
On the design space of MapReduce ROLLUP aggregates

Duy-Hung Phan
EURECOM

phan@eurecom.fr

Matteo Dell’Amico
EURECOM

dellamic@eurecom.fr

Pietro Michiardi
EURECOM

michiard@eurecom.fr

ABSTRACT
We define and explore the design space of efficient algorithms
to compute ROLLUP aggregates, using the MapReduce pro-
gramming paradigm. Using a modeling approach, we ex-
plain the non-trivial trade-off that exists between parallelism
and communication costs that is inherent to a MapReduce
implementation of ROLLUP. Furthermore, we design a new
family of algorithms that, through a single parameter, allow
to find a “sweet spot” in the parallelism vs. communication
cost trade-off. We complement our work with an experimen-
tal approach, wherein we overcome some limitations of the
model we use. Our results indicate that efficient ROLLUP
aggregates require striking the good balance between paral-
lelism and communication for both one-round and chained
algorithms.

1. INTRODUCTION
Online analytical processing (OLAP) is a fundamental ap-

proach to study multi-dimensional data involving the com-
putation of, for example, aggregates on data that are ac-
cumulated in traditional data warehouses. When operating
on massive amounts of data, it is typical for business in-
telligence and reporting applications, to require data sum-
marization, which is achieved using standard SQL operators
such as GROUP BY, ROLLUP, CUBE, and GROUPING
SETS.

Despite the tremendous amount of work carried out in
the database community to come up with efficient ways of
computing data aggregates, little work has been done to
extend these lines of work to cope with massive scale. In-
deed, the main focus of prior works in this domain has been
on single server systems or small clusters executing a dis-
tributed database, implementing efficient implementations
of CUBE and ROLLUP operators, in line with the expecta-
tions of low-latency access to data summaries [6, 8, 11, 13,
14, 19]. Only recently, the community devoted attention to
solve the problem of computing data aggregates at massive
scales using data intensive, scalable computing engines such

(c) 2014, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2014 Joint Conference (March 28, 2014,
Athens, Greece) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0.

as MapReduce [10]. In support of the growing interest in
computing data aggregates on batch-oriented systems, sev-
eral high-level languages built on top of MapReduce, such
as PIG [3] and HIVE [2], support simple implementations
of, for example, the ROLLUP operator.

The endeavor of this work is to take a systematic approach
to study the design space of the ROLLUP operator: besides
being widely used on its own, ROLLUP is also a fundamen-
tal building block used to compute CUBE and GROUPING
SETS [7]. We study the problem of defining the design space
of algorithms to implement ROLLUP through the lenses of
a recent model of MapReduce-like systems [4]. The model
explains the trade-offs that exist between the degree of par-
allelism that is possible to achieve and the communication
costs that are inherently present when using the MapReduce
programming model. In addition, we overcome current lim-
itations of the model we use (which glosses over important
aspects of MapReduce computations) by extending our anal-
ysis with an experimental approach. We present instances
of algorithmic variants of the ROLLUP operator that cover
several points in the design space, implement and evaluate
them using an Hadoop cluster.

In summary, our contributions are the following:

• We study the design space that exists to implement
ROLLUP and show that, while it may appear deceiv-
ingly simple, it is not a straightforward embarrassing
parallel problem. We use modeling to obtain bounds
on parallelism and communication costs.

• We design and implement new ROLLUP algorithms
that can match the bounds we derived, and that swipe
the design space we were able to define.

• We pinpoint the essential role of combiners (an op-
timization allowing pre-aggregation of data, which is
available in real instances of the MapReduce paradigm,
such as Hadoop [1]) for the practical relevance of some
algorithm instances, and proceed with an experimen-
tal evaluation of several variants of ROLLUP imple-
mentations, both in terms of their performance (run-
time) and their efficient use of cluster resources (total
amount of work).

• Finally, our ROLLUP implementations exist in Java
MapReduce and have been integrated in our experi-
mental branch of PIG, which are available in a public
repository.1

1https://bitbucket.org/bigfootproject/rollupmr

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information on the model we
use in our work and presents related work. Section 3 illus-
trates a formal problem statement and Section 4 presents
several variants of ROLLUP algorithms. Section 5 outlines
our experimental results to evaluate the performance of the
algorithms we introduce in this work. Finally, Section 6
concludes our work and outlines future research directions.

2. BACKGROUND AND RELATED WORK
We assume the reader to be familiar with the MapReduce

[10] paradigm and its open-source implementation Hadoop
[1, 20]. First, we give a brief summary of the model intro-
duced by Afrati et al. [4], which is the underlying tool we use
throughout our paper. Then, we present related works that
focus on the MapReduce implementation of popular data
analytics algorithms.

The MapReduce model. Afrati et al. [4] recently studied
the MapReduce programming paradigm through the lenses
of an original model that elucidates the trade-off between
parallelism and communication costs of single-round MapRe-
duce jobs. The model defines the design space of a MapRe-
duce algorithm in terms of replication rate and reducer-
key size. The replication rate r is the average number of
〈key, value〉 pairs created from each input in the map phase,
and represents the communication cost of a job. The reducer-
key size q is the upper bound of the size of list of values
associated to a reducer-key. Jobs have higher degrees of
parellelism when q is smaller. For some problems, paral-
lelism comes at the expense of larger communication costs,
which may dominate the overall execution time of a job.

