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Abstract: This paper addresses mobile code security with respect to potential integrity and
privacy violations originating from the runtime environment. The suggested solution requires

a trusted hardware with limited capacity like a smartcard and assures the security of a pro-
gram executed on untrusted runtime environments by means of some interactions between the
program and the trusted hardware. The security of this scheme is based on an extension of
function hiding using error correcting codes. Unlike prior function hiding schemes, the pro-
posed technique allows multi-step execution and the delivery of cleartext output at the remote
site.

Keywords: mobile code security, integrity, privacy, cryptography.

1 Introduction

With the advent of new computing paradigms like mobile code and ubiquitous computing, the

privacy and integrity of software programs become a major concern beyond classical data
security considerations. Running a program in a potentially hostile environment may raise

various security requirements, as follows:

- a company might need to prevent the disclosure of certain sensitive algorithms implemented
in its software products despite extensive code analysis and reverse engineering by potential
intruders including its customers;

- a mobile software agent acting on behalf of a person might need to assure the integrity of
some critical operation performed on an untrusted remote host;

- a data collection agent might need to assure both the confidentiality and the integrity of the
results computed at various competing sites.

Security with mobile code has long been viewed only as the problem of protecting local
resources against potential misuse and denial of service by the mobile code. This problem
received much attention from software manufacturers as well as researchers, resulting in vari-
ous solutions included in recent releases of products like JAVA.
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Conversely, research on mobile code protection against potential attacks from the runtime
environment could not come up with practical solutions yet, hence the limited if non-existing
coverage of the problem by the industry. Assuring mobile code’s security in an untrusted exe-
cution environment without tamper proof hardware has been conjectured as impossible in the
literature [CHK97]; a breakthrough was achieved by [ST98a] and later by [LM99a] in terms
of a “pure algorithmic” solution without recourse to tamper proof hardware, but unfortunately
the results were not suitable for practical applications.

This paper presents a solution for the integrity and privacy of mobile code execution. Privacy
of execution aims at preventing the disclosure of a program’s semantics during its execution
in a potentially hostile runtime environment. Integrity of execution assures that a program
executed in a potentially hostile environment actually complies with its original semantics. A
solution for the verification of integrity of execution may consist of verifying that the results
of an execution on a potentially hostile environment actually belong to the set of possible
results of the original mobile program.

The suggested solution requires a trusted hardware with limited capacity like a smartcard and
assures the security of a program executed on untrusted runtime environments by means of
some interactions between the program and the trusted hardware. The security of this scheme
is based on an extension of function hiding using error correcting codes [LM99a]. Unlike
prior function hiding schemes, the proposed technique allows multi-step execution and the
delivery of cleartext output at the remote site.

The existing approaches to the problem of privacy of execution are referred in section two. In
section three the problem of integrity of execution is discussed. The focus of these two sec-
tions is mainly to identify the limitations of the existing approaches and to justify the need for
integrated approaches. Section four is dedicated to the definition of the model and discusses
the conditions and benefits of such a model. In section five our original solution is described
and in section six an analysis of the protocol is provided.

2 Privacy of Execution

One of the main advantages of mobile code is its ability of executing tasks locally in an auton-
omous way. Autonomy means that the code is able to perform its tasks with no interaction
with the originator of the code. Therefore, this section focuses on approaches that accomplish
the requirement of privacy of execution in a non-interactive way.

Sander and Tschudin [ST98b], [ST98a] defined a function hiding scheme based on a non-
interactive protocol as depicted in Figure 1. This protocol is non-interactive in so far as the
interactions between the owner of the function (Alice) and the remote party that evaluates the
function (Bob), consist only of the transmission of the function by Alice to Bob and the trans-
mission of the result back to Alice by Bob.
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FIGURE 1. Non-interactive protocol for privacy of execution.

In a non-interactive protocol, a functidrowned by Alice is evaluated by Bob on the input
datax (provided by Bob), while preventing the disclosurefdb Bob. The privacy of is
assured by the transformatifrthat satisfies the following properties:

- it is infeasible under the intractability of a computational problem to difigen E(f);

- the cleartext resuf{x) can be derived from the encrypted regff)](x) in polynomial time
using a secret trapdoor (algoritid.

