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Outage limited setting in telecommunications

Challenges involved in telecommunications

Practical communications seek:

• very reliable communications

• of large quantities of data, at ultra-high rates (channel information)

• with strict delay limitations (no obsolete occupancy information)

• under any channel conditions (distributed users)

• with dynamically changing volumes of information (variable number of
primary and secondary users)

• between arbitrary numbers of small and highly independent users (different
network providers)

• that cooperate and complete for resources

• with little knowledge of the environment

• small power supplies

• . . . at affordable computational cost
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Outage limited versus ergodic setting

Ergodic setting:

• long-term transmissions that see the full fading process

• long delays and high mobility

• code over channel fading to combat fading

• designs for the average case motivated by the law of large numbers

Outage limited setting:

• short term transmission that only see a snapshot of the fading

• delay constraints and limited mobility (in relation to data rate)

• code for successful transmission over many fading realizations

• designs for a probabilistic worst case (channels not in outage)

This tutorial targets Rate-Reliability-Complexity
tradeoffs in the outage limited setting
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General multi-dimensional communications

• Consider outage limited general MIMO communications

y = Hx +w

• mimo, mimo-ofdm, mimo-mac, mimo-arq, cooperative, hybrid...

• MIMO: Performance ↑ ←→ transceiver computational complexity ↓

In this general setting, we present joint performance-complexity limits
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Example: the point-to-point quasi-static MIMO channel

h11

h12

h21

h22

hij ∈ C

Multiple antenna transmission between cooperating antenna arrays
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Example: the point-to-point quasi-static MIMO channel

• nT-transmit nR-receive antenna quasi-static (flat-fading) MIMO channel

yc
t =
√
ρHcxc

t +wc
t , t = 1, . . . , T

⋆ Hc ∈ CnR×nT, xc
t ∈ CnT, yc

t ∈ CnR, and wc
t ∈ CnR

• equivalent matrix (STBC) form

Y c =
√
ρHcXc +W c

⋆ where Xc = [xc
1, . . . ,x

c
T ] and W c = [wc

1, . . . ,w
c
T ]

The general multi-dimensional linear channel model

y = Hx +w

x = [xT
1 , . . . ,x

T
T ]

T xT
t = [ℜ(xc

t)
T , ℑ(xc

t)
T]

w = [wT
1 , . . . ,w

T
T ]

T wT
t = [ℜ(wc

t)
T , ℑ(wc

t)
T] ,

and

H =
√
ρ I ⊗

[
ℜ(Hc)−ℑ(H c)
ℑ(Hc) ℜ(Hc)

]

∈ Rn
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Example: Amplify and forward

hc2

hc1

hc3

source

relay

destination

yc
t =

[ √
ρhc1 0

ρbhc2h
c
3
√
ρhc1

]

xc
t +

[
0√
ρbhc3

]

wc
t + vc

t , |b|2 = 1

ρ|hc2|2 + 1

↓

y = Hx +w
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The general MIMO channel

• Many (all?) general MIMO and co-operative scenarios with a centralized
decoder fit to the model y = Hx +w

⋆ specific scenario mandates specific fading model for H

⋆ specific scenario mandates relevant constraints for x

• Co-operative scenarios with decentralized decoders (e.g., dynamic decode
and forward relaying) still may use the y = Hx + w model between
transmitter, receiver pairs

⋆ joint exposition of MIMO and co-operative communications

• Results on decoder technologies carry over to multi-user settings (with
individual rates)

We use MIMO in the sense of coding over
multi-dimensional signal spaces, not necessarily involving

multiple co-located antennas
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Thematic outline of tutorial

• Rate-Reliability-Complexity aspects of transceiver design

• Analysis focus on the high SNR limit (ρ→∞)

• Part I:
⋆ outage limited communications

⋆ decoding lattice codes and the available receiver algorithms

⋆ Finding lim-optimal transceivers with subexponential complexity

⋆ Complexity measures

• Part II:
⋆ Covering the gap to optimal performance

⋆ Performance - vs - Complexity tradeoff

⋆ Fundamental rate-reliability-complexity limits

⋆ Feedback

⋆ Applications

May 1, 2014 9



Communicating over the general MIMO channel

y = Hx +w

• Transmitted codeword from codebook X : x ∈ X
• Rate R (assuming transmission over T time-slots)

R =
1

T
log2 |X |

• Decoder (receiver) produce x̂ = ϕ(y,H) at some computational cost

• Reliability measured by (average) probability of error

Pe = P (x 6= x̂) = EH

{
P (x 6= x̂|H)

}

How do we measure computational cost?
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The rate-reliability-complexity trade-off

• Several competing measures of computational cost

⋆ Floating point operations (flops)

⋆ Number of iterations

⋆ Hardware utilization (processing units, parallelizability, etc)

• Given a maximum allowed computational cost (e.g., number of flops) C ,
we can achieve certain rates R and reliabilities Pe at a given SNR ρ

⋆ What rate-reliability-complexity triplets (R ↑, Pe ↓, C ↓) are achiev-
able by given classes of codes and decoders?

These are very challenging questions!
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Ein gedankenexperiment (a thought experiment)

How to create new decoding algorithms through
complexity regulating policies P

• Consider a detection algorithm (Algorithm A) with

⋆ Probability of error (reliability) Pe,A

⋆ Required number of flops (for a given input) FA = FA(H ,y)

∗ worst case complexity supH,y FA(H ,y)

• Consider another algorithm (Algorithm B) that use Algorithm A but ter-
minates and calls a decoding error if FA(H ,y) ≥ C for some C

⋆ Probability of error Pe,B ≤ Pe,A + P (FA(H ,y) ≥ C)

⋆ Algorithm B will always use less than C flops

• Imagine that there is a C such that

⋆ P (FA(H ,y) ≥ C)≪ Pe,A

⋆ C ≪ supH,y FA(H ,y)

The is a lot to gain in terms of complexity,
with a very small loss in reliability
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The big question

Can we in tractably way characterize
the set of achievable triplets (R,Pe, C) for any

reasonably complex algorithms and codes?

. . . surprisingly, the answer is a partial yes,
if we rely on, e.g., high SNR asymptotics
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The road ahead. . .

In order to conduct a reasonable rate-reliability-complexity study we need:

1. Flexible and parameterized codes (lattice codes)

2. A representative set of decoding algorithms (lattice, or sphere, decoders)

and a tractable mathematical framework (high SNR large deviations, DMT)
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Degrees of freedom proxies for rate and reliability

• Proxies are often used to simplify computations and gain insight

⋆ Reliability (probability of error) → diversity

⋆ Rate of communication → multiplexing gain

We can do the same for complexity,
using reference algorithmic implementations
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Exploiting degrees of freedom

• Diversification of resources: Utilize all the channel dimensions

• Example: SISO coherent BPSK v.s. QPSK

y = hx + w y, h, x, w ∈ C

where h ∼ NC(0, 1) and

x ∈ {a(1 + ı), a(1− ı), a(−1 + ı), a(−1− ı)}.
⋆ bits in I and Q directions are independently detected (noise indepen-
dent in directions)

• Basically same probability of error

Pe,BPSK ≈
1

4ρ
v.s. Pe,QPSK ≈

1

2ρ

but double rate

• Overall lesson: seek to increase space dimensions and then use signals that
give diversity and efficiently utilize all dimensions
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Degrees of freedom and the multiplexing gain

• The capacity of the (non-fading) AWGN channel at SNR ρ is

C = log2(1 + ρ) ≈ log2 ρ

at high SNR

• The ergodic capacity of the nT × nR MIMO channel is

C ≈ min(nT, nR) log2 ρ

at high SNR

• A given transceiver design has a multiplexing gain of r if

R ≈ r log2 ρ

• r is equivalent to the degrees of freedom (used by the code)
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Gaining diversity

Example:

• Single-input multiple-output (SIMO) channel (L receive antennas)

• One (BPSK) symbol x = ±a transmitted

y = hx +w, y ∈ CL, ρ =
a2

2

where h ∼ NC(0, IL)

• Detection
h†

‖h‖y = ‖h‖x +
h†

‖h‖w

• Overall error

Pe = Eh{Pe|h} =
∫ ∞

0

Q(
√

2‖h‖2ρ)f‖h‖2(‖h‖2)d‖h‖2 ≈
(

2L− 1
L

)

