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Abstract. This paper presents StealthGuard, an efficient and provably secure
proof of retrievabillity (POR) scheme. StealthGuard makes use of a privacy-
preserving word search (WS) algorithm to search, as part of a POR query, for
randomly-valued blocks called watchdogs that are inserted in the file before out-
sourcing. Thanks to the privacy-preserving features of the WS, neither the cloud
provider nor a third party intruder can guess which watchdog is queried in each
POR query. Similarly, the responses to POR queries are also obfuscated. Hence
to answer correctly to every new set of POR queries, the cloud provider has to
retain the file in its entirety. StealthGuard stands out from the earlier sentinel-
based POR scheme proposed by Juels and Kaliski (JK), due to the use of WS and
the support for an unlimited number of queries by StealthGuard. The paper also
presents a formal security analysis of the protocol.
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1 Introduction

Nowadays outsourcing, that is, delegating one’s computing to external parties, is a well
established trend in cloud computing. Along with unprecedented advantages such as
lower cost of ownership, adaptivity, and increased capacity, outsourcing also raises new
security and privacy concerns in that critical data processing and storage operations
are performed remotely by potentially untrusted parties. In this paper we focus on data
retrievability, a security requirement akin to outsourced data storage services like Drop-
box 1 and Amazon Simple Storage Service 2. Data retrievability provides the customer
of a storage service with the assurance that a data segment is actually present in the
remote storage. Data retrievability is a new form of integrity requirement in that the
customer of the storage or the data owner does not need to keep or get a copy of the
data segment in order to get the assurance of retrievability thereof. A cryptographic
building block called Proof of Retrievability (POR) was first developed by Juels and
Kaliski [13] (JK) to meet this requirement. In the definition of [13], a successful execu-
tion of the POR scheme assures a verifier that it can retrieve F in its entirety. Classical

∗ Authors are listed in alphabetical order.
1 Dropbox - https://www.dropbox.com/
2 Amazon Simple Storage Service - http://aws.amazon.com/fr/s3/



integrity techniques such as transferring F with some integrity check value are not prac-
tical since they incur very high communication or computational costs that are linear
with the size of F . POR schemes aim at much lower cost both in terms of communica-
tions and processing by avoiding transmission or handling of F in its entirety. To that
effect, POR schemes require the prover to perform some operations on some randomly
selected parts of F and the verifier is able to check the result returned by the prover
with the knowledge of very brief reference about the data like a secret key. Most POR
schemes thus are probabilistic and their performance is measured in the trade-off be-
tween the bandwidth and processing overhead and the rate of retrievability assurance.
In this paper we develop StealthGuard, a new POR scheme that achieves good re-
trievability assurance with acceptable costs. The main idea behind the new scheme is a
combination of a privacy-preserving word search (WS) algorithm suited to large data-
stores with the insertion in data segments of randomly generated short bit sequences
called watchdogs. In StealthGuard, the user inserts these watchdogs in randomly cho-
sen locations of the file F and stores the resulting file in the cloud. In order to check
the retrievability of F the user issues lookup queries for selected values of watchdogs
using the WS scheme. The user decrypts the WS replies from the cloud server in order
to get the proof of retrievability for each segment targeted by the WS queries. Each pos-
itive result is the proof of presence for the corresponding data segment. Thanks to the
features of the WS, neither the cloud server nor a third party intruder can guess which
watchdogs are targeted by each WS query or response.
Even though there is an analogy between the watchdogs used in StealthGuard and
the sentinels akin to the JK scheme [13], there is a major difference between the two
schemes due to the use of WS by StealthGuard: the number of POR queries that can be
issued in StealthGuard without requiring any update of the watchdogs is unbounded
whereas in the JK scheme a given set of sentinels can be used for a finite number of
POR queries only. StealthGuard only requires the transfer of some additional data that
is a small percentage of F in size and a good POR rate can be achieved by only pro-
cessing a fraction of F . In addition to the description of our proposal, we give a new
security model that enhances existing security definitions of POR schemes [13, 17]. We
state a generic definition of the soundness property that applies to any POR scheme.
Contributions. To summarize, this paper offers two main contributions:
−We present StealthGuard, a new POR scheme based on the insertion of watchdogs
that requires a light file preprocessing and on a privacy-preserving WS that allows a
user to issue an unbounded number of POR queries. Besides, the user is stateless since
it only needs to keep a secret key to be able to run the POR protocol.
− We propose a new security model which improves existing security definitions [13,
17]. We also provide a formal proof of our proposal under this new security model.
The rest of the paper is organized as follows. Section 2 defines the entities and the al-
gorithms involved in a POR scheme. Section 3 describes the adversary models that are
considered in this paper. Section 4 provides an overview of StealthGuard and Sec-
tion 5 gives details of the protocol. Section 6 analyses its security properties. Section 7
evaluates its security and its efficiency. We review the state of the art in Section 8.



2 Background

Before presenting the formal definition of PORs and the related security definitions, we
introduce the entities that we will refer to in the remainder of this paper.

2.1 Entities

A POR scheme comprises the following entities:

– Client C: It possesses a set of files F that it outsources to the cloud server S. With-
out loss of generality, we assume that each file F ∈ F is composed of n splits
{S1, S2, ..., Sn} of equal size L bits. In practice, if the size of F is not a multi-
ple of L, then padding bits will be added to F . We also suppose that each split Si
comprises m blocks of l bits {bi,1, bi,2, ..., bi,m}, i.e., L = m · l.

– Cloud Server S (a potentially malicious prover): For each file F ∈ F , the cloud
server S stores an “enlarged” verifiable version F̂ of that file, that enables it to
prove to a verifier V that the client C can still retrieve its original file F .

