
Self-Adaptive Battery and Context Aware Mobile

Application Development

Soumya Kanti Datta, Christian Bonnet, Navid Nikaein

Mobile Communication Department

EURECOM

Biot, France

Emails: {dattas, bonnet, nikaein}@eurecom.fr

Abstract— Overall high power consumption in the mobile

applications forces the mobile users to recharge frequently. Most

of the Android applications do not implement any self-adaptive

strategies that react to the battery level, status and context. Thus

the applications continue to consume power even when battery is

critically low. Intelligent control of hardware and software

optimization based on the battery level is the key to power saving.

This paper introduces a self-adaptive application development

framework which proposes three profiles with various self-

adaptive features for mobile applications. The framework

employs an analyzer engine which decides the activation of

appropriate profile based on battery and context information.

The self-adaption takes place in four levels – hardware &

software features adaption, user features adaption and additional

optimization. When the battery is critically low, priority is given

to maximize the battery life until next charging opportunity.

Such implementation is highly desirable for mobile applications

with high dependency on display hardware (e.g. games) and/or

on network operations (e.g. YouTube, Dropbox). Prototype

Android applications are developed and results show up to 40%

reduction in application power consumption. Power Tutor has

been used to get the power consumption results.

Keywords—Android; Battery level and status; Context; Power

consumption; Self-adaptive application.

I. INTRODUCTION

Over the recent past, we have witnessed exponential growth

in smart device capabilities. These devices fashion high

processing power, storage, rich sensors, superior screen

resolution and communication over Wi-Fi, 3G and LTE.

Mobile applications have also evolved at the same pace with

applications supporting complex image and audio processing,

augmented reality, e-health and more. Mobile applications

being the key elements in the ecosystem, pushes the demand of

battery life at exponential order. Although the newer generation

of devices includes batteries with increased capacity, the

overall higher power consumption forces the user to recharge

frequently. Limited battery life makes the functionalities of 900

million active Android devices totally dependent on the

availability of battery resource.

During Google I/O 2013 event, the company stated that

Google Play registers 2.5 billion of Android application

download every month. But current literature suggests that,

power consumption in the popular applications is very high. An

investigation of internal power consumption of Android

application is explained in [1]. It is found that, popular free

applications consume high amount of power in displaying third

party advertisements, location based user tracking and clean

termination of long lived TCP connection. Also, prolong

utilization of power-hungry components (display, Wi-Fi, 3G,

GPS) from the applications increases power consumption [2].

In order to study the usage pattern of smart devices and get a

better understanding of how application usage limits the battery

life, we have developed an Android application “Power

Monitor”. It is seen from the usage patterns that the users who

depend on applications heavily using network operations,

display or location information will spend high amount of

power. A plethora of researches have been conducted to

minimize power consumption in Android devices [4].

This paper proposes a self-adaptive framework to facilitate

the development of power efficient mobile applications. The

developers should always consider power efficiency across the

entire lifecycle of the applications to minimize overall

consumption in mobile devices. The framework employs

lightweight monitoring and analyzer engines. The former

gathers battery and context information while the later analyzes

them to determine the degree of self-adaption necessary. Such

applications respond to the battery level, status (AC/USB

charging or discharging) and context information by modifying

their behavior, optimizing resource usage & performance and

user experience (UX). The strategies are useful for optimizing

performance without compromising UX at higher battery level.

When the battery is critically low, the application will offer

energy efficient alternatives to the user to minimize the battery

consumption while compromising the UX.

The rest of the paper is organized as follows. Section II

provides the motivation of developing self-adaptive power

efficient applications. Section III describes the self-adaptive

framework while Section IV presents prototype

implementation along with results. A comparison of the

mentioned strategies with current literature is provided in

Section V and Section VI concludes the paper.

II. MOTIVATION: POWER DISSIPATION IN ANDROID

DEVICES

This section motivates the reasons for self-adaptive

applications by providing comprehensive overview high power

dissipation in Android devices. Firstly, we report about the

three major components – display, network interface and CPU

which are most commonly used in applications and accounts

for very high power consumption. Then we present two usage

patterns of real smart devices that confirm overall high energy

dissipation in Android devices. The application Power Tutor is

used to determine the results.

A. Display hardware

The energy spent in display hardware is sufficiently high

and increases as device brightness goes up. Figure 1 lists the

energy consumption over a minute in two Android devices

with varying brightness level.

Figure 1. Energy consumption at display hardware.

B. Network interfaces

Table I lists the battery consumption in network interfaces

in both active and idle mode [5]. Several Android applications

depend on network operations. Therefore applications

depending on bulk data transfer, audio/video streaming,

browsing for long time will dissipate more battery.

TABLE I. BATTERY CONSUMPTION IN NETWEOK INTERFACES

Network Interface

Battery Consumption (mA)

Active mode Idle mode

EDGE 300 5

3G 225 2.5 – 3

Wi-Fi 330 12 - 15

C. CPU

Existing research suggest that a CPU operating with higher

frequency draws more battery. Application executing complex

algorithms will consume more CPU cycles and force the

operating frequency towards the higher range, thus minimizing

the battery life.

Other hardware components and software implementations

can also drive the power consumption. A complete overview is

presented in [3].

D. Usage Patterns from Power Monitor

Table II presents two usage patterns obtained using

“Power Monitor” from end users.

TABLE II. USAGE PATTERNS WITH HIGH POWER CONSUMPTION

Device Feature
Usage Patterns

User 1 User 2

Device description

Samsung GT-P3100,

Android 4.1.1 and

CPU 1MHz

LG-E400, Android
2.3.6, CPU 800KHz

Brightness level 107.1 144.0

Mobile data
On 24 hours and total

usage ~ 100 MB

On 24 hours and total

usage ~ 44 MB

Wi-Fi Not used Not used

GPS
Used for 35 – 40

minutes
Used for ~60 minutes

Frequently used
applications

Facebook, Gmail,

Talk, Chrome,

YouTube, MyFiles

Browser, Contacts,

Facebook, Wikipedia,

Temple run

CPU load
Greater than 70%

most of the time

Load is moderate i.e.

22% – 30%

Average battery

life
7 - 8 hours 12 – 14 hours

As seen from the above table, the applications used by the

users are network-centric, computationally expensive and

device brightness is very high. As a result of prolong use of

power hungry hardware the battery lasts for short duration.

III. SELF-ADAPTIVE FRAMEWORK

In this section we describe the self-adaptive framework to

develop Android application that reacts to battery level, status

and context. While the choice of battery level and status are

obvious, context information is necessary to learn more about

the surroundings. For example, while travelling users might

want to conserve battery as charging opportunities are not very

frequent. Thus combining the battery and context information

provides added advantage as the framework can make better

decision. Figure 2 depicts the framework and its components.

A. Battery and Context Monitoring Engine

A battery and context monitoring engine is employed to

extract the remaining battery level, battery status of the device

and context information at real time. The context module

extracts the system date & time, current coarse location and

determines if the user is roaming or travelling abroad. Such

information is associated with the battery level and status and

stored at the statistics module. This functions as a database

which stores the charging and discharging pattern of the mobile

device. Using the database, the occurrence of next charging

opportunity can be determined.

B. Analyzer Engine

The analyzer engine is the heart of the framework. The

engine receives the battery and context related information at

the real time. The received information are examined at four

levels – (i) current battery level, (ii) battery status, (iii)

occurrence of next charging opportunity and (iv) travelling

information. The engine is configured with predefined rules

which take into account combinations of the above four

conditions to determine the appropriate self-adaptive profile.

There are three such profiles as mentioned below.

 Light self-adaptive profile: This basically contains

minimum self-adaptive behavior for the application.

The developer can continue to provide rich user

experience and it will provide power saving in the

application at a minimal level.

 Medium self-adaptive profile: This caters to a lot of

application features being optimized at hardware,

software and user experience level. Our suggestion to

the developers is to keep the important functionalities

of the application intact and stop the rest. The power

saving will consequently be higher than the above

profile.

 Strong self-adaptive profile: This provides maximum

power saving and as a consequence the degree of self-

adaption is the highest. Thus only the main core

function of the application should be active and

additional power saving features should be adopted.

Figure 2. Self-adaptive framework for battery and context aware application

development.

All the three profiles contain several self-adaptive features

which can be broadly classified into four categories.

 Hardware resource adaption: It caters to four main

hardware units which consume most of the battery,

display, CPU, sensors and network interface.

Depending on the profile, various configurations of the

hardware resources are to be set. For example, for the

strong self-adaption profile (i) the brightness level

should be set at the minimum to reduce the power

dissipation at display and (ii) turn off GPS and the

network operations.

 Software resource adaption: Such features include

how functionalities developed at the software level

should be optimized. For example, location can be

determined from both GPS and network technologies.

