
Spotting Automatically Cross-Language Relations

Federico Tomassetti
Politecnico di Torino
10129 Turin, Italy

Email: federico.tomassetti@polito.it

Giuseppe Rizzo
Università di Torino, 10124 Turin, Italy

EURECOM, 06410 Biot, France
Email: giuseppe.rizzo@di.unito.it

Marco Torchiano
Politecnico di Torino
10129 Turin, Italy

Email: marco.torchiano@polito.it

Abstract—Nowadays most of the software projects are coded
using several formal languages, either spread on different artifacts
or even embedded in the same one. These formal languages
are linked each other using cross-language relations, mainly
framework specific and established at runtime. In this work we
present a language agnostic approach to automatically detect
cross-language relations to ease re-factoring, validation and to
allow navigation support to the developer. We map a project in
a set of Abstract Syntax Trees (ASTs); pair-wise we compute
the intersection of the nodes and we pre-select potential candi-
dates that can hold cross-relations. We then factorize the ASTs
according to the nodes which surround the candidate and pair-
wise we compute the semantic similarity of the factorized trees.
We narrow down a set of statistically significant features and we
map them into a predictive model. We apply such a procedure to
an AngularJS application and we show that this approach spots
cross-language relations at fine grained level with 93.2% of recall
and a F-measure of 92.2%.

I. INTRODUCTION

Most of the applications realized today are composed by
artifacts written in different languages. The Web offers an
excellent case study, since the majority of the applications use
several languages for both server and client side. On the server
side the typical scenario includes at least a general purpose
language (GPL), SQL and some formats to store configu-
ration (XML, JSON, etc.). On the client side HTML, CSS
and Javascript are typically adopted. The different artifacts
cooperate to execute some tasks, as part of the application,
therefore they have to communicate and be linked together:
a certain CSS rule affects a given tag, a XML file describes
which Java classes have to be instantiated, the execution of
a Ruby script is affected by the configuration reported in a
YAML1 file. Different languages can be mixed even in the
same artifact, for instance consider CSS or Javascript in HTML
pages or a Java function call receiving a string which happens
to be SQL code. Framework or single projects can also adopt
Domain Specific Languages (DSL) to realize specific facets
of the complex system. In Listing 1 we report an example of
a Java statement specifying a query to a database using the
Hibernate Query Language (HQL), a DSL resembling SQL.
The query retrieves all the rows from the table Employee.
The resulting rows are then converted into corresponding
Java objects by Hibernate2, a well-known Object-Relational
Mapper. By convention tables and corresponding Java classes
have the same name (Employee in this case), therefore there is
a cross-language relation between the Java class and the table
reference in the query: if one of them changes, developers

1http://yaml.org
2http://hibernate.org

should consider to update the others. The specific rules which
determine how the artifacts are composed depend on the
language and the framework used: each can use its own
logic to operate, creating run-time relations between artifacts.
Considering Listing 1, the fact this particular call receives a
string supposed to be a valid HQL code is defined by the
implementation of Hibernate. Instead conventions are usually
not formalized explicitly, but are nevertheless relevant to favor
communication between developers and ease comprehension.
List<Employee> employees = session.createQuery("FROM Employee").

list();

Listing 1. A snippet of HQL code in a Java statement.

The rules for cross-language relations, being determined
by framework implementations or by conventions, have to
be studied and to be always considered during the devel-
opment. A violation of a hard rule leads to errors which
are difficult to track because implicit relations spread across
different files in different languages have to be considered all
together. Hence, even just renaming a Java class can lead
to a runtime error because the name of the class was not
updated in few XML and property files referring to it. Violating
conventions could instead lead to a code which is harder to
maintain, because developers rely on these conventions for
comprehension. While modern IDEs offer support to identify
inconsistencies between two files written in the same language,
the developer is typically left on his own when it comes
to cross-language relations. Without refactoring support the
developer has to replicate manually the update in all related
artifacts. Without navigation support cross-language references
are not immediately apparent, the developer has to know
and remember the cross-language rules determining relations
and to manually navigate to other files for retrieving related
information. Without validation support, a broken link is not
immediately apparent. An experiment performed by Pfeiffer
et al. [1] shows that tool support for cross-language relation
can greatly improve the developer performance. However all
the existing approaches are framework specific: they require to
manually specify the rules which govern the relations expected
by a certain library. Each new language, each new DSL, each
new framework require to adapt these tools. Considering that
formalizing cross-language relations precisely can be quite
difficult per se [2] this leads to a considerable effort to
implement and maintain cross-language relations support.

