
Android Malware Attacks and Countermeasures:

Current and Future Directions

Rahul Raveendranath, Venkiteswaran R, Anoop

Joseph Babu

College of Engineering, Trivandrum, India

{rahul92, venkit07, manoopjoseph}@gmail.com

Soumya Kanti Datta

EURECOM

Biot, France

Soumya-Kanti.Datta@eurecom.fr

Abstract— Smartphones are rising in popularity as well as

becoming more sophisticated over recent years. This popularity

coupled with the fact that smartphones contain a lot of private

user data is causing a proportional rise in different malwares for

the platform. In this paper we analyze and classify state-of-the-

art malware techniques and their countermeasures. The paper

also reports a novel method for malware development and novel

attack techniques such as mobile botnets, usage pattern based

attacks and repackaging attacks. The possible countermeasures

are also proposed. Then a detailed analysis of one of the proposed

novel malware methods is explained. Finally the paper concludes

by summarizing the paper.

Index Terms—Android; Security threats; Countermeasures;

Malware; Permissions.

I. INTRODUCTION

With the rapid development in mobile computing

technology, smartphones and tablets have evolved to offer

sophisticated functionalities at lower costs. The Android

platform has been in the forefront of this mobile revolution and

has gained enormous popularity over the last four years. But

the popularity has also brought the attention of major malware

developers towards the platform. The fact that Android offers

an open market model unlike the closed app Store model of

Apple, where each application (app) is manually inspected by

security experts, makes it a more favourable target for

malicious developers. The existence of many third-party app

stores also contributes to the spreading of malicious apps for

Android platform.

We have performed an extensive literature survey where

we analysed current state-of-the-art on android malwares and

countermeasures. The motivation for this research is to identify

the current state of malware research in Android smart devices,

classify existing malware techniques and their countermeasures

and through that process come up with novel suggestions for

tackling recent malwares. The main contributions of this paper

are twofold: (i) survey and classification of existing techniques

and (ii) proposal of novel development techniques and

countermeasures.

There are various potential attack scenarios where an

attacker can take advantage of the vulnerabilities of the

Android platform to compromise a user. A possible scenario

would be where a Trojan app performs some innocent task in

the foreground, say download HD wallpapers, while it secretly

leaks confidential private data such as contacts from users’

mobile phone. In the case of the wallpapers app, it will have

INTERNET permission for downloading the wallpapers. An

unsuspecting user might give not check the permissions

requested and might grant READ_CONTACTS permission as

well accidentally. This data can be used for monetary benefits

and/or propagating the malware by the attacker. In a different

attack scenario, an attacker can attempt to kill the smartphone

of a victim by draining its battery life by excessive use of

resource consuming services like radio, GPS etc. These apps

can be distributed as repackaged versions of popular apps such

as ones which offer location-based social media services. In

this way, the user will be kept in the dark about private data

leakage.

The rest of the paper is structured as follows. In section II,

we classify the existing malwares based on our study.

Thereafter, a broad classification of various countermeasures to

android malwares is presented in Section III. This is followed

in Section IV by our proposals on novel malware applications

that we can expect in the near future and their possible

countermeasures. Thereafter, the paper concludes in Section V.

II. ANALYSIS OF MALWARES

Based on our study and analysis of current literature, we

classify android malwares based on their behaviour as

explained below.

A. Information Extraction

Applications can easily get user’s contacts, browsing

history, device IMEI etc. through API calls if they have the

right permissions. Many malwares tend to exploit this

functionality. Marketing companies will be willing to buy

such user preferences for better product targeting. These details

can also end up in the hands of cyber criminals. An example of

this genre of malwares is DroidDreamLight [1]. Consumer

IMEI numbers are valuable in black markets. Blacklisted

IMEIs of stolen phones can be altered with such consumer

IMEIs [2].

Zhou et al [3] observed in their study of 1260 malware

samples that 10% of the samples collected SMS messages,

44% samples collected user contacts and 3% obtained and

uploaded user account information. Many smartphone users

tend to store their confidential information such as bank details

in plain text which makes the situation disastrous. Apart from

this there can be phishing attacks aimed at gathering user

credentials. FakeNetflix [4] collects users’ Netflix credentials

by providing an identical UI.

