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This paper addresses the problem of unsupervised clustering with multi-view data of high dimensional-
ity. We propose a new algorithm which learns discriminative subspaces in an unsupervised fashion based
upon the assumption that a reliable clustering should assign same-class samples to the same cluster in
each view. The framework combines the simplicity of k-means clustering and Linear Discriminant
Analysis (LDA) within a co-training scheme which exploits labels learned automatically in one view to
learn discriminative subspaces in another. The effectiveness of the proposed algorithm is demonstrated
empirically under scenarios where the conditional independence assumption is either fully satisfied
(audio-visual speaker clustering) or only partially satisfied (handwritten digit clustering and document
clustering). Significant improvements over alternative multi-view clustering approaches are reported
in both cases. The new algorithm is flexible and can be readily adapted to use different distance measures,
semi-supervised learning, and non-linear problems.
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1. Introduction

The recent explosion of multimedia information on the Internet
demands effective clustering techniques capable of handling huge
quantities of potentially complex data. First, multimedia data are
generally represented in high-dimensional spaces in which the
so-called curse-of-dimensionality makes the application of many
clustering techniques somewhat troublesome. Second, by its very
nature, multimedia data is multi-modal, for example audio and vi-
deo information can form two independent clustering inputs. The
fusion of modalities remains a challenging problem and is gener-
ally treated in isolation to that of high dimensionality.

Difficulties associated with the high dimensionality are gener-
ally overcome through the application of dimensionality reduction
(DR) techniques, such as Principle Component Analysis (PCA) (Jol-
liffe, 2005) and related approaches. Dimensionality reduction can
either be applied in a pre-processing step prior to clustering, or
be integrated into the clustering framework itself. The latter is re-
ferred to as subspace clustering (see a survey (Kriegel et al., 2009)).
Whatever the technique, however, the goal is always to identify a
subspace in which clusters are maximally separated.

Research in multi-modal fusion, which aims to optimally
combine information in different views of the same data, has led
to a number of multi-view clustering algorithms, e.g. (Bickel and
Scheffer, 2004; Chaudhuri et al., 2009; Kumar and Daumé, 2011).
The goal with all such methods is to identify a clustering result
which agrees across different views (samples clustered together
in one view are also clustered together in other views).

This paper presents our efforts to address the problems of high-
dimensionality and multi-modal fusion in a unified framework. We
assume that each data sample is represented by two feature vec-
tors corresponding to two independent views. We further assume
significant information in each feature vector to be unrelated to the
underlying class label and that there exists a lower dimensional
subspace in which classes are maximally separated. Inspired by
the concept of co-training (Blum and Mitchell, 1998), we describe
a new multi-view subspace clustering algorithm which reflects
the intuition that a true underlying clustering should assign sam-
ples to the same cluster irrespective of the view. It seeks a discrim-
inant subspace for each view which results in a clustering policy
with maximal agreement across views. Discriminant subspaces in
one view are learned using cluster labels for the same samples in
another view, and vice versa. The process is iterative and is re-
peated until a maximum agreement is achieved. The proposed
algorithm simultaneously outputs cluster indicators, discriminant
subspaces for each view, and compact models of different clusters.
As a result, the algorithm copes naturally with out-of-sample data
and is readily extended to semi-supervised classification.

The remainder of this paper is organized as follows. Section 2
analyses three essential components of the proposed algorithm:
LDA, k-means, and co-training. Section 3 presents the proposed
clustering algorithm and extensions to cosine distance, non-linear
case and semi-supervised settings. Section 4 describes the
proposed algorithm in the context of existing literature. Section 5
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presents experimental evaluations in audio-visual speaker cluster-
ing. Section 6 presents our conclusions.

2. LDA, k-means, and co-training

In this section we describe the three essential components of
the proposed algorithm: LDA, k-means and co-training.

2.1. LDA and k-means

As discussed in Ding and Li (2007), the objective function of LDA
and k-means are closely related. Consider a set of centered input
data X ¼ fx1; . . . ;xng such that �x ¼

P
ixi=n ¼ 0. Let the class labels

be given by H ¼ fh1; . . . ;hng, and define matrices of between-class
scatter Sb, within-class scatter Sw and total scatter St as:

Sb ¼
X

k

nkmkmT
k

Sw ¼
X

k

X
i2Ck

ðxi �mkÞðxi �mkÞT

St ¼
Xn

i¼1

xixT
i

ð1Þ

where nk is the number of samples in class k;mk is the mean of class
k, and Ck is the set of samples belonging to kth class (li ¼ k) and
St ¼ Sw þ Sb. LDA seeks a projection P which maximizes the ratio be-
tween Sb and Sw. The objective function is thus:

arg max
P

tr
ptsbp
ptswp

¼ arg max
P

Tr
PT SbP

PT SwP
þ 1 ¼ arg max

P
Tr

PT StP

PT SwP

¼ arg min
P

Tr
PT SwP

PT StP
ð2Þ

Where Trf�g is the trace of a matrix.
On the other hand, the k-means objective function is give by:

arg min
H

X
k

X
i2Ck

kxi �mkk2 ð3Þ

where H represents a cluster indicator and mk is the mean of the
kth cluster. In most cases same-class samples should be assigned
to the same cluster, i.e. cluster labels should be indicative of the
class label L. In this case, the k-means objective function is equiva-
lent to the minimization of the trace of the within-class scatter ma-
trix so that:

arg min
H

TrSw ¼ arg min
H

Tr ðSt � SbÞ ð4Þ

Eqs. (2) and (4) thus reveal that the LDA and k-means objective
functions are compatible: k-means aims to minimize within-class
scatter while LDA minimizes the within-class scatter and maximize
total scatter in the same time.

2.2. Co-training

Co-training (Blum and Mitchell, 1998) is one of the most ac-
claimed approaches to semi-supervised learning. In co-training,
data samples are assumed to be represented by two conditionally
independent features X1 and X2. Two predictors f1 and f2 assign to
each X a class label Y (f : X ! Y) and are trained according to each
view using a small pool of labeled data. The two predictors are
used to assign labels to a larger pool of unlabeled data. A subset
of samples with which the predictors have the most confidence
in label assignments is added to the pool of labeled data. The pre-
dictors are then iteratively re-learned and applied to the remaining
unlabeled data. Co-training essentially learns two different
Please cite this article in press as: Zhao, X., et al. A subspace co-training fram
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predictors f1 and f2 which agree on unlabeled data across different
views. A theoretical treatment of convergence is given in the
original paper Blum and Mitchell (1998) and shows that, under
the assumption of conditional independence, a weak predictor f1

in view X1 which can tolerate random label noise can learn from
automatically labeled samples provided by f2 in view X2.

This paper presents the extension of co-training predictors to
co-training subspaces. LDA is a supervised method which requires
class labels, while k-means is a unsupervised method which gener-
ates cluster indicators. Under the assumption of conditional inde-
pendence between views, they can be regarded as class labels
corrupted with random noise for the other view. The two methods
are combined with the idea of co-training.

3. Multi-view subspace clustering: a co-training algorithm

In this section, we apply the concept of co-training to the prob-
lem of discriminant subspace learning for multi-view clustering.
Since we assume unsupervised clustering, the standard semi-
supervised co-training algorithm cannot be applied directly. How-
ever, the goal remains the same, i.e. to learn a subspace for each
view which results in a common clustering policy. For clarity, sam-
ples assigned to the same cluster in the subspace of one view
should be assigned to the same cluster in the subspace of the other
view and, conversely, samples assigned to different clusters in the
subspace of one view should be assigned to different clusters in the
subspace of the other view.

3.1. An algorithm: CoKmLDA

We first define a Cluster Agreement Index (CAI). Let Hð1Þ and Hð2Þ

represent the assignment of samples in views v ¼ 1 and v ¼ 2 to
one of K clusters. The CAI is defined as:

CAIðHð1Þ;Hð2ÞÞ ¼ 1
n

Xn

i¼1

d hð1Þi ;mapðhð2Þi Þ
� �

ð5Þ

where n is the total number of samples and dða; bÞ is a function
equal to unity if a ¼ b and zero otherwise. The mapð Þ function re-
turns an optimal mapping between cluster identifiers in view 1 to
those in view 2 in order that the CAI is maximized. This is achieved
with a classical Hungarian algorithm (Steiglitz and Papadimitriou,
1982).

We then seek two LDA projections Pð1Þ and Pð2Þ such that the CAI
resulting from k-means on both subspaces is maximized. The
objective function is given by:

arg max
Pð1Þ ;Pð2Þ

CAIðHð1Þ;Hð2ÞÞ ð6Þ

where HðvÞs are further dependent on PðvÞs

HðvÞ ¼ arg min
HðvÞ

XK

k¼1

X
hðvÞ

i
¼k

kPðvÞT xi � PðvÞ
T
mkk2 ðv ¼ 1;2Þ ð7Þ

In the following we propose an algorithm that alternatively solves
Eqs. (6) and (7) for PðvÞ and HðvÞ according to a modified co-training
approach. We use cluster indicators generated by k-means in one
view as label information to train LDA projections in the other view,
and vis-versa. While the essential elements of the proposed
algorithm are relatively straightforward, the algorithm tends to
converges given that LDA can learn approximately good projections
with some extent of label noise (mathematical proof given in
Section 3.3). The new algorithm is referred to as co-k-means Linear
Discriminant Analysis (CoKmLDA). The main steps of the iterative
algorithm are as follows:
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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Algorithm 1. CoKmLDA

Input: a set of n multi-view samples X ¼ fXðvÞjv ¼ 1;2g,
where XðvÞ ¼ fxð1Þ1 ; . . . ; xðvÞn g, and the expected number of
clusters K.

Output: view dependent cluster indicators

HðvÞ ¼ fhðvÞ1 ; . . . ;hðvÞn g, and projection matrices Pð1Þ; Pð2Þ

Initialize:
1. Center the feature vectors in each view and apply PCA if

the dimensionality of the feature space is too high;
2. Perform k-means clustering in each view to estimate

cluster indicators HðvÞ ¼ fhðvÞ1 ; . . . ;hðvÞn g;
3. For each view v, identify the single sample closest to

each of the K clusters, SðvÞ ¼ fsðvÞ1 ; . . . ; sðvÞK g.
for t ¼ 1 to iter do

for v ¼ 1 to 2 do
1. Use XðvÞ and Hð3�vÞ to train LDA projections PðvÞ and pro-

ject samples into the LDA subspace;
2. Using seeds SðvÞ, perform k-means clustering on pro-

jected samples to estimate new cluster indicators HðvÞ;
3. Update seeds SðvÞ ¼ fsðvÞ1 ; . . . ; sðvÞK g.

end for
end for
Table 1
ðx; yÞ Locations of Gaussian centroids and number of samples.

Class 1 (red) Class 2 (blue)

View 1 (�2,4) 50 smpl. (2,4) 100 smpl.
(�4,�4) 100 smpl. (2,�4) 50 smpl.

View 2 (�4,�2) 100 smpl. (�4,2) 50 smpl.
(4,�2) 50 smpl. (4,2) 100 smpl.
1. k-means clustering Solve Eq. (7) with fixed Pð1Þ and Pð2Þ by
determine cluster indicators Hð1Þ and Hð2Þ with a k-means algo-
rithm operating in each view. In the initialization step, k-means
is applied on original features. If the dimensionality of the ori-
ginal feature is too high, PCA is applied as a preprocessing step.

2. Cross-labeling Label samples in view 1 according to Hð2Þ, and
vis-versa.

3. LDA training Learn LDA projection Pð1Þ with original or PCA
processed features Xð1Þ and labels corresponding to view 2,
and vis-versa. This step optimizes Eq. (6) in the sense that, in
view 2, samples belongs to the same cluster indicated by Hð1Þ

will be projected near each other while samples belongs to dif-
ferent clusters indicated by Hð1Þ will be projected apart. So the
data structure in view 2 will be constrained to be more compat-
ible with view 1, vis-versa.

4. Iterate Return to step 1, perform k-means again in projected
subspace. We compute the objective function in Eq. (6) for each
iteration. The iteration process can be terminated either after a
fixed number of iterations, or when the objective function did
not reach a new minimum for a fixed number of iterations in
each view.

It is well known that the performance of k-means is sensitive to
the quality of its initialization (seeds). Accordingly it is common
to run k-means several times with random initialization, and to
retain the clustering result which minimizes Eq. (4). This
approach is computationally demanding and thus we utilize seed
inheritance to reduce the computational burden. After each
application of k-means, we identify in each view the single
sample closest to each of the K cluster centroids, denoted
SðvÞ ¼ fsðvÞ1 ; . . . ; sðvÞK g. In subsequent iterations, k-means applied in
view v is initialized with the K seeds in SðvÞ. The CoKmLDA
algorithm is formally summarized in Algorithm 1.

The computational complexity of single iteration is in the order
of OðpnÞ for k-means, and Oðp2nÞ for LDA, where p is the feature
dimensionality and n is the number of samples. For t iterations
the complexity of CoKmLDA algorithm is hence Oðpnt þ p2ntÞ.
lease cite this article in press as: Zhao, X., et al. A subspace co-training fram
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3.2. An illustrative example

Here we illustrate the behavior and merits of the proposed CoK-
mLDA algorithm using synthetic data of 300 samples represented
in two views, each of two dimensions. Each sample belongs to
one of two classes, where each class is a two component Gaussian
mixture. All four Gaussian components have a covariance matrix of
R ¼ diagð0:3;0:3Þ. The means of each Gaussian component are de-
tailed in Table 1. The two views are conditionally independent, i.e.
two samples generated by the same Gaussian component in one
view can belong to different Gaussian components in the other
view. Finally, the number of samples corresponding to each Gauss-
ian components, also illustrated in Table 1, is intentionally unbal-
anced in order that, for initialisation, k-means gives better-than-
random accuracy relative to real class labels.

Scatter plots of generated data in 2 views are show in Fig. 1(a).
Fig. 1(b) illustrates clustering results after the initial application of
k-means in the original feature space. We note a high degree of er-
ror; two of the four Gaussian components are incorrectly clustered.
The result of cross-labeling, where samples in each view are la-
beled according to the clustering indicators in the other view, is
shown in Fig. 1(c). The two crosses at center of each plot represents
the two cluster centroids in each view. The resulting LDA projec-
tions (1-dimensional for this trivial example) are shown by the so-
lid, straight lines in Fig. 1(c). After the samples are projected into
the new subspaces and k-means is reapplied, the clustering results
are greatly improved as illustrated in Fig. 1(d). The new cluster
centroids and LDA projections normally used in the second itera-
tion are also illustrated in Fig. 1(d). Whereas several iterations
are required in practice, the new clustering result is fully represen-
tative of the true underlying class structure and the algorithm con-
verges in a single iteration for this illustrative example.

3.3. Mathematical analysis

The above example illustrates the behavior of the algorithm for
a trivial example. Given the assumption of conditional indepen-
dence between the two views, clustering indicators in one view
can be utilized as class labels in another view, but with random la-
bel noise. Here we aim to show mathematically that LDA projection
can be learned with labeled samples with random label noise.

We first define a hypothetical level of label noise k. Let there be
n centered data samples, X ¼ ½x1; . . . ; xn� and let Xk and nk be the
subset and number of samples in the kth class respectively. For
each class, ð1� kÞnk and knk points are randomly sampled from
Xk and X � Xk respectively to form a new subset X�k for the kth class
with random label noise. In the following we show that the ex-
pected LDA projection trained with X�k is equivalent to the LDA pro-
jection trained with true labels.

Trained on X�k with noisy labels, the LDA projection P is deter-
mined according to:

max
P

Tr
PT S�bP

PT S�t P
ð8Þ

where S�b and S�t are the between-class and total scatter estimated
with noisy data. It is clear that S�t ¼ St since its calculation do not
need label information, whereas Sb is defined as:
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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(a) data structure in two views

(b) k-means results on original space

(c) cross-labelling and LDA training

(d) k-means clustering in LDA space

Fig. 1. Illustration of a test run of CoKmLDA on synthetic dataset.
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S�b ¼
X

k

nkm�
km�

k
T ð9Þ

where m�
k is the mean of X�k. Its value in the sense of statistical

expectation is given by:

Eðm�
kÞ ¼ E

1
nk

Xð1�kÞnk

i¼1

xþki þ
Xknk

i¼1

x�ki

 ! !
¼ ð1� kÞEðxþkiÞ þ kEðx�kiÞ ð10Þ

where xþki is the ith sample from Xk and x�ki is the ith sample from
X � Xk. It is straightforward that

EðxþkiÞ ¼meanðXkÞ ¼mk

Eðx�kiÞ ¼meanðX � XkÞ ¼ �
nk

n� nk
mk

ð11Þ
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Combining Eqs. (10) and (11), we obtain:

Eðm�
kÞ ¼ 1� kn

n� nk

� �
mk ð12Þ

From Eq. (12) we observe that the expected value of m�k estimated
with X�k containing noisy labels lies in the same direction relative
to the origin as in the case where it is estimated with clean labels,
but with a shorter vector norm. This can be observed in Fig. 1(c) and
(d) in which the two class means in each view lie in the same direc-
tion, but different distances from the origin.