(
1

4ρ
)L

• A transceiver has diversity d is the probability of error Pe satisfies

Pe ∝
1

ρd
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Numerical example (of rate and reliability)

The titled QAM lattice design over a nT × nR = 2 × 2 point-to-point i.i.d.
Rayleigh fading MIMO channel
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Diversity-Multiplexing Gain Tradeoff

In the context of:

• Space-time schemes

• Ever increasing SNR

• Coding over just one channel realization

The two parameters: diversity and multiplexing gain

d = − lim
SNR→∞

log(Pe)

log(SNR)
r = lim

SNR→∞
R(SNR)

log SNR

• d: rate of decrease of Pe at some distance from the ergodic capacity

⋆ need to step back from ergodic capacity for reliable communications

• r: how close you are to the ergodic capacity

⋆ how many parallel channels you are utilizing for rate
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Diversity-Multiplexing Gain Tradeoff (Zheng - Tse)
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0

2
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r
d(

r)

Upper bound on the optimal D−MG tradeoff 
Lower bound on the optimal D−MG tradeoff 

For a fixed integer multiplexing gain r, and T ≥ nt+nr−1, the maximum
achievable diversity gain1 d(r) over the nR × nT point-to-point MIMO
channel is governed by

d(r) = (nT − r)(nR − r)

• Straight-line interpolation for non-integral values of r

• T < nt + nr − 1 gives upper and lower bounds on maximum d(r)

1L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: A Fundamental Tradeoff in
Multiple-Antenna Channels,” Trans. IT, May 2003.
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D-MG Tradeoff and Outage

• Outage region: The mutual information of the channel does not support
the channel data rate.

{H : I(xt;yt | H) < R}

OUTAGE

REGION

NON-OUTAGE 

REGION

Pout(R) = EH (I(xt;yt | H) < R)

=̇ P
[
log det

(
I + SNRHH†) < R

]
= SNR−dout(r)

• No matter what code you use you will have high probability of error

dout(r) = d(r) = (nt − r)(nr − r)

• Corresponding outage based DMT characterizations now available for many
co-operative scenarios
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Meeting the Diversity-Multiplexing Gain Tradeoff

Coding-Decoding challenge (Rayleigh fading channel)

• “There exist some random Gaussian codes that meet the outage region”2

• “There exist some random lattice codes that meet the outage region”3

• “Currently no explicit non-random code is optimal” (dated statement)

• “Up until now DMT optimality required complex ML decoders”

• Result sparked interest and what was called “The worldwide race towards
the DMT frontier”

• Is optimality possible? What encoders and decoders can achieve it?

Similar challenges in co-operative scenarios

2L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: A Fundamental Tradeoff in
Multiple-Antenna Channels,” Trans. IT, May 2003.

3 H. El Gamal,G. Caire, and M. O. Damen,“Lattice coding and decoding achieve the
optimal diversity-multiplexing tradeoff of MIMO channels”Trans. IT, June 2004.
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Lattice designs

• Lattice design: Set of codes
⋆ builds on work by de Buda, Poltyrev, Forney et al., Urbanke-Rimoldi,
Erez-Zamir, El Gamal-Caire-Damen, and many others

• Start with a lattice

Λ0,{Gz | z ∈ Zn} ⊂ Rn

• Create a variably dense lattice

Λ,φΛ0 , φ, ρ−
rT
n

• R ⊂ Rn is a compact convex shaping region that picks out codewords

• Select codewords from a limited region:

X = Λ ∩R = Λ ∩R
|X | = ρrT , E

{
‖x‖2

}
≤ T

• Creates a composite code-channel MIMO relation

y = φHG
︸ ︷︷ ︸

M

z +w

• y is a perturbed lattice point form the random lattice HΛ = MZn

Rate (or multiplexing gain) controlled by lattice density
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Lattice designs: Illustration

z X = Λ ∩R

Z
X

Λ = {φGz | z ∈ Zn} ⊂ Rn

Z = (φG)−1X ⊂ Zn
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Lattice designs: Illustration

z X = Λ ∩R

Z
X

Λ = {φGz | z ∈ Zn} ⊂ Rn

Z = (φG)−1X ⊂ Zn
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General history of transceiver design

fast forward to ... Full diversity and full degrees of
freedom

• Linear dispersion codes4

X = f1A1 + f2A2 + f3A3 + f4A4, Ai ∈ C2×2

• Threaded algebraic constructions TAST5

X =

[
σ1(f1, f2) σ1(f3, f4)
σ2(f3, f4) σ2(f1, f2)

]

⋆ full rate benefits but no coding gain guarantees for increasing rate

⋆ no diversity guarantees for increasing rate

• Cyclic Division Algebra (CDA) Codes 6

4Hassibi-Hochwald
5El Gamal-Hammons
6Sethuraman et al. ,Belfiore-Rekaya, Kiran-Rajan
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Solution: DMT optimal explicit constructions

first dmt optimal explicit construction:
cyclic division algebras

• Unified DMT optimal code design and construction criteria7

⋆ codes explicitly constructed for all dimensions

⋆ CDA-based codes (drawing from work of 8)

⋆ employ a single and identifiable lattice generator matrix

⋆ codes guarantee continuous DMT optimality for all fading statistics

approximate universality9

• Approximate universality crucial for code design in cooperative communi-
cations and several other MIMO scenarios

7Elia et al. 2006
8Sethuraman et al.,Belfiore-Rekaya,Kiran-Rajan
9Tavildar and Viswanath 2006
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The magic of cyclic division algebras

Division algebra D

x =
∑n−1

j=0 ljγ
j
n ∈ D,

holds n2QAM elements

l0 γσ(ln−1) γσ2(ln−2) · · · γσn−1(l1)
l1 σ(l0) γσ2(ln−1) · · · γσn−1(l2)
...

...
ln−2 σ(ln−3) σ(ln−4) · · · γσn−2(ln−1)
ln−1 σ(ln−2) σ(ln−3) · · · σn−1(l0)

Maximal field L lj =
∑n−1

i=0 fj,iθ
i ∈ L

Lattice for transmit constellation
transmit constellation

n

F1 = Q(i)

p
m2

2
pmr

r

Fr−1 FrF2
(p

2
−

1)

∏
r

i=
2

p
m

i
i

K

· · ·

2

Q

L

Q(ω
p

mr+1
r

)· · ·Q(ω
p

m2+1

2

)

Q(ω2m+2)

2m

(p
r

−

1)

n2 QAM information symbols

Base field F F = Q(ı)

f0,0 f0,1 · · · f0,n−1

f1,0 f1,1 · · · f1,n−1
...

...
fn−1,0 fn−1,1 · · · fn−1,n−1
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Versatility of approximately universal designs

Versatility of approximately universal designs

• Dense & enumerable constellations but distant codematrices

• Distances increase optimally, in increasing time, space, and −r
• Code-channel distances manipulated to meet information theoretic limits

⋆ complements of algebraic structure

⋆ even in extreme, puncture-like channels

Powerful properties opened ways to solving puzzles

• DMT optimality achieved for several MIMO scenarios, in most general setting

⋆ ([Elia et.al.],[Tavildar-Viswanath],[Elia-Kumar],[Yang-Belfiore])
([K.R. Kumar-Caire],[Lu-Hollanti])
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The ML decoder: Illustration

x y = Hx +w

X
y

The receiver sees a skewed codebook in noise
The ML objective is to find closest codeword hypothesis Hx̂ to y
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The ML decoder: Illustration

z y = Mz +w

Z y

The receiver sees a skewed codebook in noise
The ML objective is to find closest codeword hypothesis Mẑ to y

May 1, 2014 32



The ML decoder and lattice decoders

Maximum likelihood (ML) decoding

• The ML decoder solves a closest vector problem (CVP) in X
x̂ML = argmin

x̂∈X
‖y −Hx̂‖2

• Equivalent formulation in terms of code-channel lattice

ẑML = argmin
ẑ∈Z
‖y −Mẑ‖2

Lattice decoding

• The (naive) lattice decoder solves a closest vector problem (CVP) in Zn

x̂NLD = arg min
ẑ∈Zn
‖y −Mẑ‖2

Potential problem: CVPs are in general NP-hard
(even with free pre-processing of M)
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Need for generally efficient decoding procedures

• Unfortunately, most high performance lattice codes were previously known
to perform provably well only in the presence of an ML decoder

⋆ decoding complexity has remained a fundamental limitation in obtain-
ing provably good error probability performance in a computationally
efficient manner

⋆ the limitation, roughly speaking, originates from the fact that optimal
codes must in general be drawn from lattices whose dimension ‘matches’
the inherently high dimension of H

⋆ on top of that, in all but rare cases, the diversity requirements force
code-channel lattices that cannot be decomposed into substantially
‘smaller’ and simpler component lattices, without severely sacrificing
rate gains

Complexity is the missing piece of the pussle
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The curse of dimensionality

x̂ML = argmin
x̂∈X
‖y −Hx̂‖2 , H ∈ Rn×n

• This high dimensionality, in conjunction with the high spectral efficiency,
introduce prohibitive ML decoding complexity

• The resulting complexity bottleneck brought to the fore the need for effi-
cient decoding algorithms, some of which we review here

Channel n
m×m MIMO 2m2

m×m, L-tone MIMO-OFDM 2m2L
m×m, m-round MIMO-ARQ 2m2

m×m, L-round MIMO-ARQ (AU) 2m2L
m-relay OAF 2m

2-relay OSDF, NSDF (r = 2) 32, 162
m-relay NAF 8(m− 1)

8(m− 1)2

m-relay DDF, L-slots, m > 2 2m2L
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How do we measure complexity on the DMT scale?