Taking inspiration by this, in this paper we motivate the
following research question: is it possible to automatically
spot cross-language relations in a variety of projects written
with different languages? Exploiting the semantics of the
language and relying on a predictive model, our approach is

http://yaml.org
http://hibernate.org

able to spot cross-language relations with 92.2% of F13. The
experiments have been conducted on an in-house benchmark
which is, together with the source code of the framework and
the experiment settings, publicly available at http://github.com/
CrossLanguageProject. The reminder of the paper is organized
as follows. In Section II we further explain our motivation and
prior work. We present the benchmark used for the experiments
in Section III. Our approach is presented in Section IV and
in Section V we present the experiment results. Finally in
Section VI we discuss the results and we foresee possible
outlook.

II. RELATED WORK

Research attempts on cross-language relations are quite
recent. Generally they can be summarized as: i) to offer a
classification of cross-language relations, ii) to characterize
empirically the effects of cross-language relations, iii) to
provide prototyping tool support.

Classification: in [3] the authors presented a classification
of different forms of cross-language relations, identifying six
different types: shared ID, shared data, data loading, gen-
eration, description, and execution. Of all those types the
most commonly used is shared ID. In the context of this
work we focus exclusively on this kind of cross-language
relations. Meyer and Schroeder [2] classify exclusively cross-
language links implemented in Java framework in respect to
XML artifacts. The relations they consider correspond to the
category "shared ID", according to the classification proposed
in [3]. They built metamodels of the languages involved
(Java and XML) for this particular purpose and specified the
rules controlling the cross-language relations of three Java
framework, deriving from them common patterns. Among the
main results, they report that specifying manually rules for
cross-languages relations is difficult.

Empirical results: in [4] the authors investigated how
many of the commits of the Hadoop4 project involved more
than one language and the effect of being involved in cross-
language commits on defectivity. Results show that some re-
lations are particularly negative. However results of this paper
are based on a coarse proxy for the identification of cross-
language relations; considering projects hosted on a repository,
they relied on the logs for looking at the files which have
been committed at the same time. But this approach leaves
the burden of spotting manually the cross-language relations.
In fact, a method to automatically identify cross-language
relations at a finer level can permit more precise empirical
investigation on their effects on a large scale, where manual
identification is not feasible. Pfeiffer et al. [1] used TexMo in a
controlled experiments with 22 subjects to demonstrate the ef-
fects of tool support for cross-language references. According
to their results, developers having access to tool support for
cross-language references were significantly faster and more
frequently correct in locating sources of errors. Developers
without this type of support instead have difficulty to reconduct
the errors which they encountered at run-time to their ultimate
source, a broken cross-language relation.

3By F1 we mean the F-Measure with β = 1. It corresponds to the harmonic
mean of precision and recall.

4http://hadoop.apache.org

Description Values

no. of different files 12
no. of formal languages involved 4

no. of lines among all files 2927
no. of manually identified cross-language relations 142

TABLE I. STATISTICS OF THE BENCHMARK PROPOSED IN THIS PAPER.
ANY ARTIFACT IS CONSIDERED, EXCLUDED PICTURES. THE NUMBER OF

LANGUAGE INVOLVED CONSIDERS ALSO THE NATURAL LANGUAGE TEXT.
THE NUMBER OF CROSS-LANGUAGE RELATIONS IS COMPUTED

CONSIDERING HTML AND JS ARTIFACTS (EXCLUDED LIB ARTIFACTS).

Specific tool support: possible solution to the problem
consist in i) developing specific IDE support, ii) substituting
existing languages with families of integrated languages, iii)
implementing proper language integration inside language
workbenches. The first approach was adopted by Pfeiffer et
al. [5], [6]: they realized different prototypes integration tool
support for cross-language relations into mainstream IDEs
named as TexMo and Tengi. An example of family of lan-
guages comes from Groenewegen et al. [7]: upon observing
that the amalgam of languages used in a single web application
project are typically poorly integrated they proposed the adop-
tion of an unique language to model all the different concerns
of web applications: WebDSL. Finally regarding language in-
tegration in the context of Language Workbenches is described
by Tolvanen et al. [8]. In their paper they describe their
experience in integrating Domain Specific Modeling (DSM)
languages. They considered only DSM realized in the context
of the MetaEdit+ system, without integration with GPLs. GPLs
integration is instead possible in another Language Workbench:
Jetbrains MPS. An example in this direction is described in
this paper [9]. Integration in mainstream IDEs has the great
advantage to leverage environments which are already familiar
to most of the developers, but they require the implementation
of specific support for each single framework considered. On
the contrary, the other solutions require a migration but offer
deeper integration, attainable with a limited effort.

