
SysML-Sec: A SysML Environment for the
Design and Development of Secure Embedded

Systems
Ludovic Apvrille (ludovic.apvrille@telecom-paristech.fr)∗

Yves Roudier (yves.roudier@eurecom.fr) †

Abstract: We introduce SysML-Sec, a new SysML environment aimed at making secu-
rity experts collaborate with system designers at all methodological stages of the design
and development of an embedded system. SysML-Sec is also meant to support the assess-
ment of the impact of security over safety. Security and safety concerns are captured in
extended SysML diagrams elaborated according to an iterative process centered around the
software/hardware partitioning of the architecture. The requirements captured are derived
into security and cryptographic mechanisms as well as into security properties that can be
formally verified.

Keywords: SysML, security, embedded systems, model driven engineering.

1 Introduction
Most contributions around Model Driven Engineering (MDE) now offer appropriate method-
ologies and modeling environments for designing safe, complex, distributed, and real-time
embedded systems. The analysis of timing constraints, scheduling, resource allocation,
and concurrency are commonly handled by these environments. In contrast, security has
long been considered only in retrospect, especially after serious flaws are discovered. Secu-
rity issues have in particular only recently become a major concern in embedded systems.
However, the size, heterogeneity, and communication features of modern embedded sys-
tems make it compelling to develop a suitable engineering environment to more explicitly
define security objectives and threats and to implement countermeasures. The system
complexity also makes it worthwhile verifying that requirements are consistent with and
satisfied by a candidate design before any commitment to a particular implementation is
made.

Contributions in the field of security-aware MDE commonly address one specific method-
ological stage (e.g., requirements [NNY10], verification [Tou93]), or one specific application
domain (e.g., proofs over cryptographic protocols [ABB+05] [ORR00]), or are focused on
the immediate modeling of security mechanisms [Jür02] rather than the definition of these
mechanisms based on a clearly defined methodology.
∗ Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Campus SophiaTech, CS 50193, 06904
Sophia Antipolis cedex France, Tel: 04.93.00.84.06, Fax: 04.93.00.82.00
† EURECOM, Campus SophiaTech, CS 50193, 06904 Sophia Antipolis cedex France, Tel:
04.93.00.81.18, Fax: 04.93.00.82.00

Apvrille, L and Roudier, Y

This paper introduces SysML-Sec, a new SysML environment with a more holistic
approach, which introduces both customized SysML diagrams for security matters and
an associated methodology. We intend SysML-Sec to make it possible for security ex-
perts to intervene on the design and development of an embedded system together with
system designers. The SysML-Sec methodology and diagrams have been developed and
experimented in the scope of the FP7 European project EVITA. EVITA defines a secure
architecture for automotive embedded systems. The definition, design and validation of
this architecture was performed with the methodology which is presented in this paper.
Thus, more than 20 use cases (notably an emergency braking case) were taken into ac-
count for that purpose, and the diagrams in this paper are directly excerpted from this
case study.

2 Hardware / Software Partitioning in Embedded Systems
Software-centric systems are commonly designed with a V-cycle, with building stages (re-
quirements, analysis, design, implementation) followed with verification stages (e.g., tests,
formal proofs). For embedded systems, the V-cycle can obviously start only once func-
tions have been partitioned into software and hardware. System partitioning usually relies
on the Y-chart approach [BWH+03]. The result of this process is an optimal hardware /
software architecture with regards to criteria at stake for that particular system (e.g., cost,
performance, etc.) and comprising: (1) Applications are first described as abstract commu-
nicating tasks: tasks represent functions independently from their implementation form.
(2) Hardware architectures are described as a set of abstract execution nodes (e.g., CPU
with operating systems and middleware, hardware accelerators), communication nodes
(e.g., buses), and storage nodes (e.g., memories). (3) A mapping model defines how tasks
and communications between tasks are assigned to computation and communication or
storage elements, respectively. For example, a task mapped on a hardware accelerator
is a hardware-implemented function whereas a task mapped over a CPU is a software
implemented function.

We have already defined several MDE-based environment to support the develop-
ment of embedded systems (the DIPLODOCUS UML profile [AMAB+06], the AVATAR
[ADSS11] SysML environment, and the TEPE [KAD11] environment). All those envi-
ronments are implemented within the free software TTool [Apv13]. TTool automates the
formal verification and simulation of models and provides live feedback to UML diagrams.
SysML can be used with those environments and tooling to describe the partitioning issues
discussed above together with performance and safety requirements.

Security issues are however not addressed by these profiles. We designed the SysML-Sec
environment in order to make it possible to describe such issues together with partitioning
requirements, as further discussed in [RIA13]. In particular, our extensions bridge the
gap between goal-oriented descriptions of security requirements and attacks, and the fine-
grained representation of assets based on the software / hardware architecture (and their
model-driven analysis).

3 The SysML-Sec Approach
An increasing number of embedded systems have become communicating artifacts, feature
new interactions with their immediate environment or with backend systems, and are thus

SysML-Sec

exposed to criminals. For example, attacks have been shown to be possible on set-top boxes
like Microsoft’s XBox [Hua02] or ADSL routers [Ass12], mobile appliances [Ess11], avionics
[Tes13], or automotive systems [HKD11] to cite but a few. Many of these security issues
reflect either the exploitation of low-level vulnerabilities, which might often be addressed
with appropriate programming practices and specific component tests, or design flaws due
to an insufficient understanding of the mapping of functional or security logical components
to the hardware architecture. We claim that the SysML-Sec Model-Driven Engineering
approach makes it possible to perform an appropriate system analysis in both directions,
and to describe both security threats and security objectives.

SysML-Sec first of all guides and increases the potential for collaboration between sys-
tem engineers and security experts throughout the entire embedded system lifecycle. This
has been the reason for our adoption of the OMG standards, and more specifically SysML,
which are quite widespread in the embedded system world today. Our approach further-
more provides detailed representations of the security threats and security requirements
compatible with the MDE methodology used and making it possible to adopt a stepwise
refinement approach to the definition of both the functional and the security architecture.
This refinement should also make it possible to bridge the gap between initial high-level
requirements and the definition of precise and detailed security mechanisms. Finally,
SysML-Sec combines software/hardware codesign together with the handling of security
concerns. We contend that this particular design objective is a key in the embedded system
domain.

The SysML-Sec methodology adopts a three-phase approach that first deals with the
system analysis, then with software design, and finally with system validation, as described
in the following sections.

4 System Requirements Engineering and Analysis
The security requirement and threat analysis is mostly regarded as a preamble to risk
analysis in IT systems. This process is generally meant to decide whether to introduce
security countermeasures into the system, which means additional costs. In the case of
embedded systems, we contend that the security analysis also has a strong impact on the
system architecture and its realtime performance: the security requirements and threat
analysis should thus be performed along the partitioning iterative process. We also claim
that the security analysis should play an important role with respect to convincing the
designer of increasingly complex embedded systems of the consistency and exhaustivity
of his security architecture, at least with respect to the threats identified and to the risk
model.

4.1 Iterative Security/System Codesign Process
System partitioning, security requirements, and threats are progressively refined based on
one or several typical use cases. The following phases, which thus start with an initial
architecture, are iterated in order to reach a satisfactory level of refinement:

Initial architecture mapping. The functionalities of the system highlighted in
these use cases are first modeled as tasks. Exchanges between functions are modeled with
information and event flows. Event-based communications is also captured in order to
control the Information Flow. Tasks and communications can then be mapped to a draft

Apvrille, L and Roudier, Y

architecture of the system. The designer’s experience plays a key role for determining the
first draft of the architecture.

Architecture analysis System assets are identified among architectural elements
(processors, pieces of software, sensors, hardware accelerators, communication channels).
For instance, a modern automotive on-board network interconnects a hundred of micro-
controllers, termed Electronic Control Units (ECUs) organized into application-specific
domains that are bridged by gateways. It is easier to first refer to generic components,
like for example: “all system buses”. When the architecture gets more detailed, assets are
more likely to be refined into specific elements. The hardware/software partitioning and
the function mapping adopted play a key role here in defining the type of asset at hand
(and later on its vulnerabilities).

Security concern identification. Threats and security vulnerabilities of the selected
assets originate from either real vulnerabilities or from a security analysis. For instance,
attacks have been shown to be quite feasible [KCR+10] in automotive systems by bypass-
ing the filtering performed between domains or by brute-forcing ECU cryptography-based
protection mechanisms. Those descriptions should as much as possible describe the capa-
bilities that an attacker should meet or exceed and the origin of attacks (local, remote,
through a specific interface). The SysML-Sec environment supports the assessment of risks
following the approach described in more detail in the EVITA case study [Rea09, HAF+].
We also implemented automated checks of the threat coverage by security objectives. Risk
analysis is extremely important to determine whether attacks or vulnerabilities are rel-
evant and to prioritize security objectives that address them. For instance, while the
risk of exploiting the attacks mentioned above may seem negligible for an automobile,
the increased communication capabilities of modern vehicles, like a permanent Internet
connectivity, make them vulnerable to hackers and malware. Security objectives might
originate (1) from security standards or properties expected from the system, or (2) from
unaddressed threats or attacks on assets, or (3) from the refinement of another security ob-
jective when the process is iterated and the level of detail of the architecture has changed.
In further iterations, one may need to update security objectives deprecated by changes
in the architecture.

Architecture refinement. The architecture refinement originates from a more de-
tailed description of the architecture components as the system and its usage become more
precisely known (e.g., new communication channels, refinement of an execution environ-
ment into OS/middleware/application layers, etc.). It may also result from transitively
mapping requirements to system information flows, which are often distributed among
multiple hardware elements. The refinement phase may fail if the architecture and secu-
rity requirements are incompatible, for instance, if the performance overhead of security
mechanisms is too high. Consistency checks should also be performed to ensure that a
security objective does not conflict with another requirement expressed over the same as-
set. A failure is the sign that the analysis should be backtracked to the previous stage of
refinement.

4.2 Diagrams
In our proposed framework, the partitioning is given using the allocations of tasks over
hardware nodes. Tasks and hardware nodes are modeled using SysML blocks. Allocations
are modeled with the StsyML "allocate" relationship.

SysML-Sec

<<Security Requirement>>
ConfidentialityOfFirmwareData

ID=FBSR-1.2.1
Kind="Confidentiality"
Risk="Low"

<<Security Requirement>>
ControlledAccessToFlashingFunction

ID=FBSR-1.1
Kind="Controlled access (authorization)"
Risk="Low"

<<Security Requirement>>
ControlledAccessToFlashMemory

ID=FBSR-1
Text="Flash memory should be paired
with their ECU
to prevent flash replacement"
Kind="Controlled access (authorization)"

<<Security Requirement>>
FirmwareAuthenticatedByCarMaker

ID=FBSR-2
Kind="Data origin authenticity"
Risk="Low"

<<Security Requirement>>
ControlledAccessToReadFromFlash

ID=FBSR-1.2
Kind="Controlled access (authorization)"
Risk="Low"

<<deriveReqt>>

Fig. 1: Security Requirements in the EVITA Firmware Update Use Case (SysML-Sec Require-
ment Diagram Excerpt)

Security requirements are modeled in SysML Requirement Diagrams (see Figure 1).
The main operators of such diagrams are Requirement Containment and Derive Depen-
dency formalisms used to define relationships between requirements. The containment
relationship depicts sub-requirements in terms of hierarchy and enables a complex re-
quirement to be decomposed into its containing child requirements whereas deriveReqt
determines the multiple derived requirements that support a source requirement. These
requirements normally present the next level in the requirement hierarchy. A Security
Requirement stereotype is introduced to make a clear distinction between functional re-
quirements and security requirements of the system, yet modeling both functional and
non-functional requirements in a single environment. Furthermore, a Kind parameter is
defined to specify the category of the security requirement (confidentiality, access control,
integrity, freshness, etc.).

<<block>>
CommunicationUnit

<<attack>>
CCUTakesTooLongToRespond

<<attack>>
GarageGainsAccessToCCU

<<attack>>
InfectedCCUReportsBogusMoreRecentVersionofECU

<<attack>>
InfectedECUShuttingDownCommunication

<<attack>>
ExploitVulnerabilitiesInFlashing

<<block>>
ElectricControlUnit

<<attack>>
InfectedECUSendTooManyMessagesTOCCU

<<attack>>
ExploitVulnerabilitesOrImplementationError

<<attack>>
AbortFlashingOperation

<<attack>>
InfectedECUNotResponding

<<attack>>
GarageInstalledModifiedFirmwareToECU

<<attack>>
FaultyORNoFirmwareAuthentication<<block>>

InCarCommunication
<<attack>>

CorruptOrFakeMessage

<<OR>>

<<AFTER>>

<<AFTER>>

<<AFTER>>

Fig. 2: Attacks Mapped to the Architecture - EVITA Firmware Update Use Case (SysML-Sec
Parametric Diagram Excerpt)

Attack trees can be modeled with slightly customized SysML Parametric Diagrams (see
Figure 2). Attacks are modeled as values embedded into blocks representing the target
of the attack. Attacks can be linked together with the logical constraints, like OR and
AND, as well as temporal ones, like AFTER, the latter which we consider as extremely
important to describe attacks in embedded systems. Their instances in different parametric
diagrams can be linked together in order to assess the impact of a specific vulnerability
and the need to address it at the risk assessment phase. An attack can also be tagged
as a root attack, meaning that this attack is at the top of the tree. Last but not least,

Apvrille, L and Roudier, Y

attacks can be linked to requirements, thus allowing an automated check of the coverage
of attacks.

<<HWA>>
BEM_Instruments

LDW-FV::WarningDisplay

<<CPURR>>
CPU_BEM

LDW-FV::HMI

LDW-FV::LocalDangerWarning

<<BUS-RR>>
CAN_BEM

<<BUS-RR>>
CAN_CSCU

<<BUS-RR>>
CAN

<<CPURR>>
CPU_CSCU

LDW-FV::SafetyCriticalInformationTracker

<<HWA>>
ChassisSensors

LDW-FV::getVehicleDynamics

<<HWA>>
EnvSensors

LDW-FV::GetEnvironmentInformation

<<MEMORY>>
Flash_CSCU

<<MEMORY>>
RAM_CSCU

<<BRIDGE>>
CSCU_to_CAN

<<BRIDGE>>
BEM_to_CAN

<<MEMORY>>
RAM_BEM

<<MEMORY>>
Flash_BEM

<<BRIDGE>>
CU_to_CAN

Fig. 3: Mapping of Local Danger Warning use case (SysML-Sec)

An example of function mapping is given in Figure 3 in the scope of the emergency
braking (or Local Danger Warning) use case. Two Electronic Control Unit sub-domains
are represented. The Chassis Safety Controller on the left, and the Body Electronic Module
on the right. Each sub-domain has a main processor, a local flash memory, a local main
memory, a set of hardware accelerators, and a bridge to the main system bus. Functions
are mapped either on processors (these functions are to be software-implemented) or on
hardware accelerators (functions are to be hardware-coded). Communications between
tasks are also to be mapped over buses and memories, in order to highlight data transfers.

