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Abstract—Optimization of a point-to-point (p2p) multiple-
input single-output (MISO) communication system is considered
when both the transmitter (TX) and the receiver (RX) have
energy harvesting (EH) capabilities. The RX is interested in
feeding back the channel state information (CSI) to the TX to
help improve the transmission rate. The objective is to maximize
the throughput by a deadline, subject to the EH constraints
at the TX and the RX. The throughput metric considered is
an upper bound on the ergodic rate of the MISO channel
with beamforming and limited feedback. Feedback bit allocation
and transmission policies that maximize the upper bound on
the ergodic rate are obtained. Tools from majorization theory
are used to simplify the formulated optimization problems.
Optimal policies obtained for the modified problem outperform
the naive scheme in which no intelligent management of energy
is performed.

Index Terms—Energy harvesting, Limited feedback, MISO,
Offline optimization.

I. I NTRODUCTION

Powering up terminals in communication networks by
renewable ambient energy reduces the carbon footprint of
the information and communication technologies, which can
no longer be neglected with the exponential growth in the
number of communication devices. Another advantage of EH
technology is that, it increases the autonomy of battery-run
communication devices. In traditional wireless networks nodes
get their energy from the power grid by always or periodically
connecting to it. While it is easy to connect the terminals to the
grid in some networks, in others, such as sensor networks, it
cannot be done once after the deployment. Therefore, in such
networks a node’s lifetime, and hence, the network lifetime,
is constrained by the limited initial energy in the battery.
Providing EH capabilities to the communication nodes is an
attractive solution to the network lifetime problem [2]. An
EH node can scavenge energy from the environment (typical
sources are solar, wind, vibration, thermal, etc.) [3]. With EH
nodes in the network, in principle, one can guarantee perpetual
lifetime without the need of replacing batteries.
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However, EH poses a new design challenge as the energy
sources are typically sporadic and random. The main challenge
lies in ensuring the Quality of Service (QoS) constraints ofthe
network given the random and time varying energy sources.
This calls for the intelligent management of various parameters
involved in a communication system.

Recently, a significant number of papers have appeared
studying the optimal transmission schemes for EH commu-
nication systems under different assumptions regarding the
node’s knowledge about the underlying EH process. Offline
optimization framework deals with systems in which non-
causal knowledge of the EH process is available. Within this
frame work, optimal transmission schemes are studied for the
p2p fading channel [4], broadcast channel [5], [6], [7] and
relay channel [8], [9]. See [10] for an extensive overview.

To the best of our knowledge, a common aspect of all
prior works on EH communication networks is that the TX
is assumed to have access to perfect CSI. Knowledge of
the CSI at the TX is beneficial in designing the optimal
channel adaptation techniques and the TX filters in multi-
antenna systems. However, recent studies have demonstrated
that, although feedback enhances the system performance,
feedback resources, namely power and bandwidth, are limited,
and must be spent wisely [11]. As a result, an important
question arises: How do the EH constraints affect the design
of feedback enabled wireless networks?

In this paper, we study the optimization of a feedback
enabled EH MISO channel, where feedback is used to improve
the rate through array gain. The system model and the main
assumptions in this paper are given in Section III. In Section
IV, we consider the optimization of the feedback policy under
EH constraints at the RX, while the TX is assumed to have
a constant power supply. The motivation is to address the
following: In the case of EH, the available energy at the RX
varies over time. Should the RX feedback same quality of CSI
at all times? If so, can the CSI feedback quality be improved
by using more bandwidth in the low energy scenario? In the
second part of this paper (Section V), we assume that both the
TX and the RX harvest energy. In this case, the transmission
power policy and the feedback policy are coupled, and need
to be jointly optimized. Results from multivariate majorization
theory are used to devise simple algorithms. We start by
giving a brief preliminary description of majorization theory
in Section II. Numerical results are presented in Section VIto
validate the analysis. Finally, Section VII concludes the paper.

Notation: Boldface letters are used to denote matrices and
vectors. The transpose and conjugate transpose of matrixA is
denoted byAT andA

H, respectively. We usedi,j to denote
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the element at thei-th row andj-th column of matrixD, and
|S| to denote the cardinality of the setS. The set of integers
from m to n, m < n, is represented by[m : n]. The algorithm
with name “Algo” is represented as [output arguments]= Algo
(input arguments). A circularly-symmetric complex Gaussian
distributed random variableη with zero mean and varianceσ2

is denoted byη ∼ CN(0, σ2).

II. PRELIMINARIES

In this section, the basic notion of majorization is introduced
and some important inequalities on convex functions that are
used in this work are stated. The readers are referred to
[12], [13] for a complete reference. We start by stating the
Edmundson-Madansky’s inequality.

Theorem 1:[12] If f is a convex function andx is a random
variable with values in an interval[a, b], then

E [f (x)] ≤
b− µ

b− a
f (a) +

µ− a

b− a
f (b) ,

whereµ is the mean ofx.
Majorization theory formalizes the notion that the compo-

nents of a vectorx are “less spread out” than the components
of a vectory.

Definition 1: Let x = [x1, . . . , xn] ,y = [y1, . . . , yn],
x,y ∈ R

n and letx(i) denote thei-th largest component of
x. Thenx is said to bemajorizedby y, denoted byx � y, if

l
∑

i=1

x(i) ≤
l
∑

i=1

y(i), ∀l ∈ [1 : n− 1]

n
∑

i=1

x(i) =
n
∑

i=1

y(i).

Definition 2: [13, 2.A.1] Ann×n matrixD with elements
di,j is doubly stochasticif

di,j ≥ 0, ∀i, j ∈ [1 : n] ,
n
∑

i=1

di,j = 1, ∀j ∈ [1 : n] and
n
∑

j=1

di,j = 1, ∀i ∈ [1 : n] .

Theorem 2:[13, 4.A.1, 4.B.1] Forx,y ∈ R
n, the following

conditions are equivalent:

• x � y.
• x = yD for some doubly stochastic matrixD.
• For all continuous concave functionsg : R → R,
∑n

i=1 g (xi) ≥
∑n

i=1 g (yi).