Sander and Tschudin [ST98Db] illustrated the autonomous protocol concept with a method that
allows to encrypt polynomials, based on the Goldwasser Micali [GM84] encryption scheme.
Later, Loureiro and Molva [LM99a] proposed an efficient method that allows to encrypt com-
binational boolean circuits with several inputs and outputs, based on the composition of func-
tions. Briefly, the novelty of the approach consisted of exploring the properties of functions
used on coding theory. The technique described in the present paper is an extension of this
work.

The models where the solutions for privacy of execution apply are very limited. Furthermore,
the result is only meaningful for the originator of the code (Alice), therefore not allowing oth-
ers to use this result in subsequent computations. One can see this limitation as the possibility
of encrypting combinational but not sequential circuits. Therefore, the solutions are limited to
scenarios of one time executions. The limitation comes from the fact that the originator can-
not give the decryption algorithm to the remote host without compromising the privacy of the
function. Another limitation is the absence of integrity of execution, which relies on the trust
assumption that if the host cannot understand the code, then it cannot tamper with it in a
meaningful way.

3 Integrity of Execution

The aim of integrity of execution is to provide the possibility to the code owner to verify the
correctness of execution of his code. This problem has been extensively studied for achieving
reliability (see for example [BW97] for a survey) but security requirements taking into



account possible malicious behaviour from the execution environment were not considered.
Once more, we focus on non-interactive solutions.

Vigna in [Vig97] proposed a natural way of achieving integrity of execution where the origi-
nator receives and checks the trace of execution of the code. Due to the fact that the traces can
be very cumbersome in terms of communication complexity the author suggested the use of
hashes of the trace in order to oblige the remote host (Bob) to commit to the trace. The overall
trace will be sent if the originator is suspicious about the behaviour of the remote host.

Yee [Yee97] suggested the use of proof based techniques. The host has to forward a proof of
the correctness of the execution with the result. Complexity theory shows how to build proofs

for NP-languages and recently how to build Probabilistic Checkable Proofs (PCP)‘ @M
[AS98]. PCP proofs assure the correctness of a statement while checking only a subset of the
proof. However, the subset has to be randomly determined by the checker, so the problem of
using PCP proofs in our non interactive scenario is that the prover has to commit to the overall
PCP proof (this proof is bigger than a non PCP proof).

In [BMW98], the authors presented an interesting model for mobile computing and a solution
that overcomes the problem of using PCP proofs. The agent is modelled as a probabilistic
Turing machine, and the set of all possible states of this machine constitutes an NP language,
so there is a verification process for the membership of the language, that is, it is possible to
check if an obtained state belongs to the language. To avoid the transmission of the overall
PCP proof of the specified language, the randomly chosen queries from the checker are
encrypted using non interactive Private Information Retrieval (PIR) techniques (see for exam-
ple [CMS99)).

Integrity of execution only ensures that the obtained result is a possible output of the function,
however the remote host is able to identify which are the possible outputs. Therefore it does
not prevent re-execution of the code and selection of the best result or the reverse engineering
of the code.

4 Model

To achieve mobile code protection, it is fundamental to tackle both privacy and integrity of
execution. The originality of the solution presented here is the delegation of the originator’s
functionalities to tamper proof hardware (TPH) available on the remote host. We are thinking
on smartcards when we refer to tamper proof hardware, even if there is extensive work that
has questioned this definition.

The existence of tamper proof hardware on the host acting on behalf of the code’s originator,
even if limited in terms of storage and computational power, allows to retrieve the cleartext
result at the remote host, therefore extending the model where the solution can be applied
(without interaction with the code owner). Even if the new solution is based on the original
technique described in [LM99a], it does not consist of a straightforward substitution of the
code owner of the original scheme with a trusted party located in the remote site. The limita-
tions in terms of storage and computational power are taken into account, where before this



was not an important requirement for the code owner. Furthermore, integrity of execution is
achieved in a completely original way.

The code is modelled as a set of combinational cirdgjitss depicted in the left side of figure
2. The computation of each individual circiitdepends on a set of inputg;f received from
the host and a set of outputg) received from the circuits that were previously evaluated. As

in the original scheme of [LM99a], the goal of the transformatiois to achieve the privacy
of each circuitF;. For each output of the transformed circhi§ the tamper proof hardware

should be able to check the integrity of the result and to get the cleartextygsuitt an effi-

cient way. On the other hand, the verification process should be efficient and less complex
than recalculating the function itself.

The integrity verification process uses data that has to be transmitted over a private channel to
the TPH. This data can be seen as some random queries related to the transformation applied
to each circuit. For the sake of simplicity, the figure shows a sequential set of circuits, but the
technique can be applied to parallel executions or circuits executed on other execution envi-
ronments. The processes of integrity verification and retrieving the cleartext result do not
depend on the sequence of execution of the circuits. The TPH has to handle the different sets
of random queries and to relate these sets to the corresponding circuits.

5 Solution

Each combinational circuit is converted into a matrix format as described in [LM99b] (an
example is presented in the appendix). Each resulting matrix is then encoded through the
algorithmE. The result can be seen as another circuit even if referred as a matrix during the
description. Starting from a set of equations, our technique creates a set of dependent equa-
tions using an error correcting code (namely a Goppa code). This transformation is hidden by
a permutation and an addition with an error matrix. This process is similar to the construction
of the public key in cryptosystems based on coding theory and its security relies heavily on
the underlying class of codes. More information about the security of this kind of construction
can be found in the appendix.

We will simplify the description by using binary matrices, because it is suitable for represent-
ing boolean functions or circuits, but the technique can be used for matrices with elements

from Zq. This allows the representation of algebraic circuits and implies the ugeaof
Goppa codes which were also proven to be secure [JM96].



FIGURE 2. Transformation performed by algorithm E and role of the TPH

5.1 Algorithm E

Let E; be ank x n random matrix satisfyingn—k) >w(E;) >t  whenéE) represents
the number of non null columns of the mat&x G, P, andE; are kept secret by Alice. L&t

be anl Xk matrix oveZ, representing a boolean circuitlice computes the matrif’; by
multiplying and adding the matrices referred axgas follows:

F, = F,GP+E,0<i<p-1
and sendsR’;]0<i<p-1}to Bob.

Over a private channel, Alice transmits the error matrid$0{< i < p — 1} to the smart-
card.

These matrices can consist of omlgon-null columns and their positions so the communica-
tion complexity is low. We assumed that every individual circuit has the same number of
inputs and outputs for the sake of simplicity. If not, it is possible to add bogus equations and



variables (a subset of the variables is given by the smartcard so there is no transformation on
the inputs given by Bob).

5.2 Remote Circuit Evaluation

Bob evaluates the circui¥’; on the inputs(X; |yi) O (Zz)I and sends back the regyland

the input data; to the smartcaf ( | means concatenation). Compared with the case without
privacy, there is no modification concerning the inpxitgiven by the host (Bob). There is an
increase on the number of outputs relatively to the original cifcuit

5.3 Integrity Verification

The smartcard has to know the cddand the permutatioR. The smartcard starts by comput-
ing consecutivelyg; = (X;|V)E; y,= Yit+e& ang, = yaP_1 . The integrity check con-

sists of evaluating the syndrome wjf using the secret codg, which is an easy operation in

terms of computational complexity. The syndrome should be zero, or stated in a different way
Yp Should be a codeword of the cdde

5.4 Retrieving Cleartext Result

Decoding a word of null syndrome is equivalent to the problem of solving a set of linear equa-
tions, which is much easier in terms of computational complexity. Basically, an inversion of a

k x k matrix is needed to retrieve the cleartext result.

5.5 Example

For the sake of simplicity, only one circuit is considered. Eghe a circuit with 524 boolean
inputs and 524 boolean outputs. Using a Goppa code [1024, 524, 101] (same code as pro-
posed by McEliece in his original scheme), the resultant circuit will be of size 524 inputs and
1024 outputs (evaluated on the host) and the checking circuit (error riaivaluated on the
smartcard will be of size 524 inputs and 50 outputs.

The information rate of a linear code is given by the rdtion . The function expansion as

well as the increase in the computational complexity at the remote host (Bob) are inversely
proportional to the information rate of the code.



6 Discussion

6.1 Privacy of Execution

The security evaluation of the privacy property is described in [LM99a] and a sketch of the
proof is presented in the appendix. Nevertheless, the security evaluation was done for the case
of only one circuit and no result given back, so we will focus on the impact of these modifica-
tions in an informal way:

-re-using the same code with several circuits does not significantly impact the security of the
overall scheme since the number of combinations between all possible circuits, codes, permu-
tations and error matrices is still very high.