5 Software Design
5.1 Methodological Aspects
Software design defines the architecture and behaviour of all functions mapped over pro-
cessor nodes at the partitioning stage. From a security point of view, the design intends
to precise how security requirements can be fulfilled with security-oriented software mech-
anisms executed on top of the hardware architecture defined in the partitioning stage, and
verify that requirements identified during the partitioning phase are really satisfied by
this design. Requirements expressed at partitioning are informal and refer to assets: they
therefore need to be refined until their expression directly relates to design elements (e.g.,
attributes, methods, exchanged messages, states, etc.). Once refined, they constitute the
security properties that are to be verified by the design. SysML-Sec extends SysML with
ways to explicitly model security mechanisms and properties.

5.2 Security Design Extensions
A SysML-Sec design is made upon SysML block and state machine diagrams, extended
with several features, and formally defined in pi-calculus (a process algebra).
Figure 4 illustrates the SysML-Sec software design of the Key Distribution protocol defined

SysML-Sec

in the EVITA architecture. This protocol distributes session keys in a group of Electronic
Control Units (ECUs) spread in the vehicle. Pragmas are given in the top left part of the
diagram: the knowledge which is pre-shared between ECUs and the Key Master (KM), and
two properties: the confidentiality of the key pre-shared with ECU1, and the authenticity
of a message sent from ECU1 to KM. The blocks underneath model the ECU initiating
the key distribution (ECU1), the Key Master, and another ECU (ECUN). Extensions of
SysML on these diagrams are now further explained.

<<block>>
SecuredSystem

~ in chin(Message msg)
~ out chout(Message msg)
~ in chinprivate(Message msg)
~ out choutprivate(Message msg)

<<block>>
ECUN

- PSKN : Key;
- keyOfGroup : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;
- msg4 : Message;
- msg5 : Message;
- msg6 : Message;
- timestamp : int;
- ACK : int;
- b : bool;
- secretData : int;

~ Message encrypt(Message msg, Key k)
~ Message decrypt(Message msg, Key k)

<<block>>
ECU1

- PSK1 : Key;
- SesK : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;
- msg4 : Message;
- msg5 : Message;
- msg6 : Message;
- groupid : int;
- timestamp : int;

<<block>>
KM

- PSKN : Key;
- PSK1 : Key;
- msg : Message;
- msg1 : Message;
- msg2 : Message;
- msg3 : Message;
- msg4 : Message;
- msg5 : Message;
- msg6 : Message;
- msg7 : Message;
- timestamp1 : int;
- timestamp2 : int;
- ACK : int;
- b : bool;
- timerexpire : Message;

<<datatype>>
Key

- data : int;

<<datatype>>
Message

- data : int;

#Confidentiality ECU1.SesK
#Authenticity ECU1.makingFirstMessage.msg KM.decipherOK.msgauth

#InitialSystemKnowledge ECU1.PSK1 KM.PSK1
#InitialSystemKnowledge ECUN.PSKN KM.PSKN
#InitialSystemKnowledge ECUN.ACK ECU1.ACK KM.ACK
#InitialSystemKnowledge KM.timerexpire TimerKM.timerexpire

Channel common to all subblocks

Fig. 4: SysML-Sec block diagram of Key Distribution Protocol

5.2.1 Communication
We assume a Dolev-Yao attacker model, that is, only messages exchanged between blocks
can be eavesdropped, contrary to attributes of blocks. That attacker model is enough
to describe attacks on the protocols deployed between the components of the embedded
system, from outside or within the system. It however does not aim at capturing phys-
ical attacks on the hardware, nor a sequence of exploitation of vulnerabilities of several
components. Since communication channels may have been mapped over secure or non
secure buses at partitioning stage, we give the possibility to tag links between blocks with
a public label if an attacker can eavesdrop, or with a private label otherwise.

5.2.2 Cryptographic Material
Cryptographic material refers to all elements of the design that constitutes the basics upon
which security mechanisms can be built on, for example cryptographic protocols. SysML
does not explicitly support cryptographic material. In particular, three elements are at
stake to model security mechanisms:

• Cryptographic-related data types. Thus, SysML-Sec defines security-oriented
data types, e.g., the Key data type, see the top right part of Figure 4.

• Cryptographic functions. SysML-Sec defines the notion of "crypto block". A
crypto block includes a set of cryptographic methods that can be used in the state

Apvrille, L and Roudier, Y

machines of those blocks, and which semantics is taken into account when verifying
security properties. The declaration of cryptographic methods can be seen in bloc
ECUN in Figure 4.

• Shared data. Some security mechanisms assume the pre-sharing of data, e.g.,
secret keys. Object-oriented models do not support that scheme, and so, we have
introduced two specific pragmas for that purpose:

1. InitialSessionKnowledge lists a set of block attributes whose values are identical
at the beginning of a cryptographic protocol session.

] InitialSessionKnowledge BlockID.attribute
[BlockID.attribute]*

2. InitialSystemKnowledge lists a set of bloack attributes whose values are identical
at system startup. This pragma is used several times in Figure 4 in order to
settle the pre-shared keys between the Key Master and the ECUs.

] InitialSystemKnowledge BlockID.attribute
[BlockID.attribute]*

5.3 Security Properties
A dedicated language has been defined for describing the commonly complex safety prop-
erties, which is based on SysML Parametric diagrams [KAD11]. On the contrary, security
properties can usually be defined with a type (e.g., confidentiality), and with design el-
ements related to that kind (e.g., the confidentiality of the attribute of a block). This
simplicity pleads for a basic modeling solution, that is not based on complex diagrams
or operators. Our solution relies on pragmas provided in notes of Block Diagrams: con-
fidentiality and authenticity can be directly expressed at this level. The confidentiality
pragmas states that the value of the attribute of a block shall remain confidential, that
is, that value should never be disclosed to an attacker. For example, in Figure 4, the
attribute SesK of ECU1 must remain confidential. The pragma is as follows:

] Confidentiality block.attribute

The authenticity pragma states that a message m2 received by a block block2 was
necessarily sent before in a message m1 by a block block1. The following examples describes
such a situation:

] Authenticity block1.s1.m1 block2.s2.m2

This authenticity pragma specifies two states: one of the sender block, i.e. one state
s1 of block1, and one state s2 of block2. Also, in the state machine diagram of block1, s1
corresponds to the state right before the sending of m1. Analogously, s2 corresponds to the
state right after message m2 has been received and accepted as authentic. For example, in
Figure 4, the message msgauth received by KM before state decipherOK must have been
previously sent by ECU1 after the state makingFirstMessage and under the name msg.

SysML-Sec

6 System Validation
Validation can be performed from mapping models (e.g., performance evaluation of the
selected hardware architecture: load of CPUs and buses), from design models (proof of
safety and security properties), or from executable code automatically generated from
design models (safety and security tests). Model transformations have been defined to
transform SysML-Sec models into formal specifications. The whole process is seamlessly
implemented in TTool, i.e., a user of TTool does not need to know about underlying formal
techniques since model transformations and backtracing to models is totally automated.
Proofs can be performed from partitioning or software design models. From partitioning
models, it is possible to evaluate the impact of security mechanisms onto real-time con-
straints (e.g., latencies). From SysML-Sec designs, the formal proof relies on ProVerif
[Bla09] for security properties.

Figure 5 depicts the successful verification in TTool of the confidentiality and authen-
ticity properties modeled in Figure 4. While we can specify any security requirement, we
currently only support the formal validation of those that can be expressed with these two
security properties.

Fig. 5: TTool assistant for the formal verification of confidentiality and authenticity properties
defined at Figure 4

7 Related Work
7.1 Requirements Analysis and System Architecture
Model-Driven Engineering is probably the main contribution of the last decade in modeling
approaches. Profiles have also been defined by the OMG to more specifically address
embedded systems: SPT [OMG05] and MARTE [VdLG+09], but none of them addresses
requirements modeling nor security. Conversely, the SysML OMG profile [OMG12] clearly
takes into account requirements with explicit modeling capabilities and diagrams, but
ignores some problematics inherent to embedded systems, e.g., the partitioning issue, and
security issues are not at all explicit in SysML.

Apvrille, L and Roudier, Y

It is worth mentioning that the model-driven engineering of requirements has long been
supported by researchers in the field of embedded systems [Bro97, vdBBRS02, GGS06].
However, only Peraldi et al. [PFA10] advocate the need to link the model driven engi-
neering of the system architecture and a goal-oriented expression of requirements that
we follow in our approach. To our knowledge, none of these proposals has addressed the
expression of security requirements.

Our approach shares some similarities with the TwinPeaks approach advocated by Nu-
seibeh [Nus01], although the latter doe not address hardware systems. Instead of a simple
spiral alternating between the requirements and the architecture as TwinPeaks suggests,
we alternate between the Y-Chart modelling of software and its mapping to hardware
components, the identification of assets and threats to them, and the identification of
security requirements. In particular, we also deal with the three management concerns
that TwinPeaks aims at addressing: (1) exploring the solution space (in our case, both the
embedded system architecture and attacks that may result out of this design) early makes
it possible to incrementally provide feedback about requirements; (2) the designer has to
rely on commercial off-the-shelf software (as for TwinPeaks), or available electronic com-
ponents, or standard cryptographic algorithms and requirements (security requirements
in our proposal) help narrow down their proper selection; (3) rapid change, which is also
very much linked with refining the architecture in our case.

Furthermore, this iterative approach we follow also aims at achieving a viable design.
Other researchers have also argued that requirements engineering was about achieving
a satisfactory tradeoff between security requirements as well as functional or other non-
functional requirements [EY07, HGJF07, Lee11, AGM11]. By introducing security re-
quirements into the SysML framework, we also make it possible to relate them to other
types of requirements with the support of our model-driven tools (e.g., [WWZ+10] or
[AB12]). Some of these validations can be described even at the goal level description of
security requirements through the use of SysML testcases.