– Verifier V: It is an entity which via an interactive protocol can check whether the
cloud server S (i.e., the prover) is still storing some file F ∈ F or not. The verifier
can be either the client itself or any other authorized entity, such as an auditor.

2.2 POR

A POR scheme consists of five polynomial-time algorithms (cf. [13, 17]):

– KeyGen(1τ ) → K: This probabilistic key generation algorithm is executed by
client C. It takes as input a security parameter τ , and outputs a secret key K for C.

– Encode(K,F ) → (fid, F̂ ): It takes the key K and the file F = {S1, S2, ..., Sn}
as inputs, and returns the file F̂ = {Ŝ1, Ŝ2, ..., Ŝn} and F ’s unique identifier fid.
Cloud server S is required to store F̂ together with fid. F̂ is obtained by first apply-
ing to F an error-correcting code (ECC) which allows client C to recover the file
from minor corruptions that may go undetected by the POR scheme, and further
by adding some verifiable redundancy that enables client C to check whether cloud
server S still stores a retrievable version of F or not.
Note that the Encode algorithm is invertible. Namely, there exists an algorithm
Decode that allows the client C to recover its original file F from the file F̂ .

– Challenge(K, fid) → chal: The verifier V calls this probabilistic algorithm to gen-
erate a challenge chal for an execution of the POR protocol for some file F . This
algorithm takes as inputs the secret key K and the file identifier fid, and returns the
challenge chal that will be sent to cloud server S.

– ProofGen(fid, chal) → P: On receiving the challenge chal and the file identifier
fid, cloud server S executes ProofGen to generate a proof of retrievability P for the
file F̂ whose identifier is fid. The proof P is then transmitted to verifier V .

– ProofVerif(K, fid, chal,P) → b ∈ {0, 1}: Verifier V runs this algorithm to check
the validity of the proofs of retrievability sent by cloud server S. On input of the
key K, the file identifier fid, the challenge chal, and the proof P , the ProofVerif
algorithm outputs bit b = 1 if the proof P is a valid proof, and b = 0 otherwise.



3 Adversary models

A POR scheme should ensure that if cloud server S is storing the outsourced files, then
the ProofVerif algorithm should always output 1, meaning that ProofVerif does not
yield any false negatives. This corresponds to the completeness property of the POR
scheme. PORs should also guarantee that if S provides a number (to be determined) of
valid proofs of retrievability for some file F , then verifier V can deduce that server S is
storing a retrievable version of F . This matches the soundness property of POR. These
two properties are formally defined in the following sections.

3.1 Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and
some file identifier fid sent by verifier V , the ProofGen algorithm generates a proof of
retrievability P that will be accepted by verifier V with probability 1.

Definition 1 (Completeness). A POR scheme is complete if for any honest pair of
cloud server S and verifier V , and for any challenge chal← Challenge(K, fid):

Pr(ProofVerif(K, fid, chal,P)→ 1 | P ← ProofGen(fid, chal)) = 1

3.2 Soundness

A proof of retrievability is deemed sound, if for any malicious cloud server S, the only
way to convince verifier V that it is storing a file F is by actually keeping a retrievable
version of that file. This implies that any cloud server S that generates (a polynomial
number of) valid proofs of retrievability for some file F , must possess a version of that
file that can be used later by client C to recover F . To reflect the intuition behind this
definition of soundness, Juels and Kaliski [13] suggested the use of a file extractor al-
gorithm E that is able to retrieve the file F by interacting with cloud server S using the
sound POR protocol. Along these lines, we present a new and a more generic sound-
ness definition that refines the formalization of Shacham and Waters [17] which in turn
builds upon the work of Juels and Kaliski [13]. Although the definition of Shacham
and Waters [17] captures the soundness of POR schemes that empower the verifier with
unlimited (i.e. exponential) number of “possible” POR challenges [3, 17, 23], it does
not define properly the soundness of POR schemes with limited number of “possible”
POR challenges such as in [13, 19] and in StealthGuard3. We recall that the formal-
ization in [17] considers a POR to be sound, if a file can be recovered whenever the
cloud server generates a valid POR response for that file with a non-negligible proba-
bility. While this definition is accurate in the case where the verifier is endowed with
unlimited number of POR challenges, it cannot be employed to evaluate the soundness
of the mechanisms introduced in [13, 19] or the solution we will present in this paper.
For example, if we take the POR scheme in [19] and if we consider a scenario where the

3 Note that having a bounded number of POR challenges does not negate the fact that the verifier
can perform unlimited number of POR queries with these same challenges, cf. [19].



cloud server corrupts randomly half of the outsourced files, then the cloud server will
be able to correctly answer half (which is non-negligible) of the POR challenges that
the verifier issues, yet the files are irretrievable. This implies that this POR mechanism
is not secure in the model of Shacham and Waters [17], still it is arguably sound.

The discrepancy between the soundness definition in [17] and the work of [13, 19]
springs from the fact that in practice to check whether a file is correctly stored at the
cloud server, the verifier issues a polynomial number of POR queries to which the server
has to respond correctly; otherwise, the verifier detects a corruption attack (the corrup-
tion attack could either be malicious or accidental) and flags the server as malicious.
This is actually what the PORs of [13, 19] and StealthGuard aim to capture. In or-
der to remedy this shortcoming, we propose augmenting the definition of Shacham and
Waters [17] (as will be shown in Algorithm 2) with an additional parameter γ that quan-
tifies the number of POR queries that verifier should issue to either be sure that a file is
retrievable or to detect a corruption attack on that file.