Definition 3: [13, 15.A.2] LetX and Y be m × n real
matrices. ThenX is said to bemajorizedby Y, written X �
Y, if X = YD, where then×n matrixD is doubly stochastic.

Theorem 3:[13, 15.A.4] Let X and Y be m × n real
matrices. Then,X � Y if and only if

n
∑

i=1

g (xc
i ) ≥

n
∑

i=1

g (yc
i ) ,

for all continuous concave functionsg : Rm → R; herexc
i and

yc
i denote thei-th column vector ofX andY, respectively.
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Figure 1. MISO channel with feedback, where both the TX and the RX
harvest and store ambient energy.
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Figure 2. Energy harvesting time frame structure.

III. SYSTEM MODEL

We consider a p2p MISO fading channel as shown in Fig. 1,
where both the TX and the RX harvest energy from the
environment. Each node is equipped with an individual energy
buffer, i.e., a rechargeable battery, that can store the locally
harvested energy.

A. Energy Harvesting Model

The total observation time is divided intoK equal length EH
intervals. At the beginning of thek-th EH interval,k ∈ [1 : K],
energy packets of sizeetk, e

r
k units arrive at the TX and the

RX, respectively. At each node, this energy is first stored inan
infinite size energy buffer, and used only for communication
purposes, i.e., TX sending data, and the RX feeding back the
CSI. We assume that alletk, e

r
k ’s are known in advance by both

terminals. This model is suitable for an EH system in which
the time-varying harvested energy can be accurately predicted
[10].

B. Communication System Model

Each EH interval consists ofL data frames, each of length
T channel uses. We assume a block fading channel model. The
channel is constant duringT channel uses of each frame, but
changes in an independent and identically distributed (i.i.d.)
fashion from one frame to another. The time frame structure is
shown in Fig. 2. The TX hasM > 1 antennas, while the RX
has a single antenna. The received signal in a given channel
use is given by

y = hHws+ η, (1)

whereh ∈ C
M×1 represents the vector of channel coefficients

from TX to the RX with i.i.d.CN(0, 1) elements,w ∈ C
M×1

denotes the beamforming vector, the input symbol maximizing
the achievable ergodic rate in thek-th EH interval is s ∼
CN(0, pk), andη ∼ CN(0, 1) represents the noise at the RX.
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C. Feedback Model

We assume that the RX perfectly estimates the channel
state at the beginning of each data frame, and feeds back
the quantized CSI to the TX within the same frame. In the
k-th EH interval, the frame structure is as follows: The RX
in τk channel uses sends the CSI through a feedback channel
(uplink) which is modeled as an additive white Gaussian noise
(AWGN) channel. In the remainingT − τk channel uses,
TX sends data to the RX (downlink) exploiting the obtained
CSI. The feedback model represents the Time-Division Duplex
(TDD) system in which uplink and downlink use the same
band in a time-sharing fashion, but the communication de-
vices are not self-calibrated, and hence, induce non-reciprocal
effects [14], [15]. In the above model, although the feedback
overhead incurs a cost in the downlink bandwidth, a similar
trade-off in the resource allocation between the CSI feedback
quality and uplink data rate also arise in a Frequency-Division
Duplex (FDD) system [15]. Hence, the analytical results
obtained in this paper are applicable in general settings, and
for instance, can be used to address the trade-off between CSI
quality and effective data rate in an FDD system.

In the k-th EH interval, quantization of the channel state
is performed using a codebookCk known at both the TX
and RX. The receiver uses Random Vector Quantization
(RVQ). The codebook consists ofM -dimensional unit vectors
Ck , {f1, . . . ,f2bk }, where bk is the number of bits used
for quantization. The RX chooses the beamforming vector
according towk = arg max

f∈Ck

|h̃Hf |
2
, where h̃ , h

||h|| .

We assume that the length of the EH interval is very large
compared to the channel coherence time (i.e.,L is very large).
As a result, the achievable ergodic rate in thek-th EH interval
is given by

Rk =
(

1−
τk
T

)

E||h||2,νk

[

log2

(

1 +
pk

(

1− τk
T

) ‖h‖
2
νk

)]

,

(2)
whereνk = |h̃Hwk|

2
. Note thatνk and||h||2 are independent

[16]. By using the AWGN feedback channel model, the
number of feedback bitsbk can be related to the energy used
by the RX,qk, and the number of channel usesτk as follows:

bk = τk log2

(

1 +
qk

τkσ2

)

, (3)

whereσ2 is the noise variance in the uplink. For analytical
tractability, we neglect the practical constraint thatbk should
be an integer. Using the ergodic rate expression given in [16,
Equation (27)] and (3), the ergodic rateRk , R (pk, qk, τk)
is found to be

Rk =
(

1−
τk
T

)

log2 e

(

eρk

M−1
∑

l=0

El+1 (ρk) −

1
∫

νk=0

(

1− (1− νk)
M−1

)Nk M

νk
e

(

ρk
νk

)

EM+1

(

ρk
νk

)

dνk





(4)
where ρk =

(

1−
τk
T

pk

)

, Nk =
(

1 + qk
τkσ2

)τk
, and En (x) ,

∫∞

1
e−xtx−ndt is then-th order exponential integral.

D. Optimization Problem

The problem of maximizing the sum throughput by the end
of theK-th EH interval can be formulated as

max
pk,qk,τk

K
∑

k=1

Rk (5a)

s.t. L

l
∑

i=1

qi ≤

l
∑

i=1

eri , ∀l ∈ [1 : K], (5b)

LT

l
∑

i=1

pi ≤

l
∑

i=1

eti, ∀l ∈ [1 : K], (5c)

τk ∈ [0, T ), pk ≥ 0, andqk ≥ 0, ∀k ∈ [1 : K].
(5d)

The constraints (5b) and (5c) guarantee theenergy neutrality
of the system, i.e., at each node, energy consumed can not be
more than the energy harvested till that time. Also note that
τk impacts the achievable rateRk in each EH interval.

