions. A few formalisms can do that, and defeasible deontic logic is one of the
best candidates, i.e., all aspects are managed in an efficient and computationally tractable
way, as we discussed in [10].

Basic concepts and formal language As described in [10], reasoning about licenses
compatibility requires considering two components:
Factual and ontology component: the first component is meant to describe the facts

with respect to which Web of Data licenses are applied as well as the ontology of
concepts involved by licenses;

Deontic component: the second component aims at capturing the deontic aspects of
Web of Data licenses, thus offering mechanisms for reasoning about obligations,
prohibitions, and permissions in force in each license.

Our interest mainly focuses on checking the deontic compatibility of licenses, even
though, for the sake of completeness, we present the proposed method by also handling,
in standard Defeasible Logic, the factual and ontology component, as done in [2,17]4.
We assume that all licenses share a same ontology, or that the ontologies are aligned.

The formal language of the logic is rule-based. Literals can be plain, such as p,q,r . . . ,
or modal, such Op (obligatory), Pp (permitted), and Fp (forbidden/prohibited). Ontology
rules work as regular Defeasible Logic rules for deriving plain literals, while the logic of
deontic rules provide a constructive account of the basic deontic modalities (obligation,
prohibition, and permission). However, while we assume that all licenses share a same

4 Standard Defeasible Logic is just an option, and the factual and ontology component can be
handled in any other suitable logic and by resorting to a separate reasoner.



ontology, the purpose of the formalism is mainly to establish the conditions to derive
different deontic conclusions from different licenses, and check whether they are compat-
ible. Hence, we need to keep track of how these deontic conclusions are obtained. To this
purpose, deontic rules (and, as we will see, their conclusions) are parametrized by labels
referring to licenses. An ontology rule such as a1, . . . ,an⇒ b supports the conclusion of
b, given a1, . . . ,an, and so it states that, from the viewpoint of any license any instance
enjoying a1, . . . ,an is also an instance of b. On the contrary, rules as a,Ob⇒l2

O p state
that, if a is the case and b is obligatory, then Op holds in the perspective of license l2, i.e.,
p is obligatory for l2. The proof theory aims at offering an efficient method for reasoning
about the deontic component of each license and, given that method, for checking their
compatibility. The idea is simply to compute the set of all conclusions for each license
and then check whether incompatible conclusions are obtained.

In this paper, we adopt the logical structure of the licenses proposed in the ODRL
vocabulary5. This means that each license (i.e., Policy) is composed by a number of
rules (i.e., Duty, Permission, Prohibition) that describe the actions constrained by
the license (e.g., attribute, sell, etc). We have mapped the three kinds of rules with
the respective deontic modalities, and each action represents a literal in the logic. The
dataset of licenses we exploit in LIVE has been manually built using such vocabulary.

The basic language is as follows. Let Lic = {l1, l2, . . . , ln} be a finite set of licenses.
Given a set PROP of propositional atoms, the set of literals Lit is the set of such atoms
and their negation; as a convention, if q is a literal, ∼q denotes the complementary literal
(if q is a positive literal p then∼q is ¬p; and if q is ¬p, then∼q is p). Let us denote with
MOD = {O,P,F} the set of basic deontic modalities. The set ModLit of modal literals
is defined as follows: i) if X ∈MOD and l ∈ Lit, then Xl and ¬Xl are modal literals, ii)
nothing else is a modal literal.

Every rule is of the type r : A(r) ↪→x
Y C(r), where: r is a unique identifier for the rule;

A(r) = {a1, . . . ,an}, the antecedent is a set literal if r is an ontology rule, and a set of
modal literals and literals if r is a deontic rule; C(r) the consequent is a literal; if r is
a deontic rule Y ∈MOD represents the type of conclusion obtained (We will see why
we do not need rules for prohibitions and permissions) and x ∈ Lic indicates to which
license the rule refers to; Y and x are not used for ontology rules.

The intuition behind the different arrows is the following. Strict rules have the form
a1, . . . ,an →x

Y b. Defeasible rules have the form a1, . . . ,an ⇒x
Y b. A rule of the form

a1, . . . ,an  x
Y b is a defeater. Analogously, for ontology rules, where arrows do not

have superscripts and subscripts. The three types of rules establish the strength of the
relationship. Strict rules provide the strongest connection between a set of premises
and their conclusion: whenever the premises are deemed as indisputable so is the
conclusion. Defeasible rules allow to derive the conclusion unless there is evidence for
its contrary. Finally, defeaters suggest that there is a connection between its premises
and the conclusion not strong enough to warrant the conclusion on its own, but such that
it can be used to defeat rules for the opposite conclusion.