Upon substitution of Eq. (11) into Eq. (9), we obtain the expec-
tation of S�b:

EðS�bÞ ¼
X

k
nkEðm�

kÞEðm�
k

TÞ ¼
X

k
nk 1� kn

n� nk

� �2

mkmT
k ð13Þ

If we assume an equal number of sample per class, i.e. a constant
nk ¼ n=K , then:

EðS�bÞ ¼ 1� kK
K � 1

� �2

Sb ð14Þ

and if S�b and S�t in Eq. (8) are replaced with their expected values, we
obtain:

max
P

Tr
C2PT SbP

PT StP
ð15Þ

where C ¼ 1� kK
K�1

� �
is a constant. Eq. (15) shows that LDA objective

function in the case of sample with random label noise is equivalent
to the objective function in the case of clean labels.

3.4. Extensions of CoKmLDA

This paper presents the idea of unsupervised subspace cluster-
ing using co-training. The framework is entirely flexible and may
combine different clustering methods and supervised dimension-
ality reduction algorithms according to specific application and
nature of related data. For example, to cluster text data, cosine dis-
tance is a more appropriate distance measure, and for non-linear
separable data, kernel methods are often applied. In this section,
we first presents three extensions related to clustering, namely co-
sine k-means, kernel approach and semi-supervised extension. We
also provide multi-view extension to adapt to the situation where
the data is represented by more than two views.

Cosine distance extension: The standard k-means algorithm
uses a Euclidean distance metric. In some experiments in multi-
modal face and speaker recognition, however, we observe that
the cosine distance normally gives better performance when used
in LDA subspace. Tang et al. (2012) report similar findings in the
context of speaker clustering. The use of a cosine distance metric
in clustering problems is proposed in Dhillon et al. (2001) which
reports a spherical k-means algorithm which maximizes the sum
of the cosine similarity between samples and related cluster cen-
troids. Spherical k-means follows a similar iterative process as
standard k-means, except that feature vectors are first normalized
to have unit length and, in the assignment step, samples are
assigned to the cluster centroid which has the highest cosine sim-
ilarity. The power of spherical k-means clustering is brought to
CoKmLDA simply by replacing the standard k-means step in Algo-
rithm 1.

Kernel extension: LDA learns a subspace in which classes are
better separated. In the event that classes are not linearly separable
in the original space, then performance is usually poor. Using a ker-
nel trick similar to that employed in Support Vector Machines
(SVM), LDA can be implicitly performed in a new feature space,
which allows non-linear mappings to promote maximum separa-
bility of different classes. This approach is commonly referred to
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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as Generalized Discriminant Analysis (GDA) (Baudat and Anouar,
2000). By replacing standard LDA by GDA, the proposed algorithm
may be applied to clustering problems in which multi-view data is
not linearly separable.

Semi-supervised extension: The algorithm is also readily ex-
tended to semi-supervised clustering when a subset of manually
labeled data in addition to a larger subset of unlabeled data are
available. In this case the initial k-means step uses centroid statis-
tics acquired from the manually labeled data as proposed in Basu
et al. (2002). In our approach the k-means algorithm is seeded in
each iteration with labeled data. In the case where the number of
classes is high, and where random initialization often generates
several seeds corresponding to some classes whereas none for oth-
ers, this seemingly naive method often brings significant improve-
ments in performance in our framework. The proposed algorithm
simultaneously determines discriminant subspaces in addition to
compact cluster/class models and is naturally equipped to handle
out-of-sample data. Unseen test data can be projected into the rel-
evant subspaces and classified according to the nearest centroid.

Multi-view extension: Finally, it is possible to extend the pro-
posed two-view CoKmLDA algorithm to multi-view clustering.
Assuming that each data sample is represented by m-views
(m > 2), subsequent to the initialization and each iteration in Algo-
rithm 1, m sets of cluster indicators are generated. In the two-view
setting, an LDA projection in one view is learnt using cluster indi-
cators in the other view to enforce a similar data structure in each
subspace. Extending to an m-view setting, a straight forward solu-
tion involves the learning of an LDA projection in one view using
cluster indicators of all other views as class labels.

Traditional LDA accepts only a single label vectors. In order to
deal with multiple label vectors, the traditional LDA algorithm is
modified as follows. Assume a set of centered input data
X ¼ fx1; . . . ;xng and m sets of class indicators fHð1Þ; . . . ;HðmÞg. We
first calculate the within-class scatter SðvÞw and the between-class
scatter SðvÞb using each class indicator HðvÞ according to Eq. (1).
The overall between-class scatter Sb and within-class scatter Sw

are then defined as:

Sb ¼
Xm

v¼1
SðvÞb ; Sw ¼

Xm

v¼1
SðvÞw : ð16Þ

Finally, the optimal projection P is obtained in the same way as for
the traditional LDA by optimizing the objective function in Eq. (2).
Despite the different formulation, this method is have similar effect
to the Multi-label Linear Discriminant Analysis (MLDA) proposed in
Wang et al. (2010). The proposed method is still referred to as
MLDA for simplicity.

To conclude, multi-view CoKmLDA differs from the two-view
CoKmLDA in that in step 1 of the iterative process of Algorithm
1, an MLDA projection PðvÞ is learnt using XðvÞ and the cluster indi-
cators fHð1Þ; . . . ;Hðv�1Þ;Hðvþ1Þ; . . . ;HðmÞg from all other views, while
all other operations remain the same.
Fig. 2. Working flowchart of different multi-view clustering algorithms.
4. Related works and analysis

Several different approaches to subspace and multi-view clus-
tering have been reported in the open literature. Here we discuss
their relationship with the new algorithm proposed in this paper.

Subspace clustering (Kriegel et al., 2009) refers to a general
class of clustering methods which aim to discover a subspace more
amenable to clustering. These methods are largely uni-modal.
Among numerous other examples, the most relevant to the pro-
posed algorithm are the LDA-km algorithm (Ding and Li, 2007)
and DisKmeans (Ye et al., 2007) which use cluster indicators gen-
erated by k-means to learn an LDA projection. As a form of self-
training, such approaches do not generally lead to significant
improvements in clustering performance over a baseline k-means.
Please cite this article in press as: Zhao, X., et al. A subspace co-training fram
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The proposed CoKmLDA algorithm can be regarded as a co-training
extension of Ding and Li (2007).

In the multi-view clustering setting, the general objective is to
find certain kind of agreement between different views. Recent ap-
proach to multi-view clustering can be roughly divided into two
major categories. The first category of algorithms is multi-view
spectral clustering based on similarity graphs. As shown in
Fig. 2(a), a similarity graphs (matrix) SðvÞ is first constructed for
each view XðvÞ where SðvÞij ¼ expð< xi; xj>

2=t2Þ, where < : > is a cer-
tain distance measure and t is the Gaussian bandwidth, thus SðvÞij

represents the similarity between ith and jth sample in the vth
view. The original similarity graphs SðvÞ are then transformed so
that the difference between the transformed similarity graphs
S�ðvÞs is minimized across each view. Such transformations can be
learnt by different approaches such as Min-Disagreement (de Sa,
2005), co-training (Kumar and Daumé, 2011) or co-regularization
(Kumar et al., 2011). Finally, standard spectral clustering (Ng
et al., 2002) can be applied to the transformed graph of the most
informative view to obtain the final clustering result. This class
of algorithms is related to the CoKmLDA in the sense that both ap-
proaches aim to identify clusters which are in consensus across
each view, such that pairs of samples which are considered similar
in one view should be considered similar in other views. However,
the disadvantage of this class of algorithms is that, features XðvÞ are
not used again after the SðvÞ is built. In the case that original fea-
tures XðvÞ contain substantial number of noisy dimensions which
are irrelevant to underlying classes, the estimation of SðvÞ is intrin-
sically inaccurate, thus improvements from graph fusion can be
sub-optimal.

The second category of clustering approaches based on Canon-
ical Correlation Analysis (CCA), i.e. (Chaudhuri et al., 2009; Blas-
chko and Lampert, 2008) aim to cope with multi-view, high-
dimensional data. As illustrated in Fig. 2(b), the general idea in-
volves jointly learning projections Pð1Þ and Pð2Þ with Xð1Þ and Xð2Þ

such that the correlation between the projected samples in two
views are maximized. Standard clustering algorithms such as k-
means can then be applied to projected samples. The objective
function is formulated as:

arg max
Pð1Þ ;Pð2Þ

EðPð1ÞXð1ÞÞEðPð2ÞXð2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðPð1ÞXð1ÞÞ2EðPð2ÞXð2ÞÞ2

q ð17Þ

We foresee two disadvantages of CCA based algorithms. First,
according to the analysis of Chaudhuri et al. (2009), CCA learns a
low dimensional subspace spanned by the means of different clus-
ters (equivalent to the maximization of Sb). However, same cluster
samples are not necessarily projected near to each other (minimiza-
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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tion of Sw). Second, CCA-based methods rely strongly on the condi-
tional independence assumption, which may not hold in practical
problems. According the experimental work of Kumar and Daumé
(2011) and Kumar et al. (2011), CCA-based method performs poorly
when there is some dependence between views; this can be ex-
pected from Eq. (17). In the worst case, if Xð1Þ and Xð2Þ are fully cor-
related (Xð1Þ ¼ aXð2Þ), any projections Pð1Þ ¼ Pð2Þ will maximize the
objective function to its maximum value 1.

The framework of proposed CoKmLDA algorithm is illustrated
in Fig. 2(c). CoKmLDA requires a maximum agreement between
clustering results Hð1Þ and Hð2Þ on projected views Pð1ÞXð1Þ and
Pð2ÞXð2Þ. Compared to graph-based multi-view clustering algo-
rithms, CoKmLDA reduces noise existed in features Xð1Þ and Xð2Þ

through the iterative learning of projections Pð1Þ and Pð2Þ whereas
graph-based methods reduce noises in similarity graphs. Com-
pared to CCA-based multi-view clustering algorithms, CoKmLDA
directly requires maximum agreement of clustering results rather
than maximum correlation in projected spaces. Moreover, CoK-
mLDA is less sensitive to the view dependency. After all, CoKmLDA
algorithm is equivalent to single-subspace clustering algorithm
LDA-km proposed in Ding and Li (2007). Finally, as we will shown
in Section 5.3, CoKmLDA can exploit the existed independence be-
tween views even if it is weak.
5. Experiments and discussions

In this section, we evaluate the effectiveness of the proposed
algorithm on 3 independent datasets under 2 scenarios, when
the conditional independence assumption is fully satisfied or only
partially satisfied. For the former, its performance is assessed with
audio-visual person clustering based on facial and speech features
on the MOBIO database 1(McCool et al., 2012). For the later, we re-
port its application to image clustering using the UCI handwritten di-
git dataset,2 and text document clustering using BBC News Synthetic
multi-view text dataset.3 Note that the complexity of the proposed
CoKmLDA algorithm grows linearly with the square of feature length
(as discussed in Section 3.1), so for the efficiency of computation, in
all experiments, all features are reduced to 100 dimensions by a PCA
preprocessing step. All results are averaged by across independent
trials of random initialization.

The performance of CoKmLDA is compared to four baseline sys-
tems: conventional k-means in PCA space, the LDA-km single-view
subspace clustering algorithm (Ding and Li, 2007) and two other
recently proposed multi-view clustering algorithms, namely
Canonical Correlation Analysis (CCA) (Chaudhuri et al., 2009) and
co-training spectral clustering (CoSC) (Kumar and Daumé, 2011).
These latter two algorithms represents the two different ap-
proaches to multi-view clustering algorithms discussed in Sec-
tion 4. Despite some underlying limitations of the component
algorithms of the proposed approach, e.g., LDA is only optimal for
Gaussian-distributed data and k-means often gives unreliable clus-
tering of non-spherical-shaped data, experiments with three real-
world datasets presented in this section show that the proposed
CoKmLDA algorithm gives satisfactory clustering performance in
solving practical problems.
5.1. Evaluation metrics

The clustering performances of the proposed CoKmLDA algo-
rithm and other compared methods are assessed using four differ-
ent metrics, namely clustering accuracy, Normalized Mutual
1 https://www.idiap.ch/dataset/mobio
2 http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3 http://mlg.ucd.i.e./datasets/segment.html
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Information (NMI), and pairwise precision and recall. The cluster-
ing accuracy is given by:

CA ¼ 1
n

Xn

i¼1

dðhi;mapðliÞÞ ð18Þ

where n is the number of samples, hi is the cluster indicator esti-
mated for the ith sample, li is the corresponding true label, and
dða; bÞ is a function which returns 1 if a ¼ b and 0 otherwise. The
mapð Þ function represents the mapping between cluster indicators
and true labels as determined according to a Hungarian algorithm
(Steiglitz and Papadimitriou, 1982).

The normalized mutual information (NMI) (Strehl and Ghosh,
2003) is another popular clustering metric derived from informa-
tion theory and given by:

NMI ¼ IðH; LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðHÞEðLÞ

p ð19Þ

where IðH; LÞ is the mutual information between H and L and EðHÞ
and EðLÞ are the respective entropy. The NMI lies between 0 and 1
and larger values indicate more accurate clustering indicators.
Please see (Strehl and Ghosh, 2003) for more details.

The pairwise precision and recall are defined in the following
way. Let true positives (TP) be the number of pairs of same-class
samples assigned to the same cluster, false positives (FP) be the
number of pairs of different-class samples assigned to the same
cluster, and false negatives (FN) be the number of pairs of same-
class samples assigned to different clusters. The precision and re-
call are then given by:

Precision ¼ TP
TP þ FP

; Recall ¼ TP
TP þ FN

ð20Þ

Both metrics take value between 0 and 1.

5.2. Audio-visual speaker clustering (conditional independence
assumption satisfied)

We first evaluate the effectiveness of the proposed algorithm
through experiments in audio-visual speaker clustering. In this
case, each view is conditionally independent and represented with
features of high dimensionality. Facial features are corrupted by in-
ter-session variations such as illumination, expression and pose
whereas vocal features are corrupted by different phonemes pro-
nounced in a short speech episode, which are expected to be inde-
pendent from each other.

5.2.1. Database and feature extraction
We consider speaker clustering using speech and facial images.

Experiments are conducted with the standard MOBIO database
(McCool et al., 2012) which contains videos of 150 subjects cap-
tured in real-world, challenging conditions. Recordings come from
a mobile phone camera and are captured in 12 different sessions
over a 18-month period where each session contains 11–21 videos.
Fig. 3 illustrates the level of inter-session variation in a set of
example frames for a given subject. For computational efficiency,
we test our algorithm using a subset of data from 40 male subjects
and for each of them, 5 videos are selected from each of the 12 ses-
sions. This results in a pool of 2400 video samples.

We use cropped face images provided with the MOBIO data-
base, one image per video sample. All images are resized to
50� 43 pixels and then histogram equalized. Rows of pixel inten-
sities are concatenated to form feature vectors of 2150 dimensions.
The speech signal is split into frames of 20 ms duration before the
extraction of features composed of 26 Mel-scaled frequency ceps-
tral coefficients (MFCCs), their 26 derivatives and the delta energy.
Energy-based voice activity detection is then applied to discard
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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non-speech frames. A 64-component Gaussian mixture model
(GMM) is then fitted to remaining speech data through the maxi-
mum a posteriori (MAP) adaptation of a speaker-independent
world model. The means of the GMM model are then concatenated
to form a 3392-dimensional GMM supervector (Reynolds et al.,
2000). Both face and speech feature vectors are first reduced to
100 dimensions through the application of PCA.
Fig. 4. Clustering accuracy for face modality (red), voice modality (blue) and CAI
score (green) v.s. number of iterations of co-training. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
5.2.2. Results
The proposed CoKmLDA algorithm and all compared methods

require the expected number of clusters K as an input parameter,
which is set to be the number of subjects. In our experiments we
observed that, for all linear subspace methods (PCA, LDA-km,
CCA and CoKmLDA), the use of cosine-distance-based spherical k-
means (Dhillon et al., 2001) consistently out-performs Euclidean-
distance-based k-means. As a result, we report the results obtained
with spherical k-means in these methods whereas for CoSC, we re-
port the results obtained with conventional k-means which
achieves the best performance in this case.

Table 2 summarizes the mean of the clustering accuracy, NMI,
pairwise precision and pairwise recall obtained with 20 different
runs of k-means with random initialization. It is observed that,
for all metrics, multi-view clustering methods CCA, CoSC and CoK-
mLDA perform significantly better than the PCA baseline, whereas
the single view LDA-km method only gives modest improvements
over the PCA baseline. Finally, the proposed CoKmLDA algorithm
outperforms the closest-performing method CCA by a significant
margin (over 10% gain in clustering accuracy and approximately
5% in NMI). Fig. 4 shows the variation in accuracy and CAI scores
as a function of the number of iterations. Convergence is seen to
occur in fewer than 15 iterations. In practice we have not encoun-
tered any cases where convergence does not occur.
5.2.3. Clustering visualisations and discussion
All the approaches compared above embed data samples into

lower dimensional spaces in which clustering is then performed
Table 2
Performance comparison.

Face Speech

Accuracy NMI Accuracy NMI

(a) Mean clustering accuracy and NMI
score over 20 random trials

PCA 0,530 0,665 0,512 0,667
LDA-Km (Ding and Li, 2007) 0,712 0,842 0,668 0,815
CCA (Chaudhuri et al., 2009) 0,825 0,915 0,798 0,924
CoSC (Kumar and Daumé, 2011) 0,785 0,895 0,799 0,895
CoKmLDA 0,934 0,970 0,910 0,959

Face Speech

Precision Recall Precision Recall

(b) Mean precision and recall over 20
random trials

PCA 0,359 0,396 0,425 0,407
LDA-Km (Ding and Li, 2007) 0,652 0,765 0,585 0,692
CCA (Chaudhuri et al., 2009) 0,675 0,882 0,677 0,864
CoSC (Kumar and Daumé, 2011) 0,662 0,861 0,652 0,841
CoKmLDA 0,889 0,972 0,864 0,952
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with a standard k-means algorithm. PCA, LDA-km, CCA, and the
proposed CoKmLDA algorithm embed original data into linear sub-
spaces, while co-training spectral clustering embeds data samples
into the first K eigenvectors of the graph Laplacian (Kumar and
Daumé, 2011). It is informative to visualize the embedded data
structure and thus to observe the relationship between the embed-
ded structure and clustering performance. However, the embedded
subspaces are still high-dimensional and cannot be visualized di-
rectly. T-distributed Stochastic Neighbour Embedding (t-SNE)
(van der Maaten and Hinton, 2008) is a powerful tool used to visu-
alize high-dimensional data via the embedding of data into a 2-D
or 3-D space while respecting relative distances between data
samples.

Fig. 5 illustrates 2-D scatter plots of projected data for PCA, LDA-
km, CCA, CoSC and CoKmLDA after the application of t-SNE. In all
cases, samples belonging to different classes are represented by
different colors. The features processed by PCA is shown in
Fig. 5(a). The sample distribution is especially noisy which explains
the poor clustering performance. In Fig. 5(b), clearer cluster struc-
tures are observed in LDA-km subspaces but the confusion be-
tween several classes is still high, due to its single-view nature.
In CCA subspaces (Fig. 5(c)), cluster structure is not visually obvi-
ous. Same-class samples are approximately located in one single
Gaussian distribution, but the variance is relatively high, since
CCA does not minimize with-in class scatter, as discussed in Sec-
tion 4. Both CoSC and the proposed CoKmLDA produce large be-
tween-class/within-class scatter ratio, as shown in Fig. 5(d) and
(e) respectively. However, the clustering purity in CoKmLDA sub-
spaces is significantly better.

In the following we address some potential anomalies in the re-
ported results. Fig. 5 and Table 2 show that, while CoSC gives better
cluster separation, performance is worse than that of CCA. Even
though CoSC produces a subspace in which different clusters are
better separated, the data structure produced with CCA is cleaner
with respect to the true labels. However, with a better separated
cluster structure, more sophisticated initialization method for the
k-means algorithm may deliver improved clustering performance.

It is also of interest to reflect on the reasons why CoKmLDA
delivers such significantly better performance than other ap-
proaches. We attribute the superior performance of CoKmLDA to
two main factors. First, CoKmLDA learns discriminative subspaces
in which the cluster structure is in agreement for each view. Inso-
doing, the influence of feature dimensions which are unrepresenta-
tive of the underlying class structure is greatly reduced. Second, as
discussed in Section 3.1, seeds used for k-means in each iteration
are inherited from samples closest to the K centroids identified
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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(a) PCA embeddings for face(left) and voice(right)

(b) LDA-Km embeddings for face(left) and voice (right)

(c) CCA embeddings for face(left) and voice (right)

(d) CoSC embeddings for face(left) and voice (right)

(e) CoKmLDA embeddings face(left) and voice (right).

Black crosses represents k-mean seeds inherited

Fig. 5. 2-D t-SNE visualizations of data structures for PCA, CCA, CoSC, and CoKmLDA subspaces. Different subjects/classes are represented by different colors. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Performance comparison on UCI Handwritten digits dataset.

View 1 (Fou) View 2 (Fac) View 3 (Pix)

Accuracy NMI Accuracy NMI Accuracy NMI

(a) Mean clustering accuracy and NMI score over 20 random trials. Number (2) or (3) indicates the number of
views used in the approach.

PCA 0,525 0,603 0,603 0,651 0,601 0,642
LDA-Km (Ding and Li, 2007) 0,576 0,677 0,750 0,798 0,771 0,804
CCA (Chaudhuri et al., 2009) 0,542 0,647 0,644 0,687 N.A.
CoSC(2) (Kumar and Daumé, 2011) 0,702 0,752 0,748 0,774 N.A.
CoKmLDA(2) 0,725 0,769 0,761 0,810 N.A.
CoSC(3)(Kumar and Daumé, 2011) 0,740 0,773 0,772 0,793 0,764 0,782
CoKmLDA(3) 0,720 0,759 0,892 0,852 0,845 0,844

View 1 (Fou) View 2 (Fac) View 3 (Pix)

Precision Recall Precision Recall Precision Recall

(b) Mean precision and recall over 20 random trials. Number (2) or (3) indicates the number of views used in
the approach.

PCA 0,525 0,594 0,568 0,601 0,593 0,620
LDA-Km(Ding and Li, 2007) 0,527 0,615 0,702 0,759 0,642 0,739
CCA(Chaudhuri et al., 2009) 0,568 0,620 0,604 0,691 N.A.
CoSC(2)(Kumar and Daumé, 2011) 0,665 0,685 0,698 0,757 N.A.
CoKmLDA(2) 0,685 0,713 0,718 0,785 N.A.
CoSC(3)(Kumar and Daumé, 2011) 0,704 0,730 0,756 0,798 0,744 0,787
CoKmLDA(3) 0,675 0,701 0,821 0,860 0,802 0,841
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in the preceding iteration and the algorithm tends to give one seed
per compact cluster. This fact is shown in Fig. 5(e), where the black
crosses represents the seeds of k-means automatically learnt by
CoKmLDA algorithm.