• Linear MIMO channel model

y = Hx +w

• Maximum likelihood decoder

x̂ML = argmin
x̂∈X
‖y −Hx̂‖2

⋆ full search consider |X | .= ρrT codeword hypothesis

• Zero forcing decoder
x̂ZF = QΛ

[
H†y

]

⋆ complexity is independent of SNR ρ

Definition: Let C be the complexity (e.g., flops) of a particular decoder
structure. We then say that this decoder structure has a complexity exponent
of c if C

.
= ρc, i.e.,

lim sup
ρ→∞

logC

log ρ
= c

where 0 ≤ c ≤ rT for any reasonable decoder structure

• What (high SNR) rate-reliability-complexity triplets

(r ↑, d ↑, c ↓)
are achievable?
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Decoding techniques

In order to provide a meaningful discussion of the decoding complexity of
DMT optimal codes we now consider several pertinent techniques used in

state-of-the-art decoders in the outage limited setting

Linear decoders (receivers)
Sphere decoders (universal lattice decoders)

Lattice reduction techniques
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Linear receivers - Zero Forcing

Substantial interest in ZF and MMSE linear receivers, due to the simplicity
of implementation

y = Mz +w

• Interference caused by a generally non-orthogonal M suppressed by mul-
tiplying y by the pseudo-inverse M ‡,(MTM )−1MT

• Decision by minimum distance (rounding) quantization:

z̃ZF = M ‡y →
quantization

ẑZF

• Limitation: ill-conditioned channel matrices cause considerable noise am-
plification

⋆ on the order of the diagonal entries of (MTM )−1.
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Linear receivers - Minimum Mean Square Error

• Interference partially suppressed by a linear MMSE filter

z̃MMSE = (MTM + σ2I)−1MT

︸ ︷︷ ︸
L-MMSE filter

y →
quantization

ẑMMSE

• MMSE based linear receivers address noise amplification issue

• Can be seen as ZF receivers over an extended system model10

ỹ,

[

y
0

]

= M̃x +

[

w
0

]

,

⋆ w.r.t. better conditioned channel matrix

M̃ =

[

H
σI

]

, s.t. M̃
T
M̃ = MTM + σ2I, (1)

10D. Wubben, R. Bohnke, V. Kuhn and K.-D. Kammeyer , “Near-maximum-likelihood
detection of MIMO systems using MMSE-based lattice reduction”, ICC, June 2004
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The DMT of linear receivers

• The complexity of linear receivers is well understood (a function of n alone)

⋆ complexity exponent c = 0

• For ill-conditioned channel matrices, both ZF and MMSE decoders are
generally suboptimal11

dLIN(r) , (nr − nt + 1)(1− r

nt
).

⋆ assuming nT× nR (nR ≥ nT) point-to-point quasi-static MIMO chan-
nel, i.i.d. Rayleigh fading, and random Gaussian codes

• This is substantially suboptimal as compared to ML

dML(r) , (nT − r)(nR − r)

for r = 0, 1, · · · ,min(nT, nR)

• Any triplet (r, d, c) in
{
(r, d, c) | d ≤ dLIN(r) , c ≥ 0

}

is achievable with linear decoders

11K. R. Kumar, G. Caire, and A. L. Moustakas, “Asymptotic Performance of Linear Re-
ceivers in MIMO Fading Channels”, Trans IT, Oct. 2009
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Lattices and their representations

Lattice generator matrices are not unique:

{Az | z ∈ Zn} = {Bz | z ∈ Zn}
whenever A = BU for U such that Zn = UZn

• such U is called unimodular, and satisfies U ∈ Zn×n and | det(U )| = 1

a1

a2

b1

b2
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Lattice reduction

• Lattice reduction (LR) refers to the task of – given an arbitrary lattice
basis B – finding a better basis, e.g.,

⋆ nearly orthogonal basis vectors (columns of B)

⋆ short basis vectors

• Different LR criteria and algorithms (for finding U )12:

⋆ Minkowski reductions13 and Korkine-Zolotareff reductions14

∗ seeks basis with shortest vectors
∗ NP-hard to compute (computationally infeasible)

⋆ LLL reduction15

∗ seeks short lattice basis vectors
∗ predominant in the MIMO detection literature (complexity)

12D. Wübben, D. Seethaler, J. Jaldén, and Gerald Matz, “A Survey of Lattice Reduction
Techniques with Applications to Wireless Communications”, SP Mag, May 2011

13H. Minkowski, “Ueber die positiven quadratischen Formen und über kettenbruchähnliche
Algorithmen,” Journal für die reine und angewandte Mathematik, 1891.

14A. Korkine and G. Zolotareff, “Sur les formes quadratiques,” Mathematische Annalen,
1873.

15A. K. Lenstra, H. W. Lenstra, and L. Lovász, “Factoring Polynomials with Rational
Coefficients,” Mathematische Annalen, 1982.
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Lattice reduction aided linear decoders

• The noise amplification in ZF (applied to M = φHG) is proportional to
diagonal elements of (MTM )−1

⋆ when applied to MU it is proportional to (UTMTMU )−1

• Applying the ZF (or MMSE) decoder in a lattice reduced basis can signif-
icantly improve the probability of error performance16 17

• Note: The application of this technique assumes lattice decoding

• LLL based LR-aided ZF archives maximal receive diversity in fixed rate
V-BLAST scanerio18

• LR-aided ZF detection is however not a DMT optimal decoding in the
general setting19

16H. Yao and G. W. Wornell, “Lattice-Reduction-Aided Detectors for MIMO Communica-
tion Systems,” in Proc. GLOBECOM, Nov. 2002.

17C. Windpassinger and R. F. H. Fischer, “Low-Complexity Near-Maximum-Likelihood
Detection and Precoding for MIMO Systems using Lattice Reduction,” in Proc. ITW, Mar.
2003.

18M. Taherzadeh, A. Mobasher, and A. K. Khandani, “LLL Reduction Achieves the Receive
Diversity in MIMO Decdoing,” Trans IT, Dec. 2007.

19M. Taherzadeh and A. K. Khandani, “On the limitations of the naive lattice decoding,”
in Trans. IT, Oct. 2010.
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Lattice decoding and the MMSE pre-processing

• Naive lattice decoding (i.e., ignoring R) is not generally DMT optimal
(not even for the point-to-point MIMO i.i.d. Rayleigh fading channel)

• However, there exist20 lattice codes that, when decoded using lattice de-
coding, achieve optimal DMT performance over the point-to-point MIMO
i.i.d. Rayleigh fading channel

⋆ an ensemble of random lattice codes

⋆ an MMSE pre-processing step

⋆ and an optimal lattice translate

• The magic is in the MMSE preprocessing!

• Opens up the potential for simultaneously DMT optimal and computa-
tionally efficient decoders

20H. El Gamal, G. Caire, and M. O. Damen,“Lattice coding and decoding achieve the
optimal diversity-multiplexing tradeoff of MIMO channels”Trans. IT, June 2004.
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Recent developments

• Explicit non-ml transceivers achieving dmt optimality with21 22 :
worst-case complexity that is at most linear in rate!

⋆ for all channel models/fading statistics
⋆ for mimo, mimo-ofdm, isi, multiple-access, cooperative-networks...