A license theory is the knowledge base which is used to reason about the applicability
of license rules under consideration.

5 http://www.w3.org/ns/odrl/2/



Definition 1. Let l be the name of any license. A license theory is a structure Dl =

(F,Rc,ROl
,≺), where F ⊆ Lit∪ModLit is a finite set of facts; Rc is a finite set of

ontology rules; ROl
is finite set of obligation rules; ≺ is an acyclic relation (called

superiority relation) defined over (Rc×Rc)∪ (ROl ×ROl
).

R[b] and RX [b] with X ∈ {c,Ol} denote the set of all rules whose consequent is b and of
all rules (of type X). Given a set of rules R the sets Rs, Rsd, and Rdft, denote, respectively,
the subsets of R of strict rules, strict and defeasible rules, and defeaters.

Proof theory A proof P of length n is a finite sequence P(1), . . . ,P(n) of tagged literals
of the type +∆ X q, −∆ X q, +∂ X q and −∂ X q, where X ∈ {c,Y l |l ∈ Lic,Y ∈ MOD}.
The proof conditions below define the logical meaning of such tagged literals. As a
conventional notation, P(1...i) denotes the initial part of the sequence P of length i.
Given a license theory D, +∆ X q means that literal q is provable in D with the mode X
using only facts and strict rules,−∆ X q that it has been proved in D that q is not definitely
provable in D with the mode X , +∂ X q that q is defeasibly provable in D with the mode
X , and −∂ X q that it has been proved in D that q is not defeasibly provable in D with the
mode X6. Given # ∈ {∆ ,∂}, P = P(1), . . . ,P(n) is a proof for p in D for the license l iff
P(n) = +#l p when p ∈ Lit, P(n) = +#X l

q when p = Xq ∈ModLit, and P(n) =−#Y l
q

when p = ¬Y q ∈ModLit. The proof conditions aim at determining what conclusions
can be obtained within each license.

We concentrate here on deontic effects of licenses, thus working on the obli-
gations, prohibitions, permissions entailed by any given license. Notice that the
logic allows for deriving a deontic effect such as Ol p by directly using obliga-
tions rules (i.e., a rule like a1, . . .an ⇒l

O p), or by conversion [5], i.e., by using an
ontology rules where all antecedents are not modularized (they are plain literals),
and are provable with the mode Ol . An example of conversion is the following: if
Enter Personal Data⇒ Identity Disclosure and +∂ Ol

Enter Personal Data, then we
obtain +∂ Ol

Identity Disclosure.
As usual with Defeasible Logic, we have proof conditions for the monotonic part of

the theory (proofs for the tagged literals ±∆Y p) and for the non-monotonic part (proofs
for the tagged literals ±∂Y p). Since the proof theory for the ontology component (±∆ c p
and ±∂ c p) is the one for standard Defeasible Logic we will omit it and refer the reader
to [1]. Let us first define the condition for monotonic derivations of the obligations in
each license l.

+∆ Ol
: If P(n+1) = +∆ Ol

q then,
1) Olq ∈ F or
2) ∃r ∈ ROl

s [q] :
∀a,Xb,¬Y d ∈ A(r):
+∆ ca, +∆ X l

b, −∆Y l
d ∈ P(1..n), or

3) ∃r ∈ Rc
s [q] :

A(r) 6= /0 and ∀a ∈ A(r) : +∆ Ol
a.

−∆ Ol
: If P(n+1) =−∆ Ol

q then,
1) Olq 6∈ F and
2) ∀r ∈ ROl

s [q] :
∃a ∈ A(r): −∆ ca or
∃Xb ∈ A(r): −∆ X b or
∃¬Y d ∈ A(r): +∆Y d, and

3) ∀r ∈ Rc
s [q] :

A(r) = /0 or ∃a ∈ A(r) :−∆ Ol
a.

6 As we will see, we shall adopt a reading of permissions according to which they can only be
defeasible. Hence, we will not define the cases ±∆Y l

q where Y = P.



Definite proof conditions for prohibitions can be simply obtained (just consider the
positive case):

+∆
Fl

: If P(n+1) = +∆
Fl

q, then +∆
Ol∼q ∈ P(1..n).