5.3. Handwritten digit clustering and text document clustering
(conditional independence assumption not fully satisfied)

Co-training-style algorithms generally assume the conditional
independence between the multiple features in use. However, in
many practical problems, this assumption is not fully validated.
As opposed to different features from different sources (as with vi-
sual and audio sources in the previous example), when both fea-
tures come from the same source, they are expected to be
correlated to some extent. To assess the CoKmLDA algorithm in
such settings, we report further experiments with the clustering
of image-only and text-only documents.

5.3.1. Databases
The proposed algorithm is assessed using two different dat-

abases: the UCI handwritten digits dataset4 for image clustering
with different features, and the BBC News Synthetic multi-view text
dataset5 for text document clustering.

The UCI handwritten digits dataset consists of images of hand-
written numerals (‘0’–‘9’) extracted from a collection of Dutch util-
ity maps. 200 patterns per class (for a total of 2,000 patterns) have
been digitized in binary images. The database provides multiple
type of features extracted from the images. We used the 76-dimen-
sional Fourier coefficients (Fou) as view 1 and the 216-dimensional
profile correlations (Fac) as view 2. In order to assess the effective-
ness of the extension of CoKmLDA to more than two views, we fur-
ther choose the pixel intensities (Pix) as the third view, which is a
240-dimensional feature vector. Note that the first view is intrinsi-
cally less informative than the two others since the Fourier coeffi-
cients are rotation invariant hence cannot distinguish between the
digit ‘6’ and the digit ‘9’. Both profile correlation and pix intensity
features are reduced to 100 dimensions by PCA as in audio-visual
person clustering experiment, while for Fourier coefficient features
4 http://archive.ics.uci.edu/ml/datasets/Multiple+Features
5 http://mlg.ucd.i.e./datasets/segment.html
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are only pre-processed by removing the mean since it has only 76
dimensions.

The BBC News synthetic multi-view text dataset consist of term
frequency features from news articles from the BBC (Greene and
Cunningham, 2005). BBC data contains 2225 complete news arti-
cles corresponding to stories in five topical areas (business, enter-
tainment, politics, sport and technology). Each document is
segmented into two parts, and word frequency features are com-
puted from each part, which constitute the two views (seg1of2 &
seg2of2) (Greene and Cunningham, 2009). The feature dimension
is 6838 and 6790 for the two views, respectively. Both features
are reduced to 100 dimensions by PCA.

5.3.2. Results and discussions
Clustering performance is again assessed in terms of clustering

accuracy, NMI, pairwise precision and recall. Table 3 shows results
for the UCI handwritten dataset. The number in the parentheses (2
or 3) after CoSC and CoKmLDA indicates the number of views used
in the algorithm. Since Chaudhuri et al. (2009) does not provide an
extension to more than two views for CCA-based clustering, in this
case results are reported for the first two views only. According to
the most informative view (Fac), The proposed CoKmLDA algo-
rithm gives the best performance among all methods compared.
For the two-view setting, and the most informative view (Fac),
the single-view LDA-km algorithms performs closest to the CoK-
mLDA algorithm. However, CoKmLDA is still successful in utilizing
information in the first view (Fou), even if it is less informative, and
performs marginally better than the single-view algorithm. This
observation shows that the proposed algorithm can exploit even-
marginal independence between views. CCA only provides mar-
ginal improvements over the PCA baseline, due to its sensitivity
to correlated features. When the additional third view is used,
the CoKmLDA algorithm gives a further 12% increase in terms clus-
tering accuracy for the most informative view (Fac), which demon-
strates the effectiveness of the multi-view extension proposed in
Section 3.4.

Table 4 summarizes results for BBC News dataset. The proposed
algorithm still out-performs all the compared methods and the
co-spectral-clustering algorithm is the second-best performing
algorithm. Note that the CCA method performs even worse than
the PCA baseline. These results confirm the analysis in Section 4
ework for multi-view clustering. Pattern Recognition Lett. (2013), http://
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Table 4
Performance comparison on BBC News dataset.

View 1 (seg1of2) View 2 (Seg2of2)

Accuracy NMI Accuracy NMI

(a) Mean clustering accuracy and NMI
score over 20 random trials

PCA 0,852 0,701 0,863 0,713
LDA-Km (Ding and Li, 2007) 0,877 0,762 0,882 0,755
CCA (Chaudhuri et al., 2009) 0,725 0,688 0,746 0,692
CoSC (Kumar and Daumé, 2011) 0,886 0,762 0,887 0,775
CoKmLDA 0,912 0,788 0,915 0,803

View 1 (seg1of2) View 2 (Seg2of2)

Precision Recall Precision Recall

(b) Mean precision and recall over 20
random trials

PCA 0,795 0,802 0,801 0,812
LDA-Km (Ding and Li, 2007) 0,794 0,806 0,804 0,821
CCA (Chaudhuri et al., 2009) 0,678 0,797 0,710 0,801
CoSC (Kumar and Daumé, 2011) 0,833 0,845 0,841 0,849
CoKmLDA 0,852 0,861 0,858 0,867
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that CCA method strongly relies on the assumption of conditional
independence between views and is risky to use when this
assumption no longer holds. The proposed CoKmLDA algorithm,
on the other hand, is more reliable when the conditional indepen-
dence assumption is weak.

6. Conclusions

This paper proposes a new co-training framework for unsuper-
vised, multi-view subspace clustering. It applies the results of
unsupervised clustering in one view to learn discriminant subspac-
es in another. The general framework assumes conditionally inde-
pendent views. We show, however, that the new algorithm still
performs well when the conditional independence is weak. Fur-
thermore, the framework is straightforward and combines well-
known, even trivial algorithms to positive effect. The paper also
presents a theoretical treatment which shows how LDA projections
learned from samples with random label noise are equivalent to
those learned with entirely clean labels and that the cross-view
labeling, or co-training, is efficient in correcting erroneous sample
labels. Experiments in audio-visual speaker clustering, multi-view
handwritten digit clustering and text document clustering demon-
strate the effectiveness of our algorithm and superior performance
to existing state-of-the-art approaches.
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