• dmt optimality of MMSE lattice-reduction (lr)-aided linear decoders

⋆ most interestingly:

optimality of decoders holds irrespective of the
particular lattice-code applied!

• Any triplet (r, d, c) in
{
(r, d, c) | d ≤ dout(r) , c ≥ 0

}

is achievable with lattice based codes and decoders

21J. Jaldén and P. Elia, “DMT Optimality of LR-Aided Linear Decoders for a General
Class of Channels, Lattice Designs, and System Models”, Trans. IT, Oct. 2010.

22P. Elia and J. Jaldén, “DMT Optimality of LR-Aided Linear Decoders for a General
Class of MIMO-MAC Lattice Designs,” ITW 2010.
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Sphere decoding

• Sphere decoders and its variants are arguably the most well known ML
(and near ML) decoder structures

• Complexity is higher than linear detectors, and generally random

⋆ . . . but how high?
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Sphere decoding philosophy

• Maximum likelihood (minimum error probability) decoder

x̂ML = argmin
x̂∈X
‖y −Hx̂‖2 , X = Λ ∩R

• ML decoder requires the solution to a problem that is generally NP-hard

• The sphere decoder can solve the ML detection problem exactly by enu-
merating all codewords x̂ ∈ X that satisfy

‖y −Hx̂‖2 ≤ ξ2

⋆ codewords in a hyper-sphere centered at the received signal y

• It is considerably more efficient than a full search
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A short sphere decoder history

• Based on a paper in the math literature from 8523

• First used in communications in early 90s24 25

• Popularized in the late 90s and early 00s26

⋆ also where it go the name sphere decoding

• Several semi-tutorial papers now available 27 28 29

23U. Fincke and M. Pohst, “Improved Methods for Calculating Vectors of Short Length in
a Lattice, Including a Complexity Analysis”, Mathematics of Computation, Apr. 1985

24W. H. Mow., “Maximum Likelihood Sequence Estimation from the Lattice Viewpoint”,
Trans. IT, Sep. 1994

25E. Viterbo, E. Biglieri., “A universal decoding algorithm for lattice codes”. Proc.
GRETSI, Juanles- Pins, France, Sep. 1993

26E. Viterbo, J. Boutros. “A universal lattice code decoder for fading channels”, Trans.
IT, July 1999

27E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices”, Trans.
IT, Aug. 2002

28M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood detection and the
search for the closest lattice point”, Trans. IT, Oct. 2003

29A. D. Murugan, H. El Gamal, M. O. Damen, and G. Caire, “A unified framework for
tree search decoding: rediscovering the sequential decoder”, Trans. IT, Mar. 2006
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Sphere decoder example

z y = Mz +w

Z y

The receiver sees a skewed codebook in noise
The object is to find closest codeword hypothesis Mẑ to y
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Sphere decoder example

z y = Mz +w

Z

Sphere decoder (SD) searches for hypotheses in a sphere centered at y
Need a clever codeword enumeration procedure
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Sphere decoder example

z y = Mz +w

SD identifies point in the sphere by enumerating lattice layers
Filler Text
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Sphere decoder example

y = Mz +wT
Can be view as a branch and bound algorithm on a tree

Filler Text
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Sphere decoder example

y = Mz +wT
Fading (and rate) influenced the branching behavior

Filler Text
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Sphere decoding for large problems - complexity savings

Large gains to be had when solving large dimensional problems
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Sphere decoder issues and improvements

• How to select the search radius ξ

⋆ nowadays a non-issue due to adaptive radius updates and the Schnorr-
Euchner implementation (Algorithm II30, started with ξ =∞)

• Left pre-processing: Instead of applying the sphere decoder to M we can
apply it to (the MMSE preprocessed matrix)

M̃ =

[

H
σI

]

• Right pre-processing: Instead of applying the sphere decoder to M we
can apply it to MU or M̃U where U is an LR (unimodular) matrix

30M. O. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood detection and the
search for the closest lattice point”, Trans. IT, Oct. 2003
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Sphere decoder example (continued)

y = Mz +wT
SD can be view as a branch and bound algorithm on a tree

Layers aligned along natural lattice basis
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Sphere decoder example (continued)

y = MUz +wT
There is a degree of freedom in how to choose the lattice layers

This is the concept of lattice reduction (LR)

May 1, 2014 57



Sphere decoder example (continued)

y = Mz +wT
LR can provide increased complexity robustness towards fading

Filler Text
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Sphere decoder example (continued)

y = MUz +wT
LR can provide increased complexity robustness towards fading

. . . but hard to keep track of the codebook boundary
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Sphere decoder base variants

• Exact implementation of ML decoder

ẑML = argmin
ẑ∈Z
‖y −Mẑ‖2

• Exact implementation of (naive) lattice decoder

ẑNLD = arg min
ẑ∈Zn
‖y −Mẑ‖2

• Exact implementation of (MMSE preprocessed) lattice decoder

ẑMMSE−LD = arg min
ẑ∈Zn
‖y −Mẑ‖2 + σ2‖ẑ‖2 = arg min

ẑ∈Zn
‖ỹ − F ẑ‖2

where F TF = MTM + σ2I and ỹ = F−TMTy

Interesting complexity performance behavior in all cases!
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Classical sphere decoder complexity results

• Closest lattice point (vector) problem (CVP) is NP-hard

⋆ we should not expect any miracles

• Most work on SD complexity assume an i.i.d. Rayleigh model for H and
no code (i.e., x is a vector of uncoded symbols)

• Huge improvement in the average complexity for moderate values of n and
high SNR (small search radius)31

• Average complexity still grows exponentially in n, even under optimal
symbol ordering and radius selection32 33.

• Work on complexity probability tail exponent of (naive) lattice implemen-
tation34

31B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected complexity,”
Trans. SP, Aug., 2005.

32J. Jaldén and B. Ottersten, “ On the complexity of sphere decoding in digital communi-
cations,” Trans. SP, Apr., 2005.

33J. Jaldén and B. Ottersten, “On the limits of sphere decoding,” ISIT, Sept., 2005.
34D. Seethaler, J. Jaldén, C. Studer, and H. Bölcskei, “Tail behavior of sphere-decoding

complexity in random lattices,” ISIT, June, 2009.
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Novel sphere decoder complexity results

• Maximum likelihood decoder

x̂ML = argmin
x̂∈X
‖y −Hx̂‖2

⋆ full search consider |X | .= ρrT codeword hypothesis

⋆ ML SD worst case complexity exponent is generally

cmax(r) = lim
log

(
supH,y F (y,H)

)

log ρ
= rT

• With a DMT optimal code we have Pe
.
= ρ−dout(r)

• Consider a time-limited sphere decoder which stops after visiting C = ρc

nodes and calls an error

⋆ let Ψ(x) be given by

Ψ(c), lim
ρ→∞

log P (F (y,H) ≥ ρc)

log ρ
⇔ P (F (y,H) ≥ ρc)

.
= ρ−Ψ(c)

• If Ψ(c) > dout(r) then P (F (y,H) ≥ ρc)≪ Pe at large ρ (negligible loss)

• If Ψ(c) < dout(r) then P (F (y,H) ≥ ρc)≫ Pe at large ρ
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The sphere decoder complexity exponent

The sphere decoder complexity exponent

c⋆(r), inf
c
{c |Ψ(c) > dout(r)}

Interpretations

• ρc⋆(r) is (in the exponent) the tightest runtime constraint that can be placed
on the sphere decoder without loosing diversity in the decoding process

• The optimal DMT diversity dout(r) is achievable with complexity exponent
c = c⋆(r) using a time-limited sphere decoder

• More generally, any triplet (r, d, c) in
{
(r, d, c) | d ≤ min

(
dout(r),Ψ(c)

)
, c ≥ 0

}

is achievable using time-limited sphere decoders

All of the above quantities can an actually be
obtained in closed form!
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Benefits of high SNR asymptotics and mathematical tools

High data rates

• High rate assumption that follows with high SNR makes discrete problems
amendable to continuous approximations

⋆ codewords and layers → codeword and layer densities

⋆ discrete counting problems → scaled volumes

Large deviations techniques

• The theory of large deviations (rare events) turn intractable probability
integrals into tractable optimization problems

⋆ For sequences of probability measures µǫ we can make statements like

lim
ǫ→0

ǫ log µǫ(B) = − inf
x∈B

I(x)

⋆ In the end we get (reasonably simple) linear optimization problems
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Complexity exponent for point-to-point channels

The complexity exponent of any DMT optimal full-rate nT×T = 2× 2 linear
code for the nR × nT = 2× 2 MIMO channel is35

c⋆(r) = min(r, 2− r)

for r ∈ [0, 2]. The result does not depend on nR if nR ≥ nT

0 1 2
0

1

2

3

4

r

c⋆
(r
)

The complexity exponent is not monotone in r!