7.2 Security Requirements Engineering
In [NNY10], Nhlabatsi et al. classify security requirements engineering work in soft-
ware systems into four categories, namely: (1) goal-based approaches, (2) Model-based ap-
proaches, (3) problem-oriented approaches, and (4) Process-oriented approaches. Our own
approach combines a goal-based description of security requirements with a model-driven
engineering of the system architecture and validation of the soundness of the security
properties or of their innocuity with respect to safety.

Goal-based approaches are intrinsically very close to the security analyst refine-
ment process during system design, which we believe is a reason for their success and
wide use in security and in other domains of requirement engineering. Another strength
of goal oriented approaches lies in their ability to capture dependencies between security
requirements; however, how those dependencies may evolve when security requirements
are refined is generally ignored by those approaches, which generally lack any architectural
support. The KAOS framework [Van07] was the first such approach to feature a goal ori-
ented approach for modeling, specifying, and analyzing security requirements, and making
use of generic refinement patterns to decompose goals into a set of sub-goals. [DvL96] fur-
ther features a formalization of KAOS requirements definitions using linear time temporal
logic. This representation makes use of generic refinement patterns to decompose goals

SysML-Sec

into a set of sub-goals.
In contrast, model-based approaches like UMLSec [Jür02] focus on the mapping

of security mechanisms to the software architecture. This approach follows a much finer-
grained level of design, and its application is very useful for guiding the security designer’s
implementation, especially for the design of cryptographic protocols. However, this level of
abstraction means that it generally lacks feature to rationalize and ensure the traceability
of requirements in the design achieved. Furthermore, this approach generally relies on
the availability of a complete functional architecture: this may in itself either result in a
limited design space exploration or in some expensive redesign of the system if security
mechanisms don’t fit the implementation.

Problem-oriented approaches, like abuse frames [LNI+03] or misuse cases [SO00],
focus on the expression of threats and attacks and how security requirements can be
extracted from them. Those approaches especially fail to express security interoperability
requirements, or information flow centric security requirements. However, the expression
of attacks can be very precious to pinpoint a vulnerability of a system, where it plays the
role of a counter-example.

Process-oriented approaches, like the SQUARE [MS05] methodology, finally aim
mainly at the risk analysis of an existing design and follow a rather rigid waterfall approach
to engineering, yet do not address well design exploration and refinement.

7.3 Security Mechanisms and Proofs
UMLsec [Jür02], which features a model-based approach as described above, defines how
to integrate security protocol descriptions and security properties to a UML framework.
However, design elements and security properties are mixed on the same diagrams, as well
as functional and non functional requirements.

Assessing security in embedded systems mostly relies on formal approaches. For ex-
ample, [Tou93] proposes to verify cryptographic protocols with a probabilistic analysis
approach. [DTBJB95] defines a formal basic set of security services for accomplishing
security goals, and it is therefore focusing on security mechanisms rather than security
requirements. In this approach, the security property analysis strongly relies on the de-
signer’s experience. Moreover, a threat assessment is not easily feasible. In more recent
efforts, [DBTS04] embeds a first order Linear Temporal Logic (LTL) in the Isabelle/HOL
theorem prover, thus making it possible to model both a system and its security properties,
but unfortunately leading to non-easily reusable specific models. [MP08] mixes formal and
informal security properties, but the overall verification process is not completely auto-
mated, again requiring specific skills.

8 Conclusion and Future Work
The complexity of embedded systems and time-to-market and software-engineering con-
traints plead for engineering security requirements with user-oriented tools featuring au-
tomated and simplified verification. Our proposal, SysML-Sec, specifically addresses that
need at the diverse phases of system design and development. It is based on a popular
and friendly language (OMG’s SysML) and supported by an open-source toolkit (TTool)
that relies on a recognized security verification toolkit. We have also developed a method-
ology for the use of SysML-Sec diagrams which has been experimented to define a secure

Apvrille, L and Roudier, Y

automotive embedded system in the scope of the EVITA European project.
We now plan to further investigate the question of the validation of requirements. We

have already experimented with assessing how safety is possibly impacted by the security
mechanisms introduced after security requirements, like for instance, assessing the added
latency for performing a braking operation with secure communication. There as well, the
use of an architecture-centric model of the system makes it more obvious to proceed to
tests and simulations. We are also investigating how to automate the application of our
methodology. In particular, such an automation will require the introduction of security-
oriented reasoning capabilities into our modeling environment

References
[AB12] L. Apvrille and A. Becoulet. Prototyping an Embedded Automotive System

from its UML/SysML Models. In ERTSS’2012, Toulouse, France, February
2012.

[ABB+05] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier,
Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam,
Olga Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim, David von
Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Vi-
ganò, and Laurent Vigneron. The AVISPA tool for the automated validation
of internet security protocols and applications. In CAV, pages 281–285, 2005.

[ADSS11] L. Apvrille and P. De Saqui Sannes. AVATAR/TTool : un environnement en
mode libre pour SysML temps réel. Génie Logiciel, (98):22–26, September
2011.

[AGM11] Y. Asnar, P. Giorgini, and J. Mylopoulos. Goal-driven risk assessment in
requirements engineering. In Proceedings of RE’2011, vol. 16, no. 2, pages
101–116, 2011.

[AMAB+06] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet.
A UML-Based Environment for System Design Space Exploration. In Elec-
tronics, Circuits and Systems, 2006. ICECS ’06. 13th IEEE International
Conference on, pages 1272 –1275, Dec. 2006.

[Apv13] Ludovic Apvrille. TTool website. In http://ttool.telecom-paristech.fr/, 2013.

[Ass12] Fabio Assolini. The Tale of One Thousand and One DSL Modems, kaspersky
lab, October 2012.

[Bla09] B. Blanchet. Automatic Verification of Correspondences for Security Proto-
cols. Journal of Computer Security, 17(4):363–434, July 2009.

[Bro97] Manfred Broy. Requirements Engineering for Embedded Systems, 1997.

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System
Design Environment. Computer, 36(4):45–52, April 2003.

SysML-Sec

[DBTS04] Michael Drouineaud, Maksym Bortin, Paolo Torrini, and Karsten Sohr. A
first step towards formal verification of security policy properties for RBAC.
In Proceedings of the Fourth International Conference on Quality Software
(QSIC’04), volume 0-7695-2207-6/04. IEEE, 2004.

[DTBJB95] Denis Treck and Borka Jerman Blazic. Formal Language for Security Services
base Modelling and Analysis. Elsevier Science Journal, ComputerCommu-
nications, (12), 1995.

[DvL96] Robert Darimont and Axel van Lamsweerde. Formal Refinement Patterns
for Goal-Driven Requirements Elaboration. In Proceedings of the 4th ACM
SIGSOFT symposium on Foundations of software engineering, SIGSOFT
’96, pages 179–190, New York, NY, USA, 1996. ACM.

[Ess11] Stefan Esser. iOS Kernel Exploitation. In BlackHat 2011, 2011.

[EY07] G. Elahi and E. S. K. Yu. A goal oriented approach for modeling and analyz-
ing security trade-offs. In Proceedings of the 26th International Conference
on Conceptual Modeling, 2007.

[GGS06] Eva Geisberger, Johannes Grunbauer, and Bernhard Schatz. Interdis-
ciplinary Requirements Analysis Using the Model-Based RM Tool AU-
TORAID. Automotive Requirements Engineering, International Workshop,
0:1, 2006.

[HAF+] Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair Rud-
dle, and Benjamin Weyl. Security Requirements for Automotive On-Board
Networks. In Proceedings of the 9th International Conference on Intelligent
Transport System Telecommunications (ITST 2009), Lille, France.

[HGJF07] S. Houmb, G. Georg, J. Jürjens, and R. France. An integrated security
verification and security solution design trade-off analysis approach, 2007.

[HKD11] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security Threats to Auto-
motive CAN Networks - Practical Examples and Selected Short-Term Coun-
termeasures. Rel. Eng. & Sys. Safety, 96(1):11–25, 2011.

[Hua02] Andrew Huang. Keeping Secrets in Hardware: the Microsoft XBox Case
Study, AI Memo 2002-008, Massachusetts Institute of Technology, Artificial
Intelligence Laboratory. Technical report, 2002.

[Jür02] Jan Jürjens. UMLsec: Extending UML for Secure Systems Development. 5th
International Conference on the Unified Modeling Language, pages 412–425,
2002.

[KAD11] D. Knorreck, L. Apvrille, and P. De Saqui-Sannes. TEPE: A SysML Lan-
guage for Time-Constrained Property Modeling and Formal Verification.
ACM SIGSOFT Software Engineering Notes, 36(1):1–8, January 2011.

Apvrille, L and Roudier, Y

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and Stefan Savage. Experimental security analysis of a
modern automobile. In Proceedings of the 2010 IEEE Symposium on Security
and Privacy, SP ’10, pages 447–462, Washington, DC, USA, 2010. IEEE
Computer Society.

[Lee11] S. Lee. Probabilistic risk assessment for security requirements: A preliminary
study. In Proceedings of the 5th International Conference on Secure Software
Integration and Reliability Improvement, pages 11–20, 2011.

[LNI+03] Luncheng Lin, Bashar Nuseibeh, Darrel Ince, Michael Jackson, and Jonathan
Moffett. Introducing Abuse Frames for Analysing Security Requirements. In
Proceedings of the 11th IEEE International Conference on Requirements En-
gineering, pages 371–, Washington, DC, USA, 2003. IEEE Computer Society.

[MP08] Antonio Maña and Gimena Pujol. Towards formal specification of abstract
security properties. In The Third International Conference on Availability,
Reliability and Security, volume 0-7695-3102-4/08. IEEE, 2008.

[MS05] Nancy R. Mead and Ted Stehney. Security Quality Requirements Engineer-
ing (SQUARE) Methodology. SIGSOFT Softw. Eng. Notes, 30:1–7, May
2005.

[NNY10] Armstrong Nhlabatsi, Bashar Nuseibeh, and Yijun Yu. Security Require-
ments Engineering for Evolving Software Systems: a survey. Technical Re-
port 1, The Open University, 2010.

[Nus01] Bashar Nuseibeh. Weaving Together Requirements and Architectures. IEEE
Computer, 34(3):115–117, 2001.

[OMG05] OMG. OMG Profile for Scheduling, Performance and Time. In
http://www.omg.org/spec/SPTP/, 2005.

[OMG12] OMG. OMG Systems Modeling Language. In http://www.sysml.org/specs/,
2012.

[ORR00] Peter Ochsenschläger, Jürgen Repp, and Roland Rieke. The SH-Verification
Tool. In Proceedings of the Thirteenth International Florida Artificial Intel-
ligence Research Society Conference, pages 18–22. AAAI Press, 2000.

[PFA10] Marie-Agnès Peraldi-Frati and Arnaud Albinet. Requirement Traceability in
Safety Critical Systems. In Jean-Charles Fabre, Olivier Guetta, and Mario
Trapp, editors, EDCC2010 - Workshop on Critical Automotive applications:
Robustness and Safety (CARS’2010), ACM International Conference Pro-
ceeding Series, pages 11–14, Valencia, Espagne, April 2010. ACM.

[Rea09] A. Ruddle and et al. Security Requirements for Automotive On-board Net-
works Based on Dark-side Scenarios. Technical Report Deliverable D2.3,
EVITA Project, 2009.

SysML-Sec

[RIA13] Yves Roudier, Muhammad Sabir Idrees, and Ludovic Apvrille. Towards the
model-driven engineering of security requirements for embedded systems. In
proceedings of the 3rd International Model-Driven Requirements Engineering
(MoDRE) workshop, July 2013.

[SO00] G. Sindre and A.L. Opdahl. Eliciting Security Requirements by Misuse
Cases. In Technology of Object-Oriented Languages and Systems, 2000.
TOOLS-Pacific 2000. Proceedings. 37th International Conference on, pages
120 –131, 2000.

[Tes13] Hugo Teso. Aircraft Hacking. In HITB Security Conference, Amsterdam,
The Netherlands, 2013.

[Tou93] M. J. Toussaint. A New Method for Analyzing the Security of Cryptographic
Protocols. In Journal on Selected Areas in Communications, volume 11, No.
5. IEEE, June 1993.

[Van07] Axel Van Lamsweerde. Engineering Requirements for System Reliability and
Security. Software System Reliability and Security, 9:196–238, 2007.

[vdBBRS02] Michael von der Beeck, Peter Braun, Martin Rappl, and Christian Schröder.
Model Based Requirements Engineering for Embedded Software. 2012 20th
IEEE International Requirements Engineering Conference (RE), 0:92, 2002.

[VdLG+09] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard, and
Jean-Philippe Diguet. A Co-Design Approach for Embedded System Mod-
eling and Code Generation with UML and MARTE. In Design, Automation
and Test in Europe Conference and Exhibition, 2009. DATE’09, pages 226–
231, April 2009.

[WWZ+10] B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. Sabir Idrees, Y. Roudier,
H. Schweppe, H. Platzdasch, R. E. Khayari, O. Henniger, D. Scheuermann,
A. Fuchsa, L. Apvrille, G. Pedroza, H. Seudie, J. Shokrollahi, and A. Keil.
Secure On-board Architecture Specification. Technical Report Deliverable
D3.2, EVITA Project, 2010.

9 Biography
Ludovic Apvrille obtained his M.Sc. in Computer Science, Network and Distributed
Systems specialization in 1998 from ENSEIRB and ISAE. He then completed a Ph.D.
in 2002, in the Department of Applied Mathematics and Computer Science at ISAE, in
collaboration with LAAS-CNRS and Alcatel Space Industries (now, Thalès Alenia Space).
After a postdoctoral term at Concordia University (Canada), he joined LabSoc in 2003
as an assistant professor at Telecom ParisTech, in the Communication and Electronics
department. He obtained his HDR (Habilitation à Diriger les Recherches) in 2012. His
research interests focus on tools and methods for the modeling and verification of embed-
ded systems and Systems-on-Chip. Verification techniques target both safety and security
properties. He is leading the development efforts aroun the open-source UML/SysML

Apvrille, L and Roudier, Y

toolkit TTool.

Yves Roudier obtained his Ph.D. thesis in Computer Science in 1996 from the University
of Nice Sophia Antipolis, France. After two years of postdoctoral work at the Electrotech-
nical Laboratory (ETL), Japan, he joined EURECOM in 1998. He curretly is an assistant
professor in the Network and Security department of EURECOM. His research interests
focus on security architectures and applied cryptography, notably for automotive systems,
service-oriented architectures, and data storage, and on software engineering for secu-
rity, especially using model-driven engineering and aspect-oriented techniques. He has
co-authored more than 50 journal, conference, or workshop papers.

	Introduction
	Hardware / Software Partitioning in Embedded Systems
	The SysML-Sec Approach
	System Requirements Engineering and Analysis
	Iterative Security/System Codesign Process
	Diagrams

	Software Design
	Methodological Aspects
	Security Design Extensions
	Communication
	Cryptographic Material

	Security Properties

	System Validation
	Related Work
	Requirements Analysis and System Architecture
	Security Requirements Engineering
	Security Mechanisms and Proofs

	Conclusion and Future Work
	Biography