B. Premium Rate Calls and SMS

The cost of a premium-rate call or SMS is charged to the

sender's phone bill. Many malware exploit this premium

services to gather incentives to the hacker or create financial

loss to the user. A malware Fakeplayer sends SMS message

“798657” to multiple premium-rate numbers. Another well

seen exploit is spamming the user contacts. Sending SMS spam

is illegal in many countries. Thus sending from a compromised

device reduces the risk of the spammer being caught. Also a

good number of telecom operators use SMS as a medium to

transfer credits without proper validation or security. This is

easily exploited by the malware authors to transfer credits to

their beneficiaries.

C. Root Exploits

Root exploits are carried out by both advanced users and

malware authors. Users use these exploits to customize their

devices whereas malwares use it to circumvent security

mechanisms. The top three exploits are Exploid,

Rageagainstthecage (RATC) and Zimperlich. These exploits

are used to grant elevated privileges to malwares. DroidDream,

Zhash, DroidKungFu, and Basebridge are reported to use these

root exploits. DroidKungFu contains both RATC and Exploid

root exploits in an encrypted form. When DroidKungFu runs, it

first decrypts and launches the root exploits. If it is successful,

the malware will gain root privilege and can access or modify

any device on the phone including install of apps in the

background without the user’s knowledge [6].

D. Search Engine Optimization

A search engine's perception of relevance is influenced by

the rate at which users click on the websites returned for a

search term. A website will rise up in its page ranking if many

people search for a specific search term and choose the link.

The SEO malwares simulate this activity in the compromised

device by artificially searching for the term and generating

fraudulent clicks on the target website. A malware

HongTouTou was built to boost the Baidu search result ranking

of a Chinese website
1
.

E. Dynamically Downloaded Code

Any android application may download executables

containing native code and run those. Thus malware softwares

which may originally seem legitimate can download malicious

payload during runtime without being detected by anti-

malware software. This loophole is considered one of the

biggest issues remaining in Android security [8]. This category

of malwares use sometimes use drive-by downloads in the

form of plugins, extensions or updates to trick the user into

downloading the payload.

F. Covert Channels

With the advent of TaintDroid, malwares that perform

privacy leak have reduced considerably. To avoid detection by

such tools, the use of overt and covert channels for malwares

has been proposed in [9]. The authors of [10] propose

improvements over the former by designing a covert channel

1https://blog.lookout.com/blog/2011/02/15/security-alert-hongtoutou-

new-android-trojan-found-in-china/

with minimal permissions that is correlated to a user in order to

be stealthy. A covert channel is a type of computer security

attack that creates a capability to transfer information objects

between processes that are not supposed to be allowed to

communicate by the computer security policy. Malware using

covert channels are designed as multiple applications that

communicate using non-traditional methods. They use covert

channels like vibration settings, screen settings, volume

settings etc. Muhammed et al. [11] proposed a new covert

channel of using the file permissions to achieve

communication between the collector and deliverer apps.

G. Botnets

An Android botnet is a network consisting of compromised

Android smartphones controlled by a botmaster through a

command and control (C&C) network [12]. The sophistication

of Android botnets is increasing very rapidly. Traditional

botnets communicate to the C&C server using IRC (Internet

Relay Chat) protocol or using P2P (Peer-to-Peer) overlays.

Popular botnet malwares like Geinimi, Pjapps, DroidDream

and RootSmart exhibit traditional communication behaviour.

The C&C server address is generally encrypted and stored so

that it can surpass detection mechanism. A malware Geinimi

applies DES encryption scheme to encrypt its communication

to the server. Geng, Guining et al. [13] has proposed a new

attack vector leveraging SMS structures for creating a

heterogeneous mobile botnet model. Botnets can generally be

used for various types of attacks such as spam delivery, DDoS

attacks and for stealing personal data. A full blown botnet will

have safety measures that cause bots to abort the mission and

erase all traces of their existence if they are compromised. In

this way, they can protect the botmaster and the C&C server.

III. ANALYSIS OF COUNTER MEASURES

The countermeasures for identifying malicious applications

in Android platform can be classified as follows

A. Static analysis

Many researchers suggest using static techniques for

detecting possible malicious behaviour without actually

executing the application. These can include extracting

permissions requested from the Manifest file as well as

analysing information passed through Intents, Inter-Component

Communication and API calls. DroidMat, a tool proposed in

[14] extracts these information from the byte-code and applies

K-means & EM clustering algorithms to classify the app as

malware or benign. Another recent paper [15] discusses an app

called Stowaway which calculates the permissions that an app

actually uses based on its API calls and compares it with the

permissions requested by the app from the manifest file to

detect malicious behaviour. The findings point to the extensive

use of Java reflections by apps as a major reason for difficulty

in tracing API calls and as a limitation of static code analysis.