35J. Jaldén and P. Elia, “Sphere Decoding Complexity Exponent for Decoding Full-Rate
Codes Over the Quasi-Static MIMO Channel”, Trans. IT, Sept. 2012.
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Connection to information theoretic channel outages

• The singularity level α = (α1, . . . , αnT
) of the channel is

αi,−
log λi(H

HH)

log ρ
⇔ λi(H

HH) = ρ−αi

where λ1(H
HH) ≤ . . . ≤ λnT

(HHH) are the eigenvalues of HHH

• The high SNR outage probability is36

pout
.
= P (α ∈ A) , A,

{

α
∣
∣
∣

nT∑

i=1

(1− αi)
+ < r,

}

For near ML performance, we (essentially) need to decode for all singularity
levels that are not in outage, i.e., α ∈ Ac

36L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: A Fundamental Tradeoff in
Multiple-Antenna Channels,” Trans. IT, May 2003.
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Comparison between outages and decoding complexity

2× 2 code at multiplexing gain r = 1/2⇒ c⋆(r) = 1/2
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Comparison between outages and decoding complexity

2× 2 code at multiplexing gain r = 1⇒ c⋆(r) = 1
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Comparison between outages and decoding complexity

2× 2 code at multiplexing gain r = 3/2⇒ c⋆(r) = 1/2
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Complexity exponent for point-to-point channels

The complexity exponent of any threaded algebraic DMT optimal full-rate
nT × T = n× n code for the nR × nT = m×m MIMO channel is is

c⋆(r) = r(m− ⌊r⌋ − 1) +
(
m⌊r⌋ − r(m− 1)

)+

for r ∈ [0,m], where ⌊·⌋ rounds down and (·)+ = max(0, ·), which simplifies
to

c⋆(r) = r(m− r)

for r ∈ N.
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Summary of Part I

• Lattice codes and universal lattice decoders

• Complexity in the DMT setting

⋆ definition of the complexity exponent

⋆ “simple” closed for solutions for increased insight

Our actual decoder recommendation
A time-limited, Schnorr-Euchner sphere decoder, applied to a regularized

and LLL reduced basis matrix
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Extensions. . .

This is just the beginning. . .

• General complexity regulating policies

⋆ intelligently trade off complexity and reliability

• Refined measures of decoding performance

⋆ the complexity of lattice decoding with zero asymptotic SNR gap

• The role of feedback
• Multiuser settings

• . . . and much more in Part II
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End of Part I

Questions on part I?

May 1, 2014 73



Thank you

thank you
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Part II

PART II
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Recall: Complexity vs Performance in non-ergodic MIMO

First: Complexity vs Performance in non-ergodic MIMO
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Recall: Outage-limited MIMO; large gains and costs
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Recall: Performance-complexity question in MIMO

• Performance and complexity at the heart of gains-costs

(
SNR, rate R, reliability Perr, complexity C

)

⋆ How to construct x? How to process y?

⋆ A long standing open problem

Cmax

maximum allowable computational resources (per T channel uses)

• chip size, number of flops (after that effort must terminate), etc.

• generally Perr ↑ as Cmax ↓
• Keep in mind: Complexity fluctuates with channel
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Recall: Performance-complexity question in MIMO1

Small example: Cmax = 132957 flops

• Can you achieve (Perr, R, ρ) with Cmax = 2000 flops?

⋆ No! Too common early-terminations for search based decoders
(N(H) varies) - or too weak linear receivers

• Can you do it with Cmax = 100000 flops?

⋆ No, but we are getting there.

• How about with 132957 flops?

⋆ Yes!

• How about with 132956 flops?

⋆ Nope!.

• OK, for (Perr, R, ρ) you need Cmax = 132957 flops.
Else (Perr, R, ρ) is not achievable.
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Intuition: optimality in MIMO

y = Hx +w = HGz +w

• Lattice
Λ,{Gz | z ∈ Zn} ⊂ Rn

• Variably dense lattice

Λr , ρ−
rT
n Λ

• R ⊂ Rn: shaping region picks out codewords

x ∈ Xr = (ρ−
rT
n Λ) ∩R
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Intuition: optimality in MIMO1

• Performance delivered by the lattice design X and decoder D:

dX ,D(r),− lim
ρ→∞

log P (x̂D 6= x)

log ρ
≥ − lim

ρ→∞
log P (H ∈ O)

log ρ

O = {H :
1

T
log det

(
I + βHH†) < R}, some fixed β,

• Optimality when code-channel lattice has statistically good distance properties

⋆ success whenever it is information-theoretically possible!

⋆ Recall: complexity generally prohibitive
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DMT optimal decoding solution

lll-based lr-aided regularized linear decoder
(Jaldén-Elia 2009, Elia-Jaldén ITW-2010)

(drawing from [Yao-Wornell],[Windpassinger-Fischer],[El Gamal,Caire,Damen]...)

• 1. Shed bounding region

• 2. Regularize - penalize far away elements

• 3. Policy: don’t lattice-reduce if channel too “non-orthogonal”

• 4. Linear detection
Theorem: [Jaldén-Elia 09] For a very general class of MIMO channels,
the above achieves DMT optimal decoding, for any code.

Theorem: Codes based on cyclic division algebras, and the LLL-based
LR-aided linear implementations of the regularized lattice decoders pro-
vide DMT optimality over ... a broad range of MIMO settings (relaying,
OFDM, MIMO ARQ, quasi-static MIMO, etc).

Theorem: Worst-case complexity at most linear in the rate (sum-rate).High-
SNR optimal performance with at most O(n2) flops per bit.
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BUT... there may be a large error gap

Bounding the error-gap to optimal/exact decoding solutions

• Error exponents d(r) could allow large gap to optimal performance
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Recall: Analysis of more powerful transceivers

Needed to explore more powerful decoding solutions, and
thus needed to be able to capture their performance vs.

complexity behavior
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ML and high-performance lattice decoding

• Maximum likelihood (minimum error probability) sphere-type decoder

⋆ More efficient than a full search

⋆ Better actual performance than LR-aided linear solution

⋆ More costly than LR-aided linear solution

x̂ML = arg min
x̂∈Xr

‖y −Hx̂‖2 , Xr = Λr ∩R

• Need the mathematical machinery to capture the cost of such high perfor-
mance
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Sphere decoding for large problems - complexity savings

Large gains to be had when solving large dimensional problems
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Looked Performance-Complexity Tradeoff

• Generally algorithmic complexity fluctuates with channel

⋆ Channels affect received constellation density and hence complexity

• Generally Perr ↑ as Cmax ↓
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Complexity exponent

c(r) := lim
ρ→∞

logCmax

log ρ
,

Cmax
.
= ρc(r) = 2R

c(r)
r ≤̇ρrT = |X |

c(r) > 0 =⇒ Cmax exponential in R (and often in RT )

and also recall

d(r) := − lim
ρ→∞

logPerr

log ρ
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Practical ramifications of error and complexity exponents

c(r) := lim
ρ→∞

logCmax

log ρ
, d(r) := − lim

ρ→∞
logPerr

log ρ

• Reliability and complexity naturally polynomial in ρ

Cmax : ρ
0 → K · |Code| ≈ 2RT ≈ ρrT , Perr : ρ

0 → ρ−dopt(r)

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

r

c
(r

)

Complexity exponent range

Brute force ML

Linear

c(r) = 0

c(r) = rT = 6r

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

r

d
(r

)

DMT

Optimal DMT

Unprocessed Linear 

May 1, 2014 89



DMT-opt quasi-static nT × nR (nT ≤ nR)

Universal Bounds - Quasi static

Theorem: c(r) is upper bounded as (piecewise linear)

c(r) ≤ c̄(r) =
T

nT
r(nT − r), r = 0, 1, · · · , nT

for all fading statistics, all full rate lattice designs, and all decoding order policies
︸ ︷︷ ︸

?
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Observation: still need extraordinary complexity

Still need extraordinary complexity to achieve good
performance - to achieve a vanishing gap to ML.

Let us try different ... tricks

• Different, less constrained decoders

• Different codes and different decoding ordering policies

• Lattice reduction solutions

• Feedback
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Trying new decoders

Regularized lattice decoding
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Regularized lattice decoding

• Recall: ML decoder

x̂ML = arg min
x̂∈Λr∩R

‖y −Hx̂‖2

• Recall: equivalently ML decoder

x̂ML = arg min
x̂∈Λr

‖y −Hx̂‖2 + IR(x̂) where IR(x̂) =

{

0 x̂ ∈ R
∞ x̂ /∈ R

• Recall: regularized lattice decoder (RLD)

x̂RLD = arg min
x̂∈Λr

‖y −Hx̂‖2 + xTTx
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Regularized lattice decoder illustration
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(a) Original lattice and shaping region
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(b) Image of and under linear map
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(c) Image of and under linear map
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Cost of vanishing gap to EXACT lattice decoding

ŝr−ld = argminŝ∈Zκ ‖r−Rŝ‖2

c(r) = 0 glattice ≤ 2κ/2 Clattice(1), inf{ lim
ρ→∞

logCmax

log ρ
: glattice = 1} =?

Theorem:The complexity exponent for MMSE preprocessed lattice sphere
decoding any full-rate threaded code (quasi-static regular MIMO), is equal
that of ML-based bounded SD with or without regularization.

Corollary:Irrespective of the fading statistics and of the full rate code
applied, the complexity exponent of MMSE preprocessed lattice SD and
ML-based SD is upper bounded by
c(r) = T

nT
(r(nT − ⌊r⌋ − 1) + (nT ⌊r⌋ − r(nT − 1))+) −→ T

nT
r(nT − r).
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Equivalence of ML and lattice decoding

Theorem: (Equivalence of complexity of ML and lattice decoding)
ML based sphere decoding and regularized lattice sphere decoding share
the same complexity exponent for a very broad setting (share bounds and
‘tightness’)

Enhanced Theorem: ML- and regularized lattice-based SD share the
same c(r), d(r) ... for a very broad setting

⇒ All following results will hold for ML as well as for
(regularized) lattice sphere decoding
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Universal Bounds on Complexity

Theorem (ML and Lattice SD) (Singh-Elia-Jaldén Trans-IT 2012): c(r)
of achieving a diversity gain d(r) is upper bounded as

c(r) ≤ c̄(r),max
µ

m∑

i=1

(
rT

m
− 1

2
(1− µi)

+

)+

s.t. I(µ) ≤ d(r),

µ1 ≥ · · · ≥ µm ≥ 0,

for all fading statistics, all full rate lattice designs, and all decoding or-
dering policies 37 .

• m× n (n ≥ m), µj ,− log σj(H
HH)

log ρ , j = 1, · · · , m, rate function I(µ)

37
Decoding order policy specifies the order in which transmitted symbols are decoded.
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Cost of vanishing gap to exact ML and exact lattice

For all existing codes - quasi static

Theorem: The ML and Lattice SD complexity exponent c(r) is upper
bounded at integer r = k as

c(k) ≤ c̄(k) =
Tk(nT − k)

nT
.

For general r, the above is

c̄(r) =
T

nT

(

r(nT − ⌊r⌋ − 1) +
(
nT⌊r⌋ − r(nT − 1)

)+
)

.

The above is a universal upper bound, irrespective of full rate code, of
decoding ordering, and irrespective of fading statistics.
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Problem: tightening the bound

BUT, are the bounds characteristic of the actual
complexity of lattice search?

Is this sufficient complexity, also necessary?
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Complexity Exponent for general setting - ordering

Lemma: Irrespective of channel fading statistics and of the full-rate or
below-full-rate code applied, for every realization of channel M there ex-
ists a channel dependent column permutation matrix Π such that the ML-
based sphere decoder with decoding order Π has the complexity exponent

c̃(r),max
µ

κ∑

i=1

min

(
rT

κ
− 1

2
(1− µi),

rT

κ

)+

s.t. I(µ) ≤ d(r),
µ1 ≥ · · · ≥ µκ ≥ 0.

where µ,(µ1, · · · , µκ) satisfies the large deviation principle with rate
function I(µ).
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Issue: lattice codes and decoding-ordering policies
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Are there codes and ordering policies that allow ‘zipping’?
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Tightness: DMT-opt quasi-static

Tightness of universal bound

Proposition: (General MIMO) Irrespective of channel fading statistics
and of the lattice design applied, there exists a fixed decoding order for
which the bounds are tight.

Theorem: (Quasi-static, Rayleigh, nR ≥ nT ) With probability 1 in
the choice of the DMT optimal lattice design, the bounds are tight for all
(static or dynamic) ordering policies.

Theorem: (Quasi-static, Rayleigh, nR ≥ nT ) Under a ‘richness of
codes’ assumption38, with probability 1 in the choice of the lattice design,
the bounds are tight for all ordering policies.

38∃ sufficiently many lattice generator matrices of a certain (suboptimal) DMT perfor-
mance, so that the entries of the generator matrix accept a continuous distribution across the
real numbers.
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Tightness: DMT-opt quasi-static1

Theorem: Given any threaded code, decoded with the natural column
ordering or under any other threat-wise grouping, then c(r) = c̄(r).

At least some good news:

Theorem: For MISO time-selective channels, and any full-rate code,
then c(r) = 0 for any T .

May 1, 2014 104



Need for faster decoders with a vanishing gap

We have received bad news!!
Massive complexity for vanishing gap to exact ML and

lattice decoding

• For integer r then

c(r) =
T

nT
r(nT − r)

• complexity in the order of

2
1
4nTT log ρ = ρnTT/4 =

√

|X |

• exponential in the number of codeword bits

Cmax
.
= 2

RT (
nT−r

nT
)

• Natural solution: Lattice Reduction
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LR-aided Regularized Lattice SD Complexity

• Lattice reduction techniques previously used to improve error-performance
of suboptimal MIMO decoders

From

ŝr−ld = arg min
ŝ∈Zκ
‖r−Rŝ‖2

to the new

ŝr−lr−ld = arg min
ŝ∈Zκ

∥
∥r−RTT−1ŝ

∥
∥
2
, (3)

• T ∈ Zκ×κ is unimodular

• generally better conditioned channel matrix RT.

• new model: r̃ = R̃s̃ +w′′

s̃r−lr−ld = arg min
s̃∈Zκ

∥
∥
∥r̃− R̃s̃

∥
∥
∥

2

, (4)
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Strength of lattice reduction algorithm

R =






R1,1 R1,2 R1,3 R1,4

0 R2,2 R2,3 R2,4

0 0 R3,3 R3,4

0 0 0 R4,4





−−−−−−−−→
mmse + LR R̃

Lemma: (Singh-Elia-Jaldén) The smallest singular value σmin(R̃k) of
R̃k, after MMSE preprocessing and LLL lattice reduction, satisfies

P
(

σmin(R̃k)
.
< ρ

−ǫT
κ

) .
≤ ρ−dL(r−ǫ), for all r ≥ ǫ > 0, k ≥ 1.
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Achieving a vanishing gap at subexponential complexity

Theorem: (Singh-Elia-Jaldén) LR-aided MMSE preprocessed lattice sphere
decoding introduces a zero complexity exponent, and achieves a vanishing
gap to the exact implementation of lattice decoding.

• First ever lattice decoding solution that provably achieves both a vanish-
ing gap to the error-performance of the exact solution of regularized lattice
decoding, as well as a computational complexity that is subexponential in
the rate and in the problem dimensionality

⋆ for the most general outage-limited MIMO setting

⋆ all mimo scenarios, all reasonable fading statistics, all codes

May 1, 2014 108



Achieving a vanishing gap at subexponential complexity1

• Vanishing gap to error-performance of exact lattice decoding

• Subexponential computational complexity
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LR Problem: sometimes not applicable

BUT, LR can sometimes not be applicable
Especially in the presence of an inner code and soft
decoding, which is often an absolute must for the

industry.

Hence, non-LR solutions still of importance.
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Performance-complexity ramifications of feedback

Performance-complexity ramifications of feedback in
outage limited MIMO communications
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Antenna Selection

Use feedback to reduce complexity

Use antenna selection to reduce size of system

(nT × nR)→ (lT × lR)
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Complexity reductions using antenna selection

antenna selection

• Use log2
(

nT

lT

)

bits of feedback to reduce system size

(nT × nR) −→ (lT × lR)

⋆ While maintaining d∗nT×nR
(r)

• Smaller system means less complexity

• We only focus on a very specific case: the performance, after antenna
selection, remains DMT optimal (d(r) = d∗nT×nR

(r))

• We consider only the greedy selection algorithms of Varanasi et al.
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Complexity-Reduction using Feedback for Antenna
Selection

• Let N ,min (lR, lT ) = lT

• Let P = argminp
(nR−p)(nT−p)

N−p such that 0 ≤ P ≤ N − 1, p ∈ Z

• Let i.i.d. Rayleigh
• Let nR ≥ nT

Theorem: (Varanasi et al.) Pruning an nT × nR MIMO system to an
lT × lR system, can maintain the optimal d∗nT×nR

(r) for all r ≤ P .
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Complexity-Reduction using Feedback for Antenna
Selection1

Proposition: (Singh-Elia-Jaldén) The minimum c(r) (over all antenna
selection algorithms, all lattice designs and all halting and decoding order
policies) required to achieve the optimal DMT d∗nT×nR

(r), is upper bounded
as (piecewise linear - integer r)

c(r) ≤ cas(r) = r(Nr − r), for r = 0, 1, · · · , nT.

where

Nr = arg min
N ′∈{1,··· ,nT}

[
(
arg min

p∈{0,··· ,N ′−1}

(nT − p)(nR − p)

N ′ − p

)
= ⌈r⌉

]

(5)
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Complexity-Reduction using Feedback for Antenna
Selection2
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Complexity reduction with antenna selection

Example: Start with 5 × 6 MIMO system. Antenna select down to lT =
4, lR = 4 (P = 3). Then for 2 ≤ r < 3, the pruned system gives

cas(r) =

{
2(4− r) for 2 ≤ r ≤ 8

3

r for 8
3 < r < 3,

which is less than that of the unpruned system

cML−SD(r) =

{
2(5− r) for 2 ≤ r ≤ 5

2

2r for 5
2 < r < 3.
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MIMO ARQ Feedback for high performance and low
complexity

MIMO ARQ Feedback for high performance and low
complexity
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MIMO-ARQ
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MIMO-ARQ1

Previous work39 has shown that with L rounds of ARQ

• d∗(r) (original optimal DMT) −→ d∗(r/L)

• d∗(r/L) (feedback-aided DMT) often d∗(r/L) >> d∗(r)
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Complexity ramifications of feedback

Two interesting questions:

• What is the feedback-aided complexity to achieve DMT d∗(r)?

• What is the complexity to achieve the feedback-aided DMT d∗(r/L)?

Example:
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Complexity ramifications of feedback1

Feedback-aided complexity for optimal DMT d∗(r)

(i.e., Use feedback to reduce complexity, without sacrificing performance)
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Feedback-aided complexity for optimal DMT d∗(r)

First attempt: use simpler codes
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Feedback-aided complexity for optimal DMT d∗(r)1

Corollary: (First attempt) (quasi-static iid Regular nR ≥ nT, LT = nT)
Minimum c(r) for d∗(r), (minimized over all lattice designs, all L-round
ARQ schemes, all halting and decoding order policies), bounded as (piece-
wise linear r = 0, 1, · · · , nT )

c(r) ≤ cred(r) =
1

nT
r(nT − r).

• Compare to c(r) = r(nT − r)

• Important role of “aggressive intermediate halting policies”
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Feedback-aided complexity for optimal DMT d∗(r)

Second attempt
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• ARQ scheme with two rounds, T1 = 1 and T = n2
T + 1

⋆ First round: high-rate uncoded (high rate, no diversity)

⋆ second round: orthogonal design with rate- 1
nT

(ultra low rate, full di-

versity)

• Decoding policy

⋆ First round decode iff really good channel, halt decoding if |σmin(H)| ≤
ρ−ǫ for some ǫ > 0.

⋆ Second round full decoding
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Feedback-aided complexity for optimal DMT d∗(r)

Theorem: (Second Attempt - longer delay) (quasi-static i.i.d. Regular
nR ≥ nT)
Sphere decoding with one-bit of ARQ feedback and a computational con-
straint activated at ρx flops achieves optimal DMT d∗(r) for any x > 0.

Example:
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Complexity cost for feedback-aided DMT d∗(r/L)

Recall: Generally Perr ↑ as Cmax ↓

Killing two birds with one bit of feedback

One-bit feedback → Cmax ↓ also Perr ↓
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Complexity cost for feedback-aided DMT d∗(r/L)

Seeking c(r) needed to achieve d∗(r/L)

Recall:
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Proposed Communication Scheme

• ARQ scheme with two rounds, T1|T and T = nT

• Incremental redundancy lattice designs (powerful in each round)

• Decoding policy

⋆ First round decode iff really good channel
halt decoding if |σmin(H)| ≤ ρ−ǫ for some ǫ > 0.

P (rℓ)e,ℓ
.
≤P (rL)e,L , ℓ = 1, ....L− 1

⋆ Much reduced complexity due to channel singularity level

• Lim-optimal decoding in the last L-th round

P (rL)e,L
.
= ρ−dARQ,L(rL)

⋆ Second round halt after ρcdmd(r) flops
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Complexity in general MIMO settings

• Complexity for ℓ-th round

cℓ(r),max
µ

(

1− ℓ

L

)

rT + ℓT

nT∑

j=1

(
r

LnT
− (1− µj)

+

)+

,

s.t. I(µ) ≤ d(rℓ),
µ1 ≥ · · · ≥ µnT

≥ 0,

• The overall complexity exponent is given by

cARQ(r) = max (c1(r), · · · , cL(r))

• High computational complexity cost due to

⋆ beyond-full-rate decoding
⋆ high diversity gain achieved
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Complexity reduces with feedback despite increased d∗(r/L)

Theorem: (L|nT, quasi-static, nR ≥ nT)
Minimum c(r) to achieve optimal d∗(r/L) is bounded as ((mult. of L))

c(r) ≤ cdmd(r) =
rnT

L2

(

L− r

nT

)

.

Corollary: The above with L = nT gives

c(r) ≤ cDMD(r) =

(

1− 1

nT

)

r.
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Have feedback: Go for basic DMT or feedback-aided DMT?

Joint performance-complexity measure

Γ(r) = d(r)− γc(r)
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Complexity for d∗(r/L) is still very high

Recall-Corollary: Can achieve d∗(r/nT) with

c(r) ≤ cdmd(r) =

(

1− 1

nT

)

r.

Example:
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• Feedback reduces complexity up to r =
n2
T

nT+1

• High complexity for r ≈ nT

Cmax → ρnT−1

• Seek help of LR for ergodic-like behavior
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Achieving ergodic like behavior

Desirable to achieve ergodic like behavior
with minimal feedback and minimal complexity

• Want to achieve high d(r) for very high r

• Want to achieve it with reduced c(r)

0 1 2 3 4
0

2

4

6

8

10

12

14

16

Multiplexing Gain (r)

D
iv

er
si

ty
 G

ai
n 

d(
r)

Optimal DMT of ARQ with L=4
Optimal DMT non−feedback

May 1, 2014 134



Achieving ergodic-like behavior with subexponential
complexity and a single bit of feedback

Theorem (Trans IT June 2012 and ISIT 2013):
LR-aided regularized lattice sphere decoding with an aggressive first-round
halting policy, with LR- and outage-based last-round halting policies, and
with a single bit of feedback, introduces a zero complexity exponent, and
achieves the optimal d(r/n) (ergodic-like).
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c
f
(r) = (1-1/n)r = 5r/6

c(r) = r(n-r) = r(6-r)

c(r) = rT = 6r

• First algorithm to achieve a vanishing gap to the exact solution of (regu-
larized) lattice decoding, with subexponential computational complexity
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Different directions

Different directions
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Complexity in Multiple Access Channels

Complexity in Multiple Access Channels
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Complexity results for Multiple Access Channel -
Symmetric Case

• Interested in very specific problem

⋆ K users with nT antennas each

⋆ destination with nR antennas

dmac(r) =

{
d∗nT ,nR

( r
K ), r ≤ min (KnT ,

nRK
K+1)

d∗KnT ,nR
(r), min (KnT ,

nRK
K+1) < r ≤ min (KnT , nR)

• Interested in complexity for optimal DMT with joint ML/lattice decoding

• Draw from only known MIMO-MAC optimal codes (Lu, Hollandi,...)

Proposition: (Singh et al.) The optimal complexity exponent of ML-
based SD joint decoder is upper bounded as

cmac(r) = max
µ

KnT

KnT∑

j=1

(
r

KnT
− (1− µj)

)+

s.t. I(µ) ≤ dmac(r), 1 ≥ µ1 ≥ · · · ≥ µKnT
≥ 0.
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Complexity of SISO MAC

MIMO MAC

(K user MAC, nT = 1, nR = 1, r per user, Rayleigh, K odd)

Corollary: (Best known upper bound)
The minimum c(r) (over all lattice designs and halting and decoding order
policies) to achieve the optimal MAC-DMT, is upper bounded as

c(r) ≤ cmac(r) =

{
(K − 1)r for r ≤ 1

K+1,

(K − 1)Kr for 1
K+1 < r ≤ 1

K .
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Complexity in Cooperative communications

Complexity in Cooperative communications
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Example: Amplify and forward

hc2

hc1

hc3

source

relay

destination

yc
t =

[ √
ρhc1 0

ρbhc2h
c
3
√
ρhc1

]

xc
t +

[
0√
ρbhc3

]

wc
t + vc

t , |b|2 = 1

ρ|h2|2 + 1

↓

y = Hx +w
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Complexity analysis for cooperative relay networks

specific problem addressed

• One source, nT − 1 relays, one destination

⋆ All nodes having one antenna

• Protocol: Orthogonal Amplify Forward (OAF)

• Interested in complexity for achieving the optimal OAF DMT

doaf(r) =

{

nT

(

1− (2nT−1)r
nT

)

, for 0 ≤ r ≤ 1
2,

1− r, for 1
2 < r ≤ 1.
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Complexity analysis for OAF Relaying

• The complexity exponent is given by

coaf(r) = max
µ

nT∑

j=1

(
2nT − 1

nT
r − (1− µj)

)+

,

s.t.

nT∑

j=1

µj ≤ nT (1−
2nT − 1

nT
r),

1 ≥ µ1 ≥ · · · ≥ µnT
≥ 0.

coaf(r) = cmiso(
2nT − 1

nT
r)

coaf(r) = (2nT − 1)r(1− 2nT − 1

nT
r) for r = 0,

1

2nT − 1
, · · · , nT

2nT − 1
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Complexity analysis for OAF Relaying1
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N=2

• Complexity exponential in number of relays

• Complexity constraints force relay selection

Seek best cooperative protocols and best relay-selection
protocols to improve performance-complexity tradeoff
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Decoding Complexity in Massive MIMO

Decoding in Massive MIMO: a wide open problem

• Interesting work on low-complexity detection in large-MIMO (A. Chock-
alingam, B. Sundar Rajan, et al., and others)

⋆ LR-based solutions

⋆ random sampling based solutions

• Interesting performance analysis for decoders (Moustakas, R Kumar, Caire,
Mertikopoulos...)

• Interesting and wide-open challenge

Apply statistical approach of performance-vs-complexity
in different large systems
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Communication complexity in green radios

Theoretical underpinnings and practical designs of green
radios

Work by Grover, Sahai, Goldsmith, Ganesan...

• Effort to analyze complexity of coding

• Emphasis on short-distance communication systems

⋆ require processing power that dominates transmit power

• Emphasis on limiting encoding and decoding power

• Measure is communication complexity, not Turing complexity
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Communication complexity in green radios1

• Derived bounds on encoding/decoding power

• Modify traditional Shannon capacity view point

• Reveal tradeoff between transmit and encoding/decoding power

• Insight: When computational nodes dominate processing power, to mini-
mize total power, one must fundamentally stay away from capacity.

⋆ Capacity-approaching LDPC codes optimize over transmit power, but
require large decoding power.

⋆ TODO: Find such codes that require reduced decoding power.
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Complexity in interference alignment

Complexity in interference alignment (Cadambe and Jafar)

Tx1
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TxK

Rx1

Rx2

RxK
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• Maximizing sum DoF for general MIMO (without symbol extension) is
NP-hard (in number of user pairs)

⋆ DoF max is NP-hard if ≥ 3 rx-tx antennas

⋆ Polynomial-time if ≤ 2 rx-tx antennas

• Conjecture (Razaviyayn et al): for symmetric network, polynomial-time algor. may exist

• Recent (Ma et al.) Conjecture holds only in a very limited sense

⋆ polynomial-time if ≤ 2 rx-tx antennas (generally NP-hard otherwise)

Apply statistical optimization and complexity methods
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Complexity and feedback in multiuser communications

Feedback (CSIT) is crucial: Interference ↓ Rates ↑

• Recent advances in understanding and meeting the long
elusive fundamental tradeoff between performance and
feedback in classical multiuser channels

• Complexity shows its ugly face again
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Challenge in performance-vs-feedback problem
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Channel state at this instance

• Transmit: (

Feedback
︷ ︸︸ ︷

Inverse-channel × Message) ⇒ separates users’ messages

⋆ Channel× Inverse-channel×Message → Message OK

• BUT, channel changes: Feedback can be imperfect, limited and delayed

⋆ Channel× Approximately-inverse-channel×Message→ r‡♠∅ג ⊜
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Fundamental formulation:step 1,2

Step 1: Communication of duration n (n is large)

Step 2: Communication encounters an arbitrary channel
process

user 1 : h1 h2 h3 · · · hn
user 2 : g1 g2 g3 · · · gn
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Fundamental formulation:step 3

Step 3: An arbitrary feedback process

Ch
an

n
el p

ro
cess h

t    t = 1,2,3…
.. 

What do we know -  at any time t’– about any channel ht ? 

h1  

h2  

h3  

hn  

ĥ1,1 ĥ1,2 
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Fundamental formulation:step 4

Step 4: A ‘primitive’ measure of feedback ‘goodness’

Ch
an

n
el p

ro
cess h

t    t = 1,2,3…
.. 

h1  

h2  

h3  

hn  

h1 - ĥ1,1 

t’=1 t’=2 t’=3 t’=n 

Estimation errors 

t’ 
t  

h1 - ĥ1,2 h1 - ĥ1,3 h1 - ĥ1,n 

h2 - ĥ2,1 h2 - ĥ2,2 h2 - ĥ2,3 h2 - ĥ2,n 

h3 - ĥ3,1 h3 - ĥ3,2 h3 - ĥ3,3 h3 - ĥ3,n 

hn - ĥn,1 hn - ĥn,2 hn - ĥn,3 hn - ĥn,n 

May 1, 2014 153



Recall: performance in degrees-of-freedom (DoF)
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di = lim
P→∞

Ri

logP
, i = 1, 2

• (R1, R2): achievable rate pair Ri ≈ di logP
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Performance/Feedback limits (Chen-Elia Trans-IT Dec.
2013)

Theorem: (Chen-Elia 2013) The DoF region

d1 ≤ 1, d2 ≤ 1

2d1 + d2 ≤ 2 + ᾱ(1)

2d2 + d1 ≤ 2 + ᾱ(2)

d1 + d2 ≤
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2
(2 + β̄(1) + β̄(2))

is achievable and is optimal for ... sufficiently good CSIT (To explain).
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High complexity Block Markov schemes

Universal encoding-decoding scheme

Schemes exploit imprecise, delayed or premature feedback
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High complexity Block Markov schemes1

• High complexity and delay for achieving optimal DoF

⋆ Complexity a function of ᾱ, β̄

⋆ Hint!! Complexity can dramatically reduce for specific cases of fading
statistics, feedback statistics, feedback periodicity..
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TODO: Reduce prohibitive complexity of encoding with
imperfect and delayed feedback
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Concluding remarks

• In general MIMO settings, dimensionality should be respected but not
cause paralyzing fear

⋆ Algorithms are much faster now

• Proper analysis can result in substantial insight

⋆ Can help proper planning of network resources

• Complexity is a sizable parameter that is often left unattended

• In multiuser communications, many theoretical promises remain unfulfilled
due to prohibitive algorithmic complexity

• New tools allow for insightful analysis of fundamental performance-complexity
questions in many different areas

• In an area like telecommunications, such tools need be stochastic

• Discrete mathematics help. Feedback helps.

• Complexity is here to stay
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Thank you

We thank you
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