
Smart M2M Gateway based Architecture for M2M Device and Endpoint

Management

Soumya Kanti Datta, Christian Bonnet
Mobile Communication Department

EURECOM, Biot, France

Emails: {dattas, bonnet}@eurecom.fr

Abstract— Internet of Things (IoT) envisions connecting and

managing billions of devices and endpoints. This paper

describes a smart M2M gateway based architecture to manage

the huge volume of M2M devices and endpoints. The

architecture is compliant with both ETSI and oneM2M

standards recommendations. The resources and the attributes

of the M2M devices and endpoints are described using CoRE

Link Format. The measurements of the sensors and commands

for actuators are carried using Sensor Markup Language

(SenML). We have also introduced an extension to CoRE Link

for the SenML unit resource description aimed to provide

skeuomorphic experience to the end users. The gateway is

composed of RESTful web services. The internal structure of

the gateway and APIs to manage the M2M devices, endpoints,

their discovery and interaction with the mobile clients are

described in detail. The prototype implementation of the

proposed system is discussed along with the lightweight

development of FI-WARE Generic Enablers relevant to the

work. Finally the paper summarizes the state-of-the-art,

analyses the contribution of the work and concludes with

future directions.

Keywords- CoRE Link Format; FI-WARE; Generic

Enablers; IoT; M2M device and endpoint; M2M gateway;

Sensor Markup Language.

I. INTRODUCTION

Internet of Things (IoT) is a novel paradigm that is

shaping the evolution of internet [1, 3]. It envisions billions

of physical objects or things like sensors, actuators, RFID

tags being connected to the internet. In order to deploy an

IoT system, these things must be uniquely addressable and

accessed by end users through network. But often these

things do not have the capabilities to interact with the

internet on their own and are assisted by a M2M gateway

[2]. Although powerful and intelligent M2M devices can

directly connect to the internet and provide services to the

end users, the gateway is indispensable for connecting

legacy things and for several other scenarios like smart

home. To deploy IoT based system, billions of such M2M

devices and endpoints or things will have to be connected

together. The management of such volume of devices is a

cumbersome task, especially when it has to be tackled

without any human intervention.

In this paper, the notion of M2M device and endpoint

management using a smart M2M gateway is proposed. The

gateway also settles the heterogeneity between M2M

devices and internet and bridges the traditional internet with

endpoint networks. We have proposed an architecture which

emphasizes on gateway based M2M device management.

The architecture follows the specifications of both ETSI and

oneM2M standards. The internal structure of such a gateway

along with its APIs and interactions with M2M devices,

endpoints and the mobile clients are the focus of the paper.

We have used the CoRE Link Format and IPSO Alliance

Framework to configure the M2M device and endpoint

resources and attributes [5, 23, 25]. When an M2M device

with sensors and/or actuators are connected to the gateway,

the device loads its configuration file onto the gateway. The

gateway APIs examine the file and stores the device and

endpoint configures in a local database. The architecture

takes advantage of Sensor Markup Language (SenML) to

exchange metadata for both sensors and actuators. Although

SenML draft defines metadata only for sensors, extensions

to the draft have been developed to address actuators using

the same software implementation [18, 26]. We have also

extended the capabilities of CoRE Link to add additional

resource types for SenML units. These resource types

provide additional information on the unit and

measurements and drive the user interface of the mobile

applications from the M2M gateway. This is explained in

Section IV. The internal APIs of the gateway also relate to

several FI-WARE Generic Enablers which are also

described in Section V [15].

The main contributions of the work are: (i) CoRE Link

Format based lightweight resource and attribute description

of the M2M device and endpoints, (ii) internal structure of

the gateway, its web services, APIs and interactions, (iii)

ETSI and oneM2M compliant IoT architecture and (iv)

lightweight implementation of relevant FI-WARE Generic

Enablers. One possible deployment scenario of the

mentioned architecture is in smart homes where one

gateway can manage all the connected devices. But the

same can be extended to e-Health domain, intelligent

transportation system (ITS) and more verticals of IoT

ecosystem.