Also many malware authors have developed obfuscation based

techniques that are especially effective against static analysis

[6]. Factors that can be considered for static analysis include

● Packages imported by the app: This is considered

by Zhou et al. [7] in their proposed app DroidRanger. It uses a

heuristic based approach for detecting unknown malwares.

This involves looking for dynamic loading of untrusted code

(for eg, use of DexClassLoader) as well as looking for

suspicious native code placed in non-standard locations.

● Data flow policies via app manifest and content

providers: Fuchs et al. [18] proposed SCanDroid as a tool that

performs data flow analysis for generating automated security

certification for android applications. It detects intra-

component flows by analysing uri-based addressing present in

calls to Content Providers. It also detects inter-component

flows by analysing intent-based addressing present in the

manifest file. It then uses WALA
2
, a collection of open source

libraries for Java code analysis to perform data as well as flow

analysis on the app.

● Message passing through Intents: Chin et al. [20]

proposes ComDroid, a tool that analyses Android applications

to detect communication based vulnerabilities. The tool

statically analyses Dalvik executable files, performs flow

sensitive intraprocedural analysis, and examines the

permissions defined by the app, Intents sent by the app as well

as components that receive Intents. Warnings are issued on

detecting potential vulnerabilities.

B. Dynamic analysis

Dynamic or behaviour based analysis techniques involve

running the app in a controlled environment, monitoring and

analysing the actions performed by the app. Egele [21]

provides a comprehensive overview of various automated

dynamic analysis techniques. While considered more effective

against various polymorphic and metamorphic malwares [22]

which evade static analysis, dynamic analysis suffers from

being highly resource intensive. CrowDroid, a tool proposed

by Iker et al. [23] solves this issue by using a lightweight client

application to collect system calls from different users,

preprocess these and send them to a powerful remote server to

perform the behavioural analysis. Key features considered for

dynamic analysis include the following:

● Data and control flow analysis: TaintDroid

proposed by Enck et al. [24] provides system-wide dynamic

taint tracking for Android. TaintDroid marks data originating

from sensitive sources like GPS, camera, microphone and other

phone identifiers and monitors all network interfaces (taint

sinks) for potentially sensitive data leaks.

● Emulation based analysis: DroidScope proposed by

Yan et al. [25] uses virtual machine introspection to mirror the

three levels of an Android device: hardware, OS and Dalvik

Virtual Machine facilitating collection of detailed native and

Dalvik instruction traces, profile API-level activity etc.

AASandbox proposed by Blasing, Thomas et al. [26] executes

the app in an isolated sandbox environment to analyse low

level interactions with the system.

● Logged behaviour sequence: Zhao et al. [27]

propose AntiMalDroid to detect Android malware that use

logged behavior sequence as the feature, and construct the

models for further detecting malware and its variants

effectively in runtime.

2http://wala.sourceforge.net/

C. Application permission analysis

Permissions play an important role in governing the access

rights of an app within the android system. The user must grant

all the permissions requested by the app at the time of

installation in order to install the app. Various approaches for

analysing android malware centre around analysing the

permission combinations requested by malwares. Shin, Wook

et al. [28] provides a formal analysis of the permission based

security model using a state machine based approach and

verifies that the specified system operates satisfying the

security property.

Rassameeroj et al. analysed 999 APKs in [29] and created a

permission adjacency matrix on a weighted graph with

permissions as nodes and the weight of each edge representing

the frequency of the corresponding permissions’ concurrence.

They also created an APK adjacency matrix with APKs as

nodes and weight of edges representing similarity of apps in

terms of permissions requested. They observed that 7.9% of all

APKs requests at least one combination of permissions that are

considered potentially dangerous.

Tang, Wei et al. [30] proposes the concept of security

distance based on the permissions used by the application.

They assign each combination of permission a threat point

(TP). They classify the permission combinations into four

groups - Safe SD (TP - 0), Normal SD (TP - 1), Dangerous SD

(TP - 5) and Severely dangerous SD (TP - 25). Before a new

application is installed, from the permissions it requests the

threat point for the application is found. Most of the

applications have a threat point of 1-20. These can be

considered to be legitimate. A very few application had a TP of

21-50. Users are warned to be careful about possible malicious

activity. They found that the Geinimi malware had a TP of 500,

a clear variation from legitimate applications.