Now in accordance with [17], we first formalize soundness using a game that de-
scribes the capabilities of an adversary A (i.e., malicious cloud server) which can devi-
ate arbitrarily from the POR protocol, and then we define the extractor algorithm E .

To formally capture the capabilities of adversary A, we assume that it has access to
the following oracles:

– OEncode: This oracle takes as inputs a file F and the client’s key K, and returns a
file identifier fid and a verifiable version F̂ of F that will be outsourced to A.
Note that adversary A can corrupt the outsourced file F̂ either by modifying or
deleting F̂ ’s blocks.

– OChallenge: On input of a file identifier fid and client’s key K, the oracle OChallenge

returns a POR challenge chal to adversary A.
– OVerify: When queried with client’s key K, a file identifier fid, a challenge chal and

a proof of retrievability P , the oracle OVerify returns bit b such that: b = 1 if P is a
valid proof of retrievability, and b = 0 otherwise.

AdversaryA accesses the aforementioned oracles in two phases: a learning phase and a
challenge phase. In the learning phase, adversaryA can call oraclesOEncode,OChallenge,
and OVerify for a polynomial number of times in any interleaved order as depicted in
Algorithm 1. Then, at the end of the learning phase, the adversary A specifies a file
identifier fid∗ that was already output by oracle OEncode.

We note that the goal of adversary A in the challenge phase (cf. Algorithm 2) is to
generate γ valid proofs of retrievability P〉∗ for file F ∗ associated with file identifier
fid∗. To this end, adversary A first calls the oracle OChallenge that supplies A with γ
challenges chal∗i , then it responds to these challenges by outputting γ proofs P∗i . Now,
on input of client’s key K, file identifier fid∗challenges chal∗i and proofs P∗i , oracle

OVerify outputs γ bits b∗i . Adversary A is said to be successful if b∗ =
γ∧
i=1

b∗i = 1. That

is, if A is able to generate γ proofs of retrievability P∗ for file F ∗ that are accepted by
oracle OVerify.

Given the game described above and in line with [13, 17], we formalize the sound-
ness of POR schemes through the definition of an extractor algorithm E that uses ad-
versary A to recover/retrieve the file F ∗ by processing as follows:



– E takes as inputs the client’s key K and the file identifier fid∗;
– E is allowed to initiate a polynomial number of POR executions with adversary A

for the file F ∗;
– E is also allowed to rewind adversary A. This suggests in particular that extractor
E can execute the challenge phase of the soundness game a polynomial number of
times, while the state of adversary A remains unchanged.

Intuitively, a POR scheme is sound, if for any adversary A that wins the sound-
ness game with a non-negligible probability δ, there exists an extractor algorithm E
that succeeds in retrieving the challenge file F ∗ with an overwhelming probability. A
probability is overwhelming if it is equal to 1− ε, where ε is negligible.

Algorithm 1: Learning phase of the soundness
game
// A executes the following in any interleaved
// order for a polynomial number of times
(fid, F̂ )← OEncode(F,K);
chal← OChallenge(K, fid);
P ←A;
b← OVerify(K, fid, chal,P);
// A outputs a file identifier fid∗

fid∗ ←A;

Algorithm 2: Challenge phase of the
soundness game

for i = 1 to γ do
chal∗i ← OChallenge(K, fid∗);
P∗
i ←A;

b∗i ←
OVerify(K, fid∗

i , chal∗i ,P∗
i );

end

b∗ =
γ∧
i=1

b∗i

Definition 2 (Soundness). A POR scheme is said to be (δ, γ)-sound, if for every ad-
versary A that provides γ valid proofs of retrievability in a row (i.e., succeeds in the
soundness game described above) with a non-negligible probability δ, there exists an
extractor algorithm E such that:

Pr(E(K, fid∗)→ F ∗ | E(K, fid∗)
interact←→ A) ≥ 1− ε

Where ε is a negligible function in the security parameter τ .

The definition above could be interpreted as follows: if verifier V issues a sufficient
number of queries (≥ γ) to which cloud server S responds correctly, then V can as-
certain that S is still storing a retrievable version of file F ∗ with high probability. It
should be noted that while γ characterizes the number of valid proofs of retrievability
that E has to receive (successfully or in a row) to assert that file F ∗ is still retrievable, δ
quantifies the number of operations that the extractor E has to execute and the amount
of data that it has to download to first declare F ∗ as retrievable and then to extract it.
Actually, the computation and the communication complexity of extractor E will be of
order O(γδ ).

4 Overview

4.1 Idea

In StealthGuard, client C first injects some pseudo-randomly generated watchdogs into
random positions in the encrypted data. Once data is outsourced, C launches lookup



queries to check whether the watchdogs are stored as expected by the cloud. By relying
on a privacy-preserving word search (WS), we ensure that neither the cloud server S nor
eavesdropping intruders can discover which watchdog was targeted by search queries.
As a result, C can launch an unbounded number of POR queries (even for the same
watchdog) without the need of updating the data with new watchdogs in the future. The
responses are also obfuscated thanks to the underlying WS scheme. This ensures that
the only case in which S returns a valid set of responses for the POR scheme is when it
stores the entire file and executes the WS algorithm correctly (soundness property).

Besides, as in [13], in order to protect the data from small corruptions, Stealth-
Guard applies an ECC that enables the recovery of the corrupted data. Substantial
damage to the data is detected via the watchdog search.

4.2 StealthGuard phases

A client C uploads to the cloud server S a file F which consists of n splits {S1, ..., Sn}.
Thereafter a verifier V checks the retrievability of F using StealthGuard.