Coming up with simple algorithms to solve the optimization
problem is desirable in EH networks as the nodes may not have
the computational and energy resources for running complex
optimization algorithms. However, the ergodic rate expression
used in the above optimization problem is not in closed form
and offers little insight into the convexity of the problem
which is required to reduce the complexity of optimization.
This motivates the use of convex bounds on (4) as the
objective function in the following optimization problems.
Solving these modified problems provides an upper bound on
the throughput. Since the constraints in the original and the
modified optimization problems are the same, the solution for
the modified problem is also feasible in the original problem,
and if used in evaluating the exact rate expression in (4), we
obtain a lower bound on the throughput. In some settings, we
show that the bounds used are very close to the ergodic rate.

Before tackling the above problem, first, we consider a
special case in which only the RX harvests energy. Later, the
general case with both the TX and the RX harvesting energy
is studied.

IV. EH RECEIVER

In this setting, the RX harvests energy from the environ-
ment, whereas the TX is connected to the power grid so that
it has a fixed power supply at all times. Therefore, there are
no EH constraints at the TX, and constraints (5c) can be
ignored. However, there is now a constraint on the average
transmission power at each data frame of thek-th EH interval
i.e., pk ≤ p, ∀k. The expected valueνk is given by [16], [17]

E[νk] = 1− 2bkβ

(

2bk ,
M

M − 1

)

, (6)

whereβ (x, y) denotes the beta function. Using the quantiza-
tion error bound in [17, Lemma 6], (6) can be bounded as1

E[νk] ≤ νuk , 1−

(

M − 1

M

)

2
−bk
M−1 . (7)

1This bound is universal in the sense that it applies to anybk-bit quanti-
zation of an isotropically distributed vector, not necessarily limited to RVQ.
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Applying Jensen’s inequality on (2), substituting (7) and (3),
and using the fact thatE ‖h‖2 = M , an upper bound on the
ergodic rateRu

k , Ru (pk, qk, τk) is obtained as

Ru
k = tk log2



1 +
pkM

tk



1−
M − 1

M

(

1 +
qk

τkσ2

)

−τk
M−1







 ,

(8)
wheretk ,

(

1− τk
T

)

.
We now illustrate the tightness of the upper bound. Ap-

plying the Jensen’s inequality on (2),Ru
k − Rk can be lower

bounded as

Ru
k −Rk ≥ tk log2

(

1 +
pk
tk

Mνuk

)

−

tk E||h||2 log2

(

1 +
pk
tk

‖h‖
2
E[νk]

)

.

(9)

Since (2) is a concave function ofνk andνk ∈ [0, 1], applying
Theorem 1 on (2), we have

Rk ≥ tk E||h||2 log2

(

1 +
pk
tk

‖h‖
2

)

E[νk] (10)

Now using (10),Ru
k −Rk can be upper bounded as

Ru
k −Rk ≤ tk log2

(

1 +
pk
tk

Mνuk

)

−

tk E||h||2 log2

(

1 +
pk
tk

‖h‖
2

)

E[νk]

(11)

Since bothlimbk→∞ νuk = 1 and limbk→∞ E[νk] = 1 [16],
and using (9) and (11), we have,

∆Rk , lim
bk→∞

Ru
k −Rk = tk E||h||2 log2

(

tk + pkM

tk + pk ‖h‖
2

)

.

(12)
Further, for all feasibleτk, in the low power regime,

lim
pk→0

∆Rk = 0, (13)

and in the high power regime,

lim
pk→∞

∆Rk = tk
(

log2 M − E||h||2 log2 ||h||
2
)

≤ log2 M − E||h||2 log2 ||h||
2.

(14)

From the above analysis, it can be seen that when the RX has
enough harvested energy to send large number of feedback
bits, in the low power regime the bound is tight, and in the
high power regime the difference is bounded by a constant.
For example, it is0.1958 for M = 4, and also note that
limM→∞ log2 M − E||h||2 log2 ||h||

2 = 0.
Using (8) as the objective function, the modified optimiza-

tion problem can be written as follows,

max
pk,qk,τk

U =
K
∑

k=1

Ru
k (15a)

s.t. L

l
∑

i=1

qi ≤

l
∑

i=1

eri , ∀l ∈ [1 : K], (15b)

pk ≤ p, andpk ≥ 0, ∀k ∈ [1 : K], (15c)

τk ∈ [0, T ), and qk ≥ 0, ∀k ∈ [1 : K], (15d)

wherep is the power constraint at the transmitter.
As the objective function is monotonic inqk and pk,

the constraint in (15b) must be satisfied with equality for
l = K, and the first constraint in (15c) must be satisfied with
equality, i.e.,pk = p, ∀k; otherwise, we can always increase
qK , pk, and hence, the objective function, without violating
any constraints. Now it remains to optimize over the variables
qk andτk.

The feasible set is represented as

F = {q, τ |qk, τk satisfy (15b), (15d)∀k} , (16)

whereq = [q1, . . . , qK ] and τ = [τ1, . . . , τK ]. To show that
the above problem is a convex optimization problem, we make
use of the following lemma.

Lemma 1:If the function f (x, t) : R2
+ → R+ is concave,

and g (y, z) : R
2
+ → R+ is concave and monotonically

increasing in each argument, then the functionh (x, y, t) =
(

1− t
T

)

g
(

y

1− t
T

, f(x,t)
1− t

T

)

is concave∀ (x, y) ∈ R
2
+, t ∈ [0, T ).

Proof: The proof is similar to that of showing the
perspective of a concave function is concave. See Appendix.

Proposition 1: The objective function of the optimization
problem (15) is concave.

Proof: See Appendix.
Since the objective function in (15) is concave and the

constraints are linear, it has a unique maximizer [18]. Using the
concavity of the objective function, we show that the optimal
energy allocation vector is the most majorized feasible energy
vector.