Kirin, a lightweight application certification proposed by

Enck et al. compares permission requests & related security

configurations of apps against its security policy rules at install

time [31]. If an app fails to pass all the security policies, the

installation can be aborted or the user can be alerted.

D. Anomaly detection

Anomaly detection usually uses machine learning

algorithms for learning known malware behaviour and

predicting unknown or novel malware. AndroMaly, a

behavioural malware detection framework for android devices

proposed by Shabtai, Asaf et al. [32] continuously monitors

various features and events obtained from the mobile device

and applies machine learning techniques to classify apps as

malicious or benign. The machine learning algorithms used by

AndroMaly includes Logistic Regression, Bayesian Networks

etc.

Researchers have proposed VirusMeter [33], a novel and

general malware detection method which detects malicious

activity by monitoring the power consumption of the mobile

device. MADAM [34], a multi-level anomaly detector for

android malware concurrently monitors Android at the kernel -

level and user-level for issues system calls as well as

smartphone parameter like user activity/idleness. It uses

machine learning techniques to distinguish between standard

behaviours and malicious ones and thus detect real malicious

infections.

E. Cloud-based malware protection

Considering the fact that mobile devices have

computational and energy wise limitations, many malware

protection solutions outsource the heavy processing tasks to

remote servers. CrowDroid solution discussed earlier,

crowdsources system call monitoring to lightweight client side

apps and perform machine learning and clustering of apps on a

cloud server. Paranoid Android proposed by Portokalidis,

Georgios et al. [19] uses remote servers capable of running

hundreds of replicas of phones in virtual environment to apply

multiple detection techniques simultaneously. Researchers

[16] foresee novel third party device administration solutions

which provide users with ‘install and forget’ plans as

commonly available for PCs becoming a reality in the near

future. These solutions can be developed such that the data is

passed to server after filtering identifiable personal user

information. This helps preserve the privacy of the user.

F. Reputation based application recognition

This method consists of a central server which gathers

information about all the applications in the app market. Each

app gathers what is called reputation. As time passes the app

gathers either good or bad reputation, which is obtained as a

feedback from the users. When a new user tries to install such

an application, the central server is contacted to get the

reputation of the application. Only if the reputation is above a

predefined threshold, the application will be allowed to be

installed. This method could be unfair to newly released

applications, since their reputation would be NIL. This can be

overcome by assigning a default reputation to new apps and

then allow the application to lose its reputation based on user

rating and reporting information.

IV. PROPOSED NOVEL MALWARE METHODS AND COUNTER

MEASURES

The constant improvement in anti-malware methods has

helped to detect and keep many malwares in check. However,

malware authors are looking for new methods to attack users.

There is a lot of scope of improvements for writing new

malware. Here we propose some novel methods in which

future malwares can be developed and their possible

counterattacks. During the course of our research, we would

like to investigate how to develop some of these malwares and

countermeasures that will identify and remove these types of

malwares.

A. Distributed malware

One author can have multiple apps registered under their

name. One exploit that could be done is to distribute the whole

malware algorithm to more than one application. The apps

could perform seemingly legitimate functions, like collecting

users’ contacts independently and communicate with a C&C

server. Then these data could be merged in a remote server or

a “master app” which can then carry out malware attacks.

B. Usage pattern based attacks

Many applications collect usage information from users.

This is done mostly to provide services customised to the taste

and interest of the user, such as better targeted advertisements.

Legitimate applications do this preserving the anonymity of the

user. This method could be used by malwares. The malicious

application could initially collect usage statistics of the user

and send it to a C&C (command & control) server. The server

could analyse the collected data and using various machine

learning algorithms, it could find out the best possible way to

unleash the actual malicious code in order to avoid detection.

C. Repackaging attacks

Due to large number of applications being added to the

Android app store every day, it is very difficult for malicious

applications to gather enough popularity. In order to save the

effort of garnering popularity, malware authors could

download popular legitimate applications, such as Facebook

and NetFlix, reverse-engineer them to obtain the source code,

insert the malicious code and upload the new application to the

app-markets. There is much higher possibility of users’

downloading such repackaged apps compared to a newly

written application [5].

