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ABSTRACT

The potential for biometric systems to be manipulated through
some form of subversion is well acknowledged. One such ap-
proach known as spoofing relates to the provocation of false
accepts in authentication applications. Another approach re-
ferred to as obfuscation relates to the provocation of missed
detections in surveillance applications. While the automatic
speaker verification research community is now addressing
spoofing and countermeasures, vulnerabilities to obfuscation
remain largely unknown. This paper reports the first study.
Our work with standard NIST datasets and protocols shows
that the equal error rate of a standard GMM-UBM system
is increased from 9% to 48% through obfuscation, whereas
that of a state-of-the-art i-vector system increases from 3% to
20%. We also present a generalised approach to obfuscation
detection which succeeds in detecting almost all attempts to
evade detection.

Index Terms— evasion, obfuscation, speaker recogni-
tion, speaker verification, surveillance, biometrics, spoofing

1. INTRODUCTION

While biometrics systems play an increasingly ubiquitous
role in person identification and security, the potential for
the technology to be overcome through subversion is now
well-acknowledged [1]. Subversion can take one of two gen-
eral forms depending on the application: authentication or
surveillance.

Spoofing relates to the authentication scenario and refers
to the potential for an impostor to be accepted as an enrolled
client. While the literature shows that the threat can be signifi-
cant, countermeasures designed to detect spoofing attacks can
also be highly effective [2]. While studied broadly in the case
of other biometric modalities, research in automatic speaker
verification (ASV) is only just beginning to gather pace [3].

This paper relates to the second, less-studied form of vul-
nerability involving surveillance applications. The problem
here, referred to obfuscation, relates to the potential for a
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surveillance target to evade detection. While there is signif-
icant work in the literature which shows the vulnerability of
other biometrics systems to obfuscation, e.g. [4], that in the
case of ASV is largely unknown. Accordingly, we have set
out to gauge ASV vulnerabilities to obfuscation and to inves-
tigate new detection approaches.

2. OBFUSCATION VERSUS SPOOFING

This section describes the difference between spoofing and
obfuscation and relevant, past research.

2.1. Spoofing

Authentication applications involve identification or verifica-
tion scenarios in which an enrolled client typically seeks the
confirmation of their identity in order to gain access to pro-
tected resources. The likely attack in this scenario involves
spoofing, which entails the impersonation or manipulation of
an impostor’s speech in order that it resembles that of an en-
rolled, target identity. The attack is thus intended to provoke
a false acceptance, otherwise referred to as a Type II error.

The consideration of spoofing within the ASV community
is relatively recent [3]. Spoofing attacks considered to date
include impersonation [5], replay [6], speech synthesis [7],
voice conversion [8] and artificial, non-speech signals [9].
Reports of false acceptance rates of well over 50% are not
uncommon. Numerous spoofing countermeasures have thus
emerged over recent years [10] and have potential to thwart
most spoofing attacks.

2.2. Obfuscation

Surveillance applications involve the detection of one or more
known speakers in a given audio recording, for example the
detection of criminals in an intercepted telephone conversa-
tion. In such cases, persons of interest might disguise or
manipulate their speech in order to evade detection [11, 12].
The intent here is to provoke a missed detection, otherwise
referred to as a Type I error.

There is very little work in the literature relating to ob-
fuscation, despite convincing arguments supporting the po-



tential for obfuscation to overcome reliable recognition. The
first relates to the notion of cooperation. In authentication,
both naı̈ve (zero-effort) impostor accesses and spoofing at-
tacks involve cooperative interaction with the biometric sys-
tem in as much that valid biometric samples are assumed to
be collected. In contrast, the covert, surreptitious nature of
surveillance often involves non-cooperative scenarios. The
lack of cooperation can then impede the collection of biomet-
ric signals, i.e. through the use of discreet, far-field recording
devices or low signal-to-noise ratios. The resulting lack of
high-quality speech samples generally leads to higher missed
detection rates.

The second relates to the notion of accessibility and ef-
fort. While spoofing requires a certain level of skill to faith-
fully imitate the speech of a specific, other individual, obfus-
cation requires only the hiding or disguise of the persons own,
natural voice. Alternatively put, obfuscation involves the im-
itation of any other person’s speech – a comparatively easier
task.

2.3. Previous work

The work in [11, 13–15] investigated the effect of intentional
voice modifications or disguise and found in all cases that
missed detection rates increase. Automatic approaches to
voice transformation reported in [12, 16] are also shown to
overcome identification and verification systems. Again,
however, this work uses non-standard, small datasets. The
first work to detect disguised voice is reported in [17]. While
performed using the standard TIMIT database and while
promising detection rates are reported, the work does not
consider impacts on ASV performance.