III. BENCHMARK

To the best of our knowledge, no other research attempts
have been spent to spot at fine grained level the cross-language
relations. It results in a lack of gold standards for benchmark-
ing the performance of proposed approaches. To fill this gap, in
this paper we propose an in-house benchmark as compendium
of our approach. As described previously, the Web offers a vast
number of projects written using different formal languages
each. In addition, the most used formal languages for Web
applications (HTML, JS, CSS) share intrinsically numerous
cross-language relations, which are usually hidden, making
the task extremely challenging. We have then selected a web
project based on the AngularJS5 framework named angular-
puzzle6. Table I summarizes the statistics of the proposed
benchmark.

Two human experts have been involved in the creation of
the benchmark; the aim was to manually detect the cross-
language relations between artifacts of two different extensions
(JS and HTML), to which we excluded the AngularJS library
artifacts. We also excluded the CSS files, since the identifica-
tion of cross-language relations is easier to be spotted due to

5http://angularjs.org
6http://github.com/pdanis/angular-puzzle

http://github.com/CrossLanguageProject
http://github.com/CrossLanguageProject
http://hadoop.apache.org
http://angularjs.org
http://github.com/pdanis/angular-puzzle

the tag selection. The relations have been reported pair-wise;
the dataset lists the src and dst files, row and column where the
relation have been spotted from both artifacts and the surface
form (shared ID) of the relation per each cross-language
relation. The overall agreement score reached so far was good.
After the first annotation step, we have dedicated a cleansing
step for fixing the errata spots. The benchmark is released
as public license at http://github.com/CrossLanguageProject/
goldstandards.

IV. METHOD

Most of the cross-language relations are implemented using
a shared identifier. For example a Javascript statement could
refer a particular tag in a HTML document by its ID. When
one of the two ends of the relation is changed, the other one
has also to be updated, if the relation wants to be preserved.
However not all the instances of the same terms are related,
because not all of them identify the same entity. For instance,
if we consider pairs of instances of the same term appearing in
different files, written in different languages, chances are high
that the two identified entities will be different and unrelated.
Our method aims to automatically and independently identify
the cross-language relations from the languages considered and
the used framework.

To perform the classification we factorize the AST using
the candidate spots as pivots and we exploit the context of
each pair. The semantic similarity measure between each pair
of local factorized ASTs is computed. In details the proposed
method consists of the following steps:

• for each artifact an AST is derived. An AST may
host sub-ASTs of different languages, corresponding
to snippets of embedded languages;

• for each node the set of nodes corresponding to its
context is collected;

• pairs of nodes corresponding to the same term and
enclosed in artifacts of different formal languages
are spotted as potential candidates. For each pair a
semantic similarity is computed. This process is meant
to narrow down a set of features which are then used
by the classification stage;

• all the candidate spots become observations of the
classification model; of these pairs of nodes the ones
related will be positive examples, the candidate which
are not related but hold the same term will be the
negative examples. The learning stage is used to train
the algorithm of the predictive model.

A. ASTs construction

The first stage of the process is to map each source file to its
corresponding AST representation. This allows to distinguish
between keywords and relevant values present in the source
code (i.e. identifiers and literals) and to organize the data in a
logical structure on which is possible to reason about relations
between nodes. The host language of a file is determined by its
extension (the assumption made is grounded on the fact that
a Java file usually contains a host Java AST). Inside the host
AST, foreign ASTs can be added. They represent snippets of
other languages embedded in the original file.

Consider the example shown in Figure 1: a snippet of
HTML is reported. The attribute onclick of the div tag
contains Javascript code, in particular a call to the function
showStats. From this piece of code is derived an AST having
as root a HTML node. The Javascript snippet is appropriately
parsed and a corresponding Javascript AST is obtained. The
Javascript AST is then embedded in the host HTML AST as
a child of the HTML attribute which contains the Javascript
code.

