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ABSTRACT
Research interest in cotraining is increasing which combines
information from usually two classifiers to iteratively in-
crease training resources and strengthen the classifiers. We
try to select classifiers for cotraining when more than two
representations of the data are available. The classifier based
on the selected representation or data descriptor is expected
to provide the most complementary information as new la-
bels for the target classifier. These labels are critical for the
next learning iteration. We present two criteria to select
the complementary classifier where classification results on
a validation set are used to calculate statistics for all the
available classifiers. These statistics are used not only to
pick the best classifier but also ascertain the number of new
labels to be added for the target classifier. We demonstrate
the effectiveness of classifier selection for semantic indexing
task on the TRECIVD 2013 dataset and compare it to the
self-training.
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1. INTRODUCTION
Semi-supervised classification benefits from large number

of unlabeled data where the tedious task of human interven-
tion to annotate the data is minimized. These methods start
with only a few labeled examples where the unlabeled data
can be annotated iteratively to augment training resources.
Learning from partially labeled data is gaining importance
as unlabeled data is cheaply available and has proven to
decrease classification error significantly [1, 6, 2, 13].

Cotraining is a special case of using unlabeled examples
which is useful when different feature representations of the
data are available [1]. As the name suggests two learners
trained on each data representation are used in unison to
label training data for each other. This is done iteratively
until training error is sufficiently reduced or all the data has
been labeled. For final prediction both the classifiers are
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pooled together. There are however certain conditions that
guarantee the successful working of the cotraining algorithm.
Specifically it works when the different representations of
data are different views and satisfy the cotraining properties.
They should be conditionally independent given the class
and each of them should be sufficient to learn, i.e. a learner
on each view should predict the true class labels for the most
part [1].

This comes naturally for some datasets where the fea-
tures used are in fact complementary to each other and in
combination reduce the classification error, however for oth-
ers these conditions might be hard to satisfy. The text in
the web pages and links to those pages are good examples
of complementary features [1]. Another good example is
multi-modal features where each feature represents a cer-
tain modality in learning form multimedia data. We benefit
from the situation where more than two views of the data
are available and we have the liberty of choosing the best
complementary view for each classifier.

The goal is to add useful information to the annotation
set of a classifier based on the cotraining principle to aug-
ment the training resources. This is achieved by adding
positive examples that are expected (or ensure to some de-
gree) to improve the final classification result. We propose
two methods to select the most complementary view among
a certain available possibilities based on some statistics cal-
culated on the validation set. We take inspiration from [4]
to add the most relevant examples that were the most con-
fusing for the classifier. Instead of negatives we focus on
adding only positive examples since we already have a large
number of negative examples available. Among other possi-
bilities a relevant positive example for a classifier is the one
which was previously missclassified by the same classifier.
We adapt this setting in the cotraining framework where
the most relevant positive examples are added to the anno-
tation set of the target classifier based on the predictions
from another classifier. This will tame the target classifier
especially for the categories with few positive examples and
huge number of unlabeled examples available. The classifier
which identifies the largest number of missclassifications of
the target learner is considered the most complementary and
this information is the basis for our two criteria presented
later. One of the criteria proposed also selects automatically
the number of new annotations to be added.

We have performed experimentation on the TRECVID
2013 [7] dataset for the video Semantic INdexing task and
demonstrate the effectiveness of selecting the complemen-
tary classifier in comparison to self-training where the same



classifier is used to add new labels. A brief review of some
of the recent works on cotraining and feature selection is
detailed in the next subsection. The section 3 describes the
criteria for selecting the best feature and the resulting co-
training method. Results and experimentation are presented
in the section 4 which are followed by conclusions and some
future research directions in section 5.

2. COTRAINING AND FEATURE SELEC-
TION

Yan and Naphade [12] achieve improvement in video con-
cept detection performance by using manual human effort to
select from the most confident predictions for each cotrain-
ing view. In another work [13] they build classifiers sepa-
rately on the newly labeled data and include them in the
final prediction only if it performs well on the validation set.
Du et al. [2] identify feature splits for cotraining that sat-
isfy the cotraining independence and sufficiency properties
for tire wear classification from images. They identify pairs
of features by clustering based on mutual information and
use classifier confidence to select unlabeled samples for the
other. We follow similar principle but with different selec-
tion criteria, and our features are not bounded in pairs. Li et
al. [3] perform feature selection for cotraining (FESCOT)
by discarding the most irrelevant ones using classification
accuracy on validation dataset. Features are iteratively dis-
regarded whereas we select one complementary feature at
each iteration.

3. PROPOSED APPROACH
Contrary to cotraining where we start with two views of

the data distribution assuming that we have very little data
to start the training with, here we have a good number of
positive examples to start with. The number of negative
examples is manifold of the number of positives. All the
descriptors we are using are strong visual classifiers built on
powerful visual descriptions. We try to add more annota-
tions to the positive examples of a descriptor using infor-
mation from another descriptor. This other descriptor is
selected out of the available ones which is expected to bring
the most information to the target descriptor. The infor-
mation brought is new positive annotations which are then
used to re-train the classifier using the target descriptor.

3.1 Selective Multi Cotraining
A certain number of descriptors are available to start with

which can very well be multimodal representation of the
data. Each descriptor is represented by a classifier which
classifies or labels a video frame. Essentially this is done
by assigning a score value to the frame. Our development
data is divided into training and validation part. The final
predictions are done on the test part which is independent
of the development set.

For the target descriptor we try to find the descriptor
that brings the most valuable information in terms of anno-
tations. This is judged by the classification performance of
the descriptors on the validation set. In the next iteration of
the cotraining the training and validation sets are re-labeled
for each descriptor and thus we start over the selection pro-
cess for every descriptor with the newly obtained data. We
call this process as Selective Multi Cotraining. It is impor-
tant to mention here that in this selective multi cotraining
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Figure 1: Selecting source descriptor for Selective
Multi Cotraining methods.

features do not work in pairs, rather for each feature the
most complementary is selected at each iteration.

3.2 Selection Methods
We present two methods to select the source descriptor

which is used to add annotations to the target descriptor.
We add k new positive annotations to the target descrip-
tor’s training set using the selected descriptor. For the first
method k is fixed while for the other one k is found auto-
matically per descriptor. The two methods are detailed in
the next two subsections. In what follows we have used the
terms descriptor and classifier interchangeably where the in-
tention is always a learner using (or for) the descriptor.

3.2.1 Positive Disagreement
Let’s suppose we want to add k annotations to the exam-

ples for descriptor D1 and we have an initial ranking of the
validation set for all the descriptors. The upper part of fig-
ure 1 contains validation ranked lists for all the descriptors,
VD. The numbers represent the ids of the shots and the
colors indicate the actual labels where green, red and black
mean positive, negative and unlabeled respectively. Each
shot Si in the list has a rank rVD (Si)which is an integer
value. We first define a function f returning 1 when the
shot Si is annotated positive.

f(Si) =

{
1 sign(Si) = +
0 otherwise

(1)

To select the most complementary descriptor we look at the
first k shots of the target descriptor and the first k shots of
the other descriptors in a pairwise manner. Since we have
the labels of the shots on the validation set we can calculate



the disagreement between a pair for a fixed value of k, the
source descriptor Ds and the target Dt as:

DISs =
∑

i:r
VDs (Si)<k ∧ r

VDt (Si)>k

f(Si) (2)

The disagreement counts for the source descriptor Ds how
many labels are positive that did not appear in the first k
shots for the target descriptor Dt. This is essentially the
information that is missed by the target descriptor for the
top k shots. We select the Ds with maximum DISs as it is
understandable that the predictions done by this descriptor
are the most complementary to Dt. For figure 1 if k is fixed
as 4, then DIS2 = 0, DIS3 = 1 and DIS4 = 1.

This descriptor selection is done separately for each con-
cept. That is to say that for each concept for Dt the best
complementary descriptor is chosen among the pool of avail-
able descriptors. The value of k here is fixed and we set it
to the percentage of initial positive examples for every con-
cept. We try 3 values of this percentage as {10%, 20%, 30%}.
Once Ds is found we use it to re-label the training set and
then add k new positive labels to the training set for Dt as
shown in the bottom part of figure 1.

3.2.2 Precision based Rank
The positive disagreement approach suffers from two set-

backs. First is how to select the optimal value of k. For
concepts with low initial positive examples 10% new labels
are quite low while on the other hand for concepts with
already abundant pool of positive examples 10% new exam-
ples may add noise. This noise will increase with k. The
other predicament which is related to first one is how sure
are we that the new labels added really bring valuable infor-
mation. Furthermore and as more iterations are performed
how useful the newly added labels are before they start to
add wrong annotations and distort the data.

To cater these issues we need to find a source Ds for Dt

that is expected to add up to a certain percentage of correct
positive labels. We use the precision on the classification re-
sults of the validation set for each Ds to build this criterion.
Figure 1 is again used to explain this method. First for ev-
ery ranked list we find k for a fixed precision value pr. That
is to say using the true labels of the validation set we scroll
down the ranked list calculating precision at every step and
stop when the precision is lower than pr. The precision for
the list VD for a value of k is

P k
VD

=

∑k
i=1 f(Si)

k
(3)

and to find k for VD we maximize equation 3 for k as:

ks = argmax
k

P k
VDs

s.t. P k
VDs

>= pr
(4)

So for the example in the figure 1 we find the values of ks for
precision of 50. k3 = 4 and for the other three descriptors
the value of k is 2. Note that k1 is not an important factor
here as the k for target descriptor is not used in the criterion
presented just after.

Once k is determined for each source descriptor, for Dt

we simply select the Ds that maximizes the average rank
of the first ks shots on the validation set VDt . Maximum
rank means that those shots that are ranked as positive by
the source classifier are at the bottom of the list VDt . It

means that this source classifier identifies the most serious
missclassifications for the target on the validation set. We
define this average rank for the source descriptor Ds as:

PRRs =

∑ks
i=1 r

VDt (Si)

ks
(5)

where each source has a different PRRs for a unique ks and
the Ds which maximizes equation 5 is selected for Dt. So to
summarize we use the positive labels to determine the value
of ks but after we only used the average rank of shots ranked
by Dt in the first ks shots of VDs .

After determining Ds we use it to re-label the training set
and add ks new examples to the training set of Dt. Using
ks which had a precision greater than pr, it is expected that
up to pr% correct labels are added to the training label set
for Dt. As shown in the figure 1 D3 is selected with k3 = 4
and then 4 new labels are added to the training set of D1

with 3 unlabeled examples being labeled as positive and 1
negative’s label flipped. Again as the positive disagreement
method this selection is done separately for each concept.
For further iterations of the process the modified training
and validation lists are used from the previous iteration.

4. RESULTS AND EXPERIMENTS

4.1 Experimental Setup
We have carried out experiments on the TRECVID 2013

[7] dataset where the development set consists of about 800
hours of internet videos of lengths varying divided into train-
ing and validation parts. The test part contains 600 hours
of slightly longer videos. Training is done on a list of 60
concepts out of which NIST has evaluated 38 for the 2013
Semantic INdexing (SIN) task.

We have mainly extracted 2 kinds of descriptors from the
video keyframes the SIFT [5] and the color SIFT [10] which
are all densely extracted. These extracted descriptors are
then used to build visual dictionaries using k-means cluster-
ing. Using the above extractions we build 5 types of descrip-
tors of varying lengths (dictionary sizes). For dense SIFT,
dictionaries of 4000 and 10,000 are built and we get two de-
scriptors: dsift4K and dsift10K. For color dense SIFT we
have cdsift1K, cdsift4K and cdsift10K from dictionaries of
1000, 4000 and 10,000 visual words.

All the classifiers used are 1 vs. all SVM classifiers using
homogeneous kernel maps [11] built on the input features.
We have used Pegasos training [8] for speedy optimizations.
We calculate the Average Precision (AP) for each concept
and present the percentage Mean AP (MAP).

4.2 Results
We have conducted a certain number of experiments us-

ing the two proposed descriptor selection methods. For these
experiments we have used all the labeled data provided by
NIST to train the initial classifiers. All the new labels are
added either to the unlabeled examples or in some cases
labels of negative examples are flipped. The results are de-
tailed in the next few subsections.