The protocol is divided into three phases:

– Setup: During this phase, client C performs some transformations over the file and
inserts a certain number of watchdogs in each split. The resulting file is sent to
cloud server S.

– WDSearch: This phase consists in searching for some watchdog w in a privacy-
preserving manner. Hence, verifier V prepares and sends a lookup query for w; the
cloud S in turn processes the relevant split to generate a correct response to the
search and returns the output to V .

– Verification: Verifier V checks the validity of the received response and makes the
decision about the existence of the watchdog in the outsourced file.
We note that if V receives at least γ (γ is a threshold determined in Section 6.2)
correct responses from the cloud, then it can for sure decide that F is retrievable.
On the other hand, if V receives one response that is not valid, then it is convinced
either the file is corrupted or even lost.

5 StealthGuard

This section details the phases of the protocol. Table 1 sums up the notation used in the
description. We also designed a dynamic version of StealthGuard that allows efficient
POR even when data is updated. Due to space limitations, we only present in Section
5.4 an overview of dynamic StealthGuard.

5.1 Setup

This phase prepares a verifiable version F̂ of file F = {S1, S2, ..., Sn}. Client C first
runs the KeyGen algorithm to generate the master secret key K. It derives n + 3 addi-
tional keys, used for further operations in the protocol: Kenc = Henc(K), Kwdog =
Hwdog(K), KpermF = HpermF (K) and for i ∈ [[1, n]],KpermS,i = HpermS(K, i)



Index Description
n number of splits Si in F
m number of blocks in a split Si
D number of blocks in an encoded split S̃i
v number of watchdogs in one split
C number of blocks in a split Ŝi with watchdogs
i index of a split ∈ [[1, n]]

k index of a block in Ŝi ∈ [[1, C]]

j index of a watchdog ∈ [[1, v]]

l size of a block
p index of a block in F̃ ∈ [[1, n ·D]]

q number of cloud’s matrices
κ index of a cloud’s matrix ∈ [[1, q]]

(s, t) size of cloud’s matrices
(x, y) coordinates in a cloud’s matrix ∈ [[1, s]]× [[1, t]]

Table 1: Notation used in the description of StealthGuard

with Henc, Hwdog , HpermF and HpermS being four cryptographic hash functions. K
is the single information stored at the client.

Once all keying material is generated, C runs the Encode algorithm which first gen-
erates a pseudo-random and unique file identifier fid for file F , and then processes F as
depicted in Figure 1.

1. Error correcting: The error-correcting code (ECC) assures the protection of the
file against small corruptions. This step applies to each split Si an ECC that operates
over l-bit symbols. It uses an efficient [m+d−1,m, d]-ECC, such as Reed-Solomon
codes [16], that has the ability to correct up to d

2 errors4. Each split is expanded with
d−1 blocks of redundancy. Thus, the new splits are made ofD = m+d−1 blocks.

2. File block permutation: StealthGuard applies a pseudo-random permutation to
permute all the blocks in the file. This operation conceals the dependencies between
the original data blocks and the corresponding redundancy blocks within a split.
Without this permutation, the corresponding redundancy blocks are just appended
to this split. An attacker could for instance delete all the redundancy blocks and
a single data block from this split and thus render the file irretrievable. Such an
attack would not easily be detected since the malicious server could still be able
to respond with valid proofs to a given POR query targeting other splits in the file.
The permutation prevents this attack since data blocks and redundancy blocks are
mixed up among all splits. Let ΠF : {0, 1}τ × [[1, n ·D]]→ [[1, n ·D]] be a pseudo-
random permutation: for each p ∈ [[1, n · D]], the block at current position p will
be at position ΠF (KpermF , p) in the permuted file that we denote F̃ . F̃ is then
divided into n splits {S̃1, S̃2, ..., S̃n} of equal size D.

3. Encryption: StealthGuard uses a semantically secure encryption E that operates
over l-bit blocks5 to encrypt the data. An encryption scheme like AES in counter
mode [10] can be used. The encryptionE is applied to each block of F̃ usingKenc.

4 d is even
5 Practically, l will be 128 or 256 bits.



Fig. 1: Setup phase in StealthGuard

4. Watchdog creation: For each encrypted split, v l-bit watchdogs are generated us-
ing a pseudo-random function Φ : {0, 1}τ × [[1, n]] × [[1, v]] × {0, 1}∗ → {0, 1}l.
Hence, for j ∈ [[1, v]], wi,j = Φ(Kwdog, i, j, fid). The use of fid guarantees that
two different files belonging to the same client have different watchdogs. Since the
watchdogs are pseudo-randomly generated and the blocks in the split are encrypted,
a malicious cloud cannot distinguish watchdogs from data blocks.

5. Watchdog insertion: The v watchdogs are appended to each split. Let C = D +
v be the size of the new splits. A split-level pseudo-random permutation ΠS :
{0, 1}τ × [[1, C]] → [[1, C]] is then applied to the blocks within the same split
in order to randomize the location of the watchdogs: for i ∈ [[1, n]], the block at
current position k will be at position ΠS(KpermS,i, k) in the permuted split. Note
that in practice, the permutation is only applied to the last v blocks: for k ∈ [[D,C]],
this step swaps block at current position k for block at position ΠS(KpermS,i, k).
We denote Ŝi, i ∈ [[1, n]], the permuted split and b̂i,k, k ∈ [[1, C]] its blocks.

These operations yield file F̂ . The client uploads the splits {Ŝi}ni=1 and fid to the cloud.