Afrati et al. show how to determine the relation between
r and q. This is done by first bounding the amount of input
a reducer requires to cover its outputs. Once this relation
is established, a simple yet effective “recipe” can be used to
relate the size of the input of a job to the replication rate
and to the bounds on output covering introduced above. As
a consequence, given a problem (e.g., finding the Hamming
distance between input strings), the model can be used to
establish bounds on r and q, which in turn define the design
space that instances of algorithms solving the original prob-
lem may cover.

Related work. Designing efficient MapReduce algorithms
to implement a wide range of operations on data has received
considerable attention recently. Due to space limitations, we
cannot give justice to all works that addressed the design,
analysis and implementation of graph algorithms, clustering
algorithms and many other important problems: here we
shall focus on algorithms to implement SQL-like operators.
For example, the relational JOIN operator is not supported
directly in MapReduce. Hence, attempts to implement effi-
cient JOIN algorithms in MapReduce have flourished in the
literature: Blanas et al. [9] studied Repartition Join, Broad-
cast Join, and Semi-Join. More recent work tackle more
general cases like theta-joins [17] and multi-way-joins [5].

With respect to OLAP data analysis tasks such as CUBE
and ROLLUP, efficient MapReduce algorithms have only
lately received some attention. A first approach to study
CUBE and ROLLUP aggregates has been proposed by Nandi
et al. [16]; this algorithm, called “naive” by the authors, is
called Vanilla in this work. MR-Cube [16] mainly focuses on

algebraic aggregation functions, and deals with data skew; it
implements the CUBE operator by breaking the algorithm
in three phas-es. A first job samples the input data to recog-
nize possible reducer-unfriendly regions; a second job breaks
those regions into sub-regions, and generates corresponding
〈key, value〉 pairs to all regions, to perform partial data ag-
gregation. Finally, a last job reconstructs all sub-regions
results to form the complete output. The MR-Cube opera-
tor naturally implements ROLLUP aggregates. However in
the special case of ROLLUP, the approach has two major
drawbacks: it replicates records in the map phase as in the
naive approach and it performs redundant computation in
the reduce phase.

For the sake of completeness, we note that one key idea
of our work (in-reducer grouping) shares similar traits to
what is implemented in the Oracle database [7]. However,
the architectural differences with respect to a MapReduce
system like Hadoop, and our quest to explore the design
space and trade-offs of ROLLUP aggregates make such work
complementary to ours.

3. PROBLEM STATEMENT
We now define the ROLLUP operation as a generalization

of the SQL ROLLUP clause, introducing it by way of a
running example. We use the same example in Section 4 to
elucidate the details of design choices and, in Section 5, to
benchmark our results.

ROLLUP can be thought of as a hierarchical GROUP BY
at various granularities, where the grouping keys at a coarser
granularities are a subset of the keys at a finer granularity.
More formally, we define the ROLLUP operation on an input
data set, an aggregation function, and a set of n hierarchical
granularities:

• We consider a data set akin to a database table, with
M columns c1, . . . , cM and L rows r1, · · · rL such that
each row ri corresponds to the (ri1, . . . , riM) tuple.

• Given a set of rows R ⊆ {r1, · · · rL}, an aggregation
function f(R) produces our desired result.

• n granularities d1, . . . , dn determine the groupings that
an input data is subject to. Each di is a subset of
{c1, · · · cM}, and granularities are hierarchical in the
sense that di (di+1 for each i ∈ [1, n− 1].

The ROLLUP computation returns the result of applying
f after grouping the input by the set of columns in each
granularity. Hence, the output is a new table with tuples
corresponding to grouping over the finest (dn) up to the
coarsest (d1) granularity, denoting irrelevant columns with
an ALL value [12].

Example. Consider an Internet Service provider which
needs to compute aggregate traffic load in its network, per
day, month, year and in overall. We assume input data to
be a large table with columns (c1, c2, c3, c4) corresponding to
(year, month, day, payload2). A few example records from
this dataset are shown in the following:

(2012, 3, 14, 1)

(2012, 12, 5, 2)

(2012, 12, 30, 3)

(2013, 5, 24, 4)

2In Kilobytes

The aggregation function f outputs the sum of values over
the c4 (payload) column. Besides SUM, other typical aggre-
gation functions are MIN, MAX, AVG and COUNT; it is
also possible to consider aggregation functions that evaluate
data in multiple columns, such as for example correlation
between values in different columns.

Input granularities are d1 = ∅, d2 = {year}, d3 = {year,
month}, and d4 = {year,month,day}. The highest granu-
larity, d1 = ∅, groups on no columns and is therefore equiv-
alent to a SQL GROUP BY ALL clause that computes the
overall sum of the payload column; such an overall aggrega-
tion is always computed in SQL implementations, but it is
not required in our more general formulation. We will see
in the following that “global” aggregation is problematic in
MapReduce.

In addition to aggregation on hierarchical time periods
as in this case, ROLLUP aggregation applies naturally to
other cases where data can be organized in tree-shaped tax-
onomies, such as for example country-state-region or unit-
department-employee hierarchies.

If applied on the example, the ROLLUP operation yields
the following result (we use ‘*’ to denote ALL values):

(2012, 3, 14, 1)

(2012, 3, *, 1)

(2012, 12, 5, 2)

(2012, 12, 30, 3)

(2012, 12, *, 5)

(2012, *, *, 6)

(2013, 5, 24, 4)

(2013, 5, *, 4)

(2013, *, *, 4)

(*, *, *, 10)

Rows with ALL values represent the result of aggregation
at coarser granularities: for example, the (2012, *, *, 6)

tuple is the output of aggregating all tuples from year 2012.