Proposition 2:The global optimum of (15) is obtained at
(q∗, τ ∗), whereq∗ � q, ∀ (q, τ ) ∈ F, andτ∗k is the solution
of the following equation

∂Ru
k

∂τk
|(q∗k,τ∗

k )
= 0, ∀k ∈ [1 : K] . (17)

Proof: Consider the following equivalent form of (15),
where the optimization is performed in two steps.

max
q

Ũ (q) s.t. ∀ (q, τ ) ∈ F, (18)

whereŨ (q) is obtained by

Ũ (q) = max
τ

U (q, τ ) s.t. ∀ (q, τ ) ∈ F. (19)

SinceU is a concave function over the convex setF, the
function Ũ (q) is concave, where the domain ofŨ is the set
F̃ = {q| (q, τ ) ∈ F} [18, 3.2.5].U =

∑K
k=1 R

u
k is continuous,

differentiable and concave inτk ∈ [0, T ). Furthermore, for
givenqk, Ru

k approacheslog2 (1 + p) and0, asτk approaches
0 andT , respectively. Therefore, the unique maximizer of (19)
lies in [0, T ), and it is obtained at

∂U

∂τk
|τ∗

k
=

∂Ru
k

∂τk
|τ∗

k
= 0, ∀k ∈ [1 : K] . (20)

From above, asτ∗k is only a function ofqk,

Ũ (q) =

K
∑

k=1

R̃u
k (21)
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Figure 3. Optimal number of channel uses for sending feedback.

where R̃u
k , R̃u (qk) = Ru (qk, τ

∗
k (qk)). Using (21) and

Theorem 2,Ũ (q∗) ≥ Ũ (q) , ∀q ∈ F̃. Finding the optimal
energy allocation vectorq∗ under the EH constraints turns out
be a well known problem, and the algorithm to constructq∗ is
given in various works [19]–[21]. The proof that the algorithm
constructs the most majorized feasible energy vector is given
in [21]. Since the optimal energy allocation vector isq∗, the
optimal τ ∗ is obtained by (17).
A brief description of the algorithm tailored to this work is
given next, while the details can be found in [19]–[21]. There
is no closed form expression for the solution of (17), hence
we resort to numerical methods to obtainτ ∗. Fig. 3 shows the
behavior ofτ∗k as a function of the allocated energyq∗k.

A. Optimal Energy Allocation

From Definition 1, we can see that the components of
the most majorized energy vector are "less spread out" than
any other feasible energy vector. Therefore, the algorithm
essentially tries to make the energy vector as equalized as
possible. This is done by spreading the energy to future
intervals. However, note that the energy arriving in later
intervals cannot be spread to earlier intervals due to the EH
constraints. The Optimal Energy Allocation (OEA) algorithm,
given in Algorithm 1, divides the EH intervals into|S| energy
bands whose indices form the setS =

{

B0, B1, . . . B|S|

}

,
where Bi < Bj , ∀i < j, B0 = 0, and B|S| = K.
The i-th energy band contains the EH intervals with indices
k ∈ [Bi−1 + 1 : Bi]. Moreover, the optimal allocated energy
values in each EH interval belonging to thei-th energy band
are equal, and denoted byq∗(i). The energy vectorq∗ obtained
by [q∗, Sr] = OEA(K, {eri /L}), has the following properties:

(P1) q∗k = q∗(i) =

∑Bi
l=Bi−1+1

erl

L(Bi−Bi−1)
, ∀k ∈ [Bi−1 + 1 : Bi].

(P2) The entriesq∗(i) are strictly monotonic, i.e.,q∗(1) < q∗(2) <
... < q∗(|S|).

V. EH TRANSMITTER AND RECEIVER

In this section, we consider the general case where both the
TX and the RX harvest energy. Note that if the TX is silent in
thek-th interval, i.e.,pk = 0, there is no incentive for the RX

Input : EH intervalsK; Harvested energy{ei}
Output : Energy allocationo⋆, Energy band indices

S =
{

B0, B1, . . . B|S|

}

// initialization
B0 := 0;

for i = 1 : K do
for k = K : −1 : (Bi−1 + 1) do

(i) o⋆l =

∑k
j=Bi−1+1

ej

k−Bi−1
, l ∈ {Bi−1 + 1, . . . , k}

if
∑l

i=1 o
⋆
i ≤

∑l
i=1 ei, l = 1, ...,K then

Bi = k;
Save{o⋆1, · · · , o

⋆
k}

break;
end

end
if Bi == K then

break;
end

end
Algorithm 1: Optimal Energy Allocation (OEA) algorithm

to send feedback in this interval. Therefore, without loss of
optimality we only consider EH profiles whereet1 > 0. Other-
wise, if there is an EH profile such thatetk = 0, k ∈ [1 : m−1],
then pk = 0, k ∈ [1 : m − 1] due to the constraints in (5c).
In these intervals the RX simply accumulates the harvested
energy, and without loss of optimality we can have a new
EH profile with ẽt1 = eti+m−1, ∀i ∈ [1 : K − m + 1], and
ẽr1 =

∑m
k=1 e

r
k and ẽri = eri+m−1, ∀i ∈ [2 : K − m + 1] for

further analysis.
The ergodic rate upper bound in (8) is not concave, but

concave in each variable given the other variables are fixed.
To obtain a simple algorithm and an upper bound on the
throughput, we follow a similar approach as in the previous
section, and use a concave upper bound on (8) as the objective
function for throughput optimization.