4.2.1 Cotraining vs. 1 pass and selftraining
The two selection methods for multi-cotraining are com-

pared with the single pass learning (Baseline) and also with
selftraining or bootstrapping. Two kinds of selftrainings
were done; adding fixed percentage of positive examples



Descriptor Baseline Selftraining Positive Disagreement MaxAvg Rank
pr 1 2 3 k 1 2 3 pr 1 2 3

cdsift1K 8.11
50 7.88 7.84 7.01 10 8.04 8.05 7.33 50 8.23 8.21 7.98
60 7.58 7.46 6.94 20 8.31 7.60 6.92 60 8.11 8.19 7.75
70 8.41 7.85 7.74 30 7.67 6.54 5.60 70 7.85 8.65 8.32

cdsift4K 8.12
50 8.19 8.15 7.56 10 8.60 8.72 8.34 50 8.44 8.51 8.09
60 8.45 8.13 8.14 20 8.58 8.58 7.75 60 8.33 8.33 8.17
70 8.42 8.56 8.21 30 8.54 7.79 6.75 70 8.58 8.61 8.40

cdsift10K 8.18
50 8.05 7.88 7.25 10 8.54 8.49 9.19 50 8.81 8.80 8.53
60 8.15 7.92 7.50 20 8.37 8.37 8.28 60 8.59 9.02 8.69
70 8.28 7.88 7.69 30 8.50 8.10 7.13 70 8.60 8.68 8.99

dsift4K 7.52
50 7.63 7.29 7.09 10 7.68 7.91 8.16 50 7.68 7.39 7.49
60 7.77 7.72 7.60 20 7.80 7.90 7.24 60 7.82 7.75 7.42
70 7.87 7.76 7.50 30 7.79 7.59 6.32 70 7.59 7.77 7.40

dsift10K 7.84
50 8.15 7.98 7.44 10 8.31 8.27 8.40 50 8.15 8.28 8.03
60 8.11 7.67 7.68 20 8.19 8.32 8.07 60 8.11 8.02 7.72
70 7.94 7.86 7.98 30 7.99 7.71 6.67 70 8.02 7.96 7.75

Table 1: Mean Average Precision for various methods for 38 evaluated concepts

and adding positive annotations using the precision method,
where we first calculate kt for expected precision value us-
ing equation 3 and then add kt new positive labels to the
training set of Dt. Table 1 shows results for second kind of
selftraining as it perform better among the two and com-
pares it to the two proposed selective cotraining methods.

We show results for 3 iterations of relabeling and retrain-
ing in table 1 for all the semi-supervised methods. Results
that are significantly better with randomization testing [9]
are highlighted in bold. Selftraining and positive disagree-
ment (DIS) methods are mostly outperformed by the Max-
imum rank on precision based selection (PRR). This is true
for further iterations as for DIS noise is added with a fixed
value of k, and selftraining lacks complementarity of using
other descriptors. When k is 10% the performance of DIS is
good as few noisy labels are added and it sometimes shows
better results than the PRR. For the PRR criteria as the
precision increases the value of ks decreases and in many
cases no new labels are added for certain categories for ex-
ample for pr = 70%. Though we see an improvement for
most of the descriptors for DIS and PRR the color SIFT
descriptors seem to absorb more noise than others.

4.2.2 Cotraining vs. Linear Fusion
To check the complementarity of descriptors we fused ev-

ery possible pair of the 5 descriptors and compare the per-
formance with the fusion after first iteration of each semi-
supervised learning method. We have used weighted linear
fusion to merge the classification scores with the weights op-
timized on the validation set. Results are compared in the
figure 2 where PRR dominates and the best result of the
fusion of baseline descriptors (10% MAP) is outperformed
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Figure 2: Linear fusion of every pair of descriptor
for different methods

by a MAP of 10.43% for PRR.

5. CONCLUSIONS
We have demonstrated the effectiveness of selecting the

appropriate feature to relabel a target learner for cotraining
when different options are available. For each descriptor the
best complementary descriptor is selected and the number
of examples to label is also automatically selected which are
expected to be correct up to a certain percentage. For fu-
ture work it is required to find a successful weighing strategy
to find relevance of the newly added labels. The relevance
scores for a category can be attached to each example and
will highlight its importance in training [4]. Furthermore it
is important to (i) refine the k new positive examples added
by an automatic or manual [12] selection, and (ii) identify
the number of cotraining iterations for each concept. Even-
tually the selective cotraining can be used to find negatives
by reversing the selection criteria.
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