Aggregation Functions and Combiners. In MapRe-
duce, it is possible to pre-aggregate values computed in map-
pers by defining combiners. We will see in the following that
combiners are crucial for the performance of algorithms de-
fined in MapReduce. While many useful aggregation func-
tions are subsceptible to being optimized through combin-
ers, not all of them are. Based on the definition by Gray et
al. [12], when an aggregation function is holistic there is no
constant bound on the size of a combiner output; represen-
tative holistic functions are MEDIAN, MODE and RANK.

The algorithms we define are differently subsceptible to
the presence and effectiveness of combiners. When discussing
the merits of each implementation, we also consider the case
where aggregation functions are holistic and hence combin-
ers are of little or no use.

4. THE DESIGN SPACE
We explore the design space of ROLLUP, with empha-

sis on the trade-off between communication cost and paral-
lelism. We first apply a model to obtain theoretical bounds
on replication rate and reducer key size; we then consider
two algorithms (Vanilla and In-Reducer Grouping) that are
at the end-points of the aforementioned trade-off, having re-
spectively maximal parallelism and minimal communication
cost. We follow up by proposing various algorithms that

operate in different, and arguably more desirable, points of
the trade-off space.

4.1 Bounds on Replication and Parallelism
Here we adopt the model by Afrati et al. [4] to find upper

and lower bounds for the replication rate. Note that the
model, unfortunately, does not account for combiners nor
for multi-round MapReduce algorithms.

First, we define the number of all possible inputs and out-
puts to our problem, and a function g(q) that allows to eval-
uate the number of outputs that can be covered with i input
records. To do this, we refer to the definitions in Section 3:

1. Input set: we call Ci the number of different values
that each column ci can take. The total number of
inputs is therefore |I| =

∏M
i=1 Ci.

2. Output set: for each granularity di, we denote the
number of possible grouping keys as Ni =

∏
Ci∈di Ci

and the number of possible values that the aggregation
function can output as Ai.

3 Thus, the total number of
outputs is |O| =

∑n
i=1 NiAi.

3. Covering function: let us consider a reducer that
receives q input records. For each granularity di, there
are Ni grouping keys, each one grouping |I|/Ni in-
puts and producing Ai outputs. The number of groups
that the reducer can cover at granularity di is therefore
no more than bqNi/|I|c, and the covering function is

g(q) =
∑n

i=1 Ai

⌊
qNi
|I|

⌋
.

Lower Bound on Replication Rate. We consider p re-
ducers, each receiving qi ≤ q inputs and covering g(qi) out-
puts. Since together they must cover all outputs, it must be
the case that

∑p
j=1 g(qj) ≥ |O|. This corresponds to

p∑
j=1

n∑
i=1

Ai

⌊
qjNi

|I|

⌋
≥

n∑
i=1

NiAi. (1)

Since qjNi/|I| ≥ bqjNi/|I|c, we obtain the lower bound
of the replication rate r as:

r =

p∑
i=1

qi
|I| ≥ 1. (2)

Equation 2 seems to imply that ROLLUP aggregates is an
embarassingly parallel problem: the r ≥ 1 bound on repli-
cation rate does not depend on the size qi of reducers. In
Section 4, we show – for the first time – an instance of an
algorithm that matches the lower bound. Instead, known
instances of ROLLUP aggregates have a larger replication
rate, as we shall see next.

Limits on Parallelism. Let us now reformulate Equa-
tion 2, this time requiring only that the output of the coars-
est granularity d1 is covered. We obtain

p∑
j=1

⌊
qjN1

|I|

⌋
≥ N1.

3For the limit case di = ∅, Ni = 1, corresponding to the
single empty grouping key.

Clearly, the output cannot be covered (the left side of the
equation would be zero) unless there are reducers receiv-
ing at least qj ≥ |I|/N1 input records. Indeed, the coars-
est granularity imposes hard limits on the parallelism, re-
quiring to broadcast the full input on at most N1 reducers.
This is exacerbated if – as it is the case with the standard
SQL ROLLUP – there is an overall aggregation, resulting
in d1 = ∅, N1 = 1 and therefore qj ≥ |I|. A single reducer
needs to receive all the input : it appears that no parallelism
whatsoever is possible.

As we show in the following, this negative result however
depends on the limitations of the model: by applying com-
biners and/or multiple rounds of MapReduce computation,
it is indeed possible to compute efficient ROLLUP aggre-
gates in parallel.

Maximum Achievable Parallelism. Our model consid-
ers parallelism as determined by the number of reducers
p and the number of input records qj each of them pro-
cesses. However, one may also consider the number of output
records produced by each reducer: in that case, the maxi-
mum parallelism achievable is when each reducer produces
at most a single output value. This can be obtained by
assigning each grouping key in each granularity to a differ-
ent reducer; the aggregation function is then guaranteed to
output only one of the Ai possible values. This, however,
implies a replication rate r = n; an implementation of the
idea is described in the following section.

4.2 Baseline algorithms
Next, we define two baseline algorithms to compute

ROLLUP aggregates: Vanilla, which is discussed in [16],
and In Reducer Grouping, which is our contribution. Then,
we propose a hybrid approach that combines both baseline
techniques.

Vanilla Approach. We describe here an approach that
maximizes parallelism at the detriment of communication
cost; since this is the approach which is currently imple-
mented in Apache Pig [15] we refer to it as Vanilla. Nandi
et al. [16] refer to it as “naive”.