The rest of the paper is explained as below. Section II
describes the proposed gateway based architecture. The
components of the architecture are referred to that of ETSI
and oneM2M. Section III focuses on internal structure and
the APIs of the gateway for configuration management of
M2M devices and endpoints and the implementation.
Interaction of the gateway APIs with the mobile clients are

presented in Section IV. The prototype implementation of
the entire architecture includes the development of several
Generic Enablers (GE) proposed by FI-WARE project. A
brief analysis of the GEs is given in Section V. Section VI
examines the performance issues while Section VII provides
a study of relevant state-of-the-art.

II. PROPOSED ARCHITECTURE

The proposed architecture is depicted in Figure 1. The
gateway acts as the backbone of the architecture and is a
collection of RESTful web services divided into two
interfaces, north and south. The service capabilities layer
(SCL) interfaces at the north interface of the M2M gateway
while the M2M devices and endpoints are connected to the
south interface of the gateway. The architecture is compliant
with the ETSI standards [4]. The M2M gateway together
with the M2M devices and endpoints constitute the Device
Domain. The SCL and mobile clients running an application
(which can also be termed as network applications)
constitute the network domain. With respect to oneM2M
standardization efforts – (i) the SCL corresponds to the
Discovery Domain, (ii) core and access network constitute
the Interaction Domain and (iii) M2M gateway, devices and
endpoints belong to Resource Domain [24].

Figure 1. Proposed architecture to manage M2M devices and endpoints.

A. M2M Devices and Endpoints

M2M devices contain the actuals sensors and actuators
which are the endpoints or things. A smart device can
associate name, id, unit, software version to the measurement
value creating a SenML compliant metadata. The interface of
the smart device allows the metadata to be read using a GET
request or can push the metadata to the gateway. For a non-
smart or legacy device, the same is done using another
gateway called intermediate gateway (IG). It is configured

with the necessary information to create the metadata. In
case of a legacy actuator, IG converts the command sent
from mobile devices to machine executable format using a
predefined protocol.

The work concentrates on providing lightweight
description of these devices and endpoints in CoRE Link
Format. When a device containing a sensor or actuator is
attached to a gateway, the configuration file is pushed to the
gateway. The internal APIs of the gateway read the
descriptions and store them in appropriate local database.
Such configurations also play an important role during
dynamic device discovery.

B. M2M Gateway

The mobile clients access the devices and endpoints via

the gateway which acts as the backbone of the architecture

[17]. The necessary services are developed using REST

paradigm. The north interface of the gateway (i) exposes the

APIs for managing the things, (ii) implements an API to

provide push notification containing sensor measurements,

and (iii) assists in dynamic device discovery. The south

interfaces employs proxy-in and proxy-out. The sensors are

connected to proxy-in web service which facilitates real

time interaction between the mobile clients and sensors.

This web service can send a GET request to read the sensor

metadata or receive the same when the sensor pushes it. The

proxy-out links the clients with actuators. This web service

receives the URI of the actuator and the command as

SenML metadata. It is then converted to machine readable

format and sent to the actuator corresponding to the URI.

C. Service Capabilities Layer

This layer exposes the M2M functions through a set of
open interfaces that are shared by different applications. It
also exploits the core network functionalities to provide
reliable service to the clients. SCL provides several
advantages – (i) it decouples the mobile applications from
the actual sensors and actuators, (ii) provides optimizing in
mobile application development, (iii) to provide access rights
to the sensors and actuators and (iv) implements the APIs
necessary for dynamic discovery of devices and topics [24].

D. Mobile clients

The mobile clients consist of smartphones and tablets

running Android, iOS and other mobile operating systems.

The clients are equipped with a mobile application called

“Connect and Control Things” (CCT) which receive the

sensor measurements and can issue commands to control

actuators [18].

III. DEVICE CONFIGURATION MANAGEMENT USING THE

GATEWAY

The management of M2M devices and endpoints is

efficiently done using the gateway. The sensors are

connected to the proxy-in while the actuators are connected

to the proxy-out of the gateway. We propose to define a

function set dedicated based on the CoRE Link specification

as listed in Table 1. All the elements are implemented using

separate APIs and are exposed to the SCL and mobile

clients through the north interface. This section explains

each API and how it interacts with the devices and

endpoints through south interface. The following APIs

together constitute the Gateway SCL as per the ETSI

standards [4].