Let us now consider the defeasible derivations of obligations in any license l:

+∂ Ol
: If P(n+1) = +∂ Ol

q then
(1)+∆ Ol

q ∈ P(1..n) or
(2) (2.1) −∆ Ol∼q ∈ P(1..n) and

(2.2) either
(2.2.1) ∃r ∈ ROl

sd [q] : ∀a,Xb,¬Y d ∈ A(r): +∂ ca,+∂ X l
b, −∂Y l

d ∈ P(1..n), or
(2.2.2) ∃r ∈ Rc

sd[q] : A(r) 6= /0 and ∀a ∈ A(r): +∂ Ol
a, and

(2.3) ∀s ∈ RX [∼q] either
(2.3.1) if X = Ol then ∃a ∈ A(s) or Xb ∈ A(s) or ¬Y ∈ A(s):

−∂ ca ∈ P(1..n), or −∂ X l
b ∈ P(1..n), or +∂Y l

d ∈ P(1..n); and
(2.3.2) if X = c then A(s) = /0 or ∃a ∈ A(s) :−∂ Ol

b ∈ P(1..n), or
(2.3.3) (2.3.3.1) ∃t ∈ ROl

[q] : ∀a,Xb,¬Y d ∈ A(t): +∂ ca,+∂ X l
b, −∂Y l

d ∈ P(1..n), and
t ≺ s, or

(2.3.3.2) ∃t ∈ Rc[q] : A(t) 6= /0 and ∀a ∈ A(t): +∂ Ol
a, and t ≺ s.

−∂ Ol
: If P(n+1) =−∂ Ol

q then
(1)−∆ Ol

q ∈ P(1..n) and
(2) (2.1) +∆ Ol∼q ∈ P(1..n) or

(2.2) (2.2.1) ∀r ∈ ROl

sd [q] :
∃a ∈ A(r): −∂ ca ∈ P(1..n) or
∃Xb ∈ A(r): −∂ X b ∈ P(1..n) or
∃¬Y d ∈ A(r): +∂Y d ∈ P(1..n), and

(2.2.2) ∀r ∈ Rc
sd[q] : either A(r) = /0 or ∃a ∈ A(r): −∂ Ol

a, or
(2.3) ∃s ∈ RX [∼q] : either

(2.3.1) X = Ol and ∀a,Xb,¬Y ∈ A(s):
+∂ ca ∈ P(1..n), +∂ X l

b ∈ P(1..n), and −∂Y l
d ∈ P(1..n); or

(2.3.2) X = c, A(s) 6= /0 and ∀a ∈ A(s) : +∂ Ol
a ∈ P(1..n), and

(2.3.3) (2.3.3.1) ∀t ∈ ROl
[q] :

∃a ∈ A(t): −∂ ca ∈ P(1..n) or
∃Xb ∈ A(t): −∂ X b ∈ P(1..n) or
∃¬Y d ∈ A(t): +∂Y d ∈ P(1..n), or
t 6≺ s, and

(2.3.3.2) ∀t ∈ Rc[q] : A(t) = /0 or ∃a ∈ A(t): −∂ Ol
a, or t 6≺ s.

As usual in standard Defeasible Logic, to show that a literal q is defeasibly provable
we have two choices: (1) we show that q is already definitely provable; or (2) we need to
argue using the defeasible part of a multi-license theory D. For this second case, some
(sub)conditions must be satisfied. First, we need to consider possible reasoning chains in
support of ∼q with the modes lc and X lc

, and show that ∼q is not definitely provable
with that mode (2.1 below). Second, we require that there must be a strict or defeasible
rule with mode at hand for q which can apply (2.2 below). Third, we must consider the



set of all rules which are not known to be inapplicable and which permit to get ∼q with
the mode under consideration (2.3 below). Essentially, each rule s of this kind attacks the
conclusion q. To prove q, s must be counterattacked by a rule t for q with the following
properties: i) t must be applicable, and ii) t must prevail over s. Thus each attack on the
conclusion q must be counterattacked by a stronger rule. In other words, r and the rules
t form a team (for q) that defeats the rules s.

The concept of permission is much more elusive. Here, we minimize complexities by
adopting perhaps the two simplest options among those discussed in [9]. Such options
model permissions either as obtained
1. when it is possible to show that the opposite obligations are not provable; or
2. from permissive norms with defeaters for obligations; a defeater like a1, . . . ,an l

O q
states that some q is permitted (Pq) in the license l, since it is meant to block deontic
defeasible rules for ∼q, i.e., rules supporting O∼q.