5.2 WDSearch

Verifier V wants to check the retrievability of F . Hence, it issues lookup queries for
randomly selected watchdog, one watchdog for one split in one query. Cloud server
S processes these queries without knowing what the values of the watchdogs are and
where they are located in the splits. We propose WDSearch, a privacy-preserving WS
solution derived from PRISM in [6]. Our proposal is a simpler version of PRISM and
improves its performance in the particular context of StealthGuard. Note that this
proposed building block is only an example and any existing privacy-preserving WS
mechanism assuring the confidentiality of both the query and the result can be used in
StealthGuard. PRISM and thus WDSearch are based on Private Information Retrieval
(PIR). To process a query, S constructs q (s, t)-binary matrices such that s · t = C.
Each element in the matrices is filled with the witness (a very short information) of the
corresponding block in the split. Based on the PIR query sent by the verifier, the server



retrieves in the matrices the witnesses corresponding to the requested watchdogs. We
insist on the fact that WDSearch is not a PIR solution: the server does not retrieve the
watchdog itself but only the witness.

WDSearch consists of two steps:

– WDQuery: Verifier V executes the Challenge algorithm to generate a challenge
chal that is transmitted to cloud server S. Challenge takes as input master keyK and
file identifier fid and it is executed in three phases. In the first phase, Challenge ran-
domly selects a split index i and a watchdog index j (i ∈ [[1, n]] and j ∈ [[1, v]]), and
computes the position posj of the watchdog wi,j in the split Ŝi by applying the per-
mutation performed during the watchdog insertion step: posj = ΠS(KpermS,i, D+
j). Then, Challenge maps the position posj to a unique position (xj , yj) in an (s, t)-
matrix:

xj = d
posj
t
e yj = posj − d

posj
t
e × t+ t

In the second phase, given (xj , yj) and using any efficient PIR algorithm, Challenge
computes a PIR query, denoted WitnessQuery, to retrieve the witness (and not the
watchdog) at position (xj , yj) in the matrix. In the last phase, Challenge gen-
erates a random number r (this nonce will be used by the cloud when filling
the binary matrices to guarantee freshness), and outputs the challenge chal =
(WitnessQuery, r, i). Eventually, verifier V sends the challenge chal and file iden-
tifier fid to cloud server S.

– WDResponse: Upon receiving the challenge chal = (WitnessQuery, r, i) and
file identifier fid, cloud server S runs ProofGen to process the query. The cloud
creates q binary matrices of size (s, t). For each block b̂i,k in Ŝi, the cloud com-
putes hi,k = H(b̂i,k, r), where k ∈ [[1, C]]. Here, H denotes a cryptographic hash
function. The use of r forces the cloud to store the actual data block. Otherwise it
could drop the block, only store the hash and respond to the query using that hash.
Let hi,k|q be the first q bits of hi,k. For κ ∈ [[1, q]], letMκ be one of the matrices
created by the cloud. It fills the κth matrix with the κth bit of hi,k|q as Algorithm 3
shows. It should be noted that according to the assignment process described in
Algorithm 3, the witness at position (xj , yj) in Mκ is associated with watchdog
wi,j : it is the κth bit of H(wi,j , r).
Once all the q binary matrices are filled, the cloud processes WitnessQuery by
executing a PIR operation that retrieves one bit from each matrixMκ, κ ∈ [[1, q]].
We denote WitnessResponseκ the result of the PIR on matrixMκ. The ProofGen
algorithm outputs P , i.e. the proof of retrievability that consists in the set P =
{WitnessResponse1, ...,WitnessResponseq}. Cloud server S sends the proof P to
verifier V .

5.3 Verification

Verifier V runs ProofVerif to analyze the received proof P . This algorithm takes as
input master key K, proof P , split index i, watchdog index j, and file identifier fid.
ProofVerif outputs a bit equal to 1 if the proof is valid or 0 otherwise.



Algorithm 3: Filling the cloud matrices

// For a given (s, t)-matrixMκ, a given split Ŝi and a given random number r
// k is the index of a block in split Ŝi
k = 1;
for x = 1 to s do

for y = 1 to t do
Mκ[x, y]← κth bit of H(b̂i,k, r);
k = k + 1;

end
end

V processes the q WitnessResponseκ in order to retrieve the q bits εκ at position
(xj , yj) in the matrixMκ, for κ ∈ [[1, q]] . Let h denote ε1ε2...εq .

We recall that verifier V queried watchdogwi,j for split Ŝi and that by having access
to the master key K, V can recompute the value of wi,j = Φ(Kwdog, i, j, fid) and its
position in the split Ŝi, posj = ΠS(KpermS,i, D+ j). Thereafter, V computes the hash
of the watchdog hi,posj = H(wi,j , r), with the same r chosen during the challenge and
considers the q first bits of hi,posj . Based on the value of h = ε1ε2...εq and hi,posj , V
checks whether h = hi,posj |q . If it is the case, then V judges the proof valid and returns
1, otherwise it interprets the invalid proof as the occurrence of an attack and outputs 0.

As mentioned in section 4.2, in order to acknowledge the retrievability of F , verifier
V needs to initiate at least γ POR queries6 from randomly selected splits in order to
either ascertain that F is retrievable or detect a corruption attack: if V receives γ valid
POR responses, then it can conclude that cloud server S stores a retrievable version of
F , otherwise, it concludes that S has corrupted part of the file.