TABLE I. LIST OF PROPOSED FUNCTION SET

Function Set Root Path Resource Type

Device /d wg.dev

Endpoint /e wg.endpoint

Unit /unit wg.senml.unit

Configuration /cf wg.config

A. Configuration Resource Description API

An initial configuration of the device and its endpoint(s)
must be created. This can be done using a XML or JSON file
containing the static description. When the device is first
linked to the gateway, this API reads the configuration file
using GET request or the file can be pushed to it. Following
table portrays the configuration resource description.

TABLE II. CONFIGURATION RESOURCE DESCRIPTION

Type Path RT IF

Device /cf/d wg.dev p

Endpoint /cf/e wg.endpoint p

Unit /cf/unit wg.unit p

The configuration file can be created and/or updated

from the mobile clients by making a connection to this API.

Access to the resources of devices and endpoints is

restricted to authorized clients as determined by the access

rights. The resource types “device” and “endpoint” are

further explained in following sub-sections.

B. Device Resource Description API

Table III provides the device resource description. The

list is specific to the M2M devices connected to the

gateway. The “location” is taken from IPSO Alliance

Framework which currently supports only “ipso” as

namespace in the resource type (RT). Rest of the attributes

has namespace “wg” which stands for the wireless M2M

gateway. The API reads the device resource description

from the configuration file and stores that in a local storage.

TABLE III. DEVICE RESOURCE DESCRIPTION

Type Path RT IF

Location /d/loc ipso.loc.gps /

ipso.loc.xy /

ipso.loc.sem

p

Id /d/id wg.dev.id rp

Name /d/n wg.dev.name p

Model /d/mdl wg.dev.model p

Endpoint /d/end wg.dev.endpoint p

destination /d/dst wg.dev.destination p

proxy-out /d/po wg.dev.proxy-out rp

proxy-in /d/pi wg.dev.proxy-in rp

The attribute types are described below. It is to be noted

that, each device is configured with location, id, name,

endpoint, model and destination. The proxy-out and proxy-

in are assigned by the gateway depending on the type of

endpoint attached to the device. The introduction of these

two proxies as resource types is our unique addition to

CoRE Link specification.

• Location: It signifies the type of device’s location

which can be described using GPS co-ordinates, X,

Y value (X and Y are in meters with respect to an

anchor position) or a semantic (Building A / Room

313).

• Id: It is the unique identification of the device. It

can either be configured in each device or the

gateway can assign it. The entire above description

is stored in a table (for devices) in a database in the

gateway. This id serves as the primary key to for

each entry of the table.

• Name: It contains the name of the device.

• Model: It gives the model name number of the

hardware. This is optional.

• Endpoint: It provides information on the type(s) of

endpoint (sensor, actuator, RFID tag, transducer or

logger) attached to the device. This is optional.

• Destination: This attribute denotes the URI of the

device. For a sensor, the GET request to read

metadata is sent to this URI. Similarly, a POST

request containing the command for an actuator is

sent to this destination.

• Proxy-out: This is the web service URI at south

interface to which a device with actuator is

connected.

• Proxy-in: This is the URI to which a device with

sensor is connected.

In case of a device that contains both senor and actuator,

the device must be connected to both the proxies.

C. Endpoint Resource Description API

This is in charge of retrieving and storing the description
of endpoints connected to a device. Table III lists the
mentioned description.

TABLE IV. ENDPOINT RESOURCE DESCRIPTION

Type Path RT IF

id /e/id wg.endpoint.id rp

name /e/n wg.endpoint.name p

device /e/d wg.endpoint.device p

senml /e/senml wg.endpoint.senml rp

The attribute types are described below and they are
preconfigured into each endpoint.

• id: It is the unique identification of the endpoint and
can also be called the resource identifier.

• name: It is the human readable name of the
endpoint.

• device: It denotes the URI of the device managing
the endpoint.

• senml: It carried the SenML metadata related to the
endpoint. The metadata includes the information
about the type of the endpoint (i.e. sensor, actuator,
RFID tag, transducer etc.)