The first type of permissions corresponds to the so-called weak permissions, according
to which some q is permitted (Pq) because it can be obtained from the fact that ¬q is not
provable as mandatory [19]. The second type of permissions is just one way for modeling
explicit permissive clauses for proving Pq (strong permissions of q): for an extensive
treatment of defeasible permissions, see [8]. This reading suggests that permissions are
essentially defeasible. Let us only consider the positive cases:
Permission, version I (Weak Permission)

+∂ Pl
: If P(n+1) = +∂ Pl

q then (1) −∆ Ol∼q ∈ P(1..n).

The first type of permission might be useful for combination for ‘public domain’
licenses, meaning, that unless explicitly obliged or forbidden data can be used freely.

Permission, version II (Strong Permission)

+∂ Pl
: If P(n+1) = +∂ Pl

q then
(1) (1.1) −∆ Ol∼q ∈ P(1..n) and

(2.2) either
(2.2.1) ∃r ∈ ROl

dft[q] : ∀a,Xb,¬Y d ∈ A(r): +∂ ca,+∂ X l
b, −∂Y l

d ∈ P(1..n), or
(2.2.2) ∃r ∈ Rc

dft[q] : A(r) 6= /0 and ∀a ∈ A(r): +∂ Pl
a, and

(2.3) ∀s ∈ RX
sd[∼q] either

(2.3.1) if X = Ol then ∃a ∈ A(s) or Xb ∈ A(s) or ¬Y ∈ A(s):
−∂ ca ∈ P(1..n), or −∂ X l

b ∈ P(1..n), or +∂Y l
d ∈ P(1..n); and

(2.3.2) if X = c then A(s) = /0 or ∃a ∈ A(s) :−∂ Ol
b ∈ P(1..n), or

(2.3.3) (2.3.3.1) ∃t ∈ ROl

dft[q] : ∀a,Xb,¬Y d ∈ A(t): +∂ ca,+∂ X l
b, −∂Y l

d ∈ P(1..n), and
t ≺ s, or

(2.3.3.2) ∃t ∈ Rc
dft[q] : A(t) 6= /0 and ∀a ∈ A(t): +∂ Ol

a, and t ≺ s.

Let us define the concept of extension specifying for each license its deontic conclu-
sions:

Definition 2. The deontic extension of a License Theory D is the structure

((+∆Ol ,−∆Ol ),(+∂Ol ,−∂Ol ),(+∂Pl ,−∂Pl )),

where ±# = {p : D ` ±#p} where # ∈ {∆Ol ,∂Ol ,∂Pl}.



The logic presented here is a variant of the one developed in [5,6]. Accordingly, results
of soundness and linear computational complexity can be directly imported here [17,10].
Let us consider a simple example that illustrates some aspects of the proof theory:

F = {a,d, f}

ROl
= {r1 : a l

O b, r2 : d→l
O ∼e, r3 : a, f ⇒l

O e, r4 :∼e, f ⇒l
O ∼d}

Rc = {r5 : b d}
≺= {r5 ≺ r4}

The fact d triggers r2 thus supporting the strict conclusion +∆ Ol∼e, which blocks in
turn the defeasible derivation of Ole that could be obtained via r3 (triggered by a, f ). The
conclusion Ol∼e and the fact f fire rule r4, which is however blocked by rule r5. Notice
that rule r5 is made applicable by conversion through the conclusion +∂ Pl

b, which is
obtained via rule r1.

4 The Framework

The input of the LIVE framework consists in the dataset (URI or VOiD7) whose license
has to be verified. The framework is composed by two modules. The first module takes
care of retrieving the vocabularies used in the dataset, and for each vocabulary, retrieves
the associate license8 (if any) querying the LOV repository9. The second module takes as
input the set of licenses (i.e., the licenses of the vocabularies used in the dataset as well
as the license assigned to the dataset) to verify whether they are compatible with each
others. The result returned by the module is a yes/no answer where no raises a warning
message to the data provider highlighting the presence of an incompatibility. Such result
is returned to the data provider, which is invited to change the license associated to the
dataset and check back again with the LIVE framework whether further inconsistencies
arise. We now detail the two modules.