D. Mobile botnets

In the future, we can expect botnets to make use of many

new attack vectors. Various social networking and Internet

based messaging clients have become popular within the

Android platform. Botnets can use these channels in an

encrypted manner to communicate with C&C servers in

stealth. Social engineering based means of propagation will be

a key aspect of such bots. Other attack vectors include open

Wi-Fi Access Points (AP). Even though lot of research is

being done on detecting botnets, we observed that remedies

being suggested to bring down an established botnet network

are less. Further studies need to be done to analyse possible

attack vectors and how to restrict these.

E. Hardware attacks

Another possible malware action could be to continuously

perform spurious computations in the background consuming a

lot of the resources such as CPU cycles and battery life. Future

malware applications could increasingly perform such

hardware attacks.

F. Malwares that exploit NFC protocol

The use of NFC for financial transactions is expected to

increase in the coming years. Malware developers could target

this area to perform financial fraud as well as spread malware

from device to device. Our future work would aim to uncover

such possibilities.

In the coming years, Android platform will face more

malware threats owing to the increase in smartphone

penetration as well as increase in popularity of m-commerce

platforms. These malware will be more sophisticated in nature.

The basic level premium-SMS Trojans is expected to grow in

number. More seriously, new Trojans that will possibly use

advanced polymorphism and metamorphism based techniques

making it impossible to detect them solely through static

analysis. Android malware with kernel-level rootkit has been

demonstrated as a proof-of-concept already
3
. Such malwares

when released will be harder to combat since they will be able

to modify OS level code of the system. Researchers [17]

predict worms capable of self-replicating without human

intervention as the next step in the evolutionary development

of malware.

G. Novel Countermeasures

Novel countermeasures will also need to be implemented to

combat future malwares. The most crucial aspect for

strengthening the platform will be to incorporate many

advanced security measures into the Android system

architecture itself. Fedler, Rafael et al. [8] suggest following

enhancements to harden Android at the system level:

● Stricter Controls for Native Code Execution.

● Improving Antivirus Capabilities through a System

Interface.

● Native Code Hash and Signature Validation.

YAASE [7], Yet Another Android Security Extension

which provides super fine-grained access control over apps

using a policy based model is also a novel countermeasure. It

gives control over what kind of contacts an app can access,

which sites an app can connect over the internet etc. and thus

enhance the Android permission model.

In order to combat the complexity of future malwares,

antimalware solutions will have to evolve and adapt multiple

countermeasures in a hybrid approach rather than using one of

the conventional methods.

V. USE CASE: DISTRIBUTED MALWARES

In this section, we present a detailed use case of the above

proposed distributed malwares. As mentioned in the previous

section, distributed malware refers to a set of applications that

collectively achieve the spurious activity. We can further

explain distribute malwares with the help of the following

example. Suppose the following apps by the same author are

present in the app market: ‘Duplicate Contacts Remover’ that

takes the READ_CONTACTS permission; ‘Missed Call

Responder’ that sends an auto response to missed calls and

takes the SEND_SMS permission; ‘Easy Music’ that helps to

search and download songs and takes the INTERNET

permission. With such a seemingly legitimate system,

malicious activity can be achieved as follows.

• The ‘Duplicate Contacts Remover’ application could

read the user’s contacts and send it to the ‘Missed Call

Responder’ app.

• In the meanwhile, the ‘Easy Music’ application could

download links to malicious websites from a remote server

when the user is using the application and communicate it over

to the ‘Missed Call Responder’ application.

• Now, the ‘Missed Call Responder’ app could send the

downloaded links from ‘Easy Music’ app to all the users’

contacts via SMS.

3http://www.reuters.com/article/2010/07/30/us-hackers-android-

idUSTRE66T52O20100730

Thus, we can see how extensive malicious behaviour can

be achieved with a very simple system. Figure3 describes the

above mentioned attach scenario as well as an alternate attack

scenario. Our research would primarily focus on developing

and implementing such a system.

A. Permissions

In this system, the malicious code is written in such a way

that the activity performed by each app only uses the

permissions that the legitimate or user facing parts of the

application requires. More specifically, the ‘Duplicate

Contacts Remover’ app is expected to use the

READ_CONTACTS permission in order to remove duplicate

contacts. Using this permission, it can also perform the

malicious behavior of reading the users contacts and storing

them in a database or a shared file. Similarly, the ‘Easy

Music’ app would definitely have internet permissions in

order to download songs. With this permission, it can also

download malicious links from a remote server. Also, the

‘Missed Call Responder’ app would require the SEND_SMS

permission to send the auto-response. Using this permission,

the application could send the malicious links downloaded by

the ‘Easy Music’ app to the users contacts read by the

‘Duplicate Contacts Remover’ application, via SMS. Since

the applications, use only their expected permissions and do

not use additional permissions for performing the malicious

activity, the usual static and dynamic methods cannot detect

such a malware system.