This bound is obtained by using a hypothetical system in
which the transmission power is1 watt higher than the actual
transmission power of the system, which ispk/tk. Plugging
this into the upper bound in (8), a new upper boundRub

k ,

Rub (pk, qk, τk) on the ergodic rate is obtained:

Rub
k = tk log2

(

1 +

(

1 +
pk
tk

)

fk
tk

)

, (22)

wheretk , 1− τk
T

andfk , M − (M − 1)
(

1 + qk
τkσ2

)

−τk
M−1

.
We now illustrate the tightness of the upper bound in (22) in
the low and high power regimes. For all feasibleτk, pk and
qk, we can see that0 < tk ≤ 1 and1 ≤ fk ≤ M . Consider

Rub
k −Ru

k = tk log2

(

t2k + tkfk + pkfk
tk + pkfk

)

− tk log2 (tk)

(23)
Note that (23) is decreasing inpk for fixed τk and qk. Since
τk, fk are bounded, for fixedτk and qk, in the low power



6

regime

lim
pk→0

Rub
k −Ru

k = tk log2

(

1 +
fk
tk

)

≤ log2 (1 +M) ,

(24)

and in the high power regime,

lim
pk→∞

Rub
k −Ru

k = −tk log2(tk) ≤ 0.5. (25)

From the above analysis, it can be seen that, (23) decreases as
the power is increased, and it is bounded by a constant in the
high power regime. By using (22), the modified throughput
maximization problem is formulated as

max
pk,qk,τk

U1 =
K
∑

k=1

Rub
k (26a)

s.t. L

l
∑

i=1

qi ≤

l
∑

i=1

eri , ∀l ∈ [1 : K], (26b)

LT
l
∑

i=1

pi ≤
l
∑

i=1

eti, ∀l ∈ [1 : K], (26c)

τk ∈ [0, T ), pk ≥ 0, qk ≥ 0, and∀k ∈ [1 : K].
(26d)

Since the objective function is monotonic inqk and pk, the
constraints in (26b) and (26c) must be satisfied with equality
for l = K, otherwise, we can always increaseqK , pK , and
hence the objective function, without violating any constraints.
The feasible set is represented as

J = {(p, q, τ ) |pk, qk, τk satisfy (26b), (26c) and (26d)∀k} ,

where p = [p1, . . . , pK ], q = [q1, . . . , qK ] and τ =
[τ1, . . . , τK ].

Proposition 3: The objective function in the optimization
problem (26) is concave.

Proof: See Appendix.
Since the objective function in (26) is concave and the con-
straints are linear, it has a unique maximizer [18]. Consider
the following equivalent form of (26), where the optimization
is performed in two steps.

max
p,q

Ũ1 (p, q) s.t. ∀ (p, q, τ ) ∈ J, (27)

whereŨ1 (p, q) is obtained by

Ũ1 (p, q) = max
τ

U1 (p, q, τ ) s.t. ∀ (p, q, τ ) ∈ J. (28)

SinceU1 is a concave function over the convex setJ, the func-
tion Ũ1 is concave with domaiñJ = {(p, q) | (p, q, τ ) ∈ J}
[18, 3.2.5].U1 =

∑K
k=1 R

ub
k is continuous, differentiable and

concave inτk ∈ [0, T ). Furthermore, for givenpk andqk, Rub
k

approacheslog2 (2 + pk) and 0, as τk approaches0 and T ,
respectively. Therefore, the unique maximizer of (28),τ∗k , ∀k
lies in [0, T ), and it is obtained as

∂U1

∂τk
|τ∗

k
=

∂Rub
k

∂τk
|τ∗

k
= 0, ∀k ∈ [1 : K] . (29)

As τ∗k is only a function ofqk andpk, (27) can be written as

max
pk,qk

Ũ1 =

K
∑

k=1

R̃ub
k s.t. ∀k, (pk, qk) ∈ J̃, (30)

whereR̃ub
k , R̃ub (pk, qk) = Rub (pk, qk, τ

∗
k (pk, qk)).

In order to get an insight on how the optimal solution of
(27) may look like, consider a simple scenario in which there
is only a sum power constraint at the TX and the RX, i.e., the
constraints in (26b), (26c) has to be satisfied for onlyl = K. In
this case, by Jensen’s inequality, the uniform power allocation
at the TX and the RX is optimal2. However, due to the EH
constraints, this may not be feasible. Using this intuition, we
can see that the optimal policy tries to equalize the powers as
much as possible, while satisfying the EH constraints. Next,
we consider the case in which the EH profiles at the TX and
the RX are similar, and show that the optimization problem is
considerably simplified.

A. Similar EH Profiles

The EH profiles are similar in the sense that the most
majorized feasible vectors obtained from the EH profiles of
the TX and RX,p∗ and q∗, have the same structure, i.e., if
p∗i = c1, ∀i ∈ [m : n], then q∗i = c2, ∀i ∈ [m : n] for some
constantsc1, c2 ≥ 0. We now give a formal definition.

Definition 4: By using the OEA algorithm, let[q∗, Sr] =
OEA(K, {eri /L}) and [p∗, St] = OEA(K, {eti/LT}). EH
profiles at the TX and the RX are said to besimilar if Sr = St.

From Section II, we can see that the definition of majoriza-
tion for the vector case does not directly extend to the matrix
case. If OEA algorithm is used at the TX and RX separately,
we get the most individually majorized power vectors, which
in general may not be the optimal solution of (27). However,
we now show that if the EH profiles are similar, the above
mentioned approach is indeed optimal.

Proposition 4:If the EH profiles at the TX and the RX are
similar then(q∗,p∗, τ ∗) is the global optimum of (26), where
q∗ � q,p∗ � p, ∀ (q,p, τ ) ∈ J, andτ∗k is the solution of

∂Rub
k

∂τk
|(p∗

k
,q∗

k
,τ∗

k )
= 0, ∀k ∈ [1 : K] . (31)

Proof: See Appendix.

B. Different EH Profiles

Unfortunately, we could not find a simple algorithm to solve
(26) in a general setting where the EH profiles are not similar.
In (30), if one variable is fixed, optimizing over the other vari-
able has adirectional or staircase water-fillinginterpretation
[4], [19], however, the difficulty lies in the fact that thereis
no closed form expression for̃Rub

k . Nonetheless, based on the
convexity of the objective function, some properties of the
optimal solution are given below.

Lemma 2:Under the optimal policy, the transmission power
pk, and the energy used to send the feedbackqk are non-
decreasing ink, ∀k ∈ [1 : K].

Lemma 3:Under the optimal policy, at the time instants at
which Rub changes, the energy buffer of either the TX or the
RX is emptied.

The proofs of the above lemmas are given in Appendix.