4.1 Retrieving licensing information from vocabularies and datasets

Two use-cases are taken into account: a SPARQL endpoint, or a VoID file in Turtle
syntax. In the first use case, the tool retrieves the named graphs present in the repository,
and then the user is asked to select the URI of the graph that needs to be checked.
Having that information, a SPARQL query is triggered, looking for entities declared
as owl:Ontology, voaf:Vocabulary or object of the void:vocabulary property.
The final step is to look up the LOV catalogue to check whether they declare any
license. There are two options for checking the license: (i) a “strict checking” using
the filtering containing exactly the namespace of the submitted vocabulary, or (ii) a

“domain checking”, where only the domain of the vocabulary is used in the filter option.

7 http://www.w3.org/TR/void/
8 Note that the LIVE framework relies on the dataset of machine-readable licenses (RDF, Turtle

syntax) available at http://purl.org/NET/rdflicense
9 http://lov.okfn.org/



This latter option is recommended in case only one vocabulary has to be checked for
the license. In the second use case, the module parses a VoID file using a N3 parser
for Javascript10, and then collects the declared vocabularies in the file, querying again
LOV11 to check their licensing information. When the URIs of the licenses associated to
the vocabularies and the dataset are retrieved, the module retrieves the machine-readable
description of the licenses in the dataset of licenses.

4.2 Licenses compatibility verification

The logic proposed in Section 3 and the licenses compatibility verification process
has been implemented using SPINdle [13] – a defeasible logic reasoner capable of
inferencing defeasible theories with hundredth of thousand rules. As depicted in Figure 1,

Reasoning
Engine

Composed Theory

Contextual Info

Theories
Composer

RDF–Defeasible
Theory Translator

Composed Theory
Conclusions

Compatibility
Checker

Licenses retrieval

Users

Reasoning
layer

Results

User
interface

Figure 1. Licenses compatibility module.

after receiving queries from users, the selected licenses (represented using RDF) will
be translated into the DFL formalism supported by SPINdle using the RDF-Defeasible
Theory Translator. If, however, more than one license has been selected, then in order to
verify the compatibility of different licensing terms, the translated defeasible theories
will first be composed into a single defeasible theory based on the transformations
described in Section 3. That is, each RDF-triple will be translated into a defeasible
rule based on the subsumption relation between the subject and object of a RDF-triples.
In our case, we can use the subject and object of the RDF-triples as the antecedent
and head of a defeasible rule, respectively. Besides, the translator also supports direct
import from the Web and processing of RDF data into SPINdle theories. The translated
defeasible theories will then be composed into a single defeasible theory, based on
the transformations described above, using the Theories Composer. Afterwards, the

10 https://github.com/RubenVerborgh/N3.js
11 Since LOV endpoint does not support the JSON format in the results, we have uploaded the

data in eventmedia.eurecom.fr/sparql.



composed theory, together with other contextual information (as defined by user), will
be loaded into the SPINdle reasoner to perform a compatibility check before returning
the results to the users.

5 Evaluation

In this section, we address an evaluation of the time performances of the LIVE framework
to retrieve the licensing information and checking the compatibility of the licenses. The
LIVE framework is a Javascript application, combining HTML and Bootstrap. Hence,
installation has no prerequisite. Since the tool is written in Javascript, the best way to
monitor the execution time is with the performance.now() function. We use the 10
LOD datasets with the highest number of links towards other LOD datasets available
at http://lod-cloud.net/state/#links. For each of the URLs in Datahub, we
retrieve the VoID12 file in Turtle format, and we use the voidChecker function13 of the
LIVE tool (Section 4.1).

First, we evaluate the time performances of the licenses compatibility module, we
described in Section 4.2. Table 1 provides an overview of the obtained results checking
of the licenses we found on LOV, considering the licenses to be verified (L1,L2), whether
they are compatible or not, and the time performances (in ms). Time performances are
about 6ms to compute the compatibility of the licenses.

L1 L2 Compatibility SPINdle module (ms)
PDDL OGL Yes 6
PDDL EUROSTAT Yes 9
CC-BY OGL Yes 7
PDDL CC0 Yes 4
CC-BY ODBL Yes 6
PDDL CC-BY Yes 8
CC-BY CC0 Yes 3
CC-BY CC-BY-SA Yes 6

Table 1. Evaluation of SPINDle module.