The ROLLUP operator can be considered as the result
multiple GROUP BY operations: each of them is carried
out at a different granularity. Thus, to perform ROLLUP
on n granularities, for each record, the vanilla approach gen-
erates exactly n records corresponding to these n grouping
sets (each grouping sets belongs to one granularity). For
instance, taking as input the (2012, 3, 14, 1) record of
the running example, this approach generates 4 records as
outputs of the map phase:

(2012, 3, 14, 1) (day granularity)

(2012, 3, *, 1) (month granularity)

(2012, *, *, 1) (year granularity)

(*, *, *, 1) (overall granularity)

The Reduce step performs exactly as the reduce step of a
GROUP BY operation, using the first three records (year,
month, day) as keys. By doing this, reducers pull all the
data that is needed to generate each output record (shuffle
step), and compute the aggregate (reduce step). Figure 1
illustrates a walk-through example of the vanilla approach
with just 2 records.

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 3, *), 1>

<(2012, 12, *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(2012, 3, *), 1>

<(2012, 12, *), 2>

Reducer 1

Reducer 2

Mappers Shuffle

Figure 1: Example for the vanilla approach.

Parallelism and Communication Cost. The final result of
ROLLUP is computed in a single MapReduce job. As dis-
cussed above, this implementation obtains the maximum
possible degree of parallelism, since it can be parallelized
up to a level where a single reducer is responsible of a single
output value. On the other hand, this algorithm requires
maximal communication costs, since for each input record,
n map output records are generated. In addition, when the
aggregation operation is algebraic [12], redundant compu-
tation is carried out in the reduce phase, since results com-
puted for finer granularities cannot be reused for the coarser
ones.
Impact of Combiners. This approach largely benefits from
combiners whenever they are available, since they can com-
pact the output computed at the coarser granularity (e.g.,
in the example the combiner is likely to compute a single
per-group value at the year and overall granularity). With-
out combiners, a granularity such as overall would result in
shuffling data from every input tuple to a single reducer.

While combiners are very important to limit the amount
of data sent along the network, the large amount of tempo-
rary data generated with this approach is still problematic:
map output tuples need to be buffered in memory, sorted,
and eventually spilled to disk if the amount of generated
data does not fit in memory. This results, as we show in
Section 5, in performance costs that are discernible even
when combiners are present.

In-Reducer Grouping. After analyzing an approach that
maximizes parallelism, we now move to the other end of the
spectrum and design an algorithm that minimizes communi-
cation costs. In contrast to the Vanilla approach, where the
complexity resides on the Map phase and the Reduce phase
behaves as if implementing an ordinary GROUP BY clause,
we propose an In-Reducer Grouping (IRG) approach, where
all the logic of grouping is performed in the Reduce phase.

In-Reducer Grouping makes use of the possibility to de-
fine a partitioner in Hadoop [10, 20]. The mapper selects
the columns of interest (in our example, all columns are
needed, so the map function is simply the identity function).
The keys are the finest granularity dn (day in our example)
but data is partitioned only by the columns of the coarsest
granularity d1. In this way, we can make sure that 1) each
reducer receives enough data to compute the aggregation
function even for the coarsest granularity d1; 2) the inter-
mediate keys are sorted [10, 20], so for every grouping key
of any granularity di, the reducer will process consecutively

(2012, 3, 14, 1)

(2012, 12, 5, 2)

Reducer IRGMappers Shuffle

(2012, 12, 30, 3)

(2013, 5, 24, 4)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 12, 30), 3>

<(2013, 5, 24), 4>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, 12, 30), 3>

<(2013, 5, 24), 4>

<(2012, 3, *), 1>

<(2012, 12, *), 5>

<(2012, *, *), 6>

<(2013, 5, *), 4>

<(2013, *, *), 4>no more input

<(*, *, *), 10>

Figure 2: Example for the IRG approach.

all records pertaining to the given grouping key.
Figure 2 shows an example of the IRG approach. The

mapper is the identity function, producing (year, month,
day) as the keys and payload as the value. The coarsest
granularity d1 is overall, and N1 = 1: hence, all 〈key, value〉
pairs are sent to a single reducer. The reducer groups all
values of the same key, and processes the list of values asso-
ciated to that key, thus computing the sum of all values as
the total payload t. The grouping logic in the reducer also
takes care of sending t to n grouping keys constructed from
the reducer input key. For example, with reference to Fig-
ure 2, the input pair (<2012, 3, 14>, 1) implies that value
t = 1 is sent to grouping keys (2012, 3, 14), (2012, 3,

*), (2012, *, *) and (*, *, *). The aggregators in these
grouping keys accumulate all t values they receive. When
there is no more t value for a grouping key (in our example,
when year or month change, as shown by the dashed lines in
Figure 2), the aggregator outputs the final aggregated value.

The key observation we exploit in the IRG approach is
that a secondary, lexicographic sorting, is fundamental to
minimize state in the reducers. For instance, at month gran-
ularity, when the reducer starts processing pair (<2013, 5,

24>, 4), then we are guaranteed that all grouping keys of
month smaller than (2013, 5) (e.g. (2012, 12)) have al-
ready been processed and should be output without further
delay. This way reducers need not keep track of aggregators
for previous grouping keys: reducers only use n aggregators,
one for each granularity.

