Ecole d'ingénieur et centre de recherche en Sciences du numérique

On the vector broadcast channel with alternating CSIT: A topological perspective

Chen, Jinyuan; Elia, Petros; Jafar, Syed Ali

ISIT 2014, IEEE International Symposium on Information Theory, June 29-July 4, 2014, Honolulu, HI, United States

In many wireless networks, link strengths are affected by many topological factors such as different distances, shadowing and inter-cell interference, thus resulting in some links being generally stronger than other links. From an information theoretic point of view, accounting for such topological aspects has remained largely unexplored, despite strong indications that such aspects can crucially affect transceiver and feedback design, as well as the overall performance. The work here takes a step in exploring this interplay between topology, feedback and performance. This is done for the two user broadcast channel with random fading, in the presence of a simple two-state topological setting of statistically strong vs. weaker links, and in the presence of a practical ternary feedback setting of alternating channel state information at the transmitter (alternating CSIT) where for each channel realization, this CSIT can be perfect, delayed, or not available. In this setting, the work derives generalized degrees-offreedom bounds and exact expressions, that capture performance as a function of feedback statistics and topology statistics. The results are based on novel topological signal management (TSM) schemes that account for topology in order to fully utilize feedback. This is achieved for different classes of feedback mechanisms of practical importance, from which we identify specific feedback mechanisms that are best suited for different topologies. This approach offers further insight on how to split the effort--of channel learning and feeding back CSIT--for the strong versus for the weaker link. Further intuition is provided on the possible gains from topological spatio-temporal diversity, where topology changes in time and across users.

Document Doi Bibtex

Titre:On the vector broadcast channel with alternating CSIT: A topological perspective
Département:Systèmes de Communication
Eurecom ref:4355
Copyright: © 2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Bibtex: @inproceedings{EURECOM+4355, doi = {}, year = {2014}, title = {{O}n the vector broadcast channel with alternating {CSIT}: {A} topological perspective}, author = {{C}hen, {J}inyuan and {E}lia, {P}etros and {J}afar, {S}yed {A}li }, booktitle = {{ISIT} 2014, {IEEE} {I}nternational {S}ymposium on {I}nformation {T}heory, {J}une 29-{J}uly 4, 2014, {H}onolulu, {HI}, {U}nited {S}tates }, address = {{H}onolulu, {\'{E}}{TATS}-{UNIS}}, month = {06}, url = {} }
Voir aussi: