
IMPROVING VIDEO CONCEPT DETECTION THROUGH LABEL SPACE PARTITIONING

Usman Niaz and Bernard Merialdo

Eurecom, France
niaz@eurecom.fr, merialdo@eurecom.fr

ABSTRACT
We present an approach to video concept detection by build-
ing binary trees partitioning the label space, using visual
and semantic similarity for multi-label datasets. The tech-
nique overcomes sparse annotations problem by increasing
the number of positive examples per concept with the num-
ber of classifiers per concept, though sub-optimal, augmented
too. We draw similarities between the proposed tree genera-
tion approach and Error Correcting Output Codes (ECOC) for
multi-label classification and build ranked lists of video shots
using weighted decoding or weighted tree traversal. We build
a set of different trees based on the presented criterion each
partitioning the label space in its own specific way. Inspired
by the work in [1] we amass information from ensemble of
trees to build the final ranked list, but using a different crite-
rion. The classification resulting in ensemble error correction
is complementary to One-vs-All classification and increases
concept detection performance significantly on the TRECVID
2010 and 2013 datasets.

Index Terms— Error correcting codes, multi-label clas-
sification, video concept detection

1. INTRODUCTION

General purpose video concept detection is a difficult task
which is approached conventionally by building classifiers
for each category using all the available annotations, or the
One-vs-All (OVA) classification. The number of possible cat-
egories is limitless which leads to ever increasing video and
image datasets. In addition trying to accommodate all the
variations an object can be presented in a category makes the
problem even harder. Nonetheless research is progressing and
computer’s vision is improving every year [2, 3].

Getting sane annotations for semantic concepts is expen-
sive and some categories lack enough positive annotations,
while on the other side there is no limit to selecting nega-
tives which may lead to classification imbalance. However
the video datasets are multi-label in nature which allows us to
borrow annotations for associated categories. An image can
contain many objects and a video usually depicts more than
one item. The examples of ”Car” are highly likely to contain

Thanks to ANR, France for funding.

the concept ”Road” and can thus complement each other’s
training means.

We use this intrinsic multi-labeling with a twofold objec-
tive; to increase the training resources per label and to in-
crease the number of classifiers per label which will in the
end be combined to try to maximize the performance on the
training set. Pursuing the work in [1] we divide the labels into
partitions. A binary tree, or label tree [1], represents the par-
titioned label space reflecting the relationships between con-
cepts based on the selected measure of similarity. The con-
cepts that are very similar are kept together till deep into the
tree, until a time comes eventually where they are placed in
the opposite sides of the partition. This way each label em-
bodies a unique combination of partitions.

Each node of the binary tree divides the receiving label set
into two disjoint partitions. We divide the concepts or labels
into partitions iteratively, until all the labels are divided. Then
we merge all the annotations on either side of the partition and
train a single label binary classifier for that partition. In the
end we trace back classification score for each label based
on appropriate combinations of the scores of the partitions to
which that label belongs. The label partitioning is viewed in
terms of Error Correcting Output Codes (ECOC) framework
where a set of simple sub-optimal classifiers can achieve the
performance of a good complex one [4, 5, 6, 7]. Then an
effective weighting strategy is adopted while decoding to em-
phasize more on important partitions or dichotomies, gener-
ating list of scores for each label. Finally we build groups
or ensembles of trees [1] by varying the similarity criterion
and fuse the information from trees to get the final classifica-
tion score. We have performed experiments on the TRECVID
2010 the TRECVID 2013 dataset and we show that the pro-
posed approach is complementary to single label classifica-
tion by showing significant improvement on the TRECVID
Semantic INdexing (SIN) task. We also shed some light on
the importance of the number of labels to start the partition-
ing with and argue that more labels induce a better partition-
ing and thus improved classification results.

The next section talks about some recent works in the do-
mains of label partitioning and the use of ECOC for classifica-
tion followed by the label partitioning criterion in the section
3. Experiments and results are presented in the section 4. Fi-
nally section 5 discusses future directions with conclusions.

2. STATE OF THE ART

Wang and Forsyth [1] partition the label space of 1000 cate-
gories to generate binary trees for multi-class image catego-
rization. They outperform random partitioning of label space
with ensembles (forests) of label trees where for each cate-
gory the highest score is selected among the trees of the for-
est as the classification result. In one ensemble the error from
the previous tree is used to generate the next one. We rely
directly on out similarity criterion to generate ensembles of
trees. For combination we use weighted fusion to generate
the final ranked list.

ECOC has recently attracted interest in the field of multi-
label classification after conquering multi-class classification.
Escalera et al. [7] discuss ternary ECOC for multi-class cat-
egorization problems which allows to increase the number of
dichotomies thus encompassing better the data and label dis-
tribution. In ternary representation each label can either be a
part of the classifier (dichotomy) with +1 or -1 bit or it can
be omitted from a dichotomy with a 0 bit. Armano et al. [8]
use ternary ECOCs to cater multi-label Text Categorization.
The dichotomies are built in a straight forward manner by us-
ing all the present combinations in the training label set. Ferg
and Lin [5] present an ECOC framework for multi-label clas-
sification problems and demonstrate its success on the Ran-
dom K-labelset (RAKEL) algorithm. Contrarily [6] did not
find ECOC to be suitable for RAKEL but found good clas-
sification results with Bode-Chauduri-Hocquenghem (BCH)
ECOC. However they did not test ternary ECOC which is
what is used in this paper. [9] improve over RAKEL by com-
bining labels into groups using visual similarity and training
group classifiers . We use a similar similarity measure com-
bined with a label based distance to construct trees.

A close lying research area is the use of attributes for ob-
ject detection that describe some visual or descriptive proper-
ties of the objects and group all the objects with those proper-
ties into a single classifier [10]. An attribute can be present or
absent in an object and every object is a unique combination
(binary code) of attribute classifiers. Whereas hashing assigns
a unique binary code to each individual example [11] with two
examples of same category having very similar codes.

3. PROPOSED APPROACH

We partition the label or concept space which is defined by
projecting the labels into the space represented by the distance
between them. This distance between labels can be calculated
through different means. We use a visual distance and a se-
mantic distance between labels to find this distance. The two
measures are used simultaneously to split nodes and construct
the label tree. The root node splits the whole label set into two
partitions. Each node then splits the receiving partition into
two subsets until each leaf contains only one label.

The partitioning criterion should be designed in a way

1: Input L: a set of labels
2: if |L| = 2 then
3: Ll ← l1
4: Lr ← l2
5: else
6: {i, j} ← argmax

i,j
diss(i, j), i, j ∈ L

7: Ll ← i L← L\Ll

8: Lr ← j L← L\Lr

9: repeat
10: Ll ← Ll ∪ argmin diss(i, Ll), i ∈ L
11: Lr ← Lr ∪ argmin diss(i, Lr), i ∈ L
12: L← L\Ll

13: L← L\Lr

14: until L = ∅
15: end if

Fig. 1. Node Splitting Algorithm

to increase the learnability of the tree. Learnability as de-
scribed by [1] (and the references there in) is the ability of
the tree to learn from a particular partitioning of the labels
and generalize on a test set. So a tree with poor or counter
intuitive partitioning will have low learnability and thus will
perform poor on the test set. As an example a tree partition-
ing the labels {Car, Road, Anchorperson, Newsstudio} into
{Car, Road}, {Anchorperson, Newsstudio} is more learnable
than a tree splitting the initial set into {Car, Newsstudio},
{Anchorperson, Road}. Our distance measures help build
learnable partitionings as shown in the results.

3.1. Tree Construction

To find the distance between two labels li and lj we gather all
the examples belonging to the two labels into two sets. Let
vi be the average feature vector for the examples having of
li. Then dv(i, j) is the Euclidean distance between li and lj
which is referred to here as the visual distance. For each label
we have a set of positive annotations Ai and since we are
dealing with multi-label data the semantic similarity between
two labels is given by:

sim(i, j) =
|Ai ∩Aj |
|Ai ∪Aj |

which is the ratio of common annotations between labels i and
j. Here common annotations mean all the examples which are
positive for the two cncepts in question. Since sim(i, j) mea-
sures similarity between labels ds(i, j) = −sim(i, j) mea-
sures the semantic (label) dissimilarity. The total dissimilarity
between labels is the weighted sum of the two measures

diss(i, j) = λ ∗ dv(i, j) + (1− λ) ∗ ds(i, j) (1)

Figure 1 shows the algorithm for splitting one node of the
tree which receive a certain set of labels as input. The algo-
rithm simply selects the two farthest labels as seeds and then
builds two clusters (left and right) around those seeds. At
each iteration the label closest to either cluster is assigned to
that cluster until no more label is left to be assigned. Note
that the new dissimilarity is calculated between the label and
the cluster center but not the initial seed. Two partitions are
generated each of which is further passed through the same
procedure to complete the tree. Since it is a binary tree we
call the two partitions left and right.

For training each node is considered one binary classifier
since it partitions the labelset into two sets. All the exam-
ples belonging to the labels in the left partition are treated
as positive examples and the examples belonging to labels in
the right partition are considered negatives. So the positive
and negative examples for each classifier are actually only the
positive examples of concepts on either side. We borrow no-
tation from [1] to build the two sets of examples as follows:

S+ = {xi : yi ∈ Ll}
S− = {xi : yi ∈ Lr}

(2)

S+ and S− are used to train the binary SVM classifiers.
Since we are dealing with mutli-label data as opposed to
multi-class data, in case of contention the example is assigned
to the partition containing the minority class. I.e. if an ex-
ample belongs to more than one labels, and the two labels
are divided by a node, the example will belong to the node
with fewer total examples. This makes sense as in case of a
multi-label example belonging to a general class, Vehicle and
a specific class, Car the example should be for Car since it
differentiates Car from the other Vehicles. For the other case
of simple majority vs. minority it is better not to reduce the
already limited number of examples for the minority class.
But this kind of contention normally occurs near the leaves
since labels close to each other are kept in the same partitions
until it is necessary to separate them to tell them apart.

3.2. Ternary Codes and Error Correction

The tree construction bears close resemblance to the popu-
lar muli-class classification approach Error Correcting Output
Codes (ECOC) [6, 8]. To look at the benefits of the repeti-
tive codes for classification we first explain the resemblance.
ECOC builds a set of sub-optimal binary classifiers for each
label where final prediction is obtained by simple pooling of
the participating classifiers for that label. Each classifier epit-
omizes a dichotomy which partitions the label space just like
a node of the tree built in the previous subsection.

The technique presented here is essentially ternary ECOC
where a label can be either part of a dichotomy (-1,+1) or not
(0). Ternary ECOCs are natural extension of ECOC methods
for multi-label classification [6, 8]. The nodes or dichotomiz-
ers are built incrementally optimizing criterion in equation 1

1

2 3

{l1, l2, l3, l4}

{l1, l4} {l2, l3}

l1 l4 l2 l3

n1 n2 n3

l1 1 1 0

l2 -1 0 1

l3 -1 0 -1

l4 1 -1 0

Fig. 2. A binary tree which partitions the label-set and the
corresponding M -matrix with 3 dichotomies. Each node of
the tree represents a column of the M-matrix

to divide most profiting class labels. Each class label encodes
a unique code and the (hamming) distance between two close
classes is low satisfying conditions in [1, 9]. This code is also
called the codeword for that category and the codewords for
all the categories make up the rows of the ECOC M matrix,
where M ∈ {−1, 0, 1}|L|,N [7, 8]. |L| is the number of cate-
gories or labels and N is the length of each codeword which
is the number of classifiers or the number of nodes of the label
tree. Figure 2 depicts a multi-label tree and the corresponding
M matrix [4].

Since we are generating ranked lists for test frames, every
classifier n ∈ N gives us a score sn(+1|f) for the test frame
f . The score for each label is calculated as [8]

s(l|f) =
N∑

n=1

sn(+1|f)M(l, n)

Since the dichotomies turn from general to more discrimi-
native as the depth of the tree increases we have found that
more weight assigned to the specific dichotomies deeper in
the tree results in better performance. So instead of the uni-
form weighting used in [8] we have used the following

s(l|f) =
N∑

n=1

n

|M(l, .)|
sn(+1|f)M(l, n)

with s(l|f) finally normalized for a tree. |M(l, .)| is the num-
ber of classifiers for label l. Each leaf of the label tree is a
single label so s(l|f) can also be regarded as the score at leaf
corresponding to label l.

The first and foremost advantage of any technique aug-
menting labels is the increase in the number of examples per
category which affects significantly performance of the cate-
gories with fewer positive examples. In ECOC this advantage
is not limited to just the increase in training resources per cat-
egory but also increases the error correcting capabilities of the
system due to repeated classifiers [4, 8, 5]. Even if some di-
chotomies partition badly the label space others are expected

to correct the mistakes due to repetition and provide reliable
final results. This advantage is further strengthened when we
use ensemble of trees for a single problem as described in the
next subsection.

For good error correction we argue that the label set
should be dense in relation with the number of examples.
Since we have established that related labels add examples for
each other, a dense multi-label dataset induces a tree which in
which partitions are more learnable. Thus if the label set is
very sparse, unrelated labels are always forced to group to-
gether in partitions, and we will have fewer training examples
per dichotomy and a poor per label classification in the end.
We support these claims with experimentation in section 4.

3.3. Ensemble of Trees, Forest

The label partitioning tree uses pre-computed information and
is quick to build. We take the liberty to build multiple trees
by varying our similarity criterion. This is done by changing
the value of λ in equation 1. The trees can be combined by
averaging the scores of the corresponding leaves, chosing the
highest score [1] or finding a weighted combination of the
corresponding outputs from the trees. For label (leaf) l the
weighted combination from two trees t1 and t2 is learned as
follows on the validation data:

s(l|f) = wt1
l ∗ s

t1(l|f) + wt2
l ∗ s

t2(l|f)

We have built ensembles of upto 6 trees using linear
weighted fusion of trees. For each ensemble the parameter
λ in equation 1 is varied from 0 to 1 uniformly. E.g. for an
ensemble of 3 trees λ is 0, 0.5 and 1 for each of them.

4. RESULTS AND EXPERIMENTS

4.1. Datasets and Setup

We have performed experiments on the TRECVID 2010
(TV2010) and TRECVID 2013 (TV2013) [2, 3] dataset.
For the TV2010 containing 400 hours of 11644 internet
videos with 119,685 keyframes for development and 146,788
test keyframes we generate ranked lists for 50 concepts from
the TRECVID 2011 Light Semantic Indexing task [2]. The
visual features used are 128 dimensional SIFT features [12]
which are densely extracted [13] and are used to build a 500
word visual dictionary using k-means. For classification
we have used linear SVM to learn from a suitable feature
map (homogeneous kernel map) built by the histogram
intersection kernel [14].
For the TV2013 dataset, which engulfs the TRECVID 2010,
2011 and 2012 datasets, consisting of 800 and 600 hours
of videos for training and test respectively we extract dense
SIFT features and generate a dictionary of 1000 visual words.
Considering the huge amount of data the classifier used is
a linear SVM trained on the homogeneous kernel map built

Methods TV 2010 TV 2013
OVA 5.27 6.91

GS [9] 5.37 -
LFM [1] 4.52 3.45

LFA 5.28 4.72
LFR 5.14 4.52
LFO 6.29 5.13

GS-OVA [9] 6.04 -
LFO-OVA 7.05 8.38

Table 1. MAP scores for TRECVID 2010 and 2013

on the input features where Pegasos training [15] is used to
minimize the training time. The development is done using
the list of 60 concepts while 38 concepts were evaluated by
NIST in the year 2013, for which results are presented.

4.2. Results

The video concept detection performance is judged by calcu-
lating Average Precision (AP) on the first 2000 shots returned
for each label (concept) on the test datasets.

4.2.1. Overall Results

Table 1 shows the Mean AP (MAP) scores of the proposed
label forest (LF) technique and compares them to the one-
vs-all (OVA) classification and groupsvm (GS) [9]. For the
LF the scores from individual trees are maximized (LFM) for
each concept as in [1], averaged (LFA) and fused with optimal
weights (LFO). Trees are also build by partitioning the labels
randomly dropping the visual and semantic closeness crite-
rion, which are then fused by finding optimal weights (LFR).
Furthermore LFO and GS are fused with OVA using linear
weighted fusion which further improves performance. For ta-
ble 1 all the forests used contain 6 trees and for GS the best
results are shown containing 100 groups for 50 concepts from
[9]. Results on GS for TV2013 were not available.

4.2.2. Examples per Classifier

Using binary dichotomies to train classifiers the number of la-
beled examples are considerably reduced when compared to
the one-vs-all approach since the negative examples provided
with the dataset are discarded and only positive examples are
used for training. Table 2 shows the average number of exam-
ples per classifier for the two datasets, rounded to the closest
hundred, acquired from the development sets using all con-
cepts (50 for TV2010 and 60 for TV2013). This removal of
negatives comes with a cost which is visible in the perfor-
mance of LFO for TV2013 where each classifier has almost
10 times few examples.

However if we look in terms of number positive examples
per label there is a considerable increase for both datasets.

OVA (pos+neg) OVA (pos) One-Tree
TV2010 45,000 1,600 9,500
TV2013 78,000 1,700 9,100

Table 2. Average number of examples per classifier

Since all the examples on either side of the dichotomy for the
label tree are actually positive examples the numbers in the
third column of the table 2 are positive examples for our ap-
proach. The increase is manifold from the original number
of positives annotations per category on average. For the al-
most quadrupled TV2013 the number of labels is lower with
respect to the dataset size so the label partitioning does not
entirely capture the relationships between concepts as some
counter intuitive partitions may be formed.

4.2.3. Reducing the set of labels

To further make our point we have performed an experiment
with rather smaller label sets on the similar datasets. That is
to say we make label partitioning trees for fewer labels. To
achieve that we divided the set of 50 concepts randomly into
5 sets of 10 concepts each for TV2010 and then repeated the
similar experiments. Similarly for TV2013 the 60 concepts
set was divided into 6 sets of 10 and trees were generated sep-
arately for each of the 6 sets of labels. For both the datasets
for every set of 10 concepts we generated 6 trees making one
ensemble, finally making 5 ensembles for TV2010 and 6 en-
sembles for TV2013. Final classification scores were calcu-
lated separately for each ensemble and in the end we have
AP scores for 50 and (38 evaluated out of 60) concepts for
TV2010 and TV2013. Table 3 shows the MAP for the two
datasets with divided label sets, which is considerably less
than the MAP acquired using the full set of labels for a 6-tree
ensemble, table 1. The number of total examples on average
per classifier is also reduced, as understandable, to 6,400 for
TV 2010 and 5,700 for the TV2013 dataset. Thus the perfor-
mance of the label forests approach is critical to the number
of labels and increases with the increase in the label-set size.

4.2.4. Concepts with Few Positives

To see the effect of detection performance on the concepts
that have very few positive annotations we select 10 concepts
from each dataset with fewest positive examples. We com-
pare performances of LFO with 6 trees and fusion of LFO

LFO LFO-OVA
TV2010 5.21 6.00
TV2013 3.12 7.01

Table 3. MAP scores for all concepts using subsets of con-
cepts for tree generation

0,01

0,1

1

10

100

A
ve

ra
ge

 P
re

ci
si

o
n

OVA LFO LFO-OVA

Fig. 3. AP scores for 10 concepts with fewest positive anno-
tations in TV2010

and OVA and plot the performances on the log linear graphs
in figures 3 and 4.

Figure 3 shows AP scores for 10 concepts from TV2010
dataset with an average 82 positive examples per concept in
the development set. All the concepts benefit from the addi-
tion of examples, even those that had an AP of 0 with OVA.
Fusing OVA and LFO further improves performance except
for ”Throwing” and ”Swimming” with a negligible drop.

For TV2013 the number of positive examples for the 10
concepts with fewest examples is 610 on average. Results
are shown in figure 4 and here LFO is not as effective but
the fusion tries to recover some of the loss. However LFO
does bring more shots in the first 2000 for the concepts ”Tele-
phones” and ”Bus” for which there was none or only a few
previously with OVA.

4.2.5. Groups of Trees

Figure 5 shows performance of various groups of trees for
both the datasets. We build forests of 2 to 6 trees using the
proposed method which is compared to random label parti-
tioning for the same number of trees. Both methods are then

0,01

0,1

1

10

100

A
ve

ra
ge

 P
re

ci
si

o
n

OVA LFO LFO-OVA

Fig. 4. AP scores for 10 concepts with fewest positive anno-
tations in TV2013

a b

3

4

5

6

7

8

9

1 2 3 4 5 6

M
A

P

Number of trees

OVA LFO LFO-OVR LFR LFR-OVR

3

4

5

6

7

8

9

1 2 3 4 5 6

M
A

P

Number of trees

OVR LFO LFO-OVA LFR LFR-OVR

Fig. 5. Performance (MAP) comparison of proposed label partitioning to random partitioning and single label classification,
for various groups of trees. (a) TRECVID 2010 (50 concepts) and (b) TREVID 2013 (38 concepts) datasets

fused with OVA for each group of trees. Since the tree gener-
ation using the algorithm in figure 1 generates balanced tree,
the random tree generation is also done a balanced way for a
fair comparison. The depth of every tree is similar and so is
the number of SVMs. The proposed method always outper-
forms random partitioning for single classification and also
for fusion with OVA. The black box in both the figures repre-
sents MAP score for OVA. For TV2010 every forest performs
better than OVA and when fused the performance increases
by around 30% for each forest. LF approaches do not perform
as good as OVA for TV2013 due to reasons listed earlier but
again the fusion results in around 20% increase for every for-
est. The improvements over the baseline are verified in their
significance by randomization testing [16] for the proposed
approach, for both the datasets.

5. CONCLUSIONS

The proposed label partitioning method uses effective mea-
sures of similarities generating meaningful partitions to in-
crease learnability of the tree. The technique is complemen-
tary to single label classification as it improves performance
significantly with as little as only two trees in the forest when
the two are fused. The error correcting capabilities of the tree
increase as more labels are available.

During iterative tree generation to create a forest a part
of validation data can be used to weight similarities between
labels. Furthermore like [4] more nodes can be added to the
already generated tree to further classify certain confusing la-
bels. Since a label tree essentially results in unique codes for
each category eventually other methods could be used to gen-
erate such unique codes.

6. REFERENCES

[1] Y. Wang and D. Forsyth, “Large multi-class image categoriza-
tion with ensembles of label trees.,” in ICME, 2013.

[2] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns
and trecvid,” in MIR, 2006.

[3] P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij,
A. Smeaton, and G. Quenot, “Trecvid 2013 – an overview of
the goals, tasks, data, evaluation mechanisms and metrics,” in
Proceedings of TRECVID 2013. NIST, USA.

[4] O. Pujol, S. Escalera, and P. Radeva, “An incremental node
embedding technique for error correcting output codes,” Pat-
tern Recognition, vol. 41, 2008.

[5] C. Ferng and H. Lin, “Multi-label classification with error-
correcting codes.,” in ACML, 2011, vol. 20 of JMLR.

[6] T. Kajdanowicz and P. Kazienko, “Multi-label classification
using error correcting output codes.,” Applied Mathematics
and Computer Science, vol. 22, 2012.

[7] S. Escalera, O. Pujol, and P. Radeva, “Separability of ternary
codes for sparse designs of error-correcting output codes,” Pat-
tern Recognition Letters, vol. 30, no. 3, 2009.

[8] G. Armano, C. Chira, and N. Hatami, “Error-correcting output
codes for multi-label text categorization.,” in IIR, 2012, CEUR.

[9] U. Niaz and B. Merialdo, “Leveraging from group classifica-
tion for video concept detection,” in CBMI, 2013.

[10] M. Rastegari, A. Farhadi, and D. Forsyth, “Attribute discovery
via predictable discriminative binary codes,” in ECCV, 2012.

[11] J. Heo, Y. Lee, J. He, SF. Chang, and S. Yoon, “Spherical
hashing,” in CVPR, 2012.

[12] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, November 2004.

[13] B. Russell, A. Torralba, K. Murphy, and W. Freeman, “La-
belme: A database and web-based tool for image annotation,”
Int. J. Comput. Vision, vol. 77, May 2008.

[14] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable
library of computer vision algorithms,” 2008.

[15] S. Shwartz, Y. Singer, and N. Srebro, “Pegasos: Primal esti-
mated sub-gradient solver for svm,” 2007, ICML.

[16] M. Smucker, J. Allan, and B. Carterette, “A comparison of sta-
tistical significance tests for information retrieval evaluation,”
in ACM-IKM, 2007.