-the fact that the result is given back is much more crucial. With sufficient cleartext pairs of
inputs/outputs the remote host is able to interpolate the circuit. Supposingkhat most

independent inputs /outputs pairs would be sufficient for completely determinirdgxdn
circuit.

-moreover, the cleartext result gives information about the @Bewhich has to be kept
secret because it is invertible. However, the use of different error matrices prevents the disclo-
sure of the code.

6.2 Integrity of Execution

The integrity verification (IV) process can be stated using the same terminology as [BK89] as
follows:

if XF'#xF then P(IV(X,xF) = Accep)<d 1)
In words, the integrity of execution relies on the difficult of creating valid peirsF’).

Proof: The IV accepts ify, is a codeword. This implies tha, should also be a codeword of
the permuted cod8P. The decomposition of, yields:

Ya=y +XE

We havew(X'E) <t . In order foy, to be a codewordy’ has to be at distanceE of a code-
word of the codé5P. If the host randomly picks a word then the probability is the inverse of
the number of codewordgf).

A better attack is to pick an output &f. The attack would take advantage of the probability

that a valid outpukF’, along with an inputx' # X be accepted by the integrity verification
process as a valid pair. Therefore, the statement (1) can be reduced to:



P(XE = XE) < becausg,=xFGP, y, is an output of'.

Realizing thakE does a random mapping between a space ofXizmd a spacé!, this prob-

ability is approximately equal t8" (we consideredE of rankt) that is negligible with a rea-
sonable code sizé=60 as considered before).

However, some of the inputs are provided by the smartcard. So, the verification consists of:

If y'+(X'|y)E = codewordthen accept

As mentioned before, the best attack is to choose an output of the cyl‘cerit(xa|xb)F'
So, statement (1) is equivalent to:

Pl(X:Eal%pEp) = (XE4|YER)] = P(XEa = XE,) [P(X%,E, = YE,) <0

Both probabilities are equal ! but the attacker can choose not to cheat on one of them,
therefore raisingd ta.

6.3 Related Work

The use of tamper-proof hardware aiming at mobile code protection was already proposed in
[WSB98]. However, the approach suggested in that article requires entire code fragments to
be executed in the trusted environment. In addition, providing privacy with that approach
requires all the code to be transmitted over a private channel. In our case, only a small part
piece of code used in the verification process has to be transmitted over a private channel and
executed in the tamper proof hardware, while achieving the same security properties as
[WSB98], privacy and integrity of execution. Therefore, our solution is more efficient in that
the capacity of the smartcard does not depend directly on the size and complexity of the
mobile code. Hence, our scheme would be more scalable to large mobile programs.

6.4 Applications

With a secure execution environment, built from a tamper proof hardware, several scenarios
can be addressed:

- A mobile user wanting to download mobile code into untrusted public terminals and being
able to execute it on a secure way. In this case the tamper proof hardware acts on behalf of the
mobile user.

- An organisation (or a group of organisations) willing to implement remote services based on
mobile code running in untrusted terminals. So, the organisation will provide the tamper
proof hardware and only the terminals possessing it would have access to the services availa-
ble.



- Copyright protection, in a way that the smartcard acts like an access control agent to protect
software or electronic documents distributed over the network. The tamper proof hardware is
a fundamental tool to access the data intellectually protected.

7 Conclusion

Our solution provides a fundamental building block for secure computing in potentially hos-
tile environments. The presented solution applies to a more general model of computation
when compared with previous solutions for privacy of execution, and tackles the problem of
integrity of execution. Integrity of execution assumes an important role but seems hard to
achieve without privacy, due to the re-execution and reverse engineering attacks. As opposed
to empirical approaches like code obfuscation, the security of our scheme is quantifiable. Fur-
ther work will focus on the in-depth security evaluation of the scheme and on the extension of
the solution to more flexible models of computation.
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Appendix

A Circuits to Matrices

We illustrated the concept of non-interactive secure computing with a method to evaluate a
combinatorial circuit with several inputs and outputs on remote data, without disclosing the

circuit. The objective is to embed the representation of the circuit into a matrix and to give the

inputs to the circuit in a vector format. Here the description of the representation of a circuit

into a matrix is given:

A circuit can be seen as a numbeof Boolean functions om inputs. Considek Boolean

functionsB,: {0} ™ - {Q 3 (or a boolean circuit witm inputs andk outputs). This circuit

can be represented by a universal set bbolean equations with = 2"  terms bt addi-
tions.