2In this section, with slight abuse of terminology we use the terms RX
power and RX energy interchangeably.
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Figure 4. Model for a solar energy harvesting profile.

VI. N UMERICAL RESULTS

We start by considering the case in which the RX harvests
energy, while the TX has a constant power supply. We assume
that the RX is equipped with a solar EH device. Following
[22], solar irradiance data is taken from the database reported
in [23]. Each EH interval is of duration∆ = 1 hour,T = 200
ms, resulting inL = 18000 frames. The harvested power from
the irradiance data can be calculated as,pharv = I[Watt/m2]×
Area[m2] × ρ, whereρ is the efficiency of the harvester. A
hypothetical solar panel of variable area is assumed. The area
of the panel is adjusted such that we have the EH profile shown
in Fig. 4 at the RX. In Fig. 4, the harvested power to noise
ratio (HPN) in each EH intervale

r
k

∆σ2 is shown.
Using this EH profile, throughput of different feedback

policies is shown in Fig. 5. In Fig. 5, OEA represents the
proposed policy in which the energy vector is obtained by
using the OEA algorithm, and then the optimal time span
of feedbackτ∗k is obtained by solving (20). In the greedy
scheme, the consumed energy is equal to the harvested energy
in that interval, i.e.,qk = erk/L, and then optimization is
performed only overτk, given qk. The performance of the
above policies when the feedback bits are rounded to the
largest previous integer is also shown. We can see that the
proposed approach outperforms the greedy policy by1.6 dB
at a rate of4 bits/s/Hz. Also the rate loss due to bit rounding is
negligible. In Fig. 6, feedback bit allocation is shown for the
above mentioned policies for a downlink SNR of10 dB. From
Fig. 6, we can see that with the proposed strategy, feedback
bit allocation is equalized as much as possible.

We now consider the case in which both the TX and the
RX harvest energy, with similar EH profiles. The same EH
profile in Fig. 4 is separately used at both the RX and the TX,
hence the EH profiles are similar. In Fig. 7, the throughput
of different schemes is shown at various mean HPN values at
the TX. The mean HPN at the TX is varied by increasing the
harvester area at the TX, i.e., the EH profile is multiplied by
a positive number (area), while keeping the same shape and
efficiency. In Fig. 7, OEA represents the proposed policy in
which the energy vector at the TX and the RX is obtained by
using the OEA algorithm, and then the optimal time span of
feedbackτ∗k is obtained by solving (29). In the greedy scheme,
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Figure 5. Ergodic rate with only an EH RX, andM = 4.
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Figure 6. Feedback load at downlink SNR of10 dB, M = 4.

the allocated energy is equal to the harvested energy in that
interval, i.e., at the TXpk = etk/LT , at the RXqk = erk/L,
and then optimization is performed only overτk, given pk
andqk. The difference in throughput between the greedy and
OEA is small when the average HPN is low, and it increases
with the HPN. In contrast to the OEA scheme, using the
greedy approach with the solar EH profile results in some EH
intervals being allocated zero energy, and therefore does not
scale by increasing the harvester area. This particularly hurts
the greedy policy’s throughput in the high HPN regime as the
multiplexing gain (pre-log factor) is reduced.

Finally, we consider a case with non-similar EH profiles,
where the EH profiles are generated independently at the
TX and the RX, and they are i.i.d. with exponential distri-
bution. EH profiles are verified not to be similar according
to Definition 4. Similarly to Fig. 7, in Fig. 8, the mean
HPN at the TX is varied by multiplying the EH profile by
a constant, while keeping the same shape. Since we could
not find a simple algorithm in this case, CVX solver is used
to solve the optimization problem [18], and is denoted as
CVX in Fig. 8. As we can see, the heuristic of using the
OEA approach performs quite well even in the non-similar
EH profile scenario. The energy allocation at the TX and the



8

−5 0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

Average HPN per data frame at the TX [dB]

A
ve

ra
ge

 r
at

e 
[b

its
/s

ec
/H

z]

 

 

upper bound
OEA
greedy

Figure 7. Ergodic rate for similar EH profiles,M = 4.
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RX are shown in Fig. 9 for the above mentioned policies at
an average per frame HPN of0.5 dB at the TX. Different
from Fig. 7, in Fig. 8 the rate scaling with average HPNs is
same for both the greedy and the OEA policies. For the greedy
policy, the allocated energy in an EH interval scales with the
increasing mean HPN, in contrast to the solar EH profile, for
which the allocated energy is zero in some intervals.

VII. C ONCLUSION

In contrast to the existing literature on the design of energy
harvesting communication systems, we have assumed in this
paper that the perfect channel state information is available
only at the receiver side; and we have studied the problem
of CSI feedback design in a p2p MISO channel under EH
constraints at both the TX and the RX. Since the exact expres-
sions of throughput are complicated, concave upper bounds
have been used in the optimization problems. We have first
considered the case in which only the RX harvests energy, and
optimized the feedback policy under EH constraints. Later,the
general case, in which both the TX and the RX harvest energy,
is analyzed. We have shown that, if EH profiles are similar,
the optimization problem can be considerably simplified. We
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Figure 9. Energy allocation at the TX and the RX,M = 4.

remark that the result obtained in Proposition 4 is general,and,
for example, it can be used in a network setting in which a
concave utility is to be maximized in the presence of EH nodes
with similar harvesting profiles and infinite size energy buffers.
Numerical results show that the proposed policies not only
outperform the greedy policy, but also achieve performances
very close to the theoretical upper bound. Our work sheds
light on the design of feedback-enabled multi-antenna systems
when the nodes depend on EH devices for their energy.