5.4 Dynamic StealthGuard

The previously described protocol does not consider update operations that the client
can perform over its data. Similarly to the work in [2, 8, 9, 11, 15, 18, 19, 21, 22, 24],
we propose a scheme that handles these updates. Due to space limitations we present
only an idea of how dynamic StealthGuard operates. Any update in the data impacts
the security of our protocol. For example, if the client modifies the same block several
times then the cloud can discover that this particular block is not a watchdog. Therefore,
dynamic StealthGuard updates the watchdogs in a split each time an update occurs on
that split. Besides, the verifier must be ensured that the file stored at the server is ac-
tually the latest version. Dynamic StealthGuard offers a versioning solution to assure
that the cloud always correctly applies the required update operations and that it always
stores the latest version of the file. Our proposal uses Counting Bloom Filters [12] and
Message Authentication Codes (MAC) [5]. Each time a split is updated, some infor-
mation regarding the split number and the version number is added into the counting
Bloom filter which is authenticated using a MAC that can only be computed by the
client and the verifier. Additionally, to guarantee the freshness of the response at each

6 The value of γ will be determined in Section 6.2.



update query, a new MAC key is generated. This protocol does not imply any additional
cost at the verifier except of storing an additional MAC symmetric key.

Another challenging issue is that updating a data block requires to update the cor-
responding redundancy blocks, resulting in the disclosure to the cloud server of the
dependencies between the data blocks and the redundancy blocks. Therefore, the file
permutation in the Setup phase becomes ineffective. Some techniques are available to
conceal these dependencies such as batch updates [19] or oblivious RAM [8]. How-
ever, these approaches are expensive in terms of computation and communication costs.
Hence, we choose to trade off between POR security and update efficiency by omitting
the file permutation.

6 Security Analysis

In this section, we state the security theorems of StealthGuard.

6.1 Completeness
Theorem 1. StealthGuard is complete.

Proof. Without loss of generality, we assume that the honest verifier V runs a POR
for a file F . To this end, verifier V sends a challenge chal = (WitnessQuery, r, i) for
watchdog wi,j , and the file identifier fid of F . Upon receiving challenge chal and file
identifier fid, the cloud server generates a proof of retrievability P for F .

According to StealthGuard, the verification of POR consists of first retrieving the
first q bits of a hash hi,posj , then verifying whether hi,posj |q corresponds to the first
q-bits of the hash H(wi,j , r). Since the cloud server S is honest, then this entails that it
stores wi,j , and therewith, can always compute hi,posj = H(wi,j , r).

Consequently, ProofVerif(K, fid, chal,P) = 1.

6.2 Soundness
As in Section 5, we assume that each split Si in a file F is composed of m blocks,
and that the Encode algorithm employs a [D,m, d]-ECC that corrects up to d

2 errors
per split (i.e., D = m + d − 1). We also assume that at the end of its execution, the
Encode algorithm outputs the encoded file F̂ which consists of a set of splits Ŝi each
comprising C = (D+v) blocks (we recall that v is the number of watchdogs per split).

In the following, we state the main security theorem for StealthGuard.

Theorem 2. Let τ be the security parameter of StealthGuard and let ρ denote d
2D .

StealthGuard is (δ, γ)-sound in the random oracle model, for any δ > δneg and
γ ≥ γneg, where

δneg =
1

2τ

γneg = d
ln(2)τ

ρneg
e

(1− ρ

ρneg
)2ρneg =

3ln(2)τ

D
and ρneg ≤ ρ



Actually if γ ≥ γneg, then there exists an extractor E that recovers a file F with a proba-
bility 1− n

2τ , such that n is the number of splits in F , by interacting with an adversaryA
against StealthGuard who succeeds in the soundness game with a probability δ > 1

2τ .

Due to space limitations, a proof sketch of this theorem is provided in our long report
[4]. We note that the results derived above can be interpreted as follows: if verifier V
issues γ ≥ γneg POR queries for some file F to which the cloud server S responds
correctly, then V can declare F as retrievable with probability 1 − n

2τ . Also, we recall
that a POR execution for a file F in StealthGuard consists of fetching (obliviously)
a witness of a watchdog from the encoding F̂ of that file. Consequently, to ensure a
security level of 1

2τ , the client C must insert at least γneg watchdogs in F . That is, if file
F comprises n splits, then nv ≥ γneg (v is the number of watchdogs per split).

7 Discussion

StealthGuard requires the client to generate v > γneg
n watchdogs per split where n is

the number of splits and γneg is the threshold of the number of queries that verifier V
should issue to check the retrievability of the outsourced data. As shown in Theorem
2, this threshold does not depend on the size of data (in bytes). Instead, γneg is defined
solely by the security parameter τ , the number D = m + d − 1 of data blocks and
redundancy block per split and the rate ρ = d

2D of errors that the underlying ECC
can correct. Namely, γneg is inversely proportional to both D and ρ. This means that
by increasing the number of blocks D per split or the correctable error rate ρ, the
number of queries that the client should issue decreases. However, having a large ρ
would increase the size of data that client C has to outsource to cloud server S, which
can be inconvenient for the client. Besides, increasing D leads to an increase of the
number of blocks C = s · t per split Ŝi which has a direct impact on the communication
cost and the computation load per query at both the verifier V and the cloud server S.
It follows that when defining the parameters of StealthGuard, one should consider the
tradeoff between the affordable storage cost and the computation and communication
complexity per POR query.