To summarize, the IRG approach extensively relies on the
idea of an on-line algorithm: it makes a single pass over its
input, maintaining only the necessary state to accumulate
aggregates (both algebraic and holistic) at different granu-
larities, and produces outputs as the reduce function iterates
over the input.
Parallelism and Communication Cost. Since mappers out-
put one tuple per input record, the replication rate of the
IRG algorithm meets the lower bound of 1, as showed in
Equation 2. On the other hand, this approach has limited
parallelism, since it uses no more reducers than the number
N1 of grouping keys at granularity d1. In particular, when
an overall aggregation is required, IRG can only work on
a single reducer. As a result, IRG is likely to perform less
work and require less resources than the Vanilla approach
described previously, but it cannot benefit from paralleliza-

overall: d1 year: d2 month: d3 day: d4

P=1 P=2 P=3 P=4

Selected

pivot position

Vanilla-

approach

IRG-approach

Figure 3: Pivot position example.

tion in the reduce phase.
Impact of Combiners. Since the IRG algorithm minimizes
communication cost, combiners only perform well if pre-
aggregation at the finest granularity dn is beneficial – i.e., if
the number of rows L in the data set is definitely larger than
the number of grouping keys at the finest granularity, Nn.
As such, the performance of the IRG approach suffers the
least from the absence of combiners, e.g. when aggregation
functions are not algebraic.

If the aggregate function is algebraic, however, the IRG
algorithm is designed to re-use results from finer granulari-
ties in order to build the aggregation function hierarchically :
in our running example, the aggregate of the total payload
processed in a month can be obtained by summing the pay-
load processed in the days of that month, and the aggregate
for a year can likewise be computed by adding up the total
payload for each month. Such an approach saves and reuses
computation in a way that is not possible to obtain with the
Vanilla approach.

Hybrid approach: Vanilla + IRG. We have shown that
Vanilla and IRG are two “extreme” approaches: the first
one maximizes parallelism at the expense of communication
cost, the second one instead minimizes communication cost
but does not provide good parallelism guarantees.

Neither approach is likely to be an optimal choice for such
a tradeoff: in a realistic system, we are likely to have way less
reducers than number of output tuples to generate (there-
fore making the extreme parallelism guarantees produced
by Vanilla excessive); however, in particular when an over-
all aggregate is needed, it is reasonable to require an im-
plementation that does not have the bottleneck of a single
reducer.

In order to benefit at once from an acceptable level of par-
allelism and lower communication overheads, we propose an
hybrid algorithm that fixes a pivot granularity P : all aggre-
gate functions on granularities between dP and dn are com-
puted using the IRG algorithm, while aggregates for gran-
ularities above dP are obtained using the Vanilla approach.
A choice of P = 1 is equivalent to the IRG algorithm, while
P = n corresponds to the Vanilla approach.

Let us consider again our running example, and fix the
pivot position at P = 3, as shown in Figure 3. This choice
implies that aggregates for the overall and year granularities
d1, d2 are computed using the Vanilla approach, while ag-
gregates for the other granularities d3, d4 (month and day)
are obtained using the IRG algorithm. For example, for
the (2012, 3, 14, 1) tuple, the hybrid approach produces
three output records at the mapper:

(2012, 3, 14, 1) (day granularity)

(2012, *, *, 1) (year granularity)

(*, *, *, 1) (overall granularity)

Reducer 2

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(*, *, *), 1>

<(*, *, *), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

Reducer 1Mappers Shuffle

<(2012, 3, 14), 1>

<(2012, 3, *), 1>

<(*, *, *), 3>

<(2012, 12, 5), 2>

<(2012, 12, *), 2>

<(2012, *, *), 3>

Figure 4: Example for the Hybrid Vanilla + IRG
approach.

In this case the map output key space is partitioned by the
month granularity, so that there is 1) one reducer per each
month in the input dataset, that computes aggregates for
granularities up to the month level, and 2) multiple reducers
that compute aggregates for the overall and year granular-
ities. Figure 4 illustrates an example with two reducers.

Some remarks are in order. Assuming a uniform distribu-
tion of the input dataset, the load on reducers of type 1) is
expected to be evenly shared, as an input partition corre-
sponds to an individual month and not the whole dataset.
The load on reducers of type 2) might seem still prohibitive;
however, we note that when combiners are in place they
are going to vastly reduce the amount of data sent to the
reducers responsible of the overall and year aggregate com-
putation. For our example, the reducers of type 2) receive
few input records, because the overall and year aggregates
can be largely computed in the map phase. Furthermore,
we remark that the efficiency of combiners in reducing in-
put data to reducers (and communication costs) is very high
for coarse granularities, and decreases towards finer granu-
larities: this is why the IRG algorithm applies the Vanilla
approach from the pivot position, up to coarse granularities.
Parallelism and Communication Cost. The performance of
the hybrid algorithm depends on the choice of P : the repli-
cation rate (before combiners) is P . The number of reducer
that this approach can use is the total of 1) NP group-
ing keys that are handled with the IRG algorithm, and 2)∑P−1

i=0 Ni grouping keys that are handled with the Vanilla
approach. Ideally, an a priori knowledge of the input data
can be used to guide the choice of the pivot position. For ex-
ample, if the data in our running example is known to span
over tens of years and we know we only have ten reducer
slots available (i.e., at most ten reducer tasks can run con-
currently), a choice of partitioning by year (P = 2) would
be reasonable. Conversely, if the dataset only spans a few
years and hundreds of reducer slots are available, then it
would be better to be more conservative and choose P = 3
or P = 4 to obtain better parallelism at the expense of a
higher communication cost.
Impact of Combiners. The hybrid approach heavily relies
of combiners. Indeed, when combiners are not available, all
input data will be sent to the one reducer in charge of the
overall granularity; in this case, it is then generally better
to choose P = 1 and revert to the IRG algorithm. However,
when the combiners are available, the benefit for the hybrid
approach is considerable, as discussed above.

Reducer 1

Reducer 2

(2012, 3, 14, 1)

(2012, 12, 5, 2)

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

<(2012, 3, 14), 1>

<(2012, 12, 5), 2>

<(2012, *, *), 1>

<(2012, *, *), 2>

Mappers Shuffle

<(2012, 3, 14), 1>

<(2012, 3, *), 1>

<(*, *, *), 3>

<(2012, 12, 5), 2>

<(2012, 12, *), 2>

<(2012, *, *), 3>

Figure 5: Example for the Hybrid IRG + IRG ap-
proach.

4.3 Alternative hybrid algorithms
We now extend the hybrid approach we introduced previ-

ously, and propose two alternatives: a single job involving
two parallel IRG instances, and a chained job involving a
first IRG computation and a final IRG aggregation.

Hybrid approach: IRG + IRG. In the previous section,
we have shown that it is possible to design an algorithm
aiming at striking a good balance between parallelism and
replication rate, using a single parameter, i.e. the pivot
position. In the baseline hybrid approach, parallelism is an
increasing function of the replication rate, so that better par-
allelism is counterbalanced by higher communication costs
in the shuffle phase.

Here, we propose an alternative approach that results in
a constant replication rate of 2: the “trick” is to replace the
Vanilla part of the baseline hybrid algorithm with a second
IRG approach. Using the same running example as before,
for the tuple (2012, 3, 14, 1), and selecting the pivot po-
sition P = 3, the two map output records are:

(2012, 3, 14, 1) (day granularity)

(2012, *, *, 1) (year granularity)

Figure 5 illustrates a running example. In this case, the
map output key space is partitioned by the month granular-
ity, such that there is one reducer per month that uses the
IRG algorithm to compute aggregates; in addition, there is
one reducer receiving all tuples having ALL values taking
care of the year and overall granularities, using again the
IRG approach. As before, the role of combiners is crucial:
the amount of (year, *, *, payload) tuples that are sent
to the single reducer taking care of year and overall aggre-
gates is likely to be very small, because opportunities to
compute partial aggregates in the map phase are higher for
coarser granularities.
Parallelism and Communication Cost. This algorithm has
a constant replication rate of 2. As we show in Section 5,
the choice of the pivot position P is here much less decisive
than for the baseline hybrid approach: this can be explained
by the fact that moving the pivot to finer granularities does
not increase communication costs, as long as the load on the
reducer taking care of the aggregates for coarse granularities
remains low.
Impact of Combiners. Similarly to the baseline hybrid ap-
proach, this algorithm relies heavily on combiners; if com-
biners are not available, then, a simple IRG approach would
be preferable.

Chained IRG. It is possible to further decrease the replica-
tion rate and hence the communication costs of computing
ROLLUP aggregates by adopting a multi-round approach
composed of two chained MapReduce jobs. In this case, the
first job pre-aggregates results up to the pivot position P
using the IRG algorithm; the second job uses partial aggre-
gates from the first job to produce – on a single reducer –
the final aggregate result, again using IRG. We note here
that a similar observation, albeit for computing matrix mul-
tiplication, is also discussed in detail in [4].
Parallelism and Communication Cost. The parallelism of
the first MapReduce job is determined by the amount NP of
grouping keys at the pivot position; the second MapReduce
job, has a single reducer. However, the input size of the
second job is likely to be orders of magnitude smaller than
the first one, so that the runtime of the reduce phase of the
second job – unless the pivot position puts too much effort
on the second job – is generally negligible. The fact that the
second reducer operates on a very small amount of input,
results in a replication rate very close to 1.

The main drawback of the chained approach is due to job
scheduling strategies: if jobs are scheduled in a system with
idle resources, as we show in Section 5, the chained IRG algo-
rithm results in the smallest runtime. However, in a loaded
system, the second (and in general very small) MapReduce
job could be scheduled later, resulting in artificiously large
delays between job submission and its execution.
Impact of Combiners. This approach does not rely heavily
on combiners per se. However, it requires the aggregation
function to be algebraic in order to make it possible for the
second MapReduce job to re-use partial results.

5. EXPERIMENTAL EVALUATION
We now proceed with an experimental approach to study

the performance of the algorithms we discussed in this work.
We use two main metrics: runtime – i.e. job execution
time – and total amount of work, i.e. the sum of individual
task execution times. Runtime is relevant on idle systems,
in which job scheduling does not interfere with execution
times; total amount of work is instead an important metric
to study in heavily loaded systems where spare resources
could be assigned to other pending jobs.

5.1 Experimental Setup
Our experimental evaluation is done on a Hadoop cluster

of 20 slave machines (8GB RAM and a 4-core CPU) with 2
map and 1 reduce slot each. The HDFS block size is set to
128MB. All results shown in the following are the average of
5 runs: the standard deviation is smaller than 2.5%, hence
– for the sake of readability – we omit error bars from our
figures.

We compare the five approaches described in Section 4:
baseline algorithms (Vanilla, IRG, Hybrid Vanilla + IRG)
and alternative hybrid approaches (Hybrid IRG + IRG
Chained IRG). We evaluate a single ROLLUP aggregation
job over (overall, year, month, day, hour, minute, second)
that uses the SUM aggregate function which, being algre-
braic, can benefit from combiners. Our input dataset is a
synthetic log-trace representing historical traffic measure-
ments taken by an Internet Service Provider (ISP): each
record in our log has 1) a time-stamp expressed in (year,
month, day, hour, minute, second); and 2) a number repre-
senting the payload (e.g. number of bytes sent or received

Figure 6: Impact of combiners on runtime for the
Vanilla approach.

over the ISP network). The time-stamp is generated uni-
formly at random within a variable number of years (where
not otherwise specified, the default is 40 years). The pay-
load is a uniformly random positive integer. Overall, our
dataset comprises 1.5 billion binary tuples of size 32 bytes
each, packed in a SequenceFile [20].