<body>

 <div onclick=“graph.showStats(‘1Q’);">

 Results of the first quarter.</div>

</body>

Html::Document

Html::Tag
body

Html::Tag
div

Html::Attribute
onclick, showStats(‘2Q’);’

Html::Text
Results of the first quarter.

JS::FunctionCall
showStats

JS::VariableRef
graph

JS::StringLiteral
1Q

foreign ast

Fig. 1. A Javascript AST embedded in a HTML AST.

B. Context

The role of the context for spotting cross-language relations
has been previously introduced by Mayer et al. [2]. Inspired
by this preliminary consideration, we have started over an
exhaustive investigation on the context in the field of spotting
automatically cross-language relations. We then consider im-
portant the context to discriminate between instances of terms
that just happen to have the same surface form from instances
which are concretely related.

Consider the example shown in Figure 2: the term title
appears two times in index.html and five times in app.js.
The first appearance in index.html is related to the first two
appearances in app.js while the remaining instances in the
two files are also reciprocally related. They can be intuitively
distinguished on the basis that the first group of instances is
hosted in the context of types, while the second is hosted in
the context of puzzles.

To translate this consideration into a formalized approach
we devise an algorithm to traverse siblings node in ASTs which
is language agnostic. More details about the context extraction
algorithms can be found in the source code of the project. The
outcome of the context identification steps is a set of AST
nodes which constitute the context of a given input node.

C. Features derivation

The candidate pairs of nodes, which share the same surface
forms, are compared by means of their contexts; the resulting
comparison is therefore executed on the two contexts. From

http://github.com/CrossLanguageProject/goldstandards
http://github.com/CrossLanguageProject/goldstandards

<ul id="types">!
!<li ng-repeat="t in types" ng-class="{'selected': t.id == type}">!
! !<a ng-href="#/{{t.id}}">{{t.title}}!
!!

!

var types = [!
 { id: 'sliding-puzzle', title: 'Sliding puzzle' },!
 { id: 'word-search-puzzle', title: 'Word search puzzle' }!
];!

index.html	

app.js	

app.controller('slidingAdvancedCtrl', function($scope) {!
 $scope.puzzles = [!
 { src: './img/misko.jpg', title: 'Miško Hevery', rows: 4, cols: 4 },!
 { src: './img/igor.jpg', title: 'Igor Minár', rows: 3, cols: 3 },!
 { src: './img/vojta.jpg', title: 'Vojta Jína', rows: 4, cols: 3 }!
];!
});!

<div ng-repeat="puzzle in puzzles">!
!<h2>{{puzzle.title}}</h2>!
!…!

</div>!

Fig. 2. Example of cross language relations organized in hierarchies.

each pair of contexts two different set of surface forms
are extracted. These sets are compared using state-of-the-
art algorithms for instance matching such as Levenshtein
algorithm (working at word grained level), Jaccard, Jaro, and
Tversky [10]. These algorithms provide a coefficient of simi-
larity, when the coefficient is superior to a given threshold the
nodes are considered related, otherwise they are not. Therefore
they provide a raw idea whether a candidate spot actually
defines a valid cross-language relation. For this matter, we have
considered them as baselines in our proposal.

Further features have been derived from the context simi-
larity, such as: the number of words appearing in both contexts;
the sum of tf-idf value of the words appearing in both contexts;
the sum of the itf-idf value of the words appearing in both
context (the itf is defined as log(1/tf)); the percentage of
words of each of the two contexts which appear also in the
other; the number of words of each of the two contexts which
do not appear also in the other; the percentage of words of
each of the two contexts which do not appear also in the other.
Table II proposes a recap of the above features.

D. Classification

Starting from the derived features, we map the task of
spotting cross-language relations to a predictive task. The
features are meant to: i) define the model and ii) train the
classifier. Inspired by Mayer et al. [2] who proposed a set
of manually created rules, we built the classifier in order to
create a list of rules that can automatically predict whether the
observation is actually a cross-language relation. To achieve
such a scope we used the Random Tree (RT) algorithm. We
then compared this algorithm with K-nearest neighbors (K-
NN) and Naive Bayes (NB) algorithms.

V. EXPERIMENT AND RESULTS

The benchmark proposed above reports all the cross-
language relations that two human experts have manually
spotted in the context of the angular-puzzle project. Anyway,
such a task covers only the true positive spots of the domain,
leaving the burden to spot also the true negative ones. The

Name Description

shared length number of words appearing in both con-
texts

shared tf-idf sum of tf-idf value of the words ap-
pearing in both contexts. See http://en.
wikipedia.org/wiki/Tf-idf

shared itf-idf sum of the itf-idf value of the words
appearing in both context. The itf is
defined as log(1/tf)

perc. shared length [min,max] the percentage of words of each of the
two contexts which appear also in the
other

diff [min,max] the number of words of each of the two
contexts which do not appear also in the
other

perc. diff [min,max] the percentage of words of each of the
two contexts which do not appear also
in the other

Levenshtein distance* similarity distance between two set of
chars (either two simple words or se-
quence of them). In this paper we use
the second version of it

Jaccard distance similarity distance between two se-
quences of words

Jaro distance similarity distance between two se-
quences of words

Tversky distance similarity distance between two se-
quences of words

TABLE II. LIST OF THE FEATURES EXPLOITED IN THE PROPOSED
WORK.

population of interest includes all the pairs of nodes which i)
are contained in files with different extensions, and ii) share a
common word; the negative ones are those pairs which satisfy
these conditions and are not semantically related yet. These
latter pairs were automatically individuated. The union of the
two sets forms the benchmark over which we have run our
experiments. Hence, the results of our experiments are reported
in terms of correctly spots of cross-language relation in case
of actually a positive case (the pair holds a cross-relation) or
correctly spot that the pair does not hold a valid cross-language
relation.

Using a correlation matrix, we verify the correlation each
feature has with the class to predict (originally the class
spans from positive when the observation details a cross-
language relation, negative otherwise). The results are reported
in Table III.

class
shared_length 0.0616
tfidf_shared -0.0084
itfidf_shared 0.0861
perc_shared_length_min 0.0864
perc_shared_length_max 0.1703
diff_min 0.0560
diff_max -0.0446
perc_diff_min -0.0173
perc_diff_max -0.0549
context 0.0374
jaccard 0.0969
jaro 0.0340
tversky 0.1061

TABLE III. AN EXCERPT OF THE CORRELATION MATRIX, WHERE WE
HIGHLIGHTED THE CORRELATION SCORES OF THE FEATURES TO THE

CLASS. FROM IT WE OBSERVE THAT TFIDF, PERC_DIFF_MIN, DIFF_MAX,
AND PERC_DIFF_MAX ARE INVERSELY CORRELATED WITH THE CLASS TO

PREDICT. FOR SUCH A REASON, WE LEAVE THESE FOUR FEATURES OUT OF
THE PREDICTIVE MODEL.

http://en.wikipedia.org/wiki/Tf-idf
http://en.wikipedia.org/wiki/Tf-idf

We performed a 10-fold cross validation and used WEKA-
3.7.97 for running the classifiers. Table IV reports the figures
achieved so far by our approach according to three different
classifiers. The RT performs better such kind of task, proving
the intuition that Mayer et al. had in their paper, that a
rule based approach can help for deciding whether a shared
ID actually holds a cross-language relation. Our approach is
extremely competitive, nearly solving the problem.

P R F1

Naive Bayes (NB) 90.3 86.3 88.1

K-nearest neighbor (K-NN) 91.3 93.0 91.9

Random Tree (RT) 91.6 93.2 92.2
TABLE IV. PRECISION (P), RECALL (R) AND F-MEASURE (F1)

RESULTS OF OUR APPROACH USING THREE DIFFERENT CLASSIFIERS.

Finally, in Table V we compare the figures achieved by our
approach with the ones obtained by simple approaches which
leverage on instance matching algorithms. It is evident how the
cross-language spotting task cannot be solved by just context
similarity evaluation.

P R F1

Levensteind=1 6.0 100 11.8

Tverskyd=0.8 12.9 43.8 19.9

Jaccardd=0.8 13.9 35.0 19.9

Random Tree (RT) 91.6 93.2 92.2
TABLE V. PRECISION (P), RECALL (R) AND F-MEASURE (F1)

RESULTS OF THE BASELINES AND OUR PROPOSED APPROACH.

VI. DISCUSSION AND OUTLOOK

We believe in the benefit of adopting the most suitable
language to implement each facet of the system. Using the
best language for the task leads to polyglot systems which
include artifacts written in many languages; it also requires
proper coordination to smooth the development, improving
productivity and the quality of the developed systems. To
obtain good language integration we need first of all to
recognize cross-language interactions: the approach detailed in
this paper aims to do that and it seems promising, considering
the results obtained on the proposed case-study.