To enhance the computation performances of StealthGuard, we suggest to use the
Trapdoor Group Private Information Retrieval which was proposed in [20] to im-
plement the PIR instance in WDSearch. This PIR enables the verifier in StealthGuard
to fetch a row from an (s, t) matrix (representing a split) without revealing to the cloud
which row the verifier is querying. One important feature of this PIR is that it only
involves random number generations, additions and multiplications in Zp (where p is
a prime of size |p| = 200 bits) which are not computationally intensive and could be
performed by a lightweight verifier. In addition, we emphasize that PIR in Stealth-
Guard is not employed to retrieve a watchdog, but rather to retrieve a q-bit hash of the
watchdog (typically q = 80), and that it is not performed on the entire file, but it is in-
stead executed over a split. Finally, we indicate that when employing Trapdoor Group
Private Information Retrieval, the communication cost of StealthGuard is minimal
when s '

√
Cq and t '

√
C
q . This results in a computation and a communication com-

plexity (per query) at the verifier of O(
√
Cq) and a computation and communication

complexity at the server of O(C) and O(
√
Cq) respectively.



Example. A file F of 4GB is divided into n = 32768 splits F = {S1, S2, ..., Sn},
and each split Si is composed of 4096 blocks of size 256 bits. StealthGuard inserts 8
watchdogs per split and applies an ECC that corrects up to 228 corrupted blocks (i.e.,
ρ = 5%). We obtain thus F̂ = {Ŝ1, Ŝ2, ..., Ŝn}, where Ŝi is composed of 4560 blocks
of size 256 bits. This results in a redundancy of ' 11.3%, where 11.1% redundancy is
due to the use of ECC, and 0.20% redundancy is caused by the use of watchdogs.

If (s, t) = (570, 8), q = 80 and StealthGuard implements the Trapdoor Group PIR
[20] where |p| = 200 bits, then the verifier’s query will be of size ' 13.9 KB, whereas
the cloud server’s response will be of size ' 15.6KB. In addition, if the cloud server
still stores the file F̂ , then the verifier will declare the file as retrievable with probability
1− n

260 ' 1− 1
245 by executing the POR protocol 1719 times. That is, by downloading

26.2MB which corresponds to 0.64% of the size of the original file F .

8 Related Work

The approach that is the closest to StealthGuard is the sentinel-based POR introduced
by Juels and Kaliski [13]. As in StealthGuard, before outsourcing the file to the server,
the client applies an ECC and inserts in the encrypted file special blocks, sentinels, that
are indistinguishable from encrypted blocks. However, during the challenge, the veri-
fier asks the prover for randomly-chosen sentinels, disclosing their positions and values
to the prover. Thus, this scheme suggests a limited number of POR queries. Therefore,
the client may need to download the file in order to insert new sentinels and upload it
again to the cloud. [13] mentions, without giving any further details, a PIR-based POR
scheme that would allow an unlimited number of challenges by keeping the positions
of sentinels private, at the price of high computational cost equivalent in practice to
downloading the entire file. In comparison, StealthGuard uses a PIR within the WS
technique to retrieve a witness of the watchdog (a certain number of bits instead of the
entire watchdog), and does not limit the number of POR verifications.
Ateniese et al. [1] define the concept of Provable Data Possession (PDP), which is
weaker than POR in that it assures that the server possesses parts of the file but does not
guarantee its full recovery. PDP uses RSA-based homomorphic tags as check-values
for each file block. To verify possession, the verifier asks the server for tags for ran-
domly chosen blocks. The server generates a proof based on the selected blocks and
their respective tags. This scheme provides public verifiability meaning that any third
party can verify the retrievability of a client’s file. However, this proposal suffers from
an initial expensive tag generation leading to high computational cost at the client. The
same authors later propose in [3] a robust auditing protocol by incorporating erasure
codes in their initial PDP scheme [1] to recover from small data corruption. To prevent
an adversary from distinguishing redundancy blocks from original blocks, the latter are
further permuted and encrypted. Another permutation and encryption are performed on
the redundancy blocks only which are then concatenated to the file. This solution suf-
fers from the fact that a malicious cloud can selectively delete redundant blocks and
still generate valid proofs. Even though these proofs are valid, they do not guarantee
that the file is retrievable.
Shacham and Waters in [17] introduce the concept of Compact POR. The client applies



Scheme Parameter Setup cost Storage
overhead

Server cost Verifier cost Communication
cost

Robust PDP [3] block size:
2 KB
tag size:
128 B

4.4× 106 exp
2.2× 106 mul

tags:
267 MB

764 PRP
764 PRF
765 exp
1528 mul

challenge: 1 exp
verif: 766 exp
764 PRP

challenge: 168 B
response: 148 B

JK POR [13] block size:
128 bits
number of sen-
tinels: 2×106

2× 106 PRF sentinels:
30.6 MB

⊥ challenge:
1719 PRP
verif:⊥

challenge: 6 KB
response:26.9 MB

Compact POR
[17]

block size:
80 bits
number of
blocks in one
split: 160
tag size:
80 bits

1 enc
5.4× 106 PRF
1.1× 109 mul

tags:
51 MB

7245 mul challenge:
1 enc, 1 MAC
verif: 45 PRF,
160 + 205 mul

challenge: 1.9 KB
response: 1.6 KB

Efficient POR
[23]

block size:
160 bits
number of
blocks in one
split: 160

2.2× 108 mul
1.4× 106 PRF

tags:
26 MB

160 exp
2.6 ∗ 105 mul

challenge:⊥
verif: 2 exp, 1639
PRF, 1639 mul

challenge: 36 KB
response: 60 B

StealthGuard block size:
256 bits
number of
blocks in one
split: 4096

2.6× 105 PRF
2.6× 105 PRP

watchdogs:
8 MB

6.2× 108 mul challenge:
2.0× 106 mul
verif:
1.4× 105 mul

challenge: 23.3
MB
response: 26.2 MB

Table 2: Comparison of relevant related work with StealthGuard.