5.2 Results
This section presents a range of results we obtained in our

experiments. Before delving into a comparative study of all
the approaches outlined above, we first focus on studying
the impact of combiners on the performance of the Vanilla
approach. Then, we move to a detailed analysis of runtime
and amount of work for baseline algorithms (Vanilla, IRG,
and Hybrid), and we conclude with an overview to outline
merits and drawbacks of alternative hybrid approaches.

The role of combiners. Figure 6 illustrates a break-down
of the runtime for computing the ROLLUP aggregate on our
dataset, showing the time a job spend in the various phases
of a MapReduce computation. Clearly, combiners play an
important role for the Vanilla approach: they are beneficial
in the shuffle and reduce phases. When combiners cannot
be used (e.g. because the aggregation function is not alge-
braic), the IRG algorithm outperforms the Vanilla approach.
With combiners enabled, the IRG algorithm is slower (larger
runtimes) than the Vanilla approach: this can be explained
by the lack of parallelism that characterizes IRG, wherein
a single reducer is used as opposed to 20 reducers for the
Vanilla algorithm. Note that, in the following experiments,
combiners are systematically enabled. Finally, Figure 6 con-
firms that the IRG approach moves algorithmic complexity
from the map phase to the reduce phase.

Baseline algorithms. In Figure 7(a) we compare the run-
time of Vanilla, IRG, and the hybrid Vanilla + IRG ap-
proach. In our experiments we study the impact of the pivot
position P , in lights of the “nature” of the input dataset: we
synthetically generate data such that they span 1, 10 and
40 years worth of traffic logs.4

Clearly, IRG (which corresponds to P = 1) is the slow-
est approach in terms of runtime. Indeed, using a single
reducer incurs in prohibitive I/O overheads: the amount of
data shuffled into a single reducer is too large to fit into mem-

4Note that the size – in terms of number of tuples – of the
input data is kept constant, irrespectively of the number of
represented years.

IRG (P=1) P=2 P=3 P=4 P=5 P=6 Vanilla (P=7)
0

1000

2000

3000

4000

5000
R

u
n
ti
m

e
 (

s
e

c
o

n
d

s
)

40 years

10 years

1 years

(a) Runtime (b) Amount of work

Figure 7: Comparison of baseline approaches.

ory, therefore spilling and merging operations at the reducer
proceed at disk speeds. Although no redundant computa-
tions are carried out in IRG, I/O costs outweigh the savings
in computations.

A hybrid approach (2 ≤ P ≤ 6) outperforms both IRG
and Vanilla algorithms, with runtime as little as half that of
the Vanilla approach. Communication costs make the run-
time grow slowly as the pivot position moves towards finer
granularities, suggesting that in doubt, it is better to posi-
tion the pivot to the right (increased communication costs)
rather than to the left (lack of parallelism). In our case,
where a maximum of 20 reduce tasks can be scheduled at
any time, our results indicate that P should be chosen such
that NP is larger than the number of available reducers.
As expected, experiments with data from a single year indi-
cate that the pivot position should be placed further to the
right: the hybrid approach with P = 2 essentially performs
as badly as the single-reducer IRG.

Now, we present our results under a different perspec-
tive: we focus on the total amount of work executed by a
ROLLUP aggregate implemented according to our baseline
algorithms. We define the total amount of work for a given
job as the sum of the runtime of each of its (map and reduce)
tasks. Figure 7(b) indicates that the IRG approach con-
sumes the least amount of work. By design, IRG is built to
avoid redundant work: it has minimal replication rate, and
the single reducer can produce ROLLUP aggregates with a
single pass over its input.

As a general remark, that applies to all baseline algo-
rithms, we note that the total amount of work is largely
determined by the map phase of our jobs. The trend is tan-
gible as P moves toward finer granularities: despite com-
munication costs (the shuffle phase, which accounts for the
replication rate) do not increase much with higher values
of P thanks to the key role of combiners, map tasks still
need to materialize data on disk before it can be combined
and shuffled, thus contributing to a large extent to higher
amounts of work.

Alternative Hybrid Approaches. We now give a com-
pact representation of our experimental results for variants
of the Hybrid approach we introduce in this work. Figure 8
offers a comparison, in terms of job runtime, of the Hybrid
Vanilla + IRG approach to the Hybrid IRG + IRG and the
Chained IRG algorithms. For the sake of readability, we
omit from the figure experiments corresponding to P = 1

and P = 7.
Figure 8 shows that the job runtime of the Hybrid Vanilla

+ IRG algorithm is sensitive to the choice of the pivot po-
sition P . Despite the use of combiners, the Vanilla “com-
ponent” of the hybrid algorithm largely determines the job
runtime, as discussed above. The IRG + IRG hybrid algo-
rithm obtains lower job runtime and is less sensitive to the
pivot position, albeit 3 ≤ P ≤ 5 constitutes an ideal range
in which to place the pivot. The best performance in terms
of runtime is achieved by the Chained IRG approach: in
this case, the amount of data shuffled through the network
(aggregated over each individual job of the chain) is smaller
than what can be achieved by a single MapReduce job. We
further observe that placing P towards finer granularities
contributes to small job runtime: once an appropriate level
of parallelism can be achieved in the first job of the chain,
the computation cost of the second job in the chain is negli-
gible, and the total amount of work (not shown here due to
space limitations) is almost constant and extremely close to
the one for IRG.

We can now summarize our findings as follows:

• All the approaches that we examined greatly bene-
fit from the, fortunately common, property that ag-
gregation functions are algebraic and therefore enable
combiners and re-using partial results. If this is not
the case, approaches based on the IRG algorithm are
preferable.

• If total amount of work is the metric to optimize, IRG
is the best solution because it minimizes redundant
work. If low latency is also required, hybrid approaches
offer a good trade-off, provided that the pivot position
P is chosen appropriately.

• Our alternative hybrid approaches are the best per-
forming solutions; both are very resilient to bad choices
of the P pivot position, which can therefore be cho-
sen with a very rough a-priori knowledge of the in-
put dataset. Chained IRG provides the best results
due to its minimal communication costs. However,
chained jobs may suffer from bad scheduling decisions
in a heavily loaded cluster, as the second job in the
chain may “starve” due to large jobs being scheduled
first. The literature on MapReduce scheduling offers
solutions to this problem [18].

P=2 P=3 P=4 P=5 P=6
0

500

1000

1500

2000

2500

3000

3500

4000

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Hybrid Vanilla+IRG

Hybrid IRG+IRG

Chained IRG

Figure 8: Comparison between alternative hybrid
approaches.

6. CONCLUSION & FUTURE WORK
In this paper we have studied the problem of the effi-

cient computation of ROLLUP aggregates in MapReduce.
We proposed a modeling approach to untangle the avail-
able design space to address this problem, by focusing on
the trade-off that exists between the achievable parallelism
and communication costs that characterize the MapReduce
programming model. This was helpful in identifying the
limitations of current ROLLUP implementations, that only
cover a small portion of the design space as they concen-
trate solely on parallelism. We presented an algorithm to
meet the lower bounds of the communication costs we de-
rived in our model, and showed that minimum replication
can be achieved at the expenses of parallelism. In addition
we presented several variants of ROLLUP implementations
that share a common trait: a single parameter (the pivot)
allows tuning the parallelism vs. communication trade-off
for finding a reasonable “sweet spot”.

Our work was enriched by an experimental evaluation of
several ROLLUP implementations. The experimental ap-
proach revealed the importance of optimizations currently
available in systems such as Hadoop, which could not be
taken into account with a modeling approach alone. Our
experiments showed, in addition to the performance of each
ROLLUP variant in terms of runtime, that the efficiency of
the new algorithms we designed in this work was superior
to what is available in the current state of the art.

Our plan is to extend our experimental evaluation to con-
sider skewed datasets: we believe that our hybrid algorithms
exhibit the distinguishing feature that the pivot position can
be used not only to gauge parallelism and replication, but
also to mitigate the possible uneven computational load dis-
tribution when data is not uniform. We also consider a
data-dependent pivot, which is an even more refined pivot
than our current schema-dependent one. Furthermore, we
plan to extend our work by designing an automatic mecha-
nism to select an appropriate pivot position, depending on
the nature of the data to process.

Acknowledgments
The authors would like to thank Antonio Barbuzzi for his
valuable comments. This work has been partially supported
by the EU project BigFoot (FP7-ICT-317858).

7. REFERENCES
[1] http://hadoop.apache.org.
[2] http://hive.apache.org.

[3] http://pig.apache.org.

[4] F. N. Afrati et al. Upper and lower bounds on the cost
of a map-reduce computation. In VLDB, 2013.

[5] F. N. Afrati and J. D. Ullman. Optimizing Multiway
Joins in a Map-Reduce Environment. IEEE
Transactions on Knowledge and Data Engineering,
2011.

[6] S. Agarwal et al. On the Computation of
Multidimensional Aggregates. In VLDB, 1996.

[7] S. Bellamkonda et al. Adaptive and Big Data Scale
Parallel Execution in Oracle. In VLDB, 2013.

[8] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. In ACM
SIGMOD, 1999.

[9] S. Blanas et al. A comparison of join algorithms for log
processing in MapReduce. In ACM SIGMOD, 2010.

[10] J. Dean and S. Ghemawat. MapReduce : Simplified
Data Processing on Large Clusters. In ACM OSDI,
2004.

[11] M. Fang et al. Computing Iceberg Queries Efficiently.
In VLDB, 1998.

[12] J. Gray et al. Data Cube : A Relational Aggregation
Operator Generalizing Data Cube : A Relational
Aggregation Operator Generalizing Group-By ,
Cross-Tab , and Sub-Totals. Data Mining and
Knowledge Discovery, 1997.

[13] J. Hah, J. Pei, and G. Dong. Efficient Computation of
Iceberg Cubes with Complex Measures. In ACM
SIGMOD, 2001.

[14] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In ACM
SIGMOD, 1996.

[15] P. Jayachandran. Implementing RollupDimensions
UDF and adding ROLLUP clause in CUBE operator.
PIG-2765 JIRA.

[16] A. Nandi et al. Distributed cube materialization on
holistic measures. In IEEE ICDE, 2011.

[17] A. Okcan and M. Riedewald. Processing Theta-Joins
using MapReduce. In ACM SIGMOD, 2011.

[18] M. Pastorelli et al. HFSP: Size-based scheduling for
hadoop. In IEEE BigData, 2013.

[19] K. A. Ross and D. Srivastava. Fast computation of
sparse datacubes. In VLDB, 1997.

[20] T. White. Hadoop - The Definitive Guide: Storage and
Analysis at Internet Scale. O’Reilly, 2012.