Second, we evaluate time perfor-
mances of the whole LIVE framework con-
sidering both the licenses retrieval module
and the licenses compatibility one. Table 2
provides an overview of the time perfor-
mances of the LIVE framework for the 10
LOD datasets with the highest number of
links towards other LOD datasets. The first
column (LicRetrieval) shows the time per-
formances of the first module of LIVE, i.e.,
the performances in retrieving the vocab-
ularies used in the dataset and their associ-
ated license, if any. The second column (vocabularies) shows the number of vocabularies
declared in the VoID file for each dataset. The third column (LicCompatibility) presents
the time performances of the second module of LIVE in verifying the compatibility of
the retrieved licenses. Notice that the value of this column is equal to 0 if one of the
following situations arise: i) there are no licensed vocabularies among those retrieved by
the first module, and ii) there is only one license associated to one or more vocabularies
and no license associated to the dataset. In these cases, no compatibility checking needs
to be addressed. Finally, the fourth column (LIVE) shows the time performances of the
whole module. The experimental evaluation has been carried out on the browser Chrome
(Version 34). The results show that the LIVE framework provides the compatibility
evaluation in less than 5s for 7 of the selected datasets. As it may be noticed for the last

12 http://www.w3.org/TR/void/
13 http://www.eurecom.fr/~atemezin/licenseChecker/voidChecker.html



two rows (i.e., for the cases where both the modules of LIVE are involved), the time
performances of LIVE are mostly affected by the first module while the compatibility
module does not produce a significant overhead. The last row of Table 2 is Linked
Dataspaces14, a dataset where we retrieve the licensing information in both the dataset
and the vocabularies. In this case, LIVE retrieves in 13.20s 48 vocabularies, the license
for the dataset is CC-BY, and the PDDL license is attached one of the vocabularies15.
The time for verifying the compatibility is 8ms, leading to a total of 13.21s.

Dataset LicRetrieval(ms) vocabularies LicCompatibility(ms) LIVE(ms)
rkb-explorer-dblp 4 499 1 0 4499
rkb-explorer-southampton 14 693 1 0 14 693
rkb-explorer-eprints 3 220 1 0 3 220
rkb-explorer-acm 3 007 1 0 3 007
rkb-explorer-wiki 14 598 1 0 14 598
rkb-explorer-rae2001 3 343 1 0 3 343
rkb-explorer-citeseer 2 760 1 0 2 760
rkb-explorer-newcastle 3 354 1 0 3 354
rkb-explorer-kisti 4 094 5 6 4 100
270a.info 13 202 48 8 13 210

Table 2. Evaluation of the LIVE framework.

6 Conclusions

We have introduced the LIVE framework for licenses compatibility. The goal of the
framework is to verify the compatibility of the licenses associated to the vocabularies
exploited to create a RDF dataset and the license associated to the dataset itself. The
final aim is to support data providers in assigning the “correct” license to a RDF dataset.
Despite existing works about licenses in the Web of Data, and several discussions on the
Web about the compatibility of different licensing terms, there is no existing framework
to support in an automated way the data producer in such compatibility verification.

Several points have to be taken into account as future work. First, licensing vo-
cabularies opens new challenges from the legal point of view. Consider for instance
the CC Attribution license. This license states that “You must give appropriate credit,
provide a link to the license, and indicate if changes were made”. What do these terms
mean concerning licensed vocabularies? Let us consider them separately: i) giving an
appropriate credit means that a data provider using a vocabulary to construct her own
RDF dataset has to give credit to such vocabulary, but it is difficult to say whether the
prefix element may be considered an appropriate credit, ii) no RDF dataset at the
present stage provides a link to the license assigned to the exploited vocabularies, and iii)
indicating if changes were made concerns more the extension of existing vocabularies
where, however, no link to the license is usually provided and the appropriate credit
meaning is confuse as discussed in point (i). This issue has to be investigated together
with legal experts of the Web scenario to provide a set of good practices for data and

14 http://270a.info/
15 http://purl.org/linked-data/cube



vocabularies licensing on the Web of Data. Another issue concerns the “interpretation”
of what a vocabulary is. More precisely, in the present paper we consider vocabularies
as data, i.e., a set of triples. On the other side, this is not the only possible interpretation.
For instance, we may see vocabularies as a kind of compiler, such that, after the creation
of the dataset then the external vocabularies are no more used. In this case, what is a
suitable way of defining a compatibility verification? We will investigate this issue as
future work. Moreover, we plan to evaluate the usability of the online LIVE tool to
subsequently improve the user interface.
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