D. Unit Resource Description API

A unit resource is a semantic associated with a SenML
unit and is listed in Table IV. Two most important types are
graphical representation and allowed range of values for
operation. It is necessary for a client to know the operating
range of endpoints, particularly for an actuator in order to
control it. The graphical information is to be associated with
the measurement value and allowed range of values and
serves as a feedback for the users. The main aim of using this
is to drive the user experience from the gateway itself and it
is one of the main contributions of the work.

TABLE V. ENDPOINT RESOURCE DESCRIPTION

Type Path RT IF

Unit /unit/{senml.unit} wg.senml.unit rp

ui-
graphical

/unit/{senml.unit}/gr wg.senml.gr rp

allowed-
range

/unit/{senml.unit}/ar wg.senml.ar rp

allowed-list /unit/{senml.unit}/al wg.senml.al rp

• unit: It refer to any SenML compliant unit.

• ui-graphical: This is a graphical representation
(image) associated with the of unit.

• allowed-range: The range of operation for the
endpoints. It is to be noted that this denotes a
continuous range of values. The maximum and
minimum values are written side-by-side, separated
by a semicolon. For example, the allowed operating
range of a temperature sensor can be “10;50” in
Celsius.

• allowed-list: It is used when the operating range is
not continuous. Consider a light controlling actuator
having two states only (on and off) and does not
permit dimming the light. Instead of using the
allowed-range, allowed list is used and the
permitted values are written in the same fashion as
previously stated.

If the initial configuration file of the device does not
contain information about these attributes, then they can be
created by accessing the Configuration Resource Description

API from the authorized mobile clients. It is to be noted that,
the introduction of unit resource description is solely aimed
at providing skeuomorphic representation of sensor and
actuator measurements, allowed range of values, unit to the
end users.

E. Push Notification API

This API is necessary to update the mobile clients about

sensor measurement updates even when the application

CCT is running in background. To receive the notification,

CCT must subscribe to this API. It is also used to notify

user when a device and/or endpoint is dynamically added to

or removed from the gateway [17].

F. Actuator Control API

When a client issues a command to control an actuator

(e.g. switch off a light, reduce the room temperature using

AC), the command is received by this API. At first it

extracts the URI of the proxy-out to which the actuator is

connected. Then the rest of the SenML coded metadata is

examined to find out the URI of the actuator, whether it is

smart or legacy. In case of smart actuator the metadata is

forwarded by the proxy-out. But for the legacy actuator, the

command is translated into a machine readable format and

then communicated to the actuator.

G. Semantic API

There is another API which is reasoning on the sensor

and actuator metadata to enrich overall M2M data using

semantic web technologies across several domains (e-

Health, transportation, smart home). The API follows

Machine-to-Machine Measurement (M3) Ontology

proposed by the authors of [27, 28]. The sensor metadata

received at the proxy-in is fed to this API which annotates

the metadata following RDF, RDFS and OWL. The API

then further reasons to classify the M2M devices, their

metadata and the domain of operation. The main advantage

of the API is that it can combine cross domain ontologies to

propose new information to the end users. They have to

subscribe to receive the semantic information, same as the

push notification.

The main API for dynamic device discovery is

implemented in the SCL. When the client initiates the

discovery phase, the SCL queries the gateway based on

predefined rules and access rights to learn about the attached

devices and endpoints. Thus there is no additional API for

this. Similarly the access control and authentication of the

clients to the gateway are implemented with the help of

SCL.

IV. INTERACTION OF THE GATEWAY APIS WITH MOBILE

CLIENTS

This section provides insight on the interaction of the
gateway APIs with the client via the SCL of the architecture.
An example scenario as depicted in Figure 2 which is used to

explain the implementations. Two M2M devices are
connected to the gateway at the south interface and the
mobile client is connected to the north interface through the
service capabilities layer. The APIs are developed in Java
and the interaction with the M2M devices and clients can be
done using XML/JSON.

Figure 2. Example scenario with M2M devices & endpoints, gateway and

mobile client.

The initial configuration files are pushed to the gateway
and are examined by the configuration resource API. Then
the device, endpoint and unit resource descriptions are
extracted from those files by the corresponding APIs and
stored in the local database. After this, when the mobile
client issues a GET request to receive the details of the
devices connected to the gateway, the Device Resource
Description API responds with the full list of devices and
their descriptions. With respect to Figure 2, an example of
such reply is given below.

From the field proxy-out and proxy-in, it is understood
that if the device has an actuator or a sensor. Now that the
client received the information about the devices, it can

choose a device and request the gateway to send the details
of the connected endpoint. For example, if the user chooses
device 2 of Figure 2 then the request and reply are as
follows.

As seen from the response, it contains the description of a
sensor along with the latest SenML metadata containing the
measurement. It is to be noted that the field “xif” is an
interface definition introduced by us so as to differentiate
between different types of endpoints like sensors (s),
actuators (a), RFID tag (r) and transducers (t). The notion is
introduced so that the same SenML software implementation
can be used not only for sensors but also for other endpoints
[17, 18]. The SenML unit in this case is Celsius. Thus the
unit resource description sent to the mobile client is as
follows.

From the unit resource description, it is clear that the
range of operation of the sensor is 10 to 30 degree Celsius.
The latest sensor measurement 17.5 should be represented
using a slider (semantic of the graphical representation) and
the image is located at “slider.png”. The maximum and
minimum value of the slider will portray 10 and 30 while the
pointer of the slider will be at 17.5 to indicate the current
temperature. This is done to drive the user interface and user
experience from the M2M gateway. Thus the gateway not
only manages the devices and the connected endpoints, but
also contributes to the user experience in the mobile clients.

Configuring the devices and endpoints is possible from
the mobile clients. After they are linked to the gateway, the
clients can access the configuration file of a device using
GET request as shown below. The configuration resource
API exposes only the attributes which can be created or
updated by users like the location.

In the above example, the location attribute of the dev1 is
empty and can be created by the user. The client pushes the
value (Building-A which is semantic location) to the
configuration file as seen below. The POST is issued for the
Configuration API which internally updates the location
attribute for dev1 at the Device Resource API.

Apart from the location, name and model can also be
created and/or updated using the same procedure from the
client.

V. IMPLEMENTATION OF LIGHTWEIGHT FI-WARE

GENERIC ENABLERS

FI-WARE is an initiative that provides an open cloud-
based infrastructure to create and deliver cost-effective
applications and services for future internet (FI) [15]. The
initiative aims to build Generic Enablers (GE) for IoT
service enablement. This will in turn allow the physical
things to be available, searchable, accessible and usable by
high level applications and end users for different purposes.
Each GE is a building block of FI-WARE and consists of a
set of functionalities, APIs and interoperable interfaces
compliant with open specifications. The prototype
development of the different components of the architecture,
especially the M2M gateway APIs relates to development of
several GEs. In this section, we give an overview of several
such GEs which are relevant to our work.

The GEs have been broadly classified into two domains
(e.g. IoT Gateway Domain and IoT Backend Domain) from
IoT architecture point-of-view [16].

A. IoT Gateway GE

Our lightweight implementation of this GE runs within
the Gateway SCL and provides inter-networking, protocol
conversion & network traffic optimization for IoT backend.
This GE combines all the internal APIs of the gateway. In
addition to that the GE extends its capabilities to offer
gateway based M2M device discovery and assists legacy
sensors and actuators to be a part of the IoT ecosystem.

B. IoT Backend GE

The backend is composed of several applications and
services and can be hosted in web servers or cloud. This GE
typically addresses the IoT domain specific applications. In

our architecture, we have developed this GE which interacts
with the Android application to provide services (e.g. update
sensor measurement, push notification, controlling actuators)
to the end-users.

Considering the functional part of the IoT architecture,
following GEs are important to mention.

C. Data/Context Management GEs

These GEs are part of both Device SCL and Gateway
SCL. The main tasks include the following and more details
of the prototype implementation can be found in [17].

• Generate sensor measurement and combine it with
additional data (e.g. unit, type, id, name, version and
timestamp) to create sensor metadata.

• Various context informations (e.g. location of M2M
devices) are also made available.

• The Gateway SCL is capable of generating new
information (e.g. semantic notation of the
measurements) from the received metadata using the M3
ontology [27, 28].

• The gateway also acts as an aggregation point for
various sensor data. Such data can be analyzed using
Big Data algorithms to provide further value added
services.

D. Applications/Services Ecosystem and Delivery

Framework GEs

We are currently in the process of designing and building
an ecosystem of mobile applications for different verticals of
Internet of Things like home automation, e-health, intelligent
transport system, smart metering and more. In order to
accelerate the application development process, reduce the
time-to-market and release on multiple mobile OS platform,
we suggest the use of cross platform mobile application
development tools. A detailed survey, comparison and
evaluation based on memory, CPU and power consumption
are provided in [19]. The proposed ecosystem will foster
accelerated innovation in developing novel use cases and
relevant mobile applications. Special attention will be paid to
support different industrial business models.

E. Interface to Networks and Devices (I2ND) Architecture

GEs

FI-WARE defines I2ND as a provider of an enabler
space where GEs can run an open and standardized network
infrastructure [20]. The architecture includes four generic
enablers and two of them have been so far addressed as
mentioned below:

• Connected Device Interface (CDI): This GE equips the
mobile clients (terminals, tablets, smartphones) with real
time and remote access to M2M devices and endpoints.
In this case, the GE has been implemented as the mobile
application CCT [18].

• Service Capability, Connectivity and Control (S3C):
This GE is running in the SCL layer and the

functionalities include – (i) a self-adaptive framework
for battery and context aware mobile application
development [21], (ii) a framework to optimize the
mobile application development using cross platform
tools, (iii) an API for dynamic device discovery and (iv)
an ecosystem of mobile application to serve different
IoT domains which is under development.

VI. PERFORMANCE EVALUATION

The file containing the M2M device and endpoint(s) is

typically less than 1KB in size. The configuration being

written in JSON format in the file accounts for such small

footprint. Thus With an available internal memory of the

M2M gateway of 10MB, it can store and manage about

10,000 configuration files. Thus it is possible to utilize such

concept in smart home and other industrial applications of

IoT. Even if the number of connected objects increases, one

gateway can handle thousands of such objects. Thus the

proposed architecture is highly scalable.

VII. STATE-OF-THE-ART

Researches in Internet of Things domains and Machine-

to-Machine Communication have identified the necessities

and requirements in M2M gateways [12, 13, 14]. Authors

Huang and Hsieh have presented an implementation of a

programmable and low-cost IoT gateway in an embedded

system which has been used in monitoring systems in IoT

test bed [6]. The authors have presented the hardware

platform (microcontroller, SPI, battery module and different

sensors), system stack and system protocol in detail.

Guoqiang, Yanming, Chao and Yanxu have described a

smart IoT gateway that aims to bridge the gap between

traditional network and sensor network [7].

The gateway architecture provides modules with different

communication protocols and therefore can be attached to

different networks. Software development is made easy

through unified external interfaces. The paper also discusses

a protocol to translate different sensor data into a uniform

format but it does not use SenML. In order to avoid

repetitive manual configurations on the gateway due to

increased volume of devices, a server-assisted provisioning

method is proposed in [8]. This method aims to avoid extra

load at the gateway. The evaluation of the prototype system

promises considerable reduction in operational steps and

time required to configure the gateway. In [9], the authors

present an IoT gateway traffic model in CobraNet based

digital broadcast system (CDBS). The system architecture

(including signaling information, management information,

audio flow), system design, message function are mentioned

in detail. Methods for data aggregation for M2M gateways

are described in [10]. Costantino, Buonaccorsi, Cicconetti

and Mambrini have studied the suitability of using LTE to

connect the M2M gateways to the internet [11]. The system

makes use of CoAP as the transmission protocol instead of

HTTP as the former is specifically designed to be used on

constrained resource scenarios like M2M devices and

gateways. The paper also presents simulation results of a

typical IoT scenario using ns3.

But the above research directions do not consider the
internal structure of M2M gateway, its APIs and interaction
with things and mobile clients. The CoRE Link based
description of M2M devices and endpoints for managing
them are not covered. This is one of the main contributions
of this paper. Such implementations are lightweight to suit
the constrained nature of the M2M gateway. The paper also
provides insight about several relevant FI-WARE GEs.

VIII. CONCLUSION AND FUTURE DIRECTION

To summarize, the paper provides an insight into
managing M2M devices and endpoints using a smart M2M
gateway. The resources and attributes are expressed using
CoRE Link Format. An extension to that is proposed to
enhance the operability of SenML units. The main idea
behind that is to drive the user interface of the mobile
applications from the gateway. The internal structure of the
gateway is mentioned along with the implementation of the
APIs necessary for the management. The APIs store
configuration of the M2M devices and endpoints and also
assist the mobile clients and SCL for dynamic device
discovery. The architecture in Figure 1 follows the
recommendations of both ETSI and oneM2M. We have
further briefed the development of relevant FI-WARE
Generic Enablers for the overall service enablement.

Comparison with current literature is done to identify that
most of the works have not focused on efficient management
of the billions of things. Therefore our work advances the
related state-of-the-art by providing a methodology to
manage those things using a smart M2M gateway. The same
APIs can be implemented in the SCL also in case the
gateway is not employed in IoT system. The overall system
also takes advantage of open source implementation of
SenML extensions to control actuators.

As a future direction, we are working on multi-protocol
gateway architecture to provide seamless integration
approach for heterogeneous devices using different protocols
for communication [22]. Further research is being carried out
on semantic-based machine learning algorithms.

ACKNOWLEDGMENT

The authors express their acknowledgment to the
consortium of the French research project WL-Box-4G Pole
SCS.

REFERENCES

[1] Handong Zhang; Lin Zhu, "Internet of Things: Key technology,
architecture and challenging problems," Computer Science and

Automation Engineering (CSAE), 2011 IEEE International

Conference on , vol.4, no., pp.507,512, 10-12 June 2011.

[2] Qian Zhu; Ruicong Wang; Qi Chen; Yan Liu; Weijun Qin, "IOT
Gateway: BridgingWireless Sensor Networks into Internet of
Things," Embedded and Ubiquitous Computing (EUC), 2010

IEEE/IFIP 8th International Conference on , vol., no., pp.347,352,
11-13 Dec. 2010.

[3] Glitho, R.H., "Application architectures for machine to machine
communications: Research agenda vs. state-of-the art," Broadband
and Biomedical Communications (IB2Com), 2011 6th International
Conference on, pp.1-5, 21-24 Nov. 2011.

[4] ETSI Technical Specification on Machine-to-Machine
Communications; Functional Architecture, ETSI TS 102 690, V2.1.1
(2013-10).

[5] Constrained RESTful Environments (CoRE) Link Format, IETF RFC
6690.

[6] Ji-De Huang; Han-Chuan Hsieh, "Design of Gateway for Monitoring
System in IoT Networks," Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cyber, Physical and
Social Computing, pp.1876-1880, 20-23 Aug. 2013.

[7] Shang Guoqiang; Chen Yanming; Zuo Chao; Zhu Yanxu, "Design
and Implementation of a Smart IoT Gateway," Green Computing and
Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, pp.720-723, 20-23 Aug.
2013.

[8] Hattori, Masaharu; Yagi, Hikaru; Yoshihara, Kiyohito, "A server-
assisted provisioning method for machine-to-machine
gateway," Network Operations and Management Symposium
(APNOMS), 2013 15th Asia-Pacific, pp.1-3, 25-27 Sept. 2013.

[9] Xianyang Jiang; Deshi Li; Shaobo Nie; Jing Luo; Zhonghai Lu, "An
Enhanced IOT Gateway in a Broadcast System," Ubiquitous
Intelligence & Computing and 9th International Conference on
Autonomic & Trusted Computing (UIC/ATC), 2012 9th International
Conference on, pp.746-751, 4-7 Sept. 2012.

[10] Matamoros, J.; Anton-Haro, C., "Data aggregation schemes for
Machine-to-Machine gateways: Interplay with MAC
protocols," Future Network & Mobile Summit (FutureNetw), 2012,
pp.1-8, 4-6 July 2012.

[11] Costantino, L.; Buonaccorsi, N.; Cicconetti, C.; Mambrini, R.,
"Performance analysis of an LTE gateway for the IoT," IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2012, pp.1-6, 25-28 June 2012.

[12] Riedel, T.; Fantana, N.; Genaid, A.; Yordanov, D.; Schmidtke, H.R.;
Beigl, M., "Using web service gateways and code generation for
sustainable IoT system development," Internet of Things (IOT), 2010,
pp.1-8, Nov. 29 2010-Dec. 1 2010.

[13] Qian Zhu; Ruicong Wang; Qi Chen; Yan Liu; Weijun Qin, "IOT
Gateway: BridgingWireless Sensor Networks into Internet of
Things," Embedded and Ubiquitous Computing (EUC), 2010
IEEE/IFIP 8th International Conference on, pp.347-352, 11-13 Dec.
2010.

[14] Singh, S.; Kuei-Li Huang, "A robust M2M Gateway for effective
integration of capillary and 3GPP networks," Advanced Networks
and Telecommunication Systems (ANTS), 2011 IEEE 5th
International Conference, pp.1-3, 18-21 Dec. 2011.

[15] FI-WARE Project, http://www.fi-ware.org/

[16] http://forge.fi-
ware.org/plugins/mediawiki/wiki/fiware/index.php/Internet_of_Thing
s_(IoT)_Services_Enablement_Architecture

[17] S. K. Datta, C. Bonnet and N. Nikaein, “An IoT Gateway Centric
Architecture to Provide Novel M2M Services”, IEEE World Forum
on Internet of Things (WF-IoT), pp. 514-519, 6-8 March 2014.

[18] S. K. Datta, C. Bonnet and N. Nikaein, “CCT: Connect and Control
Things”, 9th International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), 21-24 April 2014.

[19] Dalmasso, I.; Datta, S.K.; Bonnet, C.; Nikaein, N., "Survey,
comparison and evaluation of cross platform mobile application
development tools," Wireless Communications and Mobile

Computing Conference (IWCMC), 2013 9th International, pp.323-
328, 1-5 July 2013.

[20] https://forge.fi-
ware.org/plugins/mediawiki/wiki/fiware/index.php/Interface_to_Net
works_and_Devices_(I2ND)_Architecture

[21] S. K. Datta, C. Bonnet and N. Nikaein, “Self-Adaptive Battery and
Context Aware Mobile Application Development”, 10th IEEE
International Wireless Communication and Mobile Computing
Conference (IWCMC), 4-8 August 2014. [in press].

[22] Jung, M.; Weidinger, J.; Reinisch, C.; Kastner, W.; Crettaz, C.;
Olivieri, A.; Bocchi, Y., "A Transparent IPv6 Multi-protocol
Gateway to Integrate Building Automation Systems in the Internet of
Things," Green Computing and Communications (GreenCom), 2012
IEEE International Conference on, pp.225-233, 20-23 Nov. 2012.

[23] Work-in-Progress Draft on CoRE Interfaces,
http://tools.ietf.org/html/draft-shelby-core-interfaces-05.

[24] http://www.onem2m.org/library/oneM2M-TR-0002-
Architecture_Analysis_Part_1-V0_2_0.doc

[25] IPSO Alliance Framework, http://www.ipso-alliance.org/wp-
content/media/draft-ipso-app-framework-04.pdf.

[26] IETF SenML Draft, http://tools.ietf.org/html/draft-jennings-senml-10.

[27] A. Gyrard, C. Bonnet and K. Boudaoud, “A machine-to-machine
architecture to merge semantic sensor measurements, ” in 22nd
International World Wide Web Conference (WWW 2013), May
2013, Rio de Janeiro, Brazil.

[28] A. Gyrard, C. Bonnet and K. Boudaoud, “Enrich Machine-to-
Machine Data with Semantic Web Technologies for Cross-Domain
Applications,” in IEEE World Forum on Internet of Things (WF-
IoT), pp. 559-564, 6-8 March 2014.