This paper presents the first assessment of obfuscation
under controlled conditions using large-scale, standard NIST
databases and state-of-the-art approaches to obfuscation
which have already been shown to overcome ASV through
spoofing. We also present a new approach to obfuscation
detection and analyse its impact on ASV performance.

3. EVALUATION

This section presents our work to assess the vulnerabilities
of automatic speaker verification (ASV) to obfuscation. This
section describes the different ASV systems, datasets and pro-
tocols used in this work, the particular approach to obfusca-
tion, and experimental results.

3.1. ASV systems and feature extraction

We assessed the impact of obfuscation on six different ASV
systems: (i) a standard Gaussian mixture model (GMM) with
a universal background model (UBM); (ii) a GMM-UBM sys-
tem with factor analysis (FA) channel compensation; (iii-v)

three different GMM supervector linear kernel (GSL) sys-
tems, and (vi) a state-of-the-art i-vector system.

The FA system is based on the approach described in [18].
The standard GSL system uses a support vector machine
classifier which is applied to supervectors obtained with the
GMM-UBM system. The second GSL system is enhanced
with nuisance attribute projection [19] whereas the third uses
FA supervectors (GSL-FA) [20]. The i-vector system [21]
employs intersession compensation with probabilistic linear
discriminant analysis (PLDA) [22] with length normalisa-
tion [23]. From here on in it is referred to as IV-PLDA.

All ASV systems are based on the LIA-SpkDet toolkit [24]
and the ALIZE library [25] and are directly derived from the
work in [20]. They furthermore use a common UBM with
1024 Gaussian components, a common speech activity de-
tector and feature parametrisation: linear frequency cepstral
coefficients (LFCCs), their first derivatives and delta energy.
Full details of all systems can be traced through [26].

3.2. Datasets and protocols

All development was performed using the male subset of
the 2005 NIST Speaker Recognition Evaluation dataset
(NIST‘05) whereas the male subset of the NIST‘06 dataset
was used for evaluation. Only evaluation results are reported
in this paper. The NIST‘04 or NIST‘08 datasets are used as
background data, depending on whether the data is used for
ASV or obfuscation respectively.

To assess the potential impact of obfuscation, true-client
tests are replaced with alternative speech data which aims to
obfuscate reliable recognition. Any number of different ap-
proaches may be used to perform obfuscation. On account of
its efficacy in spoofing [8] this paper considers voice conver-
sion. The only difference between its application to study ob-
fuscation instead of spoofing involves its application to client
trials (instead of impostor trials) to provoke missed detections
(instead of false accepts).

3.3. Voice conversion

Voice conversion is applied according to the Gaussian depen-
dent filtering (GDF) approach proposed in [8]. It was origi-
nally used to assess ASV vulnerabilities to spoofing by trans-
forming impostor test utterances towards the speech of target
speakers. The GDF approach converts the speech of an orig-
inal speaker y(n) towards that of a target speaker x(n) in the
spectral domain according to:

Y ′(f) =
|Hx(f)|
|Hy(f)|

Y (f) (1)

where |Hy(f)| and |Hx(f)| are the vocal tract transfer func-
tions of the original and target speakers respectively and



EER (%) minDCF ×100
System Baseline Obfus. Baseline Obfus.

GMM-UBM 8.7 34.2 4.14 10.06
GSL 8.0 19.6 3.52 9.00
GSL-NAP 6.8 18.9 2.65 7.70
FA 5.6 28.7 2.32 9.39
GSL-FA 6.4 16.6 2.48 7.19
IV-PLDA 3.0 8.0 1.15 4.03

Table 1. ASV performance with and without obfuscation
through voice conversion towards the UBM. Results shown
in terms of EER and minDCF ×100 .

where Y (f) and Y ′(f) are the Fourier domain representa-
tions of y(n) and y′(n), the conversion result.

Hx(f) is determined from a set of two Gaussian mixture
models (GMMs). The first, denoted as the automatic speaker
recognition (asr) model in the original work, is related to ASV
feature space and is utilised for the calculation of a posteriori
probabilities. The second, denoted as the filtering (fil) model,
is a tied model of linear predictive cepstral coding (LPCC)
coefficients from which Hy(f) is derived. LPCC filter pa-
rameters are estimated according to:

xfil =

M∑
i=1

p(giasr|yasr)µ
i
fil (2)

where p(giasr|yasr) is the a posteriori probability of Gaussian
component giasr given the frame yasr and µi

fil is the mean of
component gifil which is tied to giasr. Hx(f) is estimated from
xfil using an LPCC-to-LPC transformation and a time-domain
signal is synthesised from converted frames with a standard
overlap-add technique. Full details can be found in [8,27,28].

3.4. Results

We investigated three different approaches involving the
conversion of all target tests towards: (i) the universal back-
ground model; (ii) a randomly selected speaker and (iii) the
most dissimilar speaker in the NIST dataset. Conversion to-
wards the UBM aims to increase the likelihood of the inverse
hypothesis and thus to decrease the likelihood ratio. Con-
version towards a randomly selected speaker is intended to
reflect the averaged effect of conversion whereas conversion
towards the most dissimilar speaker (that for which the re-
sulting likelihood score is the lowest) is intended to reflect a
worst-case scenario.

Table 1 illustrates the effect of obfuscation with conver-
sion towards the UBM. Results are presented in terms of the
equal error rate (EER) and the minimum decision cost func-
tion (minDCF). We discuss only the former in the following.
The GMM-UBM system is the most vulnerable and shows a

EER (%) minDCF ×100
GMM IV-PLDA GMM IV-PLDA

Baseline 8.7 3.0 4.14 1.15
UBM 34.2 8.0 10.06 4.03
Random 34.5 12.0 10.02 7.09
Dissimilar 47.7 20.0 10.15 9.89

Table 2. GMM and IV-PLDA performance with different ap-
proaches to obfuscation with voice conversion towards the
UBM, a random speaker and the most dissimilar speaker
in the NIST dataset. Results shown in terms of EER and
minDCF ×100.

Fig. 1. IV-PLDA score distributions for impostor (left-most),
target (right-most) and obfuscation trials with conversion to-
wards a random speaker.

degradation from 9% EER to 34% EER. The FA and three
GSL-based systems show moderate vulnerability whereas the
IV-PLDA system is the most robust; the EER increases from
3% to only 8%.

Table 2 illustrates a comparison of performance for the
three different approaches to voice conversion and for the
least and most robust systems. With conversion towards a
randomly selected speaker the EERs of the GMM and IV-
PLDA systems increase to 35% and 12% respectively. When
conversion is performed towards the most dissimilar speaker,
then EERs increase further to 48% and 20%.

Figure 1 shows a histogram of scores for impostor trials
(left most distribution) and target trials (right most). Also il-
lustrated is the score distribution for obfuscation tests which
shows how voice conversion towards a random speaker is ef-
fective in decreasing the resulting likelihood scores for target
tests; the degree of overlap with the impostor distribution is
higher than it is for the target distribution. Detection error



Fig. 2. DET profiles illustrating IV-PLDA performance for
the baseline, obfuscation trials with conversion towards a ran-
dom speaker and performance with obfuscation detection.

trade-off (DET) profiles1 for the IV-PLDA systems are illus-
trated in Figure 2. Profiles for the baseline and obfuscation
(conversion to random speaker) show that the system is vul-
nerable across the full range of operating points but slightly
more robust in the area of low missed detections.

4. DETECTION

Various different approaches to detect converted voice have
been reported in the literature. All involve the study of
spoofing and the detection of processing artifacts indica-
tive of manipulated, converted speech, e.g. the absence of
natural-speech phase [29] and reduced short-term dynamic
variability [30].

These approaches are, however, dependent on the specific
approach to voice conversion and thus have limited practi-
cal application. The work in [26] investigated a more gener-
alised solution with the potential to detect previously unseen
approaches to voice conversion, or indeed other approaches to
spoofing generally. A new, one-class classification approach
learnt using only genuine speech is used to detect the absence
of natural spectro-temporal variability through the so-called
local binary pattern (LBP) analysis of speech spectrograms.
With improved generalisation, this approach to detection has

1Produced with the TABULA RASA Scoretoolkit: http:
//publications.idiap.ch/downloads/reports/2012/
Anjos_Idiap-Com-02-2012.pdf

Fig. 3. A DET profile illustrating detection performance in-
dependently from ASV.

greater practical application and is thus the approach adopted
here.

A DET plot illustrating detection performance in indepen-
dence to ASV is illustrated in Figure 3 and shows an EER of
3%. ASV performance with combined obfuscation detection
as a post-processing step [30] is illustrated in Figure 2. With
the operating point set to the EER (Figure 3) there is almost
no degradation in ASV performance on account of obfusca-
tion (Figure 2) towards the low missed detection region.

5. CONCLUSIONS

This paper assesses the potential for surveillance targets to
evade detection through automatic speaker verification and
evaluates the potential for obfuscation detection.

Our assessment shows variations in system robustness
with the GMM-UBM and IV-PLDA systems showing EERs
of up to 48% and 20% when subjected to obfuscation. While
this work shows the tangible potential for surveillance targets
to evade detection, we fully acknowledge that the work suffers
from some of the same shortcomings as all previous work in
spoofing. They include the consideration of high-technology
voice conversion which is most likely beyond the grasp of the
average surveillance target, and also the consideration of only
one approach to obfuscation.

While the work presented in this paper thus arguably
over-exaggerates vulnerabilities to obfuscation, we nonethe-
less show how a generalised form of detection succeeds in
identifying almost all obfuscation tests.
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