APPENDIX

A. Proof of Lemma 1

Let X1 = [x1 y1 t1]
T
, X2 = [x2 y2 t2]

T, we have

h (λX1 + (1− λ)X2)

= Θg

(

λy1 + (1− λ) y2
Θ

,
f
(

x, t
)

Θ

)

(a)

≥ Θg

(

λy1 + (1− λ) y2
Θ

,
λf1 + (1− λ) f2

Θ

)

= Θg

(

Θ1y1
Θα1

+
Θ2y2
Θα2

,
Θ1f1
Θα1

+
Θ2f2
Θα2

)

(b)

≥ Θ1g

(

y1
α1

,
f1
α1

)

+Θ2g

(

y2
α2

,
f2
α2

)

= λh (X1) + (1− λ)h (X2) ,

(32)

where x , λx1 + (1− λ)x2, t , λt1 + (1− λ) t2,
f1 , f (x1, t1), f2 , f (x2, t2), Θ1 , λ

(

1− t1
T

)

and
Θ2 , (1− λ)

(

1− t2
T

)

,Θ = Θ1 + Θ2, α1 ,
(

1− t1
T

)

,
α2 ,

(

1− t2
T

)

. Here
(a) follows from the fact thatf (x, t) is concave, andg (y, z)

is monotonically increasing in each argument,
(b) follows from the fact thatΘ1

Θ + Θ2

Θ = 1, andg (y, z) is
concave.

B. Proof of Proposition 1

Reproducing the ergodic rate bound in (8) withpk = P, ∀k,
we have

Ru (qk, τk) = tk log2

(

1 +
Pfk
tk

)

, (33)
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where tk , 1− τk
T
, fk , (M − (M − 1)(1 + qk

τkσ2 )
−τk
M−1 ).

Sincebk in (3) is concave inqk andτk, it can be easily seen

that 2−
bk

M−1 =
(

1 + qk
τkσ2

)

−τk
M−1

is convex, and hence,fk is

concave. Using Lemma 1 withg (y, z) = log2 (1 + z) andfk,
we can see thatRu

k is concave. Since the objective function
in (15) is the summation ofRu

k ’s, it is also concave.

C. Proof of Proposition 3

First, we show thatg (y, z) = log2 (1 + (1 + y) z) , (y, z) ∈
R

2
+ is concave fory ≥ 0, z ≥ 1. The Hessian ofg is given by

J =
1

β

(

−z2 1

1 − (1 + y)
2

)

, (34)

where β = loge 2 (1 + (1 + y) z)
2
> 0. ConsideruT

Ju =

− 1
β

(

a2z2 + b2 (1 + y)
2
− 2ab

)

, where u = [a b]
T

∈

R
2. It can be easily seen thatuT

Ju ≤ 0 for ab ≤
0. For ab > 0, since z (1 + y) ≥ 1, uT

Ju =

− 1
β

[

(az − b (1 + y))
2
+ 2ab (z (1 + y)− 1)

]

≤ 0. As Hes-

sian is negative semidefinite,g (y, z) is concave. Reproducing
the ergodic rate bound in (22), we have

Rub
k = tk log2

(

1 +

(

1 +
pk
tk

)

fk
tk

)

, (35)

wheretk andfk are as defined before.
By following the similar steps in Proposition 1,fk can be

shown to be concave. Using Lemma 1 withg (y, z) and fk,
we can see thatRub

k is concave. Since the objective function
in (26) is the summation ofRub

k ’s, it is also concave.

D. Proof of Proposition 4

First, (p∗, q∗) is shown to be the solution of (30) and then
τ ∗ is obtained by (31). Before solving (30), we prove that

(p∗, q∗) =arg max
g,pk,qk

K
∑

k=1

g (pk, qk)

s.t. ∀k, (pk, qk) ∈ J̃, g ∈ C,

(36)

whereC is the set of all continuous concave functions. As (30)
is a special case of (36),(p∗, q∗) is also the solution of (30).

Before starting, we note that the notations and properties
of the OEA algorithm discussed in Section IV-A are used
throughout the proof. By contradiction, let us assume that there
exists a[p̂T q̂T]

T
6= [p∗T q∗T]

T
and (p̂, q̂) be the solution

of (36). Then, by Theorem 3 we have,
[

p̂T q̂T
]T

�
[

pT qT
]T

, ∀ (p, q) ∈ J̃. (37)

Since(p∗, q∗) ∈ J̃, by (37) and Definition 3,

[

p̂T q̂T
]T

=
[

p∗T q∗T
]T

D. (38)

By the feasibility constraint in (26b),

Bi
∑

j=Bi−1+1

q̂j ≤ Vi =

Bi
∑

j=Bi−1+1

erj/L, (39)

whereBi’s are the energy band indices as explained in Section
IV-A.

Applying (39) for i = 1, and remembering thatB0 = 0, we
get

B1
∑

j=1

q̂j =

B1
∑

j=1

K
∑

i=1

q∗i di,j ≤ V1. (40)

By (P1) and (P2) in Section IV-A,q∗i = q∗(1) + Li, where

Li = 0 ∀i ∈ [1 : B1] ,

Li > 0 ∀i ∈ [B1 + 1 : K] .
(41)

From (40) and (41)

B1
∑

j=1

K
∑

i=1

q∗(1)di,j +

B1
∑

j=1

K
∑

i=B1+1

Lidi,j ≤ V1. (42)

Using the fact thatD is doubly stochastic and by (P1),
B1q

∗
(1) = V1, and we have

B1
∑

j=1

K
∑

i=B1+1

Lidi,j ≤ 0. (43)

From (41) and (43), we get

di,j = 0, ∀i ∈ [B1 + 1 : K] , ∀j ∈ [1 : B1] . (44)

As D is doubly stochastic, using (P1) and (44),

q̂j =

B1
∑

i=1

q∗(1)

B1
∑

i=1

di,j = q∗(1) = q∗j , ∀j ∈ [1 : B1] . (45)

SinceD is doubly stochastic, using (44), we get

B1
∑

i=1

K
∑

j=1

di,j = B1,

B1
∑

i=1

di,j = 1, ∀j ∈ [1 : B1] . (46)

We can rewrite (46) as

B1
∑

i=1

K
∑

j=1

di,j =

B1
∑

i=1

B1
∑

j=1

di,j +

B1
∑

i=1

K
∑

j=B1+1

di,j , (47)

from which it follows that
B1
∑

i=1

K
∑

j=B1+1

di,j = 0, (48)

and hence,

di,j = 0, ∀i ∈ [1 : B1] , ∀j ∈ [B1 + 1 : K] . (49)

Then applying (39) fori = 2,

B2
∑

j=B1+1

q̂j =

B2
∑

j=B1+1

K
∑

i=1

q∗i di,j ≤ V2. (50)

By (P1) and (P2), we haveq∗i = q∗(2) + Li, where

Li < 0 ∀i ∈ [1 : B1] ,

Li = 0 ∀i ∈ [B1 + 1 : B2] ,

Li > 0 ∀i ∈ [B2 + 1 : K] .