Example: For a circuit with 3 outputs and 2 outputs:
Yo = FooDXo DXy + 10Ky + fog Ko+ fgo
Y1 = foa Do DXy + fog DXy + foy DXg + gy

Yo = Fop Do DRy + 150 + fon DX+ fgy



This gives thd= matrix with| rows andk columns:

This matrixF is transformed according to the operati®previously defined. After this trans-
formation it is possible to perform the inverse operation and to get a homomaorphic circuit
which has the same number of inputs.

B Proof of Privacy

Claim: It is infeasible to retrieve the private functlefrom the encrypted functiol’.

There are two possible attacks: enumeration attack and trapdoor attack. We will show that our
scheme is resilient to these attacks. The construction oFthwatrix is similar to the con-
struction of the public-key of the McEliece [McE78] and Niederreiter [Nie86] cryptosystems,
therefore the proof is highly inspired on the cryptoanalysis of these two systems. We assume

F as a square matrixx k , to simplify.

B.1 Enumeration attack

The complexity of the enumeration or brute force attack can be measured by searching
exhaustively all combinations of possible permutationy, (Goppa codes~2™MY t, with

m=logn), circuits QkAZ) and error matrices. Using the parameters proposed by McEliece
([1024, 524, 50]), this attack is obviously infeasible [Til88]. In order to be resilient to this
attack the class of codes used must be large enough to avoid any enumeration, which happens
with Goppa codes.

B.2 Trapdoor Attack

This attack consists of retrieving the structure of code from the generator or parity-check
matrix of the permuted code. In other words, the attack tries to identify an invariant that is not
influenced by the homomorphism applied to the original code. These are the best known
attacks against coding theory based cryptosystems, consisting of the exploitation of the prop-
erties of linear codes to find a trapdoor, usually called a Brickell-like attack [Bri84].

The resilience to this attack is highly dependent on the class of codes used. The initial pro-
posal from Niederreiter used concatenated codes, which were proven to be insecure [Sen94].
Reed-Solomon codes were also proven to be insecure [SS92]. Goppa codes generated by a
Goppa polynomial which has binary coefficients are also insecure [L0i98].



Heiman [Hei87] was the first to study the trapdoor attack and showed that the random matrix
S(replaced by the matrik in our case) used in the original McEliece scheme serves no secu-
rity purpose concerning the protection of the code, because it does not change the codewords
of the original code. However, Canteaut [Can96] showed that the n&sdxves the purpose

of hiding the systematic structure of the Goppa code therefore having an important security
role. Adams and Meijer [AM87] showed that the likelihood of finding a trapdoor for Goppa
codes is small and that there is usually only one trapdoor. Later, [Gib91] challenged this result
and proved that each permutation applied to the Goppa codes can be regarded as a possible
trapdoor and there are at leastn.(n-1)trapdoors. This results from the fact that not equiva-

lent Goppa polynomials can generate equivalent codes. However, this number is still very
small when compared with th@ possible trapdoors. The number of trapdoors is still open,

but calculated lower bounds [Gib95] showed that an exhaustive search remains infeasible.

Recently, there were efforts to find an efficient algorithm to retrieve the characteristic parame-

ters of the code from a permuted code represented by the generator or parity check matrix,
with techniques that try to identify invariants among the classes of codes [Sen94]. However,

the results were negative relatively to Goppa Codes. Therefore, there is no efficient algorithm

to retrieve the characteristic parameters from a permuted generator matrix for Goppa Codes
[CS98] and we can conclude that for sufficiently large coded.024, the original parameters

from McEliece scheme) the composition scheme is secure. The resilience to the trapdoor
attack is further enhanced by the error matrices.

B.3 Information Leakage

The transformatiofe does not hide everything about the functiar+' gives some informa-
tion about the rank of the original functibnconcretely:

k> rank(F) + rank(E) 2rank(F) =rank(F).
For examplaank(F)=k implies thatrank(F")=k. This fact will simplify the enumeration of all

possible circuits to circuits of a given rank, which is not significant because there are still
many possible combinations.
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