In this work we proposed a language agnostic approach
to spot automatically cross-language relations. To measure the
goodness of the approach we have created an in-house bench-
mark, which, to the best of our knowledge, is a first attempt
in this direction. We believe that the case study we chose is
particularly daunting for the presence of different mechanisms
of interactions and the mix of languages appearing even in the
same artifacts. Since we are looking forward to enlarge the
current benchmark, we have released it publicly and we hope
that the community will contribute to extend and improve it:
refinements of our work as well as alternative solutions will
be easily compared in this way. Using a predictive algorithm,
we are able to nearly solve the problem of spotting cross-
language relations with a F1 of 92.2%. The features used
have been extracted from the context of the factorized ASTs
compared pairwise. Alternative solutions are neither generic

7http://www.cs.waikato.ac.nz/ml/weka

nor automatic, therefore they require a major framework-
specific effort. Our approach instead permits to freely adopt
new frameworks and libraries, maintaining cross-language tool
support.

Our prototypal implementations is based on a library wrap-
ping a set of existing parsers8. Support for HTML, Javascript,
Ruby, Java, XML, and properties files is already implemented.
This implementation is offered to the community with the hope
it will serve as a component for the realization of alternative
approaches. Our implementation is designed in such a way
that the support for other languages may be easily plugged in.
To support additional languages all the language-specific work
that is required is: i) thin wrapper around an existing parser,
ii) the specification of the conditions under which another
language can be added in the one considered.

As next step we want to work on generalization of our
approach: we want to test the devised algorithms on different
projects, realized using different frameworks. Then we plan
to conduct empirical validation of i) the performance of our
approach and ii) the benefits of such approach of polyglot
software development. We also plan to further investigate
cross-language relations which span to more than 2 different
artifacts by time. That means considering the lattice of the
combinations among the nodes extracted from the different
artifacts.

REFERENCES

[1] R.-H. Pfeiffer and A. Wasowski, “Cross-Language Support Mechanisms
Significantly Aid Software Development,” in Model Driven Engineering
Languages and Systems, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7590, pp. 168–184.

[2] P. Mayer and A. Schroeder, “Patterns of cross-language linking in java
frameworks,” in 21st International Conference on Program Compre-
hension (ICPC’13), 2013.

[3] F. Tomassetti, M. Torchiano, and A. Vetro’, “Classification of Language
Interactions,” in 7th International Symposium on Empirical Software
Engineering and Measurement (ESEM’13), 2013.

[4] A. Vetro’, F. Tomassetti, M. Torchiano, and M. Morisio, “Language
Interaction and Quality Issues: An Exploratory Study,” in 6th Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM’12), 2012.

[5] R.-H. Pfeiffer and A. Wasowski, “Texmo: A multi-language develop-
ment environment,” in 8th European Conference on Modelling Foun-
dations and Applications (ECMFA’2012), 2012.

[6] ——, “Tengi Interfaces for Tracing between Heterogeneous Compo-
nents,” in Generative and Transformational Techniques in Software
Engineering IV, ser. Lecture Notes in Computer Science, R. Lammel,
J. Saraiva, and J. Visser, Eds. Springer Berlin Heidelberg, 2013, vol.
7680, pp. 431–447.

[7] D. Groenewegen and E. Visser, “Declarative Access Control for
WebDSL: Combining Language Integration and Separation of Con-
cerns,” in 8th International Conference on Web Engineering (ICWE
’08), 2008.

[8] J.-P. Tolvanen and S. Kelly, “Integrating models with domain-specific
modeling languages,” in 10th Workshop on Domain-Specific Modeling
(DSM’10, 2010.

[9] F. Tomassetti, A. Vetro’, M. Torchiano, M. Voelter, and B. Kolb, “A
Model-Based Approach to Language Integration,” in ICSE Workshop
on Modeling in Software Engineering (MISE’13), 2013.

[10] G. Navarro, “A Guided Tour to Approximate String Matching,” ACM
Computing Survey, vol. 33, no. 1, pp. 31–88, 2001.

8See https://github.com/ftomassetti/codemodels and its plugins.

http://www.cs.waikato.ac.nz/ml/weka
https://github.com/ftomassetti/codemodels

	Introduction
	Related work
	Benchmark
	Method
	ASTs construction
	Context
	Features derivation
	Classification

	Experiment and results
	Discussion and outlook
	References