B. Activation:

The ‘Duplicate Contacts Remover’ app could be triggered

at the following points – (i) whenever the application is run and

(ii) when new contact is added. Each time a new contact is

added, the application is expected to run. The app can

simultaneously update the file or database as well.

● The ‘Easy Music’ could be triggered each time the

user downloads a song.

● The ‘Missed Call Responder’ app could be triggered

whenever the user misses a call. Along with sending an auto

response to the number from which the call was received,

another message could be sent to a contact with the malicious

link. As soon as the message is sent, the app could also hide it

so that the user cannot detect it. At the same time, since the

message is sent only when an auto response is sent, users in

most cases do not detect the additional charge loss from their

balance.

C. Limitations

In spite of the efficient stealthiness that can be achieved

using the above system from both static and dynamic analysis,

a limitation of this method is that all the apps that together

form the malware must be present in the target phone.

VI. CONCLUSION

In this paper, we have presented an analysis and

classification of the present landscape of android malwares

and their countermeasures. We have provided classifications

for these in terms of their behaviour. We have analysed latest

research to identify novel malware techniques that can be

expected to come into action in the foreseeable future. We

have also identified major system level enhancements for the

Android platform as well as novel countermeasures that can

be used for countering these advanced attacks. We hope to

build a malware detecting and privacy leak preventing

application in the near future leveraging the novel

countermeasures and strategies discussed in this paper.

ACKNOWLEDGMENT

The work is a part of the Android Security project launched

by Mentorship Program of Lab-X Foundation, Inc., a non-

profit organization in Boston, USA.

REFERENCES
[1] Balanza, Mark et al. "Droiddreamlight lurks behind legitimate

android apps." Malicious and Unwanted Software
(MALWARE), 2011 6th International Conference on 18 Oct.
2011: 73-78.

[2] Felt, Adrienne Porter et al. "A survey of mobile malware in the
wild." Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices 17 Oct. 2011: 3-14.

[3] Zhou, Yajin, and Xuxian Jiang. "Dissecting android malware:
Characterization and evolution." Security and Privacy (SP),
2012 IEEE Symposium on 20 May. 2012: 95-109.

[4] Jiang, Xuxian, and Yajin Zhou. "A Survey of Android
Malware." Android Malware (2013): 3-20.

[5] Datta, S.K.; Bonnet, C.; Nikaein, N., "Android power
management: Current and future trends," Enabling Technologies
for Smartphone and Internet of Things (ETSIoT), 2012 First
IEEE Workshop on, pp.48-53.

[6] Zhou, Yajin et al. "Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets."
Proceedings of the 19th Annual Network and Distributed
System Security Symposium Feb. 2012.

[7] Russello, Giovanni et al. "Yaase: Yet another android security
extension." Privacy, security, risk and trust (passat), 2011 ieee
third international conference on and 2011 ieee third
international conference on social computing (socialcom) 9 Oct.
2011: 1033-1040.

[8] Fedler, Rafael, Julian Schütte, and Marcel Kulicke. "On the
Effectiveness of Malware Protection on Android." (2013).

[9] Marforio, Claudio et al. "Analysis of the communication
between colluding applications on modern smartphones."
Proceedings of the 28th Annual Computer Security Applications
Conference 3 Dec. 2012: 51-60.

[10] Lalande, Jean-Francois, and Steffen Wendzel. "Hiding Privacy
Leaks in Android Applications Using Low-Attention Raising
Covert Channels." Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on 2 Sep. 2013:
701-710.

[11] Ali, Mohammad, Humayun Ali, and Zahid Anwar. "Enhancing
Stealthiness & Efficiency of Android Trojans and Defense
Possibilities (EnSEAD)-Android's Malware Attack, Stealthiness
and Defense: An Improvement." Frontiers of Information
Technology (FIT), 2011 19 Dec. 2011: 148-153.