an erasure code and for each file block, it generates authenticators (similar to tags in
[1]), with BLS signatures [7], for public verifiability, or with Message Authentication
Codes (MAC) [5], for private verifiability. The generation of these values are computa-
tionally expensive. Moreover, the number of authenticators stored at the server is linear
to the number of data blocks, leading to an important storage overhead. Xu and Chang
[23] propose to enhance the scheme in [17] using the technique of polynomial com-
mitment [14] which leads to light communication costs. These two schemes employ
erasure codes in conjunction with authentication tags, which induces high costs at the
time of retrieving the file. Indeed, erasure coding does not inform the verifier about the
position of the corrupted blocks. Thus, the verifier has to check each tag individually to
determine whether it is correct or not. When a tag is detected as invalid, meaning that
the corresponding block is corrupted, the verifier applies the decoding to recover the
original data block.
A recent work of Stefanov et al. [19], Iris, proposes a POR protocol over authenticated
file systems subject to frequent changes. Each block of a file is authenticated using a
MAC to provide file-block integrity which makes the tag generation very expensive.
Compared to all these schemes, StealthGuard performs computationally lightweight
operations at the client, since the generation of watchdogs is less expensive than the
generation of tags like in [1, 17]. In addition, the storage overhead induced by the stor-
age of watchdogs is less important than in the previous work. At the cost of more bits
transmitted during the POR challenge-response, StealthGuard ensures a better proba-
bility of detecting adversarial corruption.

Table 2 depicts the performance results of StealthGuard and compares it with pre-
vious work. We analyze our proposal compared to other schemes [3, 13, 17, 23] with
respect to a file of size 4 GB. The comparison is made on the basis of the POR assur-



ance of 1− 1
245 computed in Section 7. We assume that all the compared schemes have

three initial operations in the Setup phase: the application of an ECC, the encryption
and the file-level permutation of data and redundancy blocks. Since these three initial
operations have comparable costs for all the schemes, we omit them in the table. Com-
putation costs are represented with exp for exponentiation, mul for multiplication,
PRF for pseudo-random function or PRP for pseudo-random permutation. For Stealth-
Guard, we compute the different costs according to the values provided in Section 7.
For the other schemes, all initial parameters derive from the respective papers. In [17]
since the information on the number of blocks in a split is missing, we choose the same
one as in [23]
Setup. In our scheme, the client computes 32768×8 ≈ 2.6×105 PRF and 2.6×105 PRP
for the generation and the insertion of watchdogs. One of the advantages of Stealth-
Guard is having a more lightweight setup phase when the client preprocesses large
files. Indeed, the setup phase in most of previous work [3, 17, 19, 23] requires the client
to compute an authentication tag for each block of data in the file which is computa-
tionally demanding in the case of large files.
Storage Overhead. The insertion of watchdogs in StealthGuard induces a smaller
storage overhead compared to other schemes that employ authentication tags.
Proof Generation and Verification. For StealthGuard, we consider the PIR opera-
tions as multiplications of elements in Zp where |p| = 200 bits. To get the server and
verifier computational costs of existing work, based on the parameters and the bounds
given in their respective papers, we compute the number of requested blocks in one
challenge to obtain a probability of 1 − 1

245 to declare the file as irretrievable: 764
blocks in [3], 1719 sentinels in [13], 45 blocks in [17] and 1639 blocks in [23]. Stealth-
Guard induces high cost compared to existing work but is still acceptable.
Communication. Even if its communication cost is relatively low compared to Stealth-
Guard, JK POR [13] suffers from the limited number of challenges, that causes the
client to download the whole file to regenerate new sentinels. Although we realize that
StealthGuard’s communication cost is much higher than [3, 17, 23], such schemes
would induce additional cost at the file retrieval step, as mentioned earlier.
To summarize, StealthGuard trades off between light computation at the client, small
storage overhead at the cloud and significant but still acceptable communication cost.
Nevertheless, we believe that StealthGuard’s advantages pay off when processing
large files. The difference between the costs induced by existing schemes and those
induced by StealthGuard may become negligible if the size of the outsourced file in-
creases.

9 Conclusion

StealthGuard is a new POR scheme which combines the use of randomly generated
watchdogs with a lightweight privacy-preserving word search mechanism to achieve
high retrievability assurance. As a result, a verifier can generate an unbounded number
of queries without decreasing the security of the protocol and thus without the need for
updating the watchdogs. StealthGuard has been proved to be complete and sound.



As future work, we plan to implement StealthGuard in order to not only evaluate
its efficiency in a real-world cloud computing environment but also to define optimal
values for system parameters.

10 Acknowledgment

This work was partially funded by the Cloud Accountability project - A4Cloud (grant
EC 317550).

References

[1] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
N. J. Peterson, and Dawn Song. Provable data possession at untrusted stores. In Peng
Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM Conference on
Computer and Communications Security, pages 598–609. ACM, 2007. ISBN 978-1-59593-
703-2. URL http://dblp.uni-trier.de/db/conf/ccs/ccs2007.html.

[2] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik. Scalable and
efficient provable data possession. In Proceedings of the 4th international conference on
Security and privacy in communication networks, SecureComm ’08, pages 9:1–9:10, New
York, NY, USA, 2008. ACM.

[3] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea
Kissner, Zachary N. J. Peterson, and Dawn Song. Remote data checking using provable
data possession. ACM Trans. Inf. Syst. Secur., 14(1):12, 2011.

[4] Monir Azraoui, Kaoutar Elkhiyaoui, Refik Molva, and Melek Önen. Stealthguard: Proofs
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