As a measure of such adoption, only network

technologies may be preferred to obtain the location. It

saves quite amount of power but the trade-off is

accuracy of the location. Another example might be

not showing in-app advertisements which the battery is

critically low.

 User features adaption: Each application is composed

of one primary and several secondary features.

Adapting user features for different profiles will results

in providing a subset of secondary features in low

battery and only the primary feature when battery is

critically low. Also the user experience will undergo

various changes depending on which profile is active.

 Additional optimization: The developers are advised

to further optimize the application for medium and

strong self-adaption profiles. Such measures will

ensure the application is consuming less power while

user experience will remain intact. This basically deals

with optimization in the background processes,

distributing CPU intensive tasks etc.

The detail features of self-adaption will depend on the

actual application and the developer.

IV. PROTOTYPE IMPLEMENTATION AND RESULTS

To validate the proposed self-adaptive framework of

battery and context aware design and related power saving

strategies, we have implemented two applications for Android

platform. One of the applications does not follow the proposed

strategies and the other follows them. The functionalities of the

applications are as described below.

i. Display several texts in the screen with default

brightness level being 200.

ii. Stream videos from a server and enabling background

services to download and upload images, video and

text files to a server. These are the primary

functionalities of the application.

iii. Display location in a map using both GPS and network

based locations to compare and determine the best

location. This is a secondary feature in the application.

iv. Show in-app advertisements.

The development of the first application without any self-

adaption is straight forward. We focus on describing the self-

adaptive Android application development. The self-adaptive

framework is explained in details as applicable for the

particular application development.

A. Monitoring Engine

The monitoring engine is implemented using a service

which runs in the background without any user interface. In

order to get the battery related information (level and status),

the “BATTERY_STAT” permission is required. The context

module determines the coarse location from the network

connection. The necessary permissions needed are to access

network and coarse location. This module also employs a

database which stores the battery level, status, system date &

time and location. The database entry is done when there is

1% change (increase or decrease) in battery level. The

database forms a part of the battery statistics module which

helps in determining discharging and charging pattern of the

device. This in turn computes the next available charging

opportunity based on the day, time and location.

B. Analyzer Engine

The analyzer engine is also developed using another

service and is in-charge of examining the data coming from

battery module and context module at real time. There are four

levels of examination done (as shown below) in the engine to

determine the most appropriate self-adaptive profile for the

application.

 Battery level (B)

 Battery status (S)

 Time for next available charging opportunity (C)

 Location information (T)

The battery statistics module is necessary to determine the

next charging opportunity. The analyzer engine compares the

current time with the time when charging was initiated by the

user in recent past to determine the time necessary before the

device can be charged. The location information is necessary to

determine if the user travelling or not.

Based on above inputs, the engine applies the following

conditions to trigger the self-adaptive profiles.

1) Conditions for No Self-Adaptive Profile

When the battery level is sufficiently high, the application

does not need any self-adaptive modifications. The following

condition must be satisfied for this:

 Battery level lies within 76-100 and battery status can

be either discharging or charging and irrespective of

the occurrence of charging opportunity and location

information.

2) Conditions for Light Self-Adaption Profile

This profile is trigger at the following conditions:

 Battery level is between 51 and 75 and battery is

discharging and irrespective of next charging

opportunity or location information.

 Battery level is between 11 and 50 and battery is

charging from AC source and irrespective of next

charging opportunity or location information.

 Battery level is between 11 and 50 and battery is

discharging and next charging opportunity will occur

within 11 to 30 minutes and user is not roaming or

travelling abroad (as obtained from location

information).

3) Conditions for Medium Self-Adaption Profile

This profile is activated if any of the following conditions is

true:

 Battery level is within 10 to 50 and battery is either

discharging or USB charging and next charging time

will occur beyond 31 minutes and user is not roaming

or travelling abroad (as obtained from location

information).

 Battery level is within 1-10 and the device can be

plugged to charger within 10 minutes and irrespective

of battery status and location.

 Battery level is within 51-75 and the user is travelling

abroad or roaming and irrespective of battery status.

4) Conditions for Strong Self-Adaption Profile

 Battery level is less than 10 and next charging

opportunity occurs beyond 31 minutes and irrespective

of status of battery.

 Battery level is within 11-50 and the user is travelling

or roaming.

Once the analyzer engine decides the necessary profile to

activate, the application modifies its behavior according to the

configuration of the profile. It should be noted that the ranges

of the battery level and occurrence of next charging time

depends on the developers. The values mentioned here are used

for this particular prototype and may be different for another

application.

C. Self-Adaptive Features

Following are the descriptions of the self-adaptive

behavioral features configured for the particular application.

When no profile is active the functionalities of the two

applications will be the same.

1) Light Self-Adaption Profile

 The brightness is set to 125.

 For bulk-data transfer, compress the data before

uploading to a server. The server must decompress the

data after receiving it.

 Check for high speed network before streaming video

contents or transferring bulk data.

 If highly accurate location is not needed then use

coarse location information for the mapping

functionality.

2) Medium Self-Adaption Profile

 Tone down brightness to 75. This degrades the user

experience to some extent if the user prefers higher

brightness level.

 Network operations are preferred to be done on high

speed networks like Wi-Fi/3G. If none of them are

available and EDGE has to be used, notify the user

about the same and ask if the user would like to continue

to use EDGE.

 Transferring bulk data over EDGE should be avoided.

This is a user feature adaption in the application.

 Establishing multiple connections to stream HD videos

or downloading high volume data should be avoided.

 For scheduling background updates, inexact timer must

be used. In this case, Android system will couple several

network operations together to conserve battery and

bandwidth.

 Use of GPS should be avoided unless very precise

location is needed.

 Applications must use stream parser over tree parser to

reduce parsing time and have faster UI response.

 The background processes should be made as short-

lived as possible. The processes should sleep between

successive calls to reduce memory footprint and CPU

usage. AlarmManager API should be used to call the

processes at definite interval of time.

 Attempts should be made to distribute CPU intensive

tasks and avoid complex computation to reduce CPU

power expenditure.

3) Storng Self-Adaption Profile

 Reduce brightness to 30 which minimizes the power

consumption at display.

 Defer network operations from the application and

notify the user about the same. This includes taking

backup in remote server, streaming audio or video files

and downloading bulk data. This is another user feature

adaption done to make the dying battery last longer.

 By default the mapping feature is not offered in this

profile as network operations are turned off. But there is

an option where the user can override the settings and

use only wireless network location to get the location.

 Stop background updates or any less important services.

 Stop computationally expensive parts of the

applications.

 Do not show in-app advertisements.

 Avoid using sensors if possible. For example, do not

change the view based on rotation of the screen.

 For video playback from the memory, reduce the size of

viewing window. For audio playback, reduce the

volume.

D. Results

Figure 3 compares the power consumption of the two

applications, one without any self-adaption and another with

the self-adaptive features.

Figure 3. Comparison of power consumption between the two applications.

To further examine the power saving of the three individual

profiles, we activated each of them while deactivating two

others and compared the resulting power consumption values.

The results are portrayed in Figures 4, 5 and 6.

Figure 4. Comparison of power consumption between the application with

no self-adaption and application with only light self-adaption profile.

Figure 5. Comparison of power consumption between the application with

no self-adaption and application with only medium self-adaption profile.

Figure 6. Comparison of power consumption between the application with

no self-adaption and application with only strong self-adaption profile.

V. STATE-OF-THE-ART

In this section, we review the current literature in

connection with our research and compare the strategies.

Context aware computing for mobile devices has received a

lot of attention from researchers. Authors Moghimi et al [6]

described context awareness in relation to mobile power

management and have showcased reduced energy expenditure

for periodic and streaming applications. Context aware battery

management (CABMAN) is proposed in [7] which can predict

the next charging opportunity for mobile devices. The

mentioned architecture argues that location information can be

used in order to predict the next opportunity to charge mobile

devices. Authors Zhao et al [8] presented a system with

context-aware approach for predicting battery lifetime. The

solution is based on collection of context information from the

mobile device (HTC G1). Then a quantitative relation is

established between the information collected and battery

discharge rate. Preuveneers and Berbers have presented a

context-driven and resource-aware middleware for mobile

applications. The middleware architecture is composed of three

layers as application layer, context layer and runtime layer [9].

The applications are capable of behavioral and structural self-

adaption in each layer. Then they mention resource driven

component selection algorithm.

On the other hand, self-adaptive mobile application

development is studied in depth in [10]. The authors of [11]

explore the possibilities of power saving in mobile

applications. Their work explains the static behavior of mobile

applications which continue to consume power even if the

battery level is very low. They introduce an architecture which

extracts battery information to process that in battery-

awareness integrator to dynamically modify application

functionalities. The dynamic self-adaption of the applications

are clustered into three layers: (i) External users feature

availability - which defines the availability of application

features based on the remaining battery level and priority is

given to core algorithm of the applications, (ii) Internal feature

behavior adaption – which provides several power efficient

implementation of the same functionalities and shall be

triggered based when battery level reaches predefined levels

and (iii) Data consumption adaption – which explores the

power efficient communication with an external server. But the

architecture does not take into consideration the battery

charging status and context information. Also the work does

not provide guidelines to implement power efficient

implementations.

In our research, we have taken into account battery level,

status and context in order to decide a self-adaption profile.

Furthermore, the analyzer engine is intelligent enough to

compute the next available charging opportunity and travelling

information. Thus the self-adaptive features are not solely

determined based on battery information, rather more

conditions are checked to accurately determine which self-

adaptive profile to be triggered. This is the main innovative

aspect of the proposed framework.

VI. CONCLUSION

In this paper we have presented a self-adaptive framework

for Android application development. The primary goal of the

framework is to monitor the battery level, status and context

information at real time, analyze them and trigger the

appropriate self-adaptive profile. The higher power

consumption of applications in smart devices motivates us to

develop such framework. A prototype application has been

developed using the approach. The results clearly establish

that such development strategies can immensely benefit the

smart devices and applications can become power efficient.

ACKNOWLEDGMENT

The work is sponsored by French research project Smart-

4G-Tablet Pole SCS. The authors thank the Android

application beta testers for helping to evaluate the framework.

REFERENCES

[1] A. Pathak, Y. C. Hu and M. Zhang. “Where is the energy spent inside
my app? Fine grained energy accounting on smartphones with eprof.” In

Proc. of ACM EruoSys’12, Bern, Switzerland, 2012.

[2] L. Zhang, et al. “Accurate online power estimation and automatic battery

behavior based power model generation for smartphones.” In Proc. Of

ACM CODES+ISSS’10, Arizona, USA, 2010, pp. 105-114.

[3] Datta, S.K.; Bonnet, C.; Nikaein, N., "Minimizing energy expenditure in

smart devices," IEEE Conference on Information and Communication
Technologies (ICT 2013), Tamil Nadu, India, April, 2013.

[4] Datta, S.K.; Bonnet, C.; Nikaein, N.; , "Android power management:

Current and future trends," First IEEE Workshop on Enabling
Technologies for Smartphone and Internet of Things (ETSIoT), 2012,

pp.48-53.

[5] http://www.google.com/events/io/2009/sessions/CodingLifeBatteryLife.

html.

[6] Mohammad Moghimi, Jagannathan Venkatesh, Piero Zappi, Tajana
Rosing. “Context-Aware Mobile Power Management Using Fuzzy
Inference as a Service”, In 4th International Conference on Mobile
Computing, Applications and Services (MobiCASE) 2012, pp. 314-327.

[7] Ravi, N.; Scott, J.; Lu Han; Iftode, L., "Context-aware Battery

Management for Mobile Phones," Pervasive Computing and

Communications, 2008. PerCom 2008. Sixth Annual IEEE International
Conference on , vol., no., pp.224,233, 17-21 March 2008.

[8] Xia Zhao, Yao Guo, Qing Feng, and Xiangqun Chen. 2011. A system

context-aware approach for battery lifetime prediction in smart phones.
In Proceedings of the 2011 ACM Symposium on Applied

Computing (SAC '11). ACM, New York, NY, USA, 641-646.

[9] Davy Preuveneers and Yolande Berbers. 2007. Towards context-aware

and resource-driven self-adaptation for mobile handheld applications.

In Proceedings of the 2007 ACM symposium on Applied
computing (SAC '07). ACM, New York, NY, USA, pp. 1165-1170.

[10] Nearchos Paspallis, Frank Eliassen, Svein Hallsteinsen, and George A.

Papadopoulos. “Developing Self-Adaptive Mobile Applications and
Services with Separation-of-Concerns” In “At Your Service:Service-

Oriented Computing from an EU Perspective”, MIT Press, Edition 1, pp.

129 – 158, 2009.

[11] Mizouni, R.; Serhani, M.A.; Benharref, A.; Al-Abassi, O., "Towards

Battery-Aware Self-Adaptive Mobile Applications," IEEE Ninth
International Conference on Services Computing (SCC), 2012, pp.439 -

445, 24-29 June 2012.