[12] G. Geng, G. Xu, M. Zheng, Y. Gou, G. Yeng, and C. Wei, “The
design of sms based heterogeneous mobile botnet,” Journal of
Computers, vol. 7, (1) pp. 235-243, 2012.

[13] Geng, Guining et al. "An improved sms based heterogeneous
mobile botnet model." Information and Automation (ICIA),
2011 IEEE International Conference on 6 Jun. 2011: 198-202.

[14] Wu, Dong-Jie et al. "DroidMat: Android Malware Detection
through Manifest and API Calls Tracing." Information Security
(Asia JCIS), 2012 Seventh Asia Joint Conference on 9 Aug.
2012: 62-69.

[15] Felt, Adrienne Porter et al. "Android permissions demystified."
Proceedings of the 18th ACM conference on Computer and
communications security 17 Oct. 2011: 627-638.

[16] Jeter, Lukas, and Shivakant Mishra. "Identifying and
quantifying the android device users' security risk exposure."

Computing, Networking and Communications (ICNC), 2013
International Conference on 28 Jan. 2013: 11-17.

[17] Castillo, Carlos A. "Android malware past, present, and future."
White Paper of McAfee Mobile Security Working Group
(2011).

[18] Fuchs, Adam P, Avik Chaudhuri, and Jeffrey S Foster.
"SCanDroid: Automated security certification of Android
applications." Manuscript, Univ. of Maryland, http://www. cs.
umd. edu/~ avik/projects/scandroidascaa (2009).

[19] Portokalidis, Georgios et al. "Paranoid Android: versatile
protection for smartphones." Proceedings of the 26th Annual
Computer Security Applications Conference 6 Dec. 2010: 347-
356.

[20] Chin, Erika et al. "Poster: Analyzing Inter-Application
Communication in Android."

[21] Egele, Manuel et al. "A survey on automated dynamic malware-
analysis techniques and tools." ACM Computing Surveys
(CSUR) 44.2 (2012): 6.

[22] You, Ilsun, and Kangbin Yim. "Malware obfuscation
techniques: A brief survey." Broadband, Wireless Computing,
Communication and Applications (BWCCA), 2010 International
Conference on 4 Nov. 2010: 297-300.

[23] Burguera, Iker, Urko Zurutuza, and Simin Nadjm-Tehrani.
"Crowdroid: behavior-based malware detection system for
android." Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices 17 Oct. 2011:
15-26.

[24] Enck, William et al. "TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones." OSDI 4 Oct. 2010: 255-270.

[25] Yan, Lok Kwong, and Heng Yin. "Droidscope: seamlessly
reconstructing the os and dalvik semantic views for dynamic
android malware analysis." Proceedings of the 21st USENIX
Security Symposium 8 Aug. 2012.

[26] Blasing, Thomas et al. "An android application sandbox system
for suspicious software detection." Malicious and Unwanted
Software (MALWARE), 2010 5th International Conference on
19 Oct. 2010: 55-62.

[27] Zhao, Min et al. "AntiMalDroid: An Efficient SVM-Based
Malware Detection Framework for Android." Information
Computing and Applications (2011): 158-166.

[28] Shin, Wook et al. "Towards formal analysis of the permission-
based security model for android." Wireless and Mobile
Communications, 2009. ICWMC'09. Fifth International
Conference on 23 Aug. 2009: 87-92.

[29] Rassameeroj, Ittipon, and Yuzuru Tanahashi. "Various
approaches in analyzing Android applications with its
permission-based security models." Electro/Information
Technology (EIT), 2011 IEEE International Conference on 15
May. 2011: 1-6.

[30] Tang, Wei et al. "Extending Android security enforcement with
a security distance model." Internet Technology and
Applications (iTAP), 2011 International Conference on 16 Aug.
2011: 1-4.

[31] Enck, William, Machigar Ongtang, and Patrick McDaniel. "On
lightweight mobile phone application certification." Proceedings
of the 16th ACM conference on Computer and communications
security 9 Nov. 2009: 235-245.

[32] Shabtai, Asaf et al. "“Andromaly”: a behavioral malware
detection framework for android devices." Journal of Intelligent
Information Systems 38.1 (2012): 161-190.

[33] Liu, Lei et al. "Virusmeter: Preventing your cellphone from
spies." Recent Advances in Intrusion Detection 1 Jan. 2009:
244-264.

[34] Dini, Gianluca et al. "MADAM: a multi-level anomaly detector
for android malware." Computer Network Security (2012): 240-
253.