(51)
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From (50) and (51),

B2
∑

j=B1+1

K
∑

i=1

Lidi,j +

B2
∑

j=B1+1

K
∑

i=1

q∗(2)di,j ≤ V2. (52)

Since D is doubly stochastic, by (P1), we obtain
(B2 −B1) q

∗
(2) = V2, and using (49) and (51) in (52), we

get
B2
∑

j=B1+1

K
∑

i=B2+1

Lidi,j ≤ 0, Li > 0. (53)

From (51) and (53) it can be concluded that

di,j = 0, ∀i ∈ [B2 + 1 : K] , ∀j ∈ [B1 + 1 : B2] . (54)

As D is doubly stochastic, using (P1) together with (49) and
(54), we have

q̂j = q∗(2)

B2
∑

i=B1+1

di,j = q∗(2) = q∗j , ∀j ∈ [B1 + 1 : B2] . (55)

Again, sinceD is doubly stochastic, using (49) and (54),

B2
∑

i=B1+1

K
∑

j=1

di,j = B2 −B1,

B2
∑

i=B1+1

di,j = 1, ∀j ∈ [B1 + 1 : B2] .

(56)

We can rewrite (56) as

B2
∑

i=B1+1

K
∑

j=1

di,j =

B2
∑

i=B1+1

B2
∑

j=B1+1

di,j +

B2
∑

i=B1+1

K
∑

j=B2+1

di,j .

(57)
From (57) we can see that

B2
∑

i=B1+1

K
∑

j=B2+1

di,j = 0, (58)

and hence,

di,j = 0, ∀i ∈ [B1 + 1 : B2] and∀j ∈ [B2 + 1 : K] . (59)

Continuing this approach fori = 3, ..., (|Sr| − 1), we get
q̂ = q∗. Since the EH profiles are similar, i.e.,Sr = St,
replacing q̂ by p̂ and erj by etj/T in the above proof, we
reach the similar conclusion for̂p, i.e., p̂ = p∗. Therefore,
[p̂T q̂T]

T
= [p∗T q∗T]

T
.

E. Proof of Lemma 2

Assume that at least one of thepk, qk is not monotonically
increasing ink. Without loss of generality (w.l.o.s) we consider
the cases in whichpk > pk+1, qk ≥ qk+1 andpk < pk+1, qk >
qk+1. In the case ofpk > pk+1, qk ≥ qk+1, we can construct
a new feasible policy,

p̃k = p̃k+1 =
pk + pk+1

2
,

q̃k = q̃k+1 =
qk + qk+1

2
.

(60)

Since the objective function is concave, by Jensen’s inequality,
the new policy strictly increases the objective. Finally consid-
ering the case wherepk < pk+1, qk > qk+1, we can construct
another feasible policy,

p̃k = pk, p̃k+1 = pk+1,

q̃k = qk+1, q̃k+1 = qk.
(61)

The functionRub with variablesp, q, τ can be written as,

Rub (p, q, τ) = t log2

(

1 +

(

1

t
+

p

t2

)

f

)

, (62)

where f , M − (M − 1)
(

1 + q
τσ2

)
−τ

M−1 , t , 1 − τ
T

and
0 ≤ τ < T . The second order partial derivative ofRub (p, q, τ)
is given by,

∂2Rub

∂p∂q
=

∂f
∂q

t (1 + f/t+ pf/t2)
2 . (63)

Sincef is monotonic inq, (63) is positive. As∂
2Rub

∂p∂q
> 0, by

the definition of derivative,

Rub (p, q, τ) +Rub (p+ δ, q + α, τ) >

Rub (p+ δ, q, τ) +Rub (p, q + α, τ) , δ, α > 0.
(64)

Since (64) holds for all0 ≤ τ < T , we have

R̃ub (p, q) + R̃ub (q + δ, q + α) >

R̃ub (p+ δ, q) + R̃ub (p, q + α) ,
(65)

whereR̃ub is obtained by,

R̃ub (p, q) = max
τ

Rub (p, q, τ) . (66)

Finally, using (61) and (65) we can see that the newly
constructed policy strictly increases the objective.

F. Proof of Lemma 3

Let us assume that the transmission rates in thek-th
and thek + 1-th intervals are different, i.e.,̃Rub (pk, qk) 6=
R̃ub (pk+1, qk+1). Before thek+1-th interval, the energy in the
buffers of TX and the RX are∆r ,

∑k
i=1 e

r
i −L

∑k
i=1 qi and

∆t ,
∑k

i=1 e
t
i−LT

∑k
i=1 pi, respectively. W.l.o.s, we assume

that∆r ≤ ∆t. We can construct another feasible policy

p̃k = pk + δ, p̃k+1 = pk+1 − δ,

q̃k = qk + δ, q̃k+1 = qk+1 − δ,
(67)

where δ is chosen such thatδ < ∆r and q̃k < q̃k+1. Now,
(67) can be written as

p̃k = αpk + (1− α) pk+1, p̃k+1 = (1− α) pk + αpk+1,

q̃k = αqk + (1− α) qk+1, q̃k+1 = (1− α) qk + αqk+1,
(68)

whereα = 1− δ/ (qk+1 − qk). Using Jensen’s inequality

k+1
∑

j=k

R̃ub (p̃j , q̃j) >

k+1
∑

j=k

R̃ub (pj , qj) , (69)

which concludes